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Preface

Cover and Thomas wrote a book on information theory [72] ten years ago
which covers most of the major topics with considerable depth. Their book
has since become the standard textbook in the field, and it was no doubt a
remarkable success. Instead of writing another comprehensive textbook on the
subject, which has become more difficult as new results keep emerging, my
goal is to write a book on the fundamentals of the subject in a unified and
coherent manner.

During the last ten years, significant progress has been made in under-
standing the entropy function and information inequalities of discrete random
variables. The results along this direction not only are of core interest in infor-
mation theory, but also have applications in network coding theory, probabil-
ity theory, group theory, Kolmogorov complexity, and possibly physics. This
book is an up-to-date treatment of information theory for discrete random
variables, which forms the foundation of the theory at large. There are eight
chapters on classical topics (Chapters 1, 2, 3, 4, 5, 8, 9, and 10), five chapters
on fundamental tools (Chapters 6, 7, 12, 13, and 14), and three chapters on
selected topics (Chapters 11, 15, and 16). The chapters are arranged accord-
ing to the logical order instead of the chronological order of the results in the
literature.

What is in this book

Out of the sixteen chapters in this book, the first thirteen chapters are
basic topics, while the last three chapters are advanced topics for the more
enthusiastic reader. A brief rundown of the chapters will give a better idea of
what is in this book.

Chapter 1 is a very high level introduction to the nature of information
theory and the main results in Shannon’s original paper in 1948 which founded
the field. There are also pointers to Shannon’s biographies and his works.

Chapter 2 introduces Shannon’s information measures and their basic
properties. Useful identities and inequalities in information theory are de-
rived and explained. Extra care is taken in handling joint distributions with
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zero probability masses. The chapter ends with a section on the entropy rate
of a stationary information source.

Chapter 3 is a discussion of zero-error data compression by uniquely de-
codable codes, with prefix codes as a special case. A proof of the entropy
bound for prefix codes which involves neither the Kraft inequality nor the
fundamental inequality is given. This proof facilitates the discussion of the
redundancy of prefix codes.

Chapter 4 is a thorough treatment of weak typicality. The weak asymp-
totic equipartition property and the source coding theorem are discussed. An
explanation of the fact that a good data compression scheme produces almost
i.i.d. bits is given. There is also a brief discussion of the Shannon-McMillan-
Breiman theorem.

Chapter 5 introduces a new definition of strong typicality which does not
involve the cardinalities of the alphabet sets. The treatment of strong typical-
ity here is more detailed than Berger [27] but less abstract than Csiszár and
Körner [75]. A new exponential convergence result is proved in Theorem 5.3.

Chapter 6 is an introduction to the theory of I-Measure which establishes
a one-to-one correspondence between Shannon’s information measures and set
theory. A number of examples are given to show how the use of information
diagrams can simplify the proofs of many results in information theory. Most
of these examples are previously unpublished. In particular, Example 6.15 is
a generalization of Shannon’s perfect secrecy theorem.

Chapter 7 explores the structure of the I-Measure for Markov structures.
Set-theoretic characterizations of full conditional independence and Markov
random field are discussed. The treatment of Markov random field here is
perhaps too specialized for the average reader, but the structure of the I-
Measure and the simplicity of the information diagram for a Markov chain is
best explained as a special case of a Markov random field.

Chapter 8 consists of a new treatment of the channel coding theorem.
Specifically, a graphical model approach is employed to explain the conditional
independence of random variables. Great care is taken in discussing feedback.

Chapter 9 is an introduction to rate-distortion theory. The version of the
rate-distortion theorem here, proved by using strong typicality, is a stronger
version of the original theorem obtained by Shannon.

In Chapter 10, the Blahut-Arimoto algorithms for computing channel ca-
pacity and the rate-distortion function are discussed, and a simplified proof
for convergence is given. Great care is taken in handling distributions with
zero probability masses.

Chapter 11 is an introduction to network coding theory. The surprising
fact that coding at the intermediate nodes can improve the throughput when
an information source is multicast in a point-to-point network is explained.
The max-flow bound for network coding with a single information source is
explained in detail. Multi-source network coding will be discussed in Chapter
15 after the necessary tools are developed in the next three chapters.
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Information inequalities are sometimes called the laws of information the-
ory because they govern the impossibilities in information theory. In Chapter
12, the geometrical meaning of information inequalities and the relation be-
tween information inequalities and conditional independence are explained in
depth. The framework for information inequalities discussed here is the basis
of the next two chapters.

Chapter 13 explains how the problem of proving information inequalities
can be formulated as a linear programming problem. This leads to a complete
characterization of all information inequalities which can be proved by con-
ventional techniques. These are called Shannon-type inequalities, which can
now be proved by the software ITIP which comes with this book. It is also
shown how Shannon-type inequalities can be used to tackle the implication
problem of conditional independence in probability theory.

All information inequalities we used to know were Shannon-type inequali-
ties. Recently, a few non-Shannon-type inequalities have been discovered. This
means that there exist laws in information theory beyond those laid down by
Shannon. These inequalities and their applications are explained in depth in
Chapter 14.

Network coding theory is further developed in Chapter 15. The situa-
tion when more than one information source are multicast in a point-to-point
network is discussed. The surprising fact that a multi-source problem is not
equivalent to a few single-source problems even when the information sources
are mutually independent is clearly explained. Implicit and explicit bounds
on the achievable coding rate region are discussed. These characterizations on
the achievable coding rate region involve almost all the tools that have been
developed earlier in the book, in particular, the framework for information
inequalities.

Chapter 16 explains an intriguing relation between information theory and
group theory. Specifically, for every information inequality satisfied by any
joint distribution, there is a corresponding group inequality satisfied by any
finite group and its subgroups, and vice versa. Inequalities of the latter type
govern the orders of any finite group and their subgroups. Group-theoretic
proofs of Shannon-type information inequalities are given. At the end of this
chapter, a group inequality is obtained from a non-Shannon-type inequality
discussed in Chapter 14. The meaning and the implication of this inequality
are yet to be understood.

How to use this book

You are recommended to read the chapters according to the above chart.
However, you will not have too much difficulty jumping around in the book
because there should be sufficient references to the previous relevant sections.

As a relatively slow thinker, I feel uncomfortable whenever I do not reason
in the most explicit way. This probably has helped in writing this book, in
which all the derivations are from the first principle. In the book, I try to
explain all the subtle mathematical details without sacrificing the big picture.
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Interpretations of the results are usually given before the proofs are presented.
The book also contains a large number of examples. Unlike the examples in
most books which are supplementary, the examples in this book are essential.

This book can be used as a reference book or a textbook. For a two-
semester course on information theory, this would be a suitable textbook for
the first semester. This would also be a suitable textbook for a one-semester
course if only information theory for discrete random variables is covered. If
the instructor also wants to include topics on continuous random variables,
this book can be used as a textbook or a reference book in conjunction with
another suitable textbook. The instructor will find this book a good source
for homework problems because many problems here do not appear in any
other textbook. A comprehensive instructor’s manual is available upon re-
quest. Please contact the author at whyeung@ie.cuhk.edu.hk for information
and access.

Just like any other lengthy document, this book for sure contains errors
and omissions. To alleviate the problem, an errata will be maintained at the
book homepage http://www.ie.cuhk.edu.hk/IT book/.

Hong Kong, Raymond W. Yeung
August 2007
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1

The Science of Information

In a communication system, we try to convey information from one point to
another, very often in a noisy environment. Consider the following scenario. A
secretary needs to send facsimiles regularly and she wants to convey as much
information as possible on each page. She has a choice of the font size, which
means that more characters can be squeezed onto a page if a smaller font size
is used. In principle, she can squeeze as many characters as desired on a page
by using a small enough font size. However, there are two factors in the system
which may cause errors. First, the fax machine has a finite resolution. Second,
the characters transmitted may be received incorrectly due to noise in the
telephone line. Therefore, if the font size is too small, the characters may not
be recognizable on the facsimile. On the other hand, although some characters
on the facsimile may not be recognizable, the recipient can still figure out the
words from the context provided that the number of such characters is not
excessive. In other words, it is not necessary to choose a font size such that
all the characters on the facsimile are recognizable almost surely. Then we are
motivated to ask: What is the maximum amount of meaningful information
which can be conveyed on one page of facsimile?

This question may not have a definite answer because it is not very well
posed. In particular, we do not have a precise measure of meaningful informa-
tion. Nevertheless, this question is an illustration of the kind of fundamental
questions we can ask about a communication system.

Information, which is not a physical entity but an abstract concept, is hard
to quantify in general. This is especially the case if human factors are involved
when the information is utilized. For example, when we play Beethoven’s vio-
lin concerto from a compact disc, we receive the musical information from the
loudspeakers. We enjoy this information because it arouses certain kinds of
emotion within ourselves. While we receive the same information every time
we play the same piece of music, the kinds of emotions aroused may be dif-
ferent from time to time because they depend on our mood at that particular
moment. In other words, we can derive utility from the same information ev-
ery time in a different way. For this reason, it is extremely difficult to devise
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a measure which can quantify the amount of information contained in a piece
of music.

In 1948, Bell Telephone Laboratories scientist Claude E. Shannon (1916-
2001) published a paper entitled “The Mathematical Theory of Communi-
cation” [291] which laid the foundation of an important field now known as
information theory. In his paper, the model of a point-to-point communication
system depicted in Figure 1.1 is considered. In this model, a message is gener-

TRANSMITTER 

SIGNAL RECEIVED 
SIGNAL MESSAGE MESSAGE 

NOISE 
SOURCE 

INFORMATION 
SOURCE DESTINATION RECEIVER 

Fig. 1.1. Schematic diagram for a general point-to-point communication system.

ated by the information source. The message is converted by the transmitter
into a signal which is suitable for transmission. In the course of transmis-
sion, the signal may be contaminated by a noise source, so that the received
signal may be different from the transmitted signal. Based on the received
signal, the receiver then makes an estimate of the message and deliver it to
the destination.

In this abstract model of a point-to-point communication system, one is
only concerned about whether the message generated by the source can be
delivered correctly to the receiver without worrying about how the message
is actually used by the receiver. In a way, Shannon’s model does not cover all
the aspects of a communication system. However, in order to develop a precise
and useful theory of information, the scope of the theory has to be restricted.

In [291], Shannon introduced two fundamental concepts about ‘informa-
tion’ from the communication point of view. First, information is uncertainty.
More specifically, if a piece of information we are interested in is deterministic,
then it has no value at all because it is already known with no uncertainty.
From this point of view, for example, the continuous transmission of a still
picture on a television broadcast channel is superfluous. Consequently, an
information source is naturally modeled as a random variable or a random
process, and probability is employed to develop the theory of information.
Second, information to be transmitted is digital. This means that the infor-
mation source should first be converted into a stream of 0’s and 1’s called bits,
and the remaining task is to deliver these bits to the receiver correctly with no



1 The Science of Information 3

reference to their actual meaning. This is the foundation of all modern digital
communication systems. In fact, this work of Shannon appears to contain the
first published use of the term bit, which stands for binary digit.

In the same work, Shannon also proved two important theorems. The first
theorem, called the source coding theorem, introduces entropy as the funda-
mental measure of information which characterizes the minimum rate of a
source code representing an information source essentially free of error. The
source coding theorem is the theoretical basis for lossless data compression1.
The second theorem, called the channel coding theorem, concerns communica-
tion through a noisy channel. It was shown that associated with every noisy
channel is a parameter, called the capacity, which is strictly positive except
for very special channels, such that information can be communicated reliably
through the channel as long as the information rate is less than the capacity.
These two theorems, which give fundamental limits in point-to-point commu-
nication, are the two most important results in information theory.

In science, we study the laws of Nature which must be obeyed by any phys-
ical systems. These laws are used by engineers to design systems to achieve
specific goals. Therefore, science is the foundation of engineering. Without
science, engineering can only be done by trial and error.

In information theory, we study the fundamental limits in communica-
tion regardless of the technologies involved in the actual implementation of
the communication systems. These fundamental limits are not only used as
guidelines by communication engineers, but they also give insights into what
optimal coding schemes are like. Information theory is therefore the science
of information.

Since Shannon published his original paper in 1948, information theory
has been developed into a major research field in both communication theory
and applied probability. After more than half a century’s research, it is quite
impossible for a book on the subject to cover all the major topics with con-
siderable depth. This book is a modern treatment of information theory for
discrete random variables, which is the foundation of the theory at large. The
book consists of two parts. The first part, namely Chapter 1 to Chapter 13,
is a thorough discussion of the basic topics in information theory, including
fundamental results, tools, and algorithms. The second part, namely Chapter
14 to Chapter 16, is a selection of advanced topics which demonstrate the use
of the tools developed in the first part of the book. The topics discussed in
this part of the book also represent new research directions in the field.

An undergraduate level course on probability is the only prerequisite for
this book. For a non-technical introduction to information theory, we refer the
reader to Encyclopedia Britannica [47]. In fact, we strongly recommend the
reader to first read this excellent introduction before starting this book. For
biographies of Claude Shannon, a legend of the 20th Century who had made

1 A data compression scheme is lossless if the data can be recovered with an arbi-
trarily small probability of error.
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fundamental contribution to the Information Age, we refer the readers to [53]
and [307]. The latter is also a complete collection of Shannon’s papers.

Unlike most branches of applied mathematics in which physical systems are
studied, abstract systems of communication are studied in information theory.
In reading this book, it is not unusual for a beginner to be able to understand
all the steps in a proof but has no idea what the proof is leading to. The best
way to learn information theory is to study the materials first and come back
at a later time. Many results in information theory are rather subtle, to the
extent that an expert in the subject may from time to time realize that his/her
understanding of certain basic results has been inadequate or even incorrect.
While a novice should expect to raise his/her level of understanding of the
subject by reading this book, he/she should not be discouraged to find after
finishing the book that there are actually more things yet to be understood.
In fact, this is exactly the challenge and the beauty of information theory.



Part I

Components of Information Theory
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Information Measures

Shannon’s information measures refer to entropy, conditional entropy, mutual
information, and conditional mutual information. They are the most impor-
tant measures of information in information theory. In this chapter, we in-
troduce these measures and establish some basic properties they possess. The
physical meanings of these measures will be discussed in depth in subsequent
chapters. We then introduce the informational divergence which measures
the “distance” between two probability distributions and prove some useful
inequalities in information theory. The chapter ends with a section on the
entropy rate of a stationary information source.

2.1 Independence and Markov Chains

We begin our discussion in this chapter by reviewing two basic notions in prob-
ability: independence of random variables and Markov chain. All the random
variables in this book are discrete unless otherwise specified.

Let X be a random variable taking values in an alphabet X . The probabil-
ity distribution for X is denoted as {pX(x), x ∈ X}, with pX(x) = Pr{X = x}.
When there is no ambiguity, pX(x) will be abbreviated as p(x), and {p(x)}
will be abbreviated as p(x). The support of X, denoted by SX , is the set of
all x ∈ X such that p(x) > 0. If SX = X , we say that p is strictly positive.
Otherwise, we say that p is not strictly positive, or p contains zero probability
masses. All the above notations naturally extend to two or more random vari-
ables. As we will see, probability distributions with zero probability masses
are very delicate in general, and they need to be handled with great care.

Definition 2.1. Two random variables X and Y are independent, denoted by
X ⊥ Y , if

p(x, y) = p(x)p(y) (2.1)

for all x and y (i.e., for all (x, y) ∈ X × Y).
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For more than two random variables, we distinguish between two types of
independence.

Definition 2.2 (Mutual Independence). For n ≥ 3, random variables
X1, X2, · · · , Xn are mutually independent if

p(x1, x2, · · · , xn) = p(x1)p(x2) · · · p(xn) (2.2)

for all x1, x2, · · ·, xn.

Definition 2.3 (Pairwise Independence). For n ≥ 3, random variables
X1, X2, · · · , Xn are pairwise independent if Xi and Xj are independent for all
1 ≤ i < j ≤ n.

Note that mutual independence implies pairwise independence. We leave
it as an exercise for the reader to show that the converse is not true.

Definition 2.4 (Conditional Independence). For random variables X,Y ,
and Z, X is independent of Z conditioning on Y , denoted by X ⊥ Z|Y , if

p(x, y, z)p(y) = p(x, y)p(y, z) (2.3)

for all x, y, and z, or equivalently,

p(x, y, z) =

{
p(x,y)p(y,z)

p(y) = p(x, y)p(z|y) if p(y) > 0
0 otherwise.

(2.4)

The first definition of conditional independence above is sometimes more
convenient to use because it is not necessary to distinguish between the cases
p(y) > 0 and p(y) = 0. However, the physical meaning of conditional inde-
pendence is more explicit in the second definition.

Proposition 2.5. For random variables X,Y , and Z, X ⊥ Z|Y if and only
if

p(x, y, z) = a(x, y)b(y, z) (2.5)

for all x, y, and z such that p(y) > 0.

Proof. The ‘only if’ part follows immediately from the definition of conditional
independence in (2.4), so we will only prove the ‘if’ part. Assume

p(x, y, z) = a(x, y)b(y, z) (2.6)

for all x, y, and z such that p(y) > 0. Then for such x, y, and z, we have

p(x, y) =
∑
z

p(x, y, z) =
∑
z

a(x, y)b(y, z) = a(x, y)
∑
z

b(y, z) (2.7)
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and

p(y, z) =
∑
x

p(x, y, z) =
∑
x

a(x, y)b(y, z) = b(y, z)
∑
x

a(x, y). (2.8)

Furthermore,

p(y) =
∑
z

p(y, z) =

(∑
x

a(x, y)

)(∑
z

b(y, z)

)
. (2.9)

Therefore,

p(x, y)p(y, z)
p(y)

=

(
a(x, y)

∑
z

b(y, z)

)(
b(y, z)

∑
x

a(x, y)

)
(∑

x

a(x, y)

)(∑
z

b(y, z)

) (2.10)

= a(x, y)b(y, z) (2.11)
= p(x, y, z). (2.12)

For x, y, and z such that p(y) = 0, since

0 ≤ p(x, y, z) ≤ p(y) = 0, (2.13)

we have
p(x, y, z) = 0. (2.14)

Hence, X ⊥ Z|Y . The proof is accomplished. ut

Definition 2.6 (Markov Chain). For random variables X1, X2, · · · , Xn,
where n ≥ 3, X1 → X2 → · · · → Xn forms a Markov chain if

p(x1, x2, · · · , xn)p(x2)p(x3) · · · p(xn−1)
= p(x1, x2)p(x2, x3) · · · p(xn−1, xn) (2.15)

for all x1, x2, · · ·, xn, or equivalently,

p(x1, x2, · · · , xn) ={
p(x1, x2)p(x3|x2) · · · p(xn|xn−1) if p(x2), p(x3), · · · , p(xn−1) > 0
0 otherwise. (2.16)

We note that X ⊥ Z|Y is equivalent to the Markov chain X → Y → Z.

Proposition 2.7. X1 → X2 → · · · → Xn forms a Markov chain if and only
if Xn → Xn−1 → · · · → X1 forms a Markov chain.
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Proof. This follows directly from the symmetry in the definition of a Markov
chain in (2.15). ut

In the following, we state two basic properties of a Markov chain. The
proofs are left as an exercise.

Proposition 2.8. X1 → X2 → · · · → Xn forms a Markov chain if and only
if

X1 → X2 → X3

(X1, X2)→ X3 → X4

...
(X1, X2, · · · , Xn−2)→ Xn−1 → Xn

(2.17)

form Markov chains.

Proposition 2.9. X1 → X2 → · · · → Xn forms a Markov chain if and only
if

p(x1, x2, · · · , xn) = f1(x1, x2)f2(x2, x3) · · · fn−1(xn−1, xn) (2.18)

for all x1, x2, · · ·, xn such that p(x2), p(x3), · · · , p(xn−1) > 0.

Note that Proposition 2.9 is a generalization of Proposition 2.5. From
Proposition 2.9, one can prove the following important property of a Markov
chain. Again, the details are left as an exercise.

Proposition 2.10 (Markov subchains). Let Nn = {1, 2, · · · , n} and let
X1 → X2 → · · · → Xn form a Markov chain. For any subset α of Nn, denote
(Xi, i ∈ α) by Xα. Then for any disjoint subsets α1, α2, · · · , αm of Nn such
that

k1 < k2 < · · · < km (2.19)

for all kj ∈ αj, j = 1, 2, · · · ,m,

Xα1 → Xα2 → · · · → Xαm (2.20)

forms a Markov chain. That is, a subchain of X1 → X2 → · · · → Xn is also
a Markov chain.

Example 2.11. Let X1 → X2 → · · · → X10 form a Markov chain and
α1 = {1, 2}, α2 = {4}, α3 = {6, 8}, and α4 = {10} be subsets of N10. Then
Proposition 2.10 says that

(X1, X2)→ X4 → (X6, X8)→ X10 (2.21)

also forms a Markov chain.
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We have been very careful in handling probability distributions with zero
probability masses. In the rest of the section, we show that such distributions
are very delicate in general. We first prove the following property of a strictly
positive probability distribution involving four random variables1.

Proposition 2.12. Let X1, X2, X3, and X4 be random variables such that
p(x1, x2, x3, x4) is strictly positive. Then

X1 ⊥ X4|(X2, X3)
X1 ⊥ X3|(X2, X4)

}
⇒ X1 ⊥ (X3, X4)|X2. (2.22)

Proof. If X1 ⊥ X4|(X2, X3), we have

p(x1, x2, x3, x4) =
p(x1, x2, x3)p(x2, x3, x4)

p(x2, x3)
. (2.23)

On the other hand, if X1 ⊥ X3|(X2, X4), we have

p(x1, x2, x3, x4) =
p(x1, x2, x4)p(x2, x3, x4)

p(x2, x4)
. (2.24)

Equating (2.23) and (2.24), we have

p(x1, x2, x3) =
p(x2, x3)p(x1, x2, x4)

p(x2, x4)
. (2.25)

Then

p(x1, x2) =
∑
x3

p(x1, x2, x3) (2.26)

=
∑
x3

p(x2, x3)p(x1, x2, x4)
p(x2, x4)

(2.27)

=
p(x2)p(x1, x2, x4)

p(x2, x4)
, (2.28)

or
p(x1, x2, x4)
p(x2, x4)

=
p(x1, x2)
p(x2)

. (2.29)

Hence from (2.24),

p(x1, x2, x3, x4) =
p(x1, x2, x4)p(x2, x3, x4)

p(x2, x4)
=
p(x1, x2)p(x2, x3, x4)

p(x2)
(2.30)

for all x1, x2, x3, and x4, i.e., X1 ⊥ (X3, X4)|X2. ut
1 Proposition 2.12 is called the intersection axiom in Bayesian networks. See [258].
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If p(x1, x2, x3, x4) = 0 for some x1, x2, x3, and x4, i.e., p is not strictly
positive, the arguments in the above proof are not valid. In fact, the propo-
sition may not hold in this case. For instance, let X1 = Y , X2 = Z, and
X3 = X4 = (Y,Z), where Y and Z are independent random variables. Then
X1 ⊥ X4|(X2, X3), X1 ⊥ X3|(X2, X4), but X1 6⊥ (X3, X4)|X2. Note that
for this construction, p is not strictly positive because p(x1, x2, x3, x4) = 0 if
x3 6= (x1, x2) or x4 6= (x1, x2).

The above example is somewhat counter-intuitive because it appears that
Proposition 2.12 should hold for all probability distributions via a continuity
argument. Specifically, such an argument goes like this. For any distribution
p, let {pk} be a sequence of strictly positive distributions such that pk → p
and pk satisfies (2.23) and (2.24) for all k, i.e.,

pk(x1, x2, x3, x4)pk(x2, x3) = pk(x1, x2, x3)pk(x2, x3, x4) (2.31)

and

pk(x1, x2, x3, x4)pk(x2, x4) = pk(x1, x2, x4)pk(x2, x3, x4). (2.32)

Then by the proposition, pk also satisfies (2.30), i.e.,

pk(x1, x2, x3, x4)pk(x2) = pk(x1, x2)pk(x2, x3, x4). (2.33)

Letting k →∞, we have

p(x1, x2, x3, x4)p(x2) = p(x1, x2)p(x2, x3, x4) (2.34)

for all x1, x2, x3, and x4, i.e., X1 ⊥ (X3, X4)|X2. Such an argument would
be valid if there always exists a sequence {pk} as prescribed. However, the
existence of the distribution p(x1, x2, x3, x4) constructed immediately after
Proposition 2.12 simply says that it is not always possible to find such a
sequence {pk}.

Therefore, probability distributions which are not strictly positive can be
very delicate. For strictly positive distributions, we see from Proposition 2.5
that their conditional independence structures are closely related to the fac-
torization problem of such distributions, which has been investigated by Chan
[57].

2.2 Shannon’s Information Measures

We begin this section by introducing the entropy of a random variable. As
we will see shortly, all Shannon’s information measures can be expressed as
linear combinations of entropies.

Definition 2.13. The entropy H(X) of a random variable X is defined as

H(X) = −
∑
x

p(x) log p(x). (2.35)
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In all definitions of information measures, we adopt the convention that
summation is taken over the corresponding support. Such a convention is
necessary because p(x) log p(x) in (2.35) is undefined if p(x) = 0.

The base of the logarithm in (2.35) can be chosen to be any convenient
real number great than 1. We write H(X) as Hα(X) when the base of the
logarithm is α. When the base of the logarithm is 2, the unit for entropy is
the bit. When the base of the logarithm is e, the unit for entropy is the nat.
When the base of the logarithm is an integer D ≥ 2, the unit for entropy is
the D-it (D-ary digit). In the context of source coding, the base is usually
taken to be the size of the code alphabet. This will be discussed in Chapter 4.

In computer science a bit means an entity which can take the value 0 or 1.
In information theory the entropy of a random variable is measured in bits.
The reader should distinguish these two meanings of a bit from each other
carefully.

Let g(X) be any function of a random variable X. We will denote the
expectation of g(X) by Eg(X), i.e.,

Eg(X) =
∑
x

p(x)g(x), (2.36)

where the summation is over SX . Then the definition of the entropy of a
random variable X can be written as

H(X) = −E log p(X). (2.37)

Expressions of Shannon’s information measures in terms of expectations will
be useful in subsequent discussions.

The entropy H(X) of a random variable X is a functional of the prob-
ability distribution p(x) which measures the average amount of information
contained in X, or equivalently, the average amount of uncertainty removed
upon revealing the outcome of X. Note that H(X) depends only on p(x), not
on the actual values in X . Occasionally, we also denote H(X) by H(p).

For 0 ≤ γ ≤ 1, define

hb(γ) = −γ log γ − (1− γ) log(1− γ) (2.38)

with the convention 0 log 0 = 0, so that hb(0) = hb(1) = 0. With this conven-
tion, hb(γ) is continuous at γ = 0 and γ = 1. hb is called the binary entropy
function. For a binary random variable X with distribution {γ, 1− γ},

H(X) = hb(γ). (2.39)

Figure 2.1 shows the graph hb(γ) versus γ in the base 2. Note that hb(γ)
achieves the maximum value 1 when γ = 1

2 .
The definition of the joint entropy of two random variables is similar to

the definition of the entropy of a single random variable. Extension of this
definition to more than two random variables is straightforward.
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Fig. 2.1. hb(q) versus q in the base 2.

Definition 2.14. The joint entropy H(X,Y ) of a pair of random variables
X and Y is defined as

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y) = −E log p(X,Y ). (2.40)

For two random variables, we define in the following the conditional en-
tropy of one random variable when the other random variable is given.

Definition 2.15. For random variables X and Y , the conditional entropy of
Y given X is defined as

H(Y |X) = −
∑
x,y

p(x, y) log p(y|x) = −E log p(Y |X). (2.41)

From (2.41), we can write

H(Y |X) =
∑
x

p(x)

[
−
∑
y

p(y|x) log p(y|x)

]
. (2.42)

The inner sum is the entropy of Y conditioning on a fixed x ∈ SX . Thus we
are motivated to express H(Y |X) as

H(Y |X) =
∑
x

p(x)H(Y |X = x), (2.43)

where
H(Y |X = x) = −

∑
y

p(y|x) log p(y|x). (2.44)

Observe that the right hand sides of (2.35) and (2.44) have exactly the same
form. Similarly, for H(Y |X,Z), we write
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H(Y |X,Z) =
∑
z

p(z)H(Y |X,Z = z), (2.45)

where
H(Y |X,Z = z) = −

∑
x,y

p(x, y|z) log p(y|x, z). (2.46)

Proposition 2.16.

H(X,Y ) = H(X) +H(Y |X) (2.47)

and
H(X,Y ) = H(Y ) +H(X|Y ). (2.48)

Proof. Consider

H(X,Y ) = −E log p(X,Y ) (2.49)
= −E log[p(X)p(Y |X)] (2.50)
= −E log p(X)− E log p(Y |X) (2.51)
= H(X) +H(Y |X). (2.52)

Note that (2.50) is justified because the summation of the expectation is over
SXY , and we have used the linearity of expectation2 to obtain (2.51). This
proves (2.47), and (2.48) follows by symmetry. ut

This proposition has the following interpretation. Consider revealing the
outcome of a pair of random variables X and Y in two steps: first the outcome
of X and then the outcome of Y . Then the proposition says that the total
amount of uncertainty removed upon revealing both X and Y is equal to the
sum of the uncertainty removed upon revealing X (uncertainty removed in the
first step) and the uncertainty removed upon revealing Y once X is known
(uncertainty removed in the second step).

Definition 2.17. For random variables X and Y , the mutual information
between X and Y is defined as

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

= E log
p(X,Y )
p(X)p(Y )

. (2.53)

Remark I(X;Y ) is symmetrical in X and Y .

Proposition 2.18. The mutual information between a random variable X
and itself is equal to the entropy of X, i.e., I(X;X) = H(X).
2 See Problem 6 at the end of the chapter.
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Proof. This can be seen by considering

I(X;X) = E log
p(X)
p(X)2

(2.54)

= −E log p(X) (2.55)
= H(X). (2.56)

The proposition is proved. ut

Remark The entropy of X is sometimes called the self-information of X.

Proposition 2.19.

I(X;Y ) = H(X)−H(X|Y ), (2.57)
I(X;Y ) = H(Y )−H(Y |X), (2.58)

and
I(X;Y ) = H(X) +H(Y )−H(X,Y ), (2.59)

provided that all the entropies and conditional entropies are finite (see Exam-
ple 2.46 in Section 2.8).

The proof of this proposition is left as an exercise.

From (2.57), we can interpret I(X;Y ) as the reduction in uncertainty
about X when Y is given, or equivalently, the amount of information about
X provided by Y . Since I(X;Y ) is symmetrical in X and Y , from (2.58), we
can as well interpret I(X;Y ) as the amount of information about Y provided
by X.

The relations between the (joint) entropies, conditional entropies, and mu-
tual information for two random variables X and Y are given in Propositions
2.16 and 2.19. These relations can be summarized by the diagram in Figure 2.2
which is a variation of the Venn diagram3. One can check that all the rela-
tions between Shannon’s information measures for X and Y which are shown
in Figure 2.2 are consistent with the relations given in Propositions 2.16 and
2.19. This one-to-one correspondence between Shannon’s information mea-
sures and set theory is not just a coincidence for two random variables. We
will discuss this in depth when we introduce the I-Measure in Chapter 3.

Analogous to entropy, there is a conditional version of mutual information
called conditional mutual information.

3 The rectangle representing the universal set in a usual Venn diagram is missing
in Figure 2.2.
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H ( X , Y ) 

H ( X | Y ) H ( Y|X ) 

H ( Y ) 
I ( X ; Y ) 

H ( X ) 

Fig. 2.2. Relationship between entropies and mutual information for two random
variables.

Definition 2.20. For random variables X, Y and Z, the mutual information
between X and Y conditioning on Z is defined as

I(X;Y |Z) =
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
= E log

p(X,Y |Z)
p(X|Z)p(Y |Z)

. (2.60)

Remark I(X;Y |Z) is symmetrical in X and Y .

Analogous to conditional entropy, we write

I(X;Y |Z) =
∑
z

p(z)I(X;Y |Z = z), (2.61)

where

I(X;Y |Z = z) =
∑
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
. (2.62)

Similarly, when conditioning on two random variables, we write

I(X;Y |Z, T ) =
∑
t

p(t)I(X;Y |Z, T = t) (2.63)

where

I(X;Y |Z, T = t) =
∑
x,y,z

p(x, y, z|t) log
p(x, y|z, t)

p(x|z, t)p(y|z, t)
. (2.64)

Conditional mutual information satisfies the same set of relations given in
Propositions 2.18 and 2.19 for mutual information except that all the terms
are now conditioned on a random variable Z. We state these relations in the
next two propositions. The proofs are omitted.
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Proposition 2.21. The mutual information between a random variable X
and itself conditioning on a random variable Z is equal to the conditional
entropy of X given Z, i.e., I(X;X|Z) = H(X|Z).

Proposition 2.22.

I(X;Y |Z) = H(X|Z)−H(X|Y,Z), (2.65)
I(X;Y |Z) = H(Y |Z)−H(Y |X,Z), (2.66)

and
I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z), (2.67)

provided that all the conditional entropies are finite.

To conclude this section, we show that all Shannon’s information measures
are special cases of conditional mutual information. Let Φ be a degenerate ran-
dom variable, i.e., Φ takes a constant value with probability 1. Consider the
mutual information I(X;Y |Z). When X = Y and Z = Φ, I(X;Y |Z) becomes
the entropy H(X). When X = Y , I(X;Y |Z) becomes the conditional entropy
H(X|Z). When Z = Φ, I(X;Y |Z) becomes the mutual information I(X;Y ).
Thus all Shannon’s information measures are special cases of conditional mu-
tual information.

2.3 Continuity of Shannon’s Information Measures for
Fixed Finite Alphabets

In this section, we prove that for fixed finite alphabets, all Shannon’s infor-
mation measures are continuous functionals of the joint distribution of the
random variables involved. To formulate the notion of continuity, we first
introduce the variational distance4 as a distance measure between two prob-
ability distributions on a common alphabet.

Definition 2.23. Let p and q be two probability distributions on a common
alphabet X . The variational distance between p and q is defined as

V (p, q) =
∑
x∈X
|p(x)− q(x)|. (2.68)

According to (2.35), the entropy of a distribution p on an alphabet X is
defined as

H(p) = −
∑
x∈Sp

p(x) log p(x) (2.69)

where Sp denotes the support of p and Sp ⊂ X . Let PX be the set of all distri-
butions on X . In order for H(p) to be continuous with respect to convergence
in variational distance at p ∈ PX , for any ε > 0, there exists δ > 0 such that
4 Also referred to as the L1 distance in mathematics.
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|H(p)−H(q)| < ε (2.70)

for all q ∈ PX satisfying
V (p, q) < δ, (2.71)

or equivalently, for all p ∈ PX ,

lim
p′→p

H(p′) = H

(
lim
p′→p

p′
)

= H(p), (2.72)

where the convergence p′ → p is in variational distance.
Define a function l : [0,∞)→ < by

l(a) =
{
a log a if a > 0
0 if a = 0. (2.73)

Obviously, l(a) is continuous at all a > 0 and is continuous at a = 0 because
a log a→ 0 as a→ 0. Thus l(a) is a continous function of a. Then (2.69) can
be rewritten as

H(p) = −
∑
x∈X

l(p(x)), (2.74)

where the summation above is over all x in X instead of Sp. Upon defining a
function lx : PX → < for all x ∈ X by

lx(p) = l(p(x)), (2.75)

(2.74) becomes
H(p) = −

∑
x∈X

lx(p). (2.76)

Evidently, lx(p) is continuous in p (with respect to convergence in variational
distance). Since the summation in (2.76) involves a finite number of terms,
we conclude that H(p) is a continuous functional of p.

We now proceed to prove the continuity of conditional mutual information
which covers all cases of Shannon’s information measures. Consider I(X;Y |Z)
and let pXY Z be the joint distribution of X, Y , and Z, where the alphabets
X , Y, and Z are assumed to be finite. From (2.47) and (2.67), we obtain

I(X;Y |Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z). (2.77)

Note that each term on the right hand side above is the unconditional entropy
of the corresponding marginal distribution. Then (2.77) can be rewritten as

IX;Y |Z(pXY Z) = H(pXZ) +H(pY Z)−H(pXY Z)−H(pZ), (2.78)

where we have used IX;Y |Z(pXY Z) to denote I(X;Y |Z). It follows that
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lim
p′
XYZ

→pXYZ
IX;Y |Z(p′XY Z)

= lim
p′
XYZ

→pXYZ
[H(p′XZ) +H(p′Y Z)−H(p′XY Z)−H(p′Z)] (2.79)

= lim
p′
XYZ

→pXYZ
H(p′XZ) + lim

p′
XYZ

→pXYZ
H(p′Y Z)

− lim
p′
XYZ

→pXYZ
H(p′XY Z)− lim

p′
XYZ

→pXYZ
H(p′Z). (2.80)

It can readily be proved, for example, that

lim
p′
XYZ

→pXYZ
p′XZ = pXZ , (2.81)

so that

lim
p′
XYZ

→pXYZ
H(p′XZ) = H

(
lim

p′
XYZ

→pXYZ
p′XZ

)
= H(pXZ) (2.82)

by the continuity of H(·) when the alphabets involved are fixed and finite.
The details are left as an exercise. Hence, we conclude that

lim
p′
XYZ

→pXYZ
IX;Y |Z(p′XY Z)

= H(pXZ) +H(pY Z)−H(pXY Z)−H(pZ) (2.83)
= IX;Y |Z(pXY Z), (2.84)

i.e., IX;Y |Z(pXY Z) is a continuous functional of pXY Z .
We have completed the proof of the continuity of all Shannon’s informa-

tion measures with respect to convergence in variational distance for fixed
finite alphabets. However, this result is rather restrictive and need to be ap-
plied with caution. It is because fixed finite alphabets are assumed for the
random variables involved, and whether continuity holds depends critically
on the distance measure used. In fact, Shannon’s information measures are
everywhere discontinuous with respect to convergence in a number of com-
monly used distance measures if the alphabets are not fixed. We refer the
readers to Problems 27 to 29 for a discussion.

2.4 Chain Rules

In this section, we present a collection of information identities known as the
chain rules which are often used in information theory.

Proposition 2.24 (Chain Rule for Entropy).

H(X1, X2, · · · , Xn) =
n∑
i=1

H(Xi|X1, · · · , Xi−1). (2.85)
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Proof. The chain rule for n = 2 has been proved in Proposition 2.16. We
prove the chain rule by induction on n. Assume (2.85) is true for n = m,
where m ≥ 2. Then

H(X1, · · · , Xm, Xm+1)
= H(X1, · · · , Xm) +H(Xm+1|X1, · · · , Xm) (2.86)

=
m∑
i=1

H(Xi|X1, · · · , Xi−1) +H(Xm+1|X1, · · · , Xm) (2.87)

=
m+1∑
i=1

H(Xi|X1, · · · , Xi−1), (2.88)

where in (2.86) we have used (2.47) by letting X = (X1, · · · , Xm) and Y =
Xm+1, and in (2.87) we have used (2.85) for n = m. This proves the chain
rule for entropy. ut

The chain rule for entropy has the following conditional version.

Proposition 2.25 (Chain Rule for Conditional Entropy).

H(X1, X2, · · · , Xn|Y ) =
n∑
i=1

H(Xi|X1, · · · , Xi−1, Y ). (2.89)

Proof. This can be proved by considering

H(X1, X2, · · · , Xn|Y )
= H(X1, X2, · · · , Xn, Y )−H(Y ) (2.90)
= H((X1, Y ), X2, · · · , Xn)−H(Y ) (2.91)

= H(X1, Y ) +
n∑
i=2

H(Xi|X1, · · · , Xi−1, Y )−H(Y ) (2.92)

= H(X1|Y ) +
n∑
i=2

H(Xi|X1, · · · , Xi−1, Y ) (2.93)

=
n∑
i=1

H(Xi|X1, · · · , Xi−1, Y ), (2.94)

where (2.90) and (2.93) follow from Proposition 2.16, while (2.92) follows from
Proposition 2.24. ut

Proposition 2.26 (Chain Rule for Mutual Information).

I(X1, X2, · · · , Xn;Y ) =
n∑
i=1

I(Xi;Y |X1, · · · , Xi−1). (2.95)



22 2 Information Measures

Proof. Consider

I(X1, X2, · · · , Xn;Y )
= H(X1, X2, · · · , Xn)−H(X1, X2, · · · , Xn|Y ) (2.96)

=
n∑
i=1

[H(Xi|X1, · · · , Xi−1)−H(Xi|X1, · · · , Xi−1, Y )] (2.97)

=
n∑
i=1

I(Xi;Y |X1, · · · , Xi−1), (2.98)

where in (2.97), we have invoked both Propositions 2.24 and 2.25. The chain
rule for mutual information is proved. ut

Proposition 2.27 (Chain Rule for Conditional Mutual Information).
For random variables X1, X2, · · · , Xn, Y , and Z,

I(X1, X2, · · · , Xn;Y |Z) =
n∑
i=1

I(Xi;Y |X1, · · · , Xi−1, Z). (2.99)

Proof. This is the conditional version of the chain rule for mutual information.
The proof is similar to that for Proposition 2.25. The details are omitted. ut

2.5 Informational Divergence

Let p and q be two probability distributions on a common alphabet X . We
very often want to measure how much p is different from q, and vice versa. In
order to be useful, this measure must satisfy the requirements that it is always
nonnegative and it takes the zero value if and only if p = q. We denote the
support of p and q by Sp and Sq, respectively. The informational divergence
defined below serves this purpose.

Definition 2.28. The informational divergence between two probability dis-
tributions p and q on a common alphabet X is defined as

D(p‖q) =
∑
x

p(x) log
p(x)
q(x)

= Ep log
p(X)
q(X)

, (2.100)

where Ep denotes expectation with respect to p.

In the above definition, in addition to the convention that the summation
is taken over Sp, we further adopt the convention c log c

0 = ∞ for c > 0.
With this convention, if D(p‖q) < ∞, then p(x) = 0 whenever q(x) = 0, i.e.,
Sp ⊂ Sq.
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In the literature, the informational divergence is also referred to as relative
entropy or the Kullback-Leibler distance. We note that D(p‖q) is not symmet-
rical in p and q, so it is not a true metric or “distance.” Moreover, D(·‖·) does
not satisfy the triangular inequality (see Problem 13).

In the rest of the book, the informational divergence will be referred to as
divergence for brevity. Before we prove that divergence is always nonnegative,
we first establish the following simple but important inequality called the
fundamental inequality in information theory.

Lemma 2.29 (Fundamental Inequality). For any a > 0,

ln a ≤ a− 1 (2.101)

with equality if and only if a = 1.

Proof. Let f(a) = ln a − a + 1. Then f ′(a) = 1/a − 1 and f ′′(a) = −1/a2.
Since f(1) = 0, f ′(1) = 0, and f ′′(1) = −1 < 0, we see that f(a) attains
its maximum value 0 when a = 1. This proves (2.101). It is also clear that
equality holds in (2.101) if and only if a = 1. Figure 2.3 is an illustration of
the fundamental inequality. ut
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Fig. 2.3. The fundamental inequality ln a ≤ a− 1.

Corollary 2.30. For any a > 0,

ln a ≥ 1− 1
a

(2.102)

with equality if and only if a = 1.

Proof. This can be proved by replacing a by 1/a in (2.101). ut

We can see from Figure 2.3 that the fundamental inequality results from
the convexity of the logarithmic function. In fact, many important results in
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information theory are also direct or indirect consequences of the convexity
of the logarithmic function!

Theorem 2.31 (Divergence Inequality). For any two probability distribu-
tions p and q on a common alphabet X ,

D(p‖q) ≥ 0 (2.103)

with equality if and only if p = q.

Proof. If q(x) = 0 for some x ∈ Sp, then D(p‖q) = ∞ and the theorem is
trivially true. Therefore, we assume that q(x) > 0 for all x ∈ Sp. Consider

D(p‖q) = (log e)
∑
x∈Sp

p(x) ln
p(x)
q(x)

(2.104)

≥ (log e)
∑
x∈Sp

p(x)
(

1− q(x)
p(x)

)
(2.105)

= (log e)

∑
x∈Sp

p(x)−
∑
x∈Sp

q(x)

 (2.106)

≥ 0, (2.107)

where (2.105) results from an application of (2.102), and (2.107) follows from∑
x∈Sp

q(x) ≤ 1 =
∑
x∈Sp

p(x). (2.108)

This proves (2.103).
For equality to hold in (2.103), equality must hold in (2.105) for all x ∈ Sp

and also in (2.107). For the former, we see from Lemma 2.29 that this is the
case if and only if

p(x) = q(x) for all x ∈ Sp, (2.109)

which implies ∑
x∈Sp

q(x) =
∑
x∈Sp

p(x) = 1, (2.110)

i.e., (2.107) holds with equality. Thus (2.109) is a necessary and sufficient
condition for equality to hold in (2.103).

It is immediate that p = q implies (2.109), so it remains to prove the
converse. Since

∑
x q(x) = 1 and q(x) ≥ 0 for all x, p(x) = q(x) for all x ∈ Sp

implies q(x) = 0 for all x 6∈ Sp, and therefore p = q. The theorem is proved.
ut

We now prove a very useful consequence of the divergence inequality called
the log-sum inequality.
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Theorem 2.32 (Log-Sum Inequality). For positive numbers a1, a2, · · · and
nonnegative numbers b1, b2, · · · such that

∑
i ai <∞ and 0 <

∑
i bi <∞,

∑
i

ai log
ai
bi
≥

(∑
i

ai

)
log
∑
i ai∑
i bi

(2.111)

with the convention that log ai
0 = ∞. Moreover, equality holds if and only if

ai
bi

= constant for all i.

The log-sum inequality can easily be understood by writing it out for the
case when there are two terms in each of the summations:

a1 log
a1

b1
+ a2 log

a2

b2
≥ (a1 + a2) log

a1 + a2

b1 + b2
. (2.112)

Proof of Theorem 2.32. Let a′i = ai/
∑
j aj and b′i = bi/

∑
j bj . Then {a′i} and

{b′i} are probability distributions. Using the divergence inequality, we have

0 ≤
∑
i

a′i log
a′i
b′i

(2.113)

=
∑
i

ai∑
j aj

log
ai/
∑
j aj

bi/
∑
j bj

(2.114)

=
1∑
j aj

[∑
i

ai log
ai
bi
−

(∑
i

ai

)
log

∑
j aj∑
j bj

]
, (2.115)

which implies (2.111). Equality holds if and only if a′i = b′i for all i, or ai
bi

=
constant for all i. The theorem is proved. ut

One can also prove the divergence inequality by using the log-sum in-
equality (see Problem 19), so the two inequalities are in fact equivalent. The
log-sum inequality also finds application in proving the next theorem which
gives a lower bound on the divergence between two probability distributions
on a common alphabet in terms of the variational distance between them. We
will see further applications of the log-sum inequality when we discuss the
convergence of some iterative algorithms in Chapter 9.

Theorem 2.33 (Pinsker’s Inequality).

D(p‖q) ≥ 1
2 ln 2

V 2(p, q). (2.116)

Both divergence and the variational distance can be used as measures of
the difference between two probability distributions defined on the same al-
phabet. Pinsker’s inequality has the important implication that for two prob-
ability distributions p and q defined on the same alphabet, if D(p‖q) is small,
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then so is V (p, q). Furthermore, for a sequence of probability distributions
qk, as k → ∞, if D(p‖qk) → 0, then V (p, qk) → 0. In other words, conver-
gence in divergence5 is a stronger notion of convergence than convergence in
variational distance.

The proof of Pinsker’s inequality as well as its consequence discussed above
is left as an exercise (see Problems 22 and 23).

2.6 The Basic Inequalities

In this section, we prove that all Shannon’s information measures, namely
entropy, conditional entropy, mutual information, and conditional mutual in-
formation are always nonnegative. By this, we mean that these quantities are
nonnegative for all joint distributions for the random variables involved.

Theorem 2.34. For random variables X, Y , and Z,

I(X;Y |Z) ≥ 0, (2.117)

with equality if and only if X and Y are independent when conditioning on
Z.

Proof. Observe that

I(X;Y |Z)

=
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
(2.118)

=
∑
z

p(z)
∑
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
(2.119)

=
∑
z

p(z)D(pXY |z‖pX|zpY |z), (2.120)

where we have used pXY |z to denote {p(x, y|z), (x, y) ∈ X × Y}, etc. Since
for a fixed z, both pXY |z and pX|zpY |z are joint probability distributions on
X × Y, we have

D(pXY |z‖pX|zpY |z) ≥ 0. (2.121)

Therefore, we conclude that I(X;Y |Z) ≥ 0. Finally, we see from Theorem 2.31
that I(X;Y |Z) = 0 if and only if for all z ∈ Sz,

p(x, y|z) = p(x|z)p(y|z), (2.122)

5 In Harremoës [141], a sequence of probability distributions qk converges to a
probability distribution p if D(qk‖p) → 0 as k → ∞, which is different from
our discussion here. Nevertheless, as k → 0, it holds that if D(qk‖p) → 0, then
V (p, qk)→ 0.
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or
p(x, y, z) = p(x, z)p(y|z) (2.123)

for all x and y. Therefore, X and Y are independent conditioning on Z. The
proof is accomplished. ut

As we have seen in Section 2.2 that all Shannon’s information measures
are special cases of conditional mutual information, we already have proved
that all Shannon’s information measures are always nonnegative. The nonneg-
ativity of all Shannon’s information measures are called the basic inequalities.

For entropy and conditional entropy, we offer the following more direct
proof for their nonnegativity. Consider the entropy H(X) of a random variable
X. For all x ∈ SX , since 0 < p(x) ≤ 1, log p(x) ≤ 0. It then follows from the
definition in (2.35) that H(X) ≥ 0. For the conditional entropy H(Y |X) of
random variable Y given random variable X, since H(Y |X = x) ≥ 0 for each
x ∈ SX , we see from (2.43) that H(Y |X) ≥ 0.

Proposition 2.35. H(X) = 0 if and only if X is deterministic.

Proof. If X is deterministic, i.e., there exists x∗ ∈ X such that p(x∗) = 1
and p(x) = 0 for all x 6= x∗, then H(X) = −p(x∗) log p(x∗) = 0. On the
other hand, if X is not deterministic, i.e., there exists x∗ ∈ X such that
0 < p(x∗) < 1, then H(X) ≥ −p(x∗) log p(x∗) > 0. Therefore, we conclude
that H(X) = 0 if and only if X is deterministic. ut

Proposition 2.36. H(Y |X) = 0 if and only if Y is a function of X.

Proof. From (2.43), we see that H(Y |X) = 0 if and only if H(Y |X = x) = 0
for each x ∈ SX . Then from the last proposition, this happens if and only if
Y is deterministic for each given x. In other words, Y is a function of X. ut

Proposition 2.37. I(X;Y ) = 0 if and only if X and Y are independent.

Proof. This is a special case of Theorem 2.34 with Z being a degenerate
random variable. ut

One can regard (conditional) mutual information as a measure of (con-
ditional) dependency between two random variables. When the (conditional)
mutual information is exactly equal to 0, the two random variables are (con-
ditionally) independent.

We refer to inequalities involving Shannon’s information measures only
(possibly with constant terms) as information inequalities. The basic inequal-
ities are important examples of information inequalities. Likewise, we refer to
identities involving Shannon’s information measures only as information iden-
tities. From the information identities (2.47), (2.57), and (2.65), we see that
all Shannon’s information measures can be expressed as linear combinations
of entropies provided that the latter are all finite. Specifically,
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H(Y |X) = H(X,Y )−H(X), (2.124)
I(X;Y ) = H(X) +H(Y )−H(X,Y ), (2.125)

and

I(X;Y |Z) = H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z). (2.126)

Therefore, an information inequality is an inequality which involves only en-
tropies.

As we will see later in the book, information inequalities form the most
important set of tools for proving converse coding theorems in information
theory. Except for a few so-called non-Shannon-type inequalities, all known
information inequalities are implied by the basic inequalities. Information in-
equalities will be studied systematically in Chapters 13, 14, and 15. In the
next section, we will prove some consequences of the basic inequalities which
are often used in information theory.

2.7 Some Useful Information Inequalities

In this section, we prove some useful consequences of the basic inequalities
introduced in the last section. Note that the conditional versions of these
inequalities can be proved by techniques similar to those used in the proof of
Proposition 2.25.

Theorem 2.38 (Conditioning Does Not Increase Entropy).

H(Y |X) ≤ H(Y ) (2.127)

with equality if and only if X and Y are independent.

Proof. This can be proved by considering

H(Y |X) = H(Y )− I(X;Y ) ≤ H(Y ), (2.128)

where the inequality follows because I(X;Y ) is always nonnegative. The in-
equality is tight if and only if I(X;Y ) = 0, which is equivalent by Proposi-
tion 2.37 to X and Y being independent. ut

Similarly, it can be shown that H(Y |X,Z) ≤ H(Y |Z), which is the con-
ditional version of the above proposition. These results have the following
interpretation. Suppose Y is a random variable we are interested in, and X
and Z are side-information about Y . Then our uncertainty about Y cannot be
increased on the average upon receiving side-information X. Once we know
X, our uncertainty about Y again cannot be increased on the average upon
further receiving side-information Z.

Remark Unlike entropy, the mutual information between two random vari-
ables can be increased by conditioning on a third random variable. We refer
the reader to Section 3.4 for a discussion.
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Theorem 2.39 (Independence Bound for Entropy).

H(X1, X2, · · · , Xn) ≤
n∑
i=1

H(Xi) (2.129)

with equality if and only if Xi, i = 1, 2, · · · , n, are mutually independent.

Proof. By the chain rule for entropy,

H(X1, X2, · · · , Xn) =
n∑
i=1

H(Xi|X1, · · · , Xi−1) (2.130)

≤
n∑
i=1

H(Xi), (2.131)

where the inequality follows because we have proved in the last theorem that
conditioning does not increase entropy. The inequality is tight if and only if
it is tight for each i, i.e.,

H(Xi|X1, · · · , Xi−1) = H(Xi) (2.132)

for 1 ≤ i ≤ n. From the last theorem, this is equivalent to Xi being indepen-
dent of X1, X2, · · · , Xi−1 for each i. Then

p(x1, x2, · · · , xn)
= p(x1, x2, · · · , xn−1)p(xn) (2.133)
= p(p(x1, x2, · · · , xn−2)p(xn−1)p(xn) (2.134)

...
= p(x1)p(x2) · · · p(xn) (2.135)

for all x1, x2, · · · , xn, i.e., X1, X2, · · · , Xn are mutually independent.
Alternatively, we can prove the theorem by considering

n∑
i=1

H(Xi)−H(X1, X2, · · · , Xn)

= −
n∑
i=1

E log p(Xi) + E log p(X1, X2, · · · , Xn) (2.136)

= −E log[p(X1)p(X2) · · · p(Xn)] + E log p(X1, X2, · · · , Xn) (2.137)

= E log
p(X1, X2, · · · , Xn)

p(X1)p(X2) · · · p(Xn)
(2.138)

= D(pX1X2···Xn‖pX1pX2 · · · pXn) (2.139)
≥ 0, (2.140)

where equality holds if and only if
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p(x1, x2, · · · , xn) = p(x1)p(x2) · · · p(xn) (2.141)

for all x1, x2, · · · , xn, i.e., X1, X2, · · · , Xn are mutually independent. ut

Theorem 2.40.
I(X;Y,Z) ≥ I(X;Y ), (2.142)

with equality if and only if X → Y → Z forms a Markov chain.

Proof. By the chain rule for mutual information, we have

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ) ≥ I(X;Y ). (2.143)

The above inequality is tight if and only if I(X;Z|Y ) = 0, or X → Y → Z
forms a Markov chain. The theorem is proved. ut

Lemma 2.41. If X → Y → Z forms a Markov chain, then

I(X;Z) ≤ I(X;Y ) (2.144)

and
I(X;Z) ≤ I(Y ;Z). (2.145)

Before proving this inequality we discuss its meaning. Suppose X is a
random variable we are interested in, and Y is an observation of X. If we
infer X via Y , our uncertainty about X on the average is H(X|Y ). Now
suppose we process Y (either deterministically or probabilistically) to obtain
a random variable Z. If we infer X via Z, our uncertainty about X on the
average is H(X|Z). Since X → Y → Z forms a Markov chain, from (2.144),
we have

H(X|Z) = H(X)− I(X;Z) (2.146)
≥ H(X)− I(X;Y ) (2.147)
= H(X|Y ), (2.148)

i.e., further processing of Y can only increase our uncertainty about X on the
average.

Proof of Lemma 2.41. Assume X → Y → Z, i.e., X ⊥ Z|Y . By Theorem 2.34,
we have

I(X;Z|Y ) = 0. (2.149)

Then

I(X;Z) = I(X;Y, Z)− I(X;Y |Z) (2.150)
≤ I(X;Y, Z) (2.151)
= I(X;Y ) + I(X;Z|Y ) (2.152)
= I(X;Y ). (2.153)
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In (2.150) and (2.152), we have used the chain rule for mutual information.
The inequality in (2.151) follows because I(X;Y |Z) is always nonnegative,
and (2.153) follows from (2.149). This proves (2.144).

Since X → Y → Z is equivalent to Z → Y → X, we also have proved
(2.145). This completes the proof of the lemma. ut

From Lemma 2.41, we can prove the more general data processing theorem.

Theorem 2.42 (Data Processing Theorem). If U → X → Y → V forms
a Markov chain, then

I(U ;V ) ≤ I(X;Y ). (2.154)

Proof. Assume U → X → Y → V . Then by Proposition 2.10, we have U →
X → Y and U → Y → V . From the first Markov chain and Lemma 2.41, we
have

I(U ;Y ) ≤ I(X;Y ). (2.155)

From the second Markov chain and Lemma 2.41, we have

I(U ;V ) ≤ I(U ;Y ). (2.156)

Combining (2.155) and (2.156), we obtain (2.154), proving the theorem. ut

2.8 Fano’s Inequality

In the last section, we have proved a few information inequalities involving
only Shannon’s information measures. In this section, we first prove an upper
bound on the entropy of a random variable in terms of the size of the alpha-
bet. This inequality is then used in the proof of Fano’s inequality, which is
extremely useful in proving converse coding theorems in information theory.

Theorem 2.43. For any random variable X,

H(X) ≤ log |X |, (2.157)

where |X | denotes the size of the alphabet X . This upper bound is tight if and
only if X distributes uniformly on X .

Proof. Let u be the uniform distribution on X , i.e., u(x) = |X |−1 for all
x ∈ X . Then

log |X | −H(X)

= −
∑
x∈SX

p(x) log |X |−1 +
∑
x∈SX

p(x) log p(x) (2.158)
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= −
∑
x∈SX

p(x) log u(x) +
∑
x∈SX

p(x) log p(x) (2.159)

=
∑
x∈SX

p(x) log
p(x)
u(x)

(2.160)

= D(p‖u) (2.161)
≥ 0, (2.162)

proving (2.157). This upper bound is tight if and if only D(p‖u) = 0, which
from Theorem 2.31 is equivalent to p(x) = u(x) for all x ∈ X , completing the
proof. ut

Corollary 2.44. The entropy of a random variable may take any nonnegative
real value.

Proof. Consider a random variable X and let |X | be fixed. We see from the
last theorem that H(X) = log |X | is achieved when X distributes uniformly
on X . On the other hand, H(X) = 0 is achieved when X is deterministic. For
any value 0 < a < log |X |, by the intermediate value theorem of continuous
functions, there exists a distribution for X such that H(X) = a. Then we
see that H(X) can take any positive value by letting |X | be sufficiently large.
This accomplishes the proof. ut

Remark Let |X | = D, or the random variable X is a D-ary symbol. When
the base of the logarithm is D, (2.157) becomes

HD(X) ≤ 1. (2.163)

Recall that the unit of entropy is the D-it when the logarithm is in the base
D. This inequality says that a D-ary symbol can carry at most 1 D-it of
information. This maximum is achieved when X has a uniform distribution.
We already have seen the binary case when we discuss the binary entropy
function hb(p) in Section 2.2.

We see from Theorem 2.43 that the entropy of a random variable is finite as
long as it has a finite alphabet. However, if a random variable has a countable
alphabet6, its entropy may or may not be finite. This will be shown in the
next two examples.

Example 2.45. Let X be a random variable such that

Pr{X = i} = 2−i, (2.164)

i = 1, 2, · · · . Then

H2(X) =
∞∑
i=1

i2−i = 2, (2.165)

which is finite.
6 An alphabet is countable means that it may be countably infinite.
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For a random variable X with a countable alphabet and finite entropy, we
show in Appendix 2.10 that the entropy of X can be approximated by the
entropy of a truncation of the distribution of X.

Example 2.46. Let Y be a random variable which takes values in the subset
of pairs of integers {

(i, j) : 1 ≤ i <∞ and 1 ≤ j ≤ 22i

2i

}
(2.166)

such that
Pr{Y = (i, j)} = 2−2i (2.167)

for all i and j. First, we check that

∞∑
i=1

22i/2i∑
j=1

Pr{Y = (i, j)} =
∞∑
i=1

2−2i

(
22i

2i

)
= 1. (2.168)

Then

H2(Y ) = −
∞∑
i=1

22i/2i∑
j=1

2−2i log2 2−2i =
∞∑
i=1

1, (2.169)

which does not converge.

Let X be a random variable and X̂ be an estimate of X which takes value
in the same alphabet X . Let the probability of error Pe be

Pe = Pr{X 6= X̂}. (2.170)

If Pe = 0, i.e., X = X̂ with probability 1, then H(X|X̂) = 0 by Proposi-
tion 2.36. Intuitively, if Pe is small, i.e., X = X̂ with probability close to
1, then H(X|X̂) should be close to 0. Fano’s inequality makes this intuition
precise.

Theorem 2.47 (Fano’s Inequality). Let X and X̂ be random variables
taking values in the same alphabet X . Then

H(X|X̂) ≤ hb(Pe) + Pe log(|X | − 1), (2.171)

where hb is the binary entropy function.

Proof. Define a random variable

Y =
{

0 if X = X̂

1 if X 6= X̂.
(2.172)

The random variable Y is an indicator of the error event {X 6= X̂}, with
Pr{Y = 1} = Pe and H(Y ) = hb(Pe). Since Y is a function X and X̂,
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H(Y |X, X̂) = 0. (2.173)

Then

H(X|X̂)
= H(X|X̂) +H(Y |X, X̂) (2.174)
= H(X,Y |X̂) (2.175)
= H(Y |X̂) +H(X|X̂, Y ) (2.176)
≤ H(Y ) +H(X|X̂, Y ) (2.177)

= H(Y ) +
∑
x̂∈X

[
Pr{X̂ = x̂, Y = 0}H(X|X̂ = x̂, Y = 0)

+Pr{X̂ = x̂, Y = 1}H(X|X̂ = x̂, Y = 1)
]
. (2.178)

In the above, (2.174) follows from (2.173), (2.177) follows because conditioning
does not increase entropy, and (2.178) follows from an application of (2.43).
Now X must take the value x̂ if X̂ = x̂ and Y = 0. In other words, X is
conditionally deterministic given X̂ = x̂ and Y = 0. Therefore, by Proposi-
tion 2.35,

H(X|X̂ = x̂, Y = 0) = 0. (2.179)

If X̂ = x̂ and Y = 1, then X must take a value in the set {x ∈ X : x 6= x̂}
which contains |X | − 1 elements. From the last theorem, we have

H(X|X̂ = x̂, Y = 1) ≤ log(|X | − 1), (2.180)

where this upper bound does not depend on x̂. Hence,

H(X|X̂)

≤ hb(Pe) +

(∑
x̂∈X

Pr{X̂ = x̂, Y = 1}

)
log(|X | − 1) (2.181)

= hb(Pe) + Pr{Y = 1} log(|X | − 1) (2.182)
= hb(Pe) + Pe log(|X | − 1), (2.183)

which completes the proof. ut

Very often, we only need the following simplified version when we apply
Fano’s inequality. The proof is omitted.

Corollary 2.48. H(X|X̂) < 1 + Pe log |X |.

Fano’s inequality has the following implication. If the alphabet X is finite,
as Pe → 0, the upper bound in (2.171) tends to 0, which implies H(X|X̂) also
tends to 0. However, this is not necessarily the case if X is countable, which
is shown in the next example.
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Example 2.49. Let X̂ take the value 0 with probability 1. Let Z be an inde-
pendent binary random variable taking values in {0, 1}. Define the random
variable X by

X =
{

0 if Z = 0
Y if Z = 1, (2.184)

where Y is the random variable in Example 2.46 whose entropy is infinity. Let

Pe = Pr{X 6= X̂} = Pr{Z = 1}. (2.185)

Then

H(X|X̂) (2.186)
= H(X) (2.187)
≥ H(X|Z) (2.188)
= Pr{Z = 0}H(X|Z = 0) + Pr{Z = 1}H(X|Z = 1) (2.189)
= (1− Pe) · 0 + Pe ·H(Y ) (2.190)
=∞ (2.191)

for any Pe > 0. Therefore, H(X|X̂) does not tend to 0 as Pe → 0.

2.9 Maximum Entropy Distributions

In Theorem 2.43, we have proved that for any random variable X,

H(X) ≤ log |X |, (2.192)

with equality when X is distributed uniformly over its support. In this section,
we revisit this result in the context that X is a real random variable.

To simplify our discussion, all the logarithms are in the base e. Consider the
following problem: Maximize H(p) over all probability distribution p defined
on a countable subset S (possibly infinite) of the set of real numbers, subject
to ∑

x∈Sp

p(x)ri(x) = ai for 1 ≤ i ≤ m. (2.193)

The following theorem provides a solution to this problem.

Theorem 2.50. Let
p∗(x) = e−λ0−

∑m

i=1
λiri(x) (2.194)

for all x ∈ S, where λ0, λ1, · · · , λm are chosen such that the constraints in
(2.193) are satisfied. Then p∗ maximizes H(p) over all probability distribu-
tion p on S, subject to the constraints in (2.193).
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Proof. For any p satisfying the constraints in (2.193), consider

H(p∗)−H(p)

= −
∑
x∈S

p∗(x) ln p∗(x) +
∑
x∈Sp

p(x) ln p(x) (2.195)

= −
∑
x∈S

p∗(x)

(
−λ0 −

∑
i

λiri(x)

)
+
∑
x∈Sp

p(x) ln p(x) (2.196)

= λ0

(∑
x∈S

p∗(x)

)
+
∑
i

λi

(∑
x∈S

p∗(x)ri(x)

)
+
∑
x∈Sp

p(x) ln p(x) (2.197)

= λ0 · 1 +
∑
i

λiai +
∑
x∈Sp

p(x) ln p(x) (2.198)

= λ0

∑
x∈Sp

p(x)

+
∑
i

λi

∑
x∈Sp

p(x)ri(x)

+
∑
x∈Sp

p(x) ln p(x) (2.199)

= −
∑
x∈Sp

p(x)

(
−λ0 −

∑
i

λiri(x)

)
+
∑
x∈Sp

p(x) ln p(x) (2.200)

= −
∑
x∈Sp

p(x) ln p∗(x) +
∑
x∈Sp

p(x) ln p(x) (2.201)

=
∑
x∈Sp

p(x) ln
p(x)
p∗(x)

(2.202)

= D(p‖p∗) (2.203)
≥ 0. (2.204)

In the above, (2.200) is obtained from (2.196) by replacing p∗(x) by p(x) and
x ∈ S by x ∈ Sp in the first summation, while the intermediate steps (2.197)
to (2.199) are justified by noting that both p∗ and p satisfy the constraints
in (2.193). The last step is an application of the divergence inequality (Theo-
rem 2.31). The proof is accomplished. ut

Remark For all x ∈ S, p∗(x) > 0, so that Sp = S.

The following corollary of Theorem 2.50 is rather subtle.

Corollary 2.51. Let p∗ be a probability distribution defined on S with

p∗(x) = e−λ0−
∑m

i=1
λiri(x) (2.205)

for all x ∈ S. Then p∗ maximizes H(p) over all probability distribution p
defined on S, subject to the constraints∑

x∈Sp

p(x)ri(x) =
∑
x∈S

p∗(x)ri(x) for 1 ≤ i ≤ m. (2.206)
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Example 2.52. Let S be finite and let the set of constraints in (2.193) be
empty. Then

p∗(x) = e−λ0 , (2.207)

a constant that does not depend on x. Therefore, p∗ is simply the uniform
distribution over S, i.e., p∗(x) = |S|−1 for all x ∈ S.

Example 2.53. Let S = {0, 1, 2, · · ·}, and let the set of constraints in (2.193)
be ∑

x

p(x)x = a, (2.208)

where a ≥ 0, i.e., the mean of the distribution p is fixed at some nonnegative
value a. We now determine p∗ using the prescription in Theorem 2.50. Let

qi = e−λi (2.209)

for i = 0, 1. Then
p∗(x) = q0q

x
1 . (2.210)

Evidently, p∗ is a geometric distribution, so that

q0 = 1− q1. (2.211)

Finally, we invoke the constraint (2.193) on p to obtain q1 = (a + 1)−1. The
details are omitted.

2.10 Entropy Rate of Stationary Source

In the previous sections, we have discussed various properties of the entropy of
a finite collection of random variables. In this section, we discuss the entropy
rate entropy rate of a discrete-time information source.

A discrete-time information source {Xk, k ≥ 1} is an infinite collection of
random variables indexed by the set of positive integers. Since the index set
is ordered, it is natural to regard the indices as time indices. We will refer to
the random variables Xk as letters.

We assume that H(Xk) <∞ for all k. Then for any finite subset A of the
index set {k : k ≥ 1}, we have

H(Xk, k ∈ A) ≤
∑
k∈A

H(Xk) <∞. (2.212)

However, it is not meaningful to discuss H(Xk, k ≥ 1) because the joint
entropy of an infinite collection of letters is infinite except in special cases.
On the other hand, since the indices are ordered, we can naturally define the
entropy rate of an information source, which gives the average entropy per
letter of the source.



38 2 Information Measures

Definition 2.54. The entropy rate of an information source {Xk} is defined
by

HX = lim
n→∞

1
n
H(X1, X2, · · · , Xn) (2.213)

when the limit exists.

We show in the next two examples that the entropy rate of a source may
or may not exist.

Example 2.55. Let {Xk} be an i.i.d. source with generic random variable X.
Then

lim
n→∞

1
n
H(X1, X2, · · · , Xn) = lim

n→∞

nH(X)
n

(2.214)

= lim
n→∞

H(X) (2.215)

= H(X), (2.216)

i.e., the entropy rate of an i.i.d. source is the entropy of any of its single letters.

Example 2.56. Let {Xk} be a source such that Xk are mutually independent
and H(Xk) = k for k ≥ 1. Then

1
n
H(X1, X2, · · · , Xn) =

1
n

n∑
k=1

k (2.217)

=
1
n

n(n+ 1)
2

(2.218)

=
1
2

(n+ 1), (2.219)

which does not converge as n→∞ although H(Xk) <∞ for all k. Therefore,
the entropy rate of {Xk} does not exist.

Toward characterizing the asymptotic behavior of {Xk}, it is natural to
consider the limit

H ′X = lim
n→∞

H(Xn|X1, X2, · · · , Xn−1) (2.220)

if it exists. The quantity H(Xn|X1, X2, · · · , Xn−1) is interpreted as the con-
ditional entropy of the next letter given that we know all the past history of
the source, and H ′X is the limit of this quantity after the source has been run
for an indefinite amount of time.

Definition 2.57. An information source {Xk} is stationary if

X1, X2, · · · , Xm (2.221)

and
X1+l, X2+l, · · · , Xm+l (2.222)

have the same joint distribution for any m, l ≥ 1.
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In the rest of the section, we will show that stationarity is a sufficient
condition for the existence of the entropy rate of an information source.

Lemma 2.58. Let {Xk} be a stationary source. Then H ′X exists.

Proof. Since H(Xn|X1, X2, · · · , Xn−1) is lower bounded by zero for all n, it
suffices to prove that H(Xn|X1, X2, · · · , Xn−1) is non-increasing in n to con-
clude that the limit H ′X exists. Toward this end, for n ≥ 2, consider

H(Xn|X1, X2, · · · , Xn−1)
≤ H(Xn|X2, X3, · · · , Xn−1) (2.223)
= H(Xn−1|X1, X2, · · · , Xn−2), (2.224)

where the last step is justified by the stationarity of {Xk}. The lemma is
proved. ut

Lemma 2.59 (Cesáro Mean). Let ak and bk be real numbers. If an → a as
n→∞ and bn = 1

n

∑n
k=1 ak, then bn → a as n→∞.

Proof. The idea of the lemma is the following. If an → a as n→∞, then the
average of the first n terms in {ak}, namely bn, also tends to a as n→∞.

The lemma is formally proved as follows. Since an → a as n → ∞, for
every ε > 0, there exists N(ε) such that |an − a| < ε for all n > N(ε). For
n > N(ε), consider

|bn − a| =

∣∣∣∣∣ 1n
n∑
i=1

ai − a

∣∣∣∣∣ (2.225)

=

∣∣∣∣∣ 1n
n∑
i=1

(ai − a)

∣∣∣∣∣ (2.226)

≤ 1
n

n∑
i=1

|ai − a| (2.227)

=
1
n

N(ε)∑
i=1

|ai − a|+
n∑

i=N(ε)+1

|ai − a|

 (2.228)

<
1
n

N(ε)∑
i=1

|ai − a|+
(n−N(ε))ε

n
(2.229)

<
1
n

N(ε)∑
i=1

|ai − a|+ ε. (2.230)

The first term tends to 0 as n → ∞. Therefore, for any ε > 0, by taking n
to be sufficiently large, we can make |bn − a| < 2ε. Hence bn → a as n→∞,
proving the lemma. ut
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We now prove that H ′X is an alternative definition/interpretation of the
entropy rate of {Xk} when {Xk} is stationary.

Theorem 2.60. For a stationary source {Xk}, the entropy rate HX exists,
and it is equal to H ′X .

Proof. Since we have proved in Lemma 2.58 that H ′X always exists for a
stationary source {Xk}, in order to prove the theorem, we only have to prove
that HX = H ′X . By the chain rule for entropy,

1
n
H(X1, X2, · · · , Xn) =

1
n

n∑
k=1

H(Xk|X1, X2, · · · , Xk−1). (2.231)

Since
lim
k→∞

H(Xk|X1, X2, · · · , Xk−1) = H ′X (2.232)

from (2.220), it follows from Lemma 2.59 that

HX = lim
n→∞

1
n
H(X1, X2, · · · , Xn) = H ′X . (2.233)

The theorem is proved. ut

In this theorem, we have proved that the entropy rate of a random source
{Xk} exists under the fairly general assumption that {Xk} is stationary. How-
ever, the entropy rate of a stationary source {Xk} may not carry any physical
meaning unless {Xk} is also ergodic. This will be explained when we discuss
the Shannon-McMillan-Breiman Theorem in Section 5.4.

Appendix 2.A: Approximation of Random Variables
with Countably Infinite Alphabets by Truncation

Let X be a random variable with a countable alphabet X such that H(X) <
∞. Without loss of generality, X is taken to be the set of positive integers.
Define a random variable X(m) which takes values in

Nm = {1, 2, · · · ,m} (2.234)

such that

Pr{X(m) = k} =
Pr{X = k}

Pr{X ∈ Nm}
(2.235)

for all k ∈ Nm, i.e., the distribution of X(m) is the truncation of the distri-
bution of X up to m.

It is intuitively correct that H(X(m)) → H(X) as m → ∞, which we
formally prove in this appendix. For every m ≥ 1, define the binary random
variable
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B(m) =
{

1 if X ≤ m
0 if X > m. (2.236)

Consider

H(X) = −
m∑
k=1

Pr{X = k} log Pr{X = k}

−
∞∑

k=m+1

Pr{X = k} log Pr{X = k}. (2.237)

As m→∞,

−
m∑
k=1

Pr{X = k} log Pr{X = k} → H(X). (2.238)

Since H(X) <∞,

−
∞∑

k=m+1

Pr{X = k} log Pr{X = k} → 0 (2.239)

as k →∞. Now consider

H(X)
= H(X|B(m)) + I(X;B(m)) (2.240)
= H(X|B(m) = 1)Pr{B(m) = 1}+H(X|B(m) = 0)
×Pr{B(m) = 0}+ I(X;B(m)) (2.241)

= H(X(m))Pr{B(m) = 1}+H(X|B(m) = 0)
×Pr{B(m) = 0}+ I(X;B(m)). (2.242)

As m → ∞, H(B(m)) → 0 since Pr{B(m) = 1} → 1. This implies
I(X;B(m))→ 0 because

I(X;B(m)) ≤ H(B(m)). (2.243)

In (2.242), we further consider

H(X|B(m) = 0)Pr{B(m) = 0}

= −
∞∑

k=m+1

Pr{X = k} log
Pr{X = k}

Pr{B(m) = 0}
(2.244)

= −
∞∑

k=m+1

Pr{X = k}(log Pr{X = k}

− log Pr{B(m) = 0}) (2.245)

= −
∞∑

k=m+1

(Pr{X = k} log Pr{X = k})
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+

( ∞∑
k=m+1

Pr{X = k}

)
log Pr{B(m) = 0} (2.246)

= −
∞∑

k=m+1

Pr{X = k} log Pr{X = k}

+Pr{B(m) = 0} log Pr{B(m) = 0}. (2.247)

As m → ∞, the summation above tends to 0 by (2.239). Since Pr{B(m) =
0} → 0, Pr{B(m) = 0} log Pr{B(m) = 0} → 0. Therefore,

H(X|B(m) = 0)Pr{B(m) = 0} → 0, (2.248)

and we see from (2.242) that H(X(m))→ H(X) as m→∞.

Problems

1. Let X and Y be random variables with alphabets X = Y = {1, 2, 3, 4, 5}
and joint distribution p(x, y) given by

1
25


1 1 1 1 1
2 1 2 0 0
2 0 1 1 1
0 3 0 2 0
0 0 1 1 3

 .
Calculate H(X), H(Y ), H(X|Y ), H(Y |X), and I(X;Y ).

2. Consider any probability distribution p(x, y, z) and let

q(x, y, z) =
{
p(x)p(y)p(z|x, y) if p(x, y) > 0
0 otherwise.

a) Show that q(x, y, z) is in general not a probability distribution.
b) By ignoring the fact that q(x, y, z) may not be a probability distribu-

tion, application of the divergence inequality D(p‖q) ≥ 0 would yield
the inequality

H(X) +H(Y ) +H(Z|X,Y ) ≥ H(X,Y, Z),

which indeed is valid for all jointly distributed random variables X,Y ,
and Z. Explain.

3. Prove Propositions 2.8, 2.9, 2.10, 2.19, 2.21, and 2.22.
4. Give an example which shows that pairwise independence does not imply

mutual independence.
5. Verify that p(x, y, z) as defined in Definition 2.4 is a probability distribu-

tion. You should exclude all the zero probability masses from the summa-
tion carefully.
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6. Linearity of expectation It is well-known that expectation is linear, i.e.,
E[f(X) + g(Y )] = Ef(X) + Eg(Y ), where the summation in an expec-
tation is taken over the corresponding alphabet. However, we adopt in
information theory the convention that the summation in an expectation
is taken over the corresponding support. Justify carefully the linearity of
expectation under this convention.

7. The identity I(X;Y ) = H(X)−H(X|Y ) is invalid if H(X|Y ) (and hence
H(X)) is equal to infinity. Give an example such that I(X;Y ) has a finite
value but both H(X) and H(Y |X) are equal to infinity.

8. Let p′XY and pXY be defined on X × Y, where X and Y are fixed finite
alphabets. Prove that

lim
p′
XY
→pXY

p′x = pX ,

where the limit is taken with respect to the variational distance.
9. Let Cα =

∑∞
n=2

1
n(logn)α .

a) Prove that

Cα

{
<∞ if α > 1
=∞ if 0 ≤ α ≤ 1.

Then
pα(n) = [Cαn(log n)α]−1, n = 2, 3, · · ·

is a probability distribution for α > 1.
b) Prove that

H(pα)
{
<∞ if α > 2
=∞ if 1 < α ≤ 2.

10. Prove that H(p) is concave in p, i.e., for 0 ≤ λ ≤ 1 and λ̄ = 1− λ,

λH(p1) + λ̄H(p2) ≤ H(λp1 + λ̄p2).

11. Let (X,Y ) ∼ p(x, y) = p(x)p(y|x).
a) Prove that for fixed p(x), I(X;Y ) is a convex functional of p(y|x).
b) Prove that for fixed p(y|x), I(X;Y ) is a concave functional of p(x).

12. Do I(X;Y ) = 0 and I(X;Y |Z) = 0 imply each other? If so, give a proof.
If not, give a counterexample.

13. Give an example for whichD(·‖·) does not satisfy the triangular inequality.
14. Let X be a function of Y . Prove that H(X) ≤ H(Y ). Interpret this result.
15. Prove that for any n ≥ 2,

H(X1, X2, · · · , Xn) ≥
∑
i 6=j

H(Xi|Xj).

Give the necessary and sufficient condition for equality to hold and con-
struct a nontrivial example that satisfies this condition.
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16. Prove that for any n ≥ 2,

H(X1, X2, · · · , Xn) ≥
n∑
i=1

H(Xi|Xj , j 6= i).

17. Prove that

1
2

[H(X1, X2) +H(X2, X3) +H(X1, X3)] ≥ H(X1, X2, X3).

Hint: Sum the identities

H(X1, X2, X3) = H(Xj , j 6= i) +H(Xi|Xj , j 6= i)

for i = 1, 2, 3 and apply the result in Problem 16.
18. Let Nn = {1, 2, · · · , n} and denote H(Xi, i ∈ α) by H(Xα) for any subset

α of Nn. For 1 ≤ k ≤ n, let

Hk =
1(
n−1
k−1

) ∑
α:|α|=k

H(Xα).

Prove that
H1 ≥ H2 ≥ · · · ≥ Hn.

This sequence of inequalities, due to Han [134], is a generalization of the
independence bound for entropy (Theorem 2.39). See Problem 5 in Chap-
ter 21 for an application of these inequalities.

19. Prove the divergence inequality by using the log-sum inequality.
20. Prove that D(p‖q) is convex in the pair (p, q), i.e., if (p1, q1) and (p2, q2)

are two pairs of probability distributions on a common alphabet, then

D(λp1 + λp2‖λq1 + λq2) ≤ λD(p1‖q1) + λD(p2‖q2)

for all 0 ≤ λ ≤ 1, where λ = 1− λ.
21. Let pXY and qXY be two probability distributions on X × Y. Prove that

D(pXY ‖qXY ) ≥ D(pX‖qX).
22. Pinsker’s inequality Let V (p, q) denotes the variational distance between

two probability distributions p and q on a common alphabet X . We will
determine the largest c which satisfies

D(p‖q) ≥ cd2(p, q).

a) Let A = {x : p(x) ≥ q(x)}, p̂ = {p(A), 1 − p(A)}, and q̂ = {q(A), 1 −
q(A)}. Show that D(p‖q) ≥ D(p̂‖q̂) and V (p, q) = V (p̂, q̂).

b) Show that toward determining the largest value of c, we only have to
consider the case when X is binary.
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c) By virtue of b), it suffices to determine the largest c such that

p log
p

q
+ (1− p) log

1− p
1− q

− 4c(p− q)2 ≥ 0

for all 0 ≤ p, q ≤ 1, with the convention that 0 log 0
b = 0 for b ≥ 0

and a log a
0 = ∞ for a > 0. By observing that equality in the above

holds if p = q and considering the derivative of the left hand side with
respect to q, show that the largest value of c is equal to (2 ln 2)−1.

23. Let p and qk, k ≥ 1 be probability distributions on a common alphabet.
Show that if qk converges to p in divergence, then it also converges to p
in variational distance.

24. Find a necessary and sufficient condition for Fano’s inequality to be tight.
25. Determine the probability distribution defined on {0, 1, · · · , n} that max-

imizes the entropy subject to the constraint that the mean is equal to m,
where 0 ≤ m ≤ n.

26. Show that for a stationary source {Xk}, 1
nH(X1, X2, · · · , Xn) is non-

increasing in n.
27. For real numbers α > 1 and β > 0 and an integer n ≥ α, define the

probability distribution

D(α,β)
n =

1−
(

logα
log n

)β
,

1
n

(
logα
log n

)β
, · · · , 1

n

(
logα
log n

)β
,︸ ︷︷ ︸

n

0, 0, · · ·

 .

Let ν = {1, 0, 0, . . .} be the deterministic distribution.
a) Show that limn→∞D

(
ν||D(α,β)

n

)
= 0.

b) Determine limn→∞H
(
D(α,β)
n

)
.

28. Discontinuity of entropy with respect to convergence in divergence Let P
be the set of all probability distributions on a countable alphabet. A func-
tion f : P → < is continuous with respect to convergence in divergence
at P ∈ P if for any ε > 0, there exists δ > 0 such that |f(Q)− f(P )| < ε
for all Q ∈ P satisfying D(P‖Q) < δ; otherwise, f is discontinuous at P .
a) Let H : P → < be the entropy function. Show that H is discontinu-

ous at the deterministic distribution ν = {1, 0, 0, · · · , }. Hint: Use the
results in Problem 27.

b) Show that H is discontinuous at P = {p0, p1, p2, · · ·} for all P such
that H(P ) <∞. Hint: Consider the probability distribution

Qn =
{
p0 −

p0√
log n

, p1 +
p0

n
√

log n
, p2 +

p0

n
√

log n
, · · · ,

pn +
p0

n
√

log n
, pn+1, pn+2, . . .

}
for large n.
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29. Discontinuity of entropy with respect to convergence in variational dis-
tance Refer to Problem 28. The continuity of a function f : P → < with
respect to convergence in variational distance can be defined similarly.
a) Show that if a function f is continuous with respect to convergence

in variational distance, then it is also continuous with respect to con-
vergence in divergence. Hint: Use Pinsker’s inequality.

b) Repeat b) in Problem 28 with continuity defined with respect to con-
vergence in variational distance.

30. Continuity of the entropy function for a fixed finite alphabet Refer to
Problems 28 and 29. Suppose the domain of H is confined to P ′, the set
of all probability distributions on a fixed finite alphabet. Show that H is
continuous with respect to convergence in divergence.

31. Let p = {p1, p2, · · · , pn} and q = {q1, q2, · · · , qn} be two sets of real num-
bers such that pi ≥ pi′ and qi ≥ qi′ for all i < i′. We say that p is majorized
by q if

∑m
i=1 pi ≤

∑m
j=1 qj for all m = 1, 2, . . . , n, where equality holds

when m = n. A function f : <n → < is Schur-concave if f(p) ≥ f(q)
whenever p is majorized by q. Now let p and q be probability distribu-
tions. We will show in the following steps that H(·) is Schur-concave.
a) Show that for p 6= q, there exist 1 ≤ j < k ≤ n which satisfy the

following:
i) j is the largest index i such that pi < qi
ii) k is the smallest index i such that i > j and pi > qi

iii) pi = qi for all j < i < k.
b) Consider the distribution q∗ = {q∗1 , q∗2 , · · · , q∗n} defined by q∗i = qi for

i 6= j, k and

(q∗j , q
∗
k) =

{
(pj , qk + (qj − pj)) if pk − qk ≥ qj − pj
(qj − (pk − qk), pk) if pk − qk < qj − pj .

Note that either q∗j = pj or q∗k = pk. Show that
i) q∗i ≥ q∗i′ for all i ≤ i′
ii)
∑m
i=1 pi ≤

∑m
i=1 q

∗
i for all m = 1, 2, · · · , n

iii) H(q∗) ≥ H(q).
c) Prove that H(p) ≥ H(q) by induction on the Hamming distance

between p and q, i.e., the number of places where p and q differ.
In general, if a concave function f is symmetric, i.e. f(p) = f(p′) where
p′ is a permutation of p, then f is Schur-concave. We refer the reader
to [221] for the theory of majorization. (Hardy, Littlewood, and Pólya
[140].)

Historical Notes

The concept of entropy has its root in thermodynamics. Shannon [291] was the
first to use entropy as a measure of information. Informational divergence was
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introduced by Kullback and Leibler [194], and it has been studied extensively
by Csiszár [73] and Amari [14].

The materials in this chapter can be found in most textbooks in informa-
tion theory. The main concepts and results are due to Shannon [291]. Pinsker’s
inequality is due to Pinsker [263]. Fano’s inequality has its origin in the con-
verse proof of the channel coding theorem (to be discussed in Chapter 7) by
Fano [95]. Generalizations of Fano’s inequality which apply to random vari-
ables with countable alphabets have been obtained by Han and Verdú [139]
and by Ho [148] (see also [151]). Maximum entropy, a concept in statistical
mechanics, was expounded in Jaynes [167].





3

The I-Measure

In Chapter 2, we have shown the relationship between Shannon’s information
measures for two random variables by the diagram in Figure 2.2. For con-
venience, Figure 2.2 is reproduced in Figure 3.1 with the random variables
X and Y replaced by X1 and X2, respectively. This diagram suggests that

X 1 X 2 H (         ) , 

X 1 X 2 H (         ) 
X 1 X 2 H (         ) 

X 2 X 1 I (         ) ; 
X 1 H (    ) 

2 X H (      ) 

Fig. 3.1. Relationship between entropies and mutual information for two random
variables.

Shannon’s information measures for any n ≥ 2 random variables may have a
set-theoretic structure.

In this chapter, we develop a theory which establishes a one-to-one cor-
respondence between Shannon’s information measures and set theory in full
generality. With this correspondence, manipulations of Shannon’s informa-
tion measures can be viewed as set operations, thus allowing the rich suite of
tools in set theory to be used in information theory. Moreover, the structure
of Shannon’s information measures can easily be visualized by means of an
information diagram if four or fewer random variables are involved. The use
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of information diagrams simplifies many difficult proofs in information theory
problems. More importantly, these results, which may be difficult to discover
in the first place, can easily be obtained by inspection of an information dia-
gram.

The main concepts to be used in this chapter are from measure theory.
However, it is not necessary for the reader to know measure theory to read
this chapter.

3.1 Preliminaries

In this section, we introduce a few basic concepts in measure theory which will
be used subsequently. These concepts will be illustrated by simple examples.

Definition 3.1. The field Fn generated by sets X̃1, X̃2, · · · , X̃n is the collec-
tion of sets which can be obtained by any sequence of usual set operations
(union, intersection, complement, and difference) on X̃1, X̃2, · · · , X̃n.

Definition 3.2. The atoms of Fn are sets of the form ∩ni=1Yi, where Yi is
either X̃i or X̃c

i , the complement of X̃i.

There are 2n atoms and 22n sets in Fn. Evidently, all the atoms in Fn are
disjoint, and each set in Fn can be expressed uniquely as the union of a subset
of the atoms of Fn1. We assume that the sets X̃1, X̃2, · · · , X̃n intersect with
each other generically, i.e., all the atoms of Fn are nonempty unless otherwise
specified.

Example 3.3. The sets X̃1 and X̃2 generate the field F2. The atoms of F2 are

X̃1 ∩ X̃2, X̃
c
1 ∩ X̃2, X̃1 ∩ X̃c

2 , X̃
c
1 ∩ X̃c

2 , (3.1)

which are represented by the four distinct regions in the Venn diagram in
Figure 3.2. The field F2 consists of the unions of subsets of the atoms in (3.1).
There are a total of 16 sets in F2, which are precisely all the sets which can
be obtained from X̃1 and X̃2 by the usual set operations.

Definition 3.4. A real function µ defined on Fn is called a signed measure if
it is set-additive, i.e., for disjoint A and B in Fn,

µ(A ∪B) = µ(A) + µ(B). (3.2)

For a signed measure µ, we have

µ(∅) = 0, (3.3)

1 We adopt the convention that the union of the empty subset of the atoms of Fn
is the empty set.
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X 1 
X 2 

Fig. 3.2. The Venn diagram for X̃1 and X̃2.

which can be seen as follows. For any A in Fn,

µ(A) = µ(A ∪ ∅) = µ(A) + µ(∅) (3.4)

by set-additivity because A and ∅ are disjoint, which implies (3.3).
A signed measure µ on Fn is completely specified by its values on the

atoms of Fn. The values of µ on the other sets in Fn can be obtained via
set-additivity.

Example 3.5. A signed measure µ on F2 is completely specified by the values

µ(X̃1 ∩ X̃2), µ(X̃c
1 ∩ X̃2), µ(X̃1 ∩ X̃c

2), µ(X̃c
1 ∩ X̃c

2). (3.5)

The value of µ on X̃1, for example, can be obtained as

µ(X̃1) = µ((X̃1 ∩ X̃2) ∪ (X̃1 ∩ X̃c
2)) (3.6)

= µ(X̃1 ∩ X̃2) + µ(X̃1 ∩ X̃c
2). (3.7)

3.2 The I-Measure for Two Random Variables

To fix ideas, we first formulate in this section the one-to-one correspondence
between Shannon’s information measures and set theory for two random vari-
ables. For random variables X1 and X2, let X̃1 and X̃2 be sets corresponding
to X1 and X2, respectively. The sets X̃1 and X̃2 generates the field F2 whose
atoms are listed in (3.1). In our formulation, we set the universal set Ω to
X̃1 ∪ X̃2 for reasons which will become clear later. With this choice of Ω, the
Venn diagram for X̃1 and X̃2 is represented by the diagram in Figure 3.3. For
simplicity, the sets X̃1 and X̃2 are respectively labeled by X1 and X2 in the
diagram. We call this the information diagram for the random variables X1

and X2. In this diagram, the universal set, which is the union of X̃1 and X̃2,
is not shown explicitly just as in a usual Venn diagram. Note that with our
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X 1 X 2 

Fig. 3.3. The generic information diagram for X1 and X2.

choice of the universal set, the atom X̃c
1 ∩ X̃c

2 degenerates to the empty set,
because

X̃c
1 ∩ X̃c

2 = (X̃1 ∪ X̃2)c = Ωc = ∅. (3.8)

Thus this atom is not shown in the information diagram in Figure 3.3.
For random variables X1 and X2, the Shannon’s information measures are

H(X1), H(X2), H(X1|X2), H(X2|X1), H(X1, X2), I(X1;X2). (3.9)

Writing A ∩Bc as A−B, we now define a signed measure2 µ∗ by

µ∗(X̃1 − X̃2) = H(X1|X2) (3.10)
µ∗(X̃2 − X̃1) = H(X2|X1), (3.11)

and
µ∗(X̃1 ∩ X̃2) = I(X1;X2). (3.12)

These are the values of µ∗ on the nonempty atoms of F2 (i.e., atoms of F2

other than X̃c
1 ∩X̃c

2). The values of µ∗ on the other sets in F2 can be obtained
via set-additivity. In particular, the relations

µ∗(X̃1 ∪ X̃2) = H(X1, X2) (3.13)
µ∗(X̃1) = H(X1), (3.14)

and
µ∗(X̃2) = H(X2) (3.15)

can readily be verified. For example, (3.13) is seen to be true by considering

µ∗(X̃1 ∪ X̃2)
= µ∗(X̃1 − X̃2) + µ∗(X̃2 − X̃1) + µ∗(X̃1 ∩ X̃2) (3.16)
= H(X1|X2) +H(X2|X1) + I(X1;X2) (3.17)
= H(X1, X2). (3.18)

2 It happens that µ∗ defined here for n = 2 assumes only nonnegative values, but
we will see in Section 3.4 that µ∗ can assume negative values for n ≥ 3.
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The right hand sides of (3.10) to (3.15) are the six Shannon’s information
measures for X1 and X2 in (3.9). Now observe that (3.10) to (3.15) are con-
sistent with how the Shannon’s information measures on the right hand side
are identified in Figure 3.1, with the left circle and the right circle represent-
ing the sets X̃1 and X̃2, respectively. Specifically, in each of these equations,
the left hand side and the right hand side correspond to each other via the
following substitution of symbols:

H/I ↔ µ∗

,↔ ∪
;↔ ∩
| ↔ −.

(3.19)

Note that we make no distinction between the symbols H and I in this sub-
stitution. Thus, for two random variables X1 and X2, Shannon’s information
measures can be regarded formally as a signed measure on F2. We will refer
to µ∗ as the I-Measure for the random variables X1 and X2

3.
Upon realizing that Shannon’s information measures can be viewed as a

signed measure, we can apply the rich family of operations in set theory to
information theory. This explains why Figure 3.1 or Figure 3.3 represents
the relationships among all Shannon’s information measures for two random
variables correctly. As an example, consider the following set identity which
is readily identified in Figure 3.3:

µ∗(X̃1 ∪ X̃2) = µ∗(X̃1) + µ∗(X̃2)− µ∗(X̃1 ∩ X̃2) (3.20)

This identity is a special case of the inclusion-exclusion formula in set theory.
By means of the substitution of symbols in (3.19), we immediately obtain the
information identity

H(X1, X2) = H(X1) +H(X2)− I(X1;X2). (3.21)

We end this section with a remark. The value of µ∗ on the atom X̃c
1 ∩ X̃c

2

has no apparent information-theoretic meaning. In our formulation, we set the
universal set Ω to X̃1∪X̃2 so that the atom X̃c

1∩X̃c
2 degenerates to the empty

set. Then µ∗(X̃c
1 ∩ X̃c

2) naturally vanishes because µ∗ is a measure, so that µ∗

is completely specified by all Shannon’s information measures involving the
random variables X1 and X2.

3.3 Construction of the I-Measure µ*

We have constructed the I-Measure for two random variables in the last sec-
tion. We now construct the I-Measure for any n ≥ 2 random variables.
3 The reader should not confuse µ∗ with the probability measure defining the ran-

dom variables X1 and X2. The former, however, is determined by the latter.



54 3 The I-Measure

Consider n random variables X1, X2, · · · , Xn. For any random variable X,
let X̃ be a set corresponding to X. Let

Nn = {1, 2, · · · , n}. (3.22)

Define the universal set Ω to be the union of the sets X̃1, X̃2, · · · , X̃n, i.e.,

Ω =
⋃
i∈Nn

X̃i. (3.23)

We use Fn to denote the field generated by X̃1, X̃2, · · · , X̃n. The set

A0 =
⋂
i∈Nn

X̃c
i (3.24)

is called the empty atom of Fn because

⋂
i∈Nn

X̃c
i =

( ⋃
i∈Nn

X̃i

)c
= Ωc = ∅. (3.25)

All the atoms of Fn other than A0 are called nonempty atoms.
Let A be the set of all nonempty atoms of Fn. Then |A|, the cardinality

of A, is equal to 2n − 1. A signed measure µ on Fn is completely specified by
the values of µ on the nonempty atoms of Fn.

To simplify notation, we will use XG to denote (Xi, i ∈ G) and X̃G to
denote ∪i∈GX̃i for any nonempty subset G of Nn.

Theorem 3.6. Let

B =
{
X̃G : G is a nonempty subset of Nn

}
. (3.26)

Then a signed measure µ on Fn is completely specified by {µ(B), B ∈ B},
which can be any set of real numbers.

Proof. The number of elements in B is equal to the number of nonempty
subsets of Nn, which is 2n − 1. Thus |A| = |B| = 2n − 1. Let k = 2n − 1.
Let u be a column k-vector of µ(A), A ∈ A, and h be a column k-vector of
µ(B), B ∈ B. Since all the sets in B can expressed uniquely as the union of
some nonempty atoms in A, by the set-additivity of µ, for each B ∈ B, µ(B)
can be expressed uniquely as the sum of some components of u. Thus

h = Cnu, (3.27)

where Cn is a unique k × k matrix. On the other hand, it can be shown
(see Appendix 3.6) that for each A ∈ A, µ(A) can be expressed as a linear
combination of µ(B), B ∈ B by applications, if necessary, of the following two
identities:
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µ(A ∩B − C) = µ(A− C) + µ(B − C)− µ(A ∪B − C) (3.28)
µ(A−B) = µ(A ∪B)− µ(B). (3.29)

However, the existence of the said expression does not imply its uniqueness.
Nevertheless, we can write

u = Dnh (3.30)

for some k × k matrix Dn. Upon substituting (3.27) into (3.30), we obtain

u = (DnCn)u, (3.31)

which implies that Dn is the inverse of Cn as (3.31) holds regardless of the
choice of µ. Since Cn is unique, so is Dn. Therefore, µ(A), A ∈ A are uniquely
determined once µ(B), B ∈ B are specified. Hence, a signed measure µ on Fn is
completely specified by {µ(B), B ∈ B}, which can be any set of real numbers.
The theorem is proved. ut

We now prove the following two lemmas which are related by the substi-
tution of symbols in (3.19).

Lemma 3.7.

µ(A ∩B − C) = µ(A ∪ C) + µ(B ∪ C)− µ(A ∪B ∪ C)− µ(C). (3.32)

Proof. From (3.28) and (3.29), we have

µ(A ∩B − C)
= µ(A− C) + µ(B − C)− µ(A ∪B − C) (3.33)
= (µ(A ∪ C)− µ(C)) + (µ(B ∪ C)− µ(C))
−(µ(A ∪B ∪ C)− µ(C)) (3.34)

= µ(A ∪ C) + µ(B ∪ C)− µ(A ∪B ∪ C)− µ(C). (3.35)

The lemma is proved. ut

Lemma 3.8.

I(X;Y |Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z). (3.36)

Proof. Consider

I(X;Y |Z)
= H(X|Z)−H(X|Y,Z) (3.37)
= H(X,Z)−H(Z)− (H(X,Y, Z)−H(Y, Z)) (3.38)
= H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z). (3.39)
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The lemma is proved. ut

We now construct the I-Measure µ∗ on Fn using Theorem 3.6 by defining

µ∗(X̃G) = H(XG) (3.40)

for all nonempty subsets G of Nn. In order for µ∗ to be meaningful, it has to
be consistent with all Shannon’s information measures (via the substitution of
symbols in (3.19)). In that case, the following must hold for all (not necessarily
disjoint) subsets G,G′, G′′ of Nn where G and G′ are nonempty:

µ∗(X̃G ∩ X̃G′ − X̃G′′) = I(XG;XG′ |XG′′). (3.41)

When G′′ = ∅, (3.41) becomes

µ∗(X̃G ∩ X̃G′) = I(XG;XG′). (3.42)

When G = G′, (3.41) becomes

µ∗(X̃G − X̃G′′) = H(XG|XG′′). (3.43)

When G = G′ and G′′ = ∅, (3.41) becomes

µ∗(X̃G) = H(XG). (3.44)

Thus (3.41) covers all the four cases of Shannon’s information measures, and
it is the necessary and sufficient condition for µ∗ to be consistent with all
Shannon’s information measures.

Theorem 3.9. µ∗ is the unique signed measure on Fn which is consistent
with all Shannon’s information measures.

Proof. Consider

µ∗(X̃G ∩ X̃G′ − X̃G′′)
= µ∗(X̃G∪G′′) + µ∗(X̃G′∪G′′)− µ∗(X̃G∪G′∪G′′)− µ∗(X̃G′′) (3.45)
= H(XG∪G′′) +H(XG′∪G′′)−H(XG∪G′∪G′′)−H(XG′′) (3.46)
= I(XG;XG′ |XG′′), (3.47)

where (3.45) and (3.47) follow from Lemmas 3.7 and 3.8, respectively, and
(3.46) follows from (3.40), the definition of µ∗. Thus we have proved (3.41),
i.e., µ∗ is consistent with all Shannon’s information measures.

In order that µ∗ is consistent with all Shannon’s information measures, for
all nonempty subsets G of Nn, µ∗ has to satisfy (3.44), which in fact is the
definition of µ∗ in (3.40). Therefore, µ∗ is the unique signed measure on Fn
which is consistent with all Shannon’s information measures. ut
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3.4 µ* Can be Negative

In the previous sections, we have been cautious in referring to the I-Measure
µ∗ as a signed measure instead of a measure4. In this section, we show that
µ∗ in fact can take negative values for n ≥ 3.

For n = 2, the three nonempty atoms of F2 are

X̃1 ∩ X̃2, X̃1 − X̃2, X̃2 − X̃1. (3.48)

The values of µ∗ on these atoms are respectively

I(X1;X2), H(X1|X2), H(X2|X1). (3.49)

These quantities are Shannon’s information measures and hence nonnegative
by the basic inequalities. Therefore, µ∗ is always nonnegative for n = 2.

For n = 3, the seven nonempty atoms of F3 are

X̃i − X̃{j,k}, X̃i ∩ X̃j − X̃k, X̃1 ∩ X̃2 ∩ X̃3, (3.50)

where 1 ≤ i < j < k ≤ 3. The values of µ∗ on the first two types of atoms are

µ∗(X̃i − X̃{j,k}) = H(Xi|Xj , Xk) (3.51)

and
µ∗(X̃i ∩ X̃j − X̃k) = I(Xi;Xj |Xk), (3.52)

respectively, which are Shannon’s information measures and therefore non-
negative. However, µ∗(X̃1 ∩ X̃2 ∩ X̃3) does not correspond to a Shannon’s
information measure. In the next example, we show that µ∗(X̃1 ∩ X̃2 ∩ X̃3)
can actually be negative.

Example 3.10. In this example, all entropies are in the base 2. Let X1 and X2

be independent binary random variables with

Pr{Xi = 0} = Pr{Xi = 1} = 0.5, (3.53)

i = 1, 2. Let
X3 = (X1 +X2) mod 2. (3.54)

It is easy to check that X3 has the same marginal distribution as X1 and X2.
Thus,

H(Xi) = 1 (3.55)

for i = 1, 2, 3. Moreover, X1, X2, and X3 are pairwise independent. Therefore,

H(Xi, Xj) = 2 (3.56)

and
4 A measure can assume only nonnegative values.
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I(Xi;Xj) = 0 (3.57)

for 1 ≤ i < j ≤ 3. We further see from (3.54) that each random variable
is a function of the other two random variables. Then by the chain rule for
entropy, we have

H(X1, X2, X3) = H(X1, X2) +H(X3|X1, X2) (3.58)
= 2 + 0 (3.59)
= 2. (3.60)

Now for 1 ≤ i < j < k ≤ 3,

I(Xi;Xj |Xk)
= H(Xi, Xk) +H(Xj , Xk)−H(X1, X2, X3)−H(Xk) (3.61)
= 2 + 2− 2− 1 (3.62)
= 1, (3.63)

where we have invoked Lemma 3.8. It then follows that

µ∗(X̃1 ∩ X̃2 ∩ X̃3) = µ∗(X̃1 ∩ X̃2)− µ∗(X̃1 ∩ X̃2 − X̃3) (3.64)
= I(X1;X2)− I(X1;X2|X3) (3.65)
= 0− 1 (3.66)
= −1. (3.67)

Thus µ∗ takes a negative value on the atom X̃1 ∩ X̃2 ∩ X̃3.

Motivated by the substitution of symbols in (3.19) for Shannon’s informa-
tion measures, we will write µ∗(X̃1 ∩ X̃2 ∩ X̃3) as I(X1;X2;X3). In general,
we will write

µ∗(X̃G1 ∩ X̃G2 ∩ · · · ∩ X̃Gm − X̃F ) (3.68)

as
I(XG1 ;XG2 ; · · · ;XGm |XF ) (3.69)

and refer to it as the mutual information between XG1 , XG2 , · · · , XGm condi-
tioning on XF . Then (3.64) in the above example can be written as

I(X1;X2;X3) = I(X1;X2)− I(X1;X2|X3). (3.70)

For this example, I(X1;X2;X3) < 0, which implies

I(X1;X2|X3) > I(X1;X2). (3.71)

Therefore, unlike entropy, the mutual information between two random vari-
ables can be increased by conditioning on a third random variable. Also, we
note in (3.70) that although the expression on the right hand side is not sym-
bolically symmetrical in X1, X2, and X3, we see from the left hand side that
it is in fact symmetrical in X1, X2, and X3.
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3.5 Information Diagrams

We have established in Section 3.3 a one-to-one correspondence between Shan-
non’s information measures and set theory. Therefore, it is valid to use an
information diagram, which is a variation of a Venn diagram, to represent the
relationship between Shannon’s information measures.

For simplicity, a set X̃i will be labeled by Xi in an information diagram.
We have seen the generic information diagram for n = 2 in Figure 3.3. A
generic information diagram for n = 3 is shown in Figure 3.4. The information-

X 1 

X 1 X 2 H (          ) 

X 1 H (    ) 

X 2 

X 3 

X 1 I (          ) ; X 3 

; ; X 1 I (                ) X 3 X 2 

; X 1 I X 3 X 2 (                ) 

, X 3 X 2 X 1 H (                ) 

Fig. 3.4. The generic information diagram for X1, X2, and X3.

theoretic labeling of the values of µ∗ on some of the sets in F3 is shown
in the diagram. As an example, the information diagram for the I-Measure
for random variables X1, X2, and X3 discussed in Example 3.10 is shown in
Figure 3.5.

0 

0 0 

1 1 

1 

1 

X 1 

X 2 

X 3 

Fig. 3.5. The information diagram for X1, X2, and X3 in Example 3.10.

For n ≥ 4, it is not possible to display an information diagram perfectly
in two dimensions. In general, an information diagram for n random variables
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needs n− 1 dimensions to be displayed perfectly. Nevertheless, for n = 4, an
information diagram can be displayed in two dimensions almost perfectly as
shown in Figure 3.6. This information diagram is correct in that the region
representing the set X̃4 splits each atom in Figure 3.4 into two atoms. However,
the adjacency of certain atoms are not displayed correctly. For example, the
set X̃1 ∩ X̃2 ∩ X̃c

4 , which consists of the atoms X̃1 ∩ X̃2 ∩ X̃3 ∩ X̃c
4 and X̃1 ∩

X̃2∩X̃c
3∩X̃c

4 , is not represented by a connected region because the two atoms
are not adjacent to each other.

When µ∗ takes the value zero on an atom A of Fn, we do not need to
display the atom A in an information diagram because the atom A does
not contribute to µ∗(B) for any set B containing the atom A. As we will
see shortly, this can happen if certain Markov constraints are imposed on
the random variables involved, and the information diagram can be simplified
accordingly. In a generic information diagram (i.e., when there is no constraint
on the random variables), however, all the atoms have to be displayed, as is
implied by the next theorem.

Theorem 3.11. If there is no constraint on X1, X2, · · · , Xn, then µ∗ can take
any set of nonnegative values on the nonempty atoms of Fn.

Proof. We will prove the theorem by constructing a µ∗ which can take any
set of nonnegative values on the nonempty atoms of Fn. Recall that A is the
set of all nonempty atoms of Fn. Let YA, A ∈ A be mutually independent
random variables. Now define the random variables Xi, i = 1, 2, · · · , n by

Xi = (YA : A ∈ A and A ⊂ X̃i). (3.72)

We determine the I-Measure µ∗ for X1, X2, · · · , Xn so defined as follows. Since
YA are mutually independent, for any nonempty subsets G of Nn, we have

H(XG) =
∑

A∈A:A⊂X̃G

H(YA). (3.73)

X 1 

X 2 

X 3 

X 4 

Fig. 3.6. The generic information diagram for X1, X2, X3, and X4.
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On the other hand,

H(XG) = µ∗(X̃G) =
∑

A∈A:A⊂X̃G

µ∗(A). (3.74)

Equating the right hand sides of (3.73) and (3.74), we have∑
A∈A:A⊂X̃G

H(YA) =
∑

A∈A:A⊂X̃G

µ∗(A). (3.75)

Evidently, we can make the above equality hold for all nonempty subsets G
of Nn by taking

µ∗(A) = H(YA) (3.76)

for all A ∈ A. By the uniqueness of µ∗, this is also the only possibility for µ∗.
Since H(YA) can take any nonnegative value by Corollary 2.44, µ∗ can take
any set of nonnegative values on the nonempty atoms of Fn. The theorem is
proved. ut

In the rest of this section, we explore the structure of Shannon’s informa-
tion measures when X1 → X2 → · · · → Xn forms a Markov chain. To start
with, we consider n = 3, i.e., X1 → X2 → X3 forms a Markov chain. Since

µ∗(X̃1 ∩ X̃c
2 ∩ X̃3) = I(X1;X3|X2) = 0, (3.77)

the atom X̃1∩X̃c
2∩X̃3 does not have to be displayed in an information diagram.

As such, in constructing the information diagram, the regions representing
the random variables X1, X2, and X3 should overlap with each other such
that the region corresponding to the atom X̃1 ∩ X̃c

2 ∩ X̃3 is empty, while the
regions corresponding to all other nonempty atoms are nonempty. Figure 3.7
shows such a construction, in which each random variable is represented by
a mountain5. From Figure 3.7, we see that X̃1 ∩ X̃2 ∩ X̃3, as the only atom

X 3 X 1 X 2 

Fig. 3.7. The information diagram for the Markov chain X1 → X2 → X3.

5 This form of an information diagram for a Markov chain first appeared in Kawa-
bata [176].
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on which µ∗ may take a negative value, now becomes identical to the atom
X̃1 ∩ X̃3. Therefore, we have

I(X1;X2;X3) = µ∗(X̃1 ∩ X̃2 ∩ X̃3) (3.78)
= µ∗(X̃1 ∩ X̃3) (3.79)
= I(X1;X3) (3.80)
≥ 0. (3.81)

Hence, we conclude that when X1 → X2 → X3 forms a Markov chain, µ∗ is
always nonnegative.

Next, we consider n = 4, i.e., X1 → X2 → X3 → X4 forms a Markov
chain. With reference to Figure 3.6, we first show that under this Markov
constraint, µ∗ always vanishes on certain nonempty atoms:

1. The Markov chain X1 → X2 → X3 implies

I(X1;X3;X4|X2) + I(X1;X3|X2, X4) = I(X1;X3|X2) = 0. (3.82)

2. The Markov chain X1 → X2 → X4 implies

I(X1;X3;X4|X2) + I(X1;X4|X2, X3) = I(X1;X4|X2) = 0. (3.83)

3. The Markov chain X1 → X3 → X4 implies

I(X1;X2;X4|X3) + I(X1;X4|X2, X3) = I(X1;X4|X3) = 0. (3.84)

4. The Markov chain X2 → X3 → X4 implies

I(X1;X2;X4|X3) + I(X2;X4|X1, X3) = I(X2;X4|X3) = 0. (3.85)

5. The Markov chain (X1, X2)→ X3 → X4 implies

I(X1;X2;X4|X3) + I(X1;X4|X2, X3) + I(X2;X4|X1, X3)
= I(X1, X2;X4|X3) (3.86)
= 0. (3.87)

Now (3.82) and (3.83) imply

I(X1;X4|X2, X3) = I(X1;X3|X2, X4), (3.88)

(3.84) and (3.88) imply

I(X1;X2;X4|X3) = −I(X1;X3|X2, X4), (3.89)

and (3.85) and (3.89) imply

I(X2;X4|X1, X3) = I(X1;X3|X2, X4). (3.90)
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The terms on the left hand sides of (3.88), (3.89), and (3.90) are the three
terms on the left hand side of (3.87). Then we substitute (3.88), (3.89), and
(3.90) in (3.87) to obtain

µ∗(X̃1 ∩ X̃c
2 ∩ X̃3 ∩ X̃c

4) = I(X1;X3|X2, X4) = 0. (3.91)

From (3.82), (3.88), (3.89), and (3.90), (3.91) implies

µ∗(X̃1 ∩ X̃c
2 ∩ X̃3 ∩ X̃4) = I(X1;X3;X4|X2) = 0 (3.92)

µ∗(X̃1 ∩ X̃c
2 ∩ X̃c

3 ∩ X̃4) = I(X1;X4|X2, X3) = 0 (3.93)
µ∗(X̃1 ∩ X̃2 ∩ X̃c

3 ∩ X̃4) = I(X1;X2;X4|X3) = 0 (3.94)
µ∗(X̃c

1 ∩ X̃2 ∩ X̃c
3 ∩ X̃4) = I(X2;X4|X1, X3) = 0. (3.95)

From (3.91) to (3.95), we see that µ∗ always vanishes on the atoms

X̃1 ∩ X̃c
2 ∩ X̃3 ∩ X̃c

4

X̃1 ∩ X̃c
2 ∩ X̃3 ∩ X̃4

X̃1 ∩ X̃c
2 ∩ X̃c

3 ∩ X̃4

X̃1 ∩ X̃2 ∩ X̃c
3 ∩ X̃4

X̃c
1 ∩ X̃2 ∩ X̃c

3 ∩ X̃4

(3.96)

of F4, which we mark by an asterisk in the information diagram in Figure 3.8.
In fact, the reader can gain a lot of insight by letting I(X1;X3|X2, X4) = a ≥ 0

* 

* 

* * * X 3 X 1 

X 4 

X 2 

Fig. 3.8. The atoms of F4 on which µ∗ vanishes when X1 → X2 → X3 → X4 forms
a Markov chain.

in (3.82) and tracing the subsequent steps leading to the above conclusion in
the information diagram in Figure 3.6.

It is not necessary to display the five atoms in (3.96) in an information
diagram because µ∗ always vanishes on these atoms. Therefore, in constructing
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X 1 X 4 X 3 X 2 

Fig. 3.9. The information diagram for the Markov chain X1 → X2 → X3 → X4.

the information diagram, the regions representing the random variables should
overlap with each other such that the regions corresponding to these five
nonempty atoms are empty, while the regions corresponding to the other ten
nonempty atoms, namely

X̃1 ∩ X̃c
2 ∩ X̃c

3 ∩ X̃c
4

X̃1 ∩ X̃2 ∩ X̃c
3 ∩ X̃c

4

X̃1 ∩ X̃2 ∩ X̃3 ∩ X̃c
4

X̃1 ∩ X̃2 ∩ X̃3 ∩ X̃4

X̃c
1 ∩ X̃2 ∩ X̃c

3 ∩ X̃c
4

X̃c
1 ∩ X̃2 ∩ X̃3 ∩ X̃c

4

X̃c
1 ∩ X̃2 ∩ X̃3 ∩ X̃4

X̃c
1 ∩ X̃c

2 ∩ X̃3 ∩ X̃c
4

X̃c
1 ∩ X̃c

2 ∩ X̃3 ∩ X̃4

X̃c
1 ∩ X̃c

2 ∩ X̃c
3 ∩ X̃4,

(3.97)

are nonempty. Figure 3.9 shows such a construction. The reader should com-
pare the information diagrams in Figures 3.7 and 3.9 and observe that the
latter is an extension of the former.
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From Figure 3.9, we see that the values of µ∗ on the ten nonempty atoms
in (3.97) are equivalent to

H(X1|X2, X3, X4)
I(X1;X2|X3, X4)
I(X1;X3|X4)
I(X1;X4)
H(X2|X1, X3, X4)
I(X2;X3|X1;X4)
I(X2;X4|X1)
H(X3|X1, X2, X4)
I(X3;X4|X1, X2)
H(X4|X1, X2, X3),

(3.98)

respectively6. Since these are all Shannon’s information measures and thus
nonnegative, we conclude that µ∗ is always nonnegative.

WhenX1 → X2 → · · · → Xn forms a Markov chain, for n = 3, there is only
one nonempty atom, namely X̃1∩X̃c

2 ∩X̃3, on which µ∗ always vanishes. This
atom can be determined directly from the Markov constraint I(X1;X3|X2) =
0. For n = 4, the five nonempty atoms on which µ∗ always vanishes are
listed in (3.96). The determination of these atoms, as we have seen, is not
straightforward. We have also shown that for n = 3 and n = 4, µ∗ is always
nonnegative.

We will extend this theme in Chapter 12 to finite Markov random fields
with Markov chains being a special case. For a Markov chain, the information
diagram can always be displayed in two dimensions as in Figure 3.10, and µ∗

is always nonnegative. These will be explained in Chapter 12.

... 
X 1 X 2 X n -1 X n 

Fig. 3.10. The information diagram for the Markov chain X1 → X2 → · · · → Xn.

6 A formal proof will be given in Theorem 12.30.
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3.6 Examples of Applications

In this section, we give a few examples of applications of information diagrams.
These examples show how information diagrams can help solving information
theory problems.

The use of an information diagram is highly intuitive. To obtain an infor-
mation identity from an information diagram is WYSIWYG7. However, how
to obtain an information inequality from an information diagram needs some
explanation.

Very often, we use a Venn diagram to represent a measure µ which takes
nonnegative values. If we see in the Venn diagram two sets A and B such
that A is a subset of B, then we can immediately conclude that µ(A) ≤ µ(B)
because

µ(B)− µ(A) = µ(B −A) ≥ 0. (3.99)

However, an I-Measure µ∗ can take negative values. Therefore, when we see
in an information diagram that A is a subset of B, we cannot conclude from
this fact alone that µ∗(A) ≤ µ∗(B) unless we know from the setup of the
problem that µ∗ is nonnegative. (For example, µ∗ is nonnegative if the random
variables involved form a Markov chain.) Instead, information inequalities
can be obtained from an information diagram in conjunction with the basic
inequalities. The following examples will illustrate how it works.

Example 3.12 (Concavity of Entropy). Let X1 ∼ p1(x) and X2 ∼ p2(x). Let

X ∼ p(x) = λp1(x) + λ̄p2(x), (3.100)

where 0 ≤ λ ≤ 1 and λ̄ = 1− λ. We will show that

H(X) ≥ λH(X1) + λ̄H(X2). (3.101)

Consider the system in Figure 3.11 in which the position of the switch is
determined by a random variable Z with

X 

Z  = 1 

Z  = 2 

X 1 

X 2 

Fig. 3.11. The schematic diagram for Example 3.12.

7 What you see is what you get.
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Pr{Z = 1} = λ and Pr{Z = 2} = λ̄, (3.102)

where Z is independent of X1 and X2. The switch takes position i if Z = i,
i = 1, 2. The random variable Z is called a mixing random variable for the
probability distributions p1(x) and p2(x). Figure 3.12 shows the information
diagram for X and Z. From the diagram, we see that X̃ − Z̃ is a subset of X̃.
Since µ∗ is nonnegative for two random variables, we can conclude that

µ∗(X̃) ≥ µ∗(X̃ − Z̃), (3.103)

which is equivalent to
H(X) ≥ H(X|Z). (3.104)

Then

H(X) ≥ H(X|Z) (3.105)
= Pr{Z = 1}H(X|Z = 1) + Pr{Z = 2}H(X|Z = 2) (3.106)
= λH(X1) + λ̄H(X2), (3.107)

proving (3.101). This shows that H(X) is a concave functional of p(x).

Example 3.13 (Convexity of Mutual Information). Let

(X,Y ) ∼ p(x, y) = p(x)p(y|x). (3.108)

We will show that for fixed p(x), I(X;Y ) is a convex functional of p(y|x).
Let p1(y|x) and p2(y|x) be two transition matrices. Consider the system

in Figure 3.13 in which the position of the switch is determined by a random
variable Z as in the last example, where Z is independent of X, i.e.,

I(X;Z) = 0. (3.109)

In the information diagram for X, Y , and Z in Figure 3.14, let

I(X;Z|Y ) = a ≥ 0. (3.110)

X 
Z 

Fig. 3.12. The information diagram for Example 3.12.



68 3 The I-Measure

Y X 

Z  =  1 

Z  =  2 
p 2 (       ) y x 

p 1 (       ) y x 

Fig. 3.13. The schematic diagram for Example 3.13.

Since I(X;Z) = 0, we see that

I(X;Y ;Z) = −a, (3.111)

because
I(X;Z) = I(X;Z|Y ) + I(X;Y ;Z). (3.112)

Then

I(X;Y )
= I(X;Y |Z) + I(X;Y ;Z) (3.113)
= I(X;Y |Z)− a (3.114)
≤ I(X;Y |Z) (3.115)
= Pr{Z = 1}I(X;Y |Z = 1) + Pr{Z = 2}I(X;Y |Z = 2) (3.116)
= λI(p(x), p1(y|x)) + λ̄I(p(x), p2(y|x)), (3.117)

where I(p(x), pi(y|x)) denotes the mutual information between the input and
output of a channel with input distribution p(x) and transition matrix pi(y|x).
This shows that for fixed p(x), I(X;Y ) is a convex functional of p(y|x).

Example 3.14 (Concavity of Mutual Information). Let

X Z 

Y 

a 

- a 

Fig. 3.14. The information diagram for Example 3.13.
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(X,Y ) ∼ p(x, y) = p(x)p(y|x). (3.118)

We will show that for fixed p(y|x), I(X;Y ) is a concave functional of p(x).
Consider the system in Figure 3.15, where the position of the switch is

determined by a random variable Z as in the last example. In this system,
when X is given, Y is independent of Z, or Z → X → Y forms a Markov
chain. Then µ∗ is nonnegative, and the information diagram for X, Y , and Z
is shown in Figure 3.16.

X 
Y p ( y | x ) 

Z =1 
p 1 ( x ) 

Z =2 
p 2 ( x ) 

Fig. 3.15. The schematic diagram for Example 3.14.

From Figure 3.16, since X̃∩Ỹ−Z̃ is a subset of X̃∩Ỹ and µ∗ is nonnegative,
we immediately see that

I(X;Y )
≥ I(X;Y |Z) (3.119)
= Pr{Z = 1}I(X;Y |Z = 1) + Pr{Z = 2}I(X;Y |Z = 2) (3.120)
= λI(p1(x), p(y|x)) + λ̄I(p2(x), p(y|x)). (3.121)

This shows that for fixed p(y|x), I(X;Y ) is a concave functional of p(x).

Example 3.15 (Imperfect Secrecy Theorem)). Let X be the plain text, Y be
the cipher text, and Z be the key in a secret key cryptosystem. Since X can
be recovered from Y and Z, we have

Y Z X 

Fig. 3.16. The information diagram for Example 3.14.
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H(X|Y,Z) = 0. (3.122)

We will show that this constraint implies

I(X;Y ) ≥ H(X)−H(Z). (3.123)

The quantity I(X;Y ) is a measure of the security level of the cryptosystem.
In general, we want to make I(X;Y ) small so that the eavesdropper cannot
obtain too much information about the plain text X by observing the cipher
text Y . The inequality in (3.123) says that the system can attain a certain
level of security only if H(Z) (often called the key length) is sufficiently large.
In particular, if perfect secrecy is required, i.e., I(X;Y ) = 0, then H(Z) must
be at least equal to H(X). This special case is known as Shannon’s perfect
secrecy theorem [292]8.

We now prove (3.123). Let

I(X;Y |Z) = a ≥ 0 (3.124)

I(Y ;Z|X) = b ≥ 0 (3.125)

H(Z|X,Y ) = c ≥ 0, (3.126)

and
I(X;Y ;Z) = d. (3.127)

(See Figure 3.17.) Since I(Y ;Z) ≥ 0,

a 

c 

b 
d 

0 
X Z 

Y 

Fig. 3.17. The information diagram for Example 3.15.

b+ d ≥ 0. (3.128)

In comparing H(X) with H(Z), we do not have to consider I(X;Z|Y ) and
I(X;Y ;Z) since they belong to both H(X) and H(Z). Then we see from
Figure 3.17 that
8 Shannon used a combinatorial argument to prove this theorem. An information-

theoretic proof can be found in Massey [225].
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H(X)−H(Z) = a− b− c. (3.129)

Therefore,

I(X;Y ) = a+ d (3.130)
≥ a− b (3.131)
≥ a− b− c (3.132)
= H(X)−H(Z), (3.133)

where (3.131) and (3.132) follow from (3.128) and (3.126), respectively, prov-
ing (3.123).

Note that in deriving our result, the assumptions that H(Y |X,Z) = 0, i.e.,
the cipher text is a function of the plain text and the key, and I(X;Z) = 0,
i.e., the plain text and the key are independent, are not necessary.

Example 3.16. Figure 3.18 shows the information diagram for the Markov
chain X → Y → Z. From this diagram, we can identify the following two

X Y Z 

Fig. 3.18. The information diagram for the Markov chain X → Y → Z.

information identities:

I(X;Y ) = I(X;Y,Z) (3.134)
H(X|Y ) = H(X|Y,Z). (3.135)

Since µ∗ is nonnegative and X̃ ∩ Z̃ is a subset of X̃ ∩ Ỹ , we have

I(X;Z) ≤ I(X;Y ), (3.136)

which has already been obtained in Lemma 2.41. Similarly, we can also obtain

H(X|Y ) ≤ H(X|Z). (3.137)

Example 3.17 (Data Processing Theorem). Figure 3.19 shows the information
diagram for the Markov chain X → Y → Z → T . Since µ∗ is nonnegative and
X̃ ∩ T̃ is a subset of Ỹ ∩ Z̃, we have

I(X;T ) ≤ I(Y ;Z), (3.138)

which is the data processing theorem (Theorem 2.42).
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We end this chapter by giving an application of the information diagram
for a Markov chain with five random variables.

Example 3.18. In this example, we prove with the help of an information di-
agram that for five random variables X,Y, Z, T , and U such that X → Y →
Z → T → U forms a Markov chain,

H(Y ) +H(T ) =

I(Z;X,Y, T, U) + I(X,Y ;T,U) +H(Y |Z) +H(T |Z). (3.139)

In the information diagram for X,Y, Z, T , and U in Figure 3.20, we first
identify the atoms of H(Y ) and then the atoms of H(T ) by marking each of
them by a dot. If an atom belongs to both H(Y ) and H(T ), it receives two
dots. The resulting diagram represents

H(Y ) +H(T ). (3.140)

By repeating the same procedure for

I(Z;X,Y, T, U) + I(X,Y ;T,U) +H(Y |Z) +H(T |Z), (3.141)

we obtain the information diagram in Figure 3.21. Comparing these two
information diagrams, we find that they are identical. Hence, the infor-
mation identity in (3.139) always holds conditioning on the Markov chain

X T Z Y 

Fig. 3.19. The information diagram for the Markov chain X → Y → Z → T .

. . 

. 
. . 

. 
. 

. 

. . . . 

. . 

. . 

X Y Z T U 

Fig. 3.20. The atoms of H(Y ) +H(T ).
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X → Y → Z → T → U . This identity is critical in proving an outer bound
on the achievable coding rate region of the multiple descriptions problem in
Fu et al. [113]. It is virtually impossible to discover this identity without the
help of an information diagram!

. . 

. 
. . 

. 
. 

. 

. . . . 

. . 

. . 

X Y Z T U 

Fig. 3.21. The atoms of I(Z;X,Y, T, U) + I(X,Y ;T,U) +H(Y |Z) +H(T |Z).

Appendix 3.A: A Variation of the Inclusion-Exclusion
Formula

In this appendix, we show that for each A ∈ A, µ(A) can be expressed as a
linear combination of µ(B), B ∈ B via applications of (3.28) and (3.29). We
first prove by using (3.28) the following variation of the inclusive-exclusive
formula.

Theorem 3.19. For a set-additive function µ,

µ

(
n⋂
k=1

Ak −B

)
=
∑

1≤i≤n

µ(Ai −B)−
∑

1≤i<j≤n

µ(Ai ∪Aj −B)

+ · · ·+ (−1)n+1µ(A1 ∪A2 ∪ · · · ∪An −B). (3.142)

Proof. The theorem will be proved by induction on n. First, (3.142) is obvi-
ously true for n = 1. Assume (3.142) is true for some n ≥ 1. Now consider

µ

(
n+1⋂
k=1

Ak −B

)

= µ

((
n⋂
k=1

Ak

)
∩An+1 −B

)
(3.143)

= µ

(
n⋂
k=1

Ak −B

)
+ µ(An+1 −B)− µ

((
n⋂
k=1

Ak

)
∪An+1 −B

)
(3.144)
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=

{ ∑
1≤i≤n

µ(Ai −B)−
∑

1≤i<j≤n

µ(Ai ∪Aj −B) + · · ·

+ (−1)n+1µ(A1 ∪A2 ∪ · · · ∪An −B)

}
+ µ(An+1 −B)

−µ

(
n⋂
k=1

(Ak ∪An+1)−B

)
(3.145)

=

{ ∑
1≤i≤n

µ(Ai −B)−
∑

1≤i<j≤n

µ(Ai ∪Aj −B) + · · ·

+ (−1)n+1µ(A1 ∪A2 ∪ · · · ∪An −B)

}
+ µ(An+1 −B)

−

{ ∑
1≤i≤n

µ(Ai ∪An+1 −B)−
∑

1≤i<j≤n

µ(Ai ∪Aj ∪An+1 −B)

+ · · ·+ (−1)n+1µ(A1 ∪A2 ∪ · · · ∪An ∪An+1 −B)

}
(3.146)

=
∑

1≤i≤n+1

µ(Ai −B)−
∑

1≤i<j≤n+1

µ(Ai ∪Aj −B) + · · ·

+(−1)n+2µ(A1 ∪A2 ∪ · · · ∪An+1 −B). (3.147)

In the above, (3.28) was used in obtaining (3.144), and the induction hy-
pothesis was used in obtaining (3.145) and (3.146). The theorem is proved.
ut

Now a nonempty atom of Fn has the form

n⋂
i=1

Yi, (3.148)

where Yi is either X̃i or X̃c
i , and there exists at least one i such that Yi = X̃i.

Then we can write the atom in (3.148) as

⋂
i:Yi=X̃i

X̃i −

 ⋃
j:Yj=X̃cj

X̃j

 . (3.149)

Note that the intersection above is always nonempty. Then using (3.142) and
(3.29), we see that for each A ∈ A, µ(A) can be expressed as a linear combi-
nation of µ(B), B ∈ B.
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Problems

1. Show that

I(X;Y ;Z) = E log
p(X,Y )p(Y,Z)p(X,Z)
p(X)p(Y )p(Z)p(X,Y, Z)

and obtain a general formula for I(X1;X2, ; · · · ;Xn).
2. Suppose X ⊥ Y and X ⊥ Z. Does X ⊥ (Y,Z) hold in general?
3. Show that I(X;Y ;Z) vanishes if at least one of the following conditions

hold:
a) X, Y , and Z are mutually independent;
b) X → Y → Z forms a Markov chain and X and Z are independent.

4. a) Verify that I(X;Y ;Z) vanishes for the distribution p(x, y, z) given by

p(0, 0, 0) = 0.0625, p(0, 0, 1) = 0.0772, p(0, 1, 0) = 0.0625
p(0, 1, 1) = 0.0625, p(1, 0, 0) = 0.0625, p(1, 0, 1) = 0.1103
p(1, 1, 0) = 0.1875, p(1, 1, 1) = 0.375.

b) Verify that the distribution in part a) does not satisfy the conditions
in Problem 3.

5. Weak independence X is weakly independent of Y if the rows of the
transition matrix [p(x|y)] are linearly dependent.
a) Show that if X and Y are independent, then X is weakly independent

of Y .
b) Show that for random variables X and Y , there exists a random vari-

able Z satisfying
i) X → Y → Z
ii) X and Z are independent

iii) Y and Z are not independent
if and only if X is weakly independent of Y .

(Berger and Yeung [28].)
6. Prove that

a) I(X;Y ;Z) ≥ −min{I(X;Y |Z), I(Y ;Z|X), I(X,Z|Y )}
b) I(X;Y ;Z) ≤ min{I(X;Y ), I(Y ;Z), I(X;Z)}.

7. a) Prove that if X and Y are independent, then I(X,Y ;Z) ≥ I(X;Y |Z).
b) Show that the inequality in part a) is not valid in general by giving a

counterexample.
8. In Example 3.15, it was shown that I(X;Y ) ≥ H(X) −H(Z), where X

is the plain text, Y is the cipher text, and Z is the key in a secret key
cryptosystem. Give an example of a secret key cryptosystem such that
this inequality is tight.

9. Secret sharing For a given finite set P and a collection A of subsets of P,
a secret sharing scheme is a random variable S and a family of random
variables {Xp : p ∈ P} such that for all A ∈ A,

H(S|XA) = 0,
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and for all B 6∈ A,
H(S|XB) = H(S).

Here, S is the secret and P is the set of participants of the scheme. A
participant p of the scheme possesses a share Xp of the secret. The set
A specifies the access structure of the scheme: For a subset A of P, by
pooling their shares, if A ∈ A, the participants in A can reconstruct S,
otherwise they can know nothing about S.
a) i) Prove that for A,B ⊂ P, if B 6∈ A and A ∪B ∈ A, then

H(XA|XB) = H(S) +H(XA|XB , S).

ii) Prove that if B ∈ A, then

H(XA|XB) = H(XA|XB , S).

(Capocelli et al. [54].)
b) Prove that for A,B,C ⊂ P such that A ∪ C ∈ A, B ∪ C ∈ A, and

C 6∈ A, then
I(XA;XB |XC) ≥ H(S).

(van Dijk [328].)
10. Consider four random variables X,Y, Z, and T which satisfy the follow-

ing constraints: H(T |X) = H(T ), H(T |X,Y ) = 0, H(T |Y ) = H(T ),
H(Y |Z) = 0, and H(T |Z) = 0. Prove that
a) H(T |X,Y, Z) = I(Z;T |X,Y ) = 0.
b) I(X;T |Y,Z) = I(X;Y ;T |Z) = I(Y ;T |X,Z) = 0.
c) I(X;Z;T ) = I(Y ;Z;T ) = 0.
d) H(Y |X,Z, T ) = I(X;Y |Z, T ) = 0.
e) I(X;Y ;Z) ≥ 0.
f) I(X;Z) ≥ H(T ).

The inequality in f) finds application in a secret sharing problem studied
by Blundo et al. [41].

In the following, we use X ⊥ Y |Z to denote that X and Y are independent
given Z.

11. a) Prove that under the constraint that X → Y → Z forms a Markov
chain, X ⊥ Y |Z and X ⊥ Z imply X ⊥ Y .

b) Prove that the implication in a) continues to be valid without the
Markov chain constraint.

12. a) Show that Y ⊥ Z|T does not imply Y ⊥ Z|(X,T ) by giving a coun-
terexample.

b) Prove that Y ⊥ Z|T implies Y ⊥ Z|(X,T ) conditioning on X → Y →
Z → T .
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13. Prove that for random variables X, Y , Z, and T ,

X ⊥ Z|Y
(X,Y ) ⊥ T |Z
Y ⊥ Z|T
Y ⊥ Z|X
X ⊥ T

⇒ Y ⊥ Z.

Hint: Observe that X ⊥ Z|Y and (X,Y ) ⊥ T |Z are equivalent to X →
Y → Z → T and use an information diagram.

14. Prove that
X ⊥ Y
X ⊥ Y |(Z, T )
Z ⊥ T |X
Z ⊥ T |Y

⇔

Z ⊥ T
Z ⊥ T |(X,Y )
X ⊥ Y |Z
X ⊥ Y |T.

(Studený [313].)

Historical Notes

The original work on the set-theoretic structure of Shannon’s information
measures is due to Hu [155]. It was established in this paper that every infor-
mation identity implies a set identity via a substitution of symbols. This allows
the tools for proving information identities to be used in proving set identi-
ties. Since the paper was published in Russian, it was largely unknown to the
West until it was described in Csiszár and Körner [75]. Throughout the years,
the use of Venn diagrams to represent the structure of Shannon’s information
measures for two or three random variables has been suggested by various
authors, for example, Reza [273], Abramson [2], and Papoulis [257], but no
formal justification was given until Yeung [357] introduced the I-Measure.

McGill [239] proposed a multiple mutual information for any number of
random variables which is equivalent to the mutual information between two
or more random variables discussed here. Properties of this quantity have been
investigated by Kawabata [176] and Yeung [357].

Along a related direction, Han [133] viewed the linear combination of en-
tropies as a vector space and developed a lattice-theoretic description of Shan-
non’s information measures.
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Zero-Error Data Compression

In a random experiment, a coin is tossed n times. Let Xi be the outcome of
the ith toss, with

Pr{Xi = HEAD} = p and Pr{Xi = TAIL} = 1− p, (4.1)

where 0 ≤ p ≤ 1. It is assumed that Xi are i.i.d., and the value of p is known.
We are asked to describe the outcome of the random experiment without error
(with zero error) by using binary symbols. One way to do this is to encode
a HEAD by a ‘0’ and a TAIL by a ‘1.’ Then the outcome of the random
experiment is encoded into a binary codeword of length n. When the coin is
fair, i.e., p = 0.5, this is the best we can do because the probability of every
outcome of the experiment is equal to 2−n. In other words, all the outcomes
are equally likely.

However, if the coin is biased, i.e., p 6= 0.5, the probability of an outcome of
the experiment depends on the number of HEADs and the number of TAILs
in the outcome. In other words, the probabilities of the outcomes are no longer
uniform. It turns out that we can take advantage of this by encoding more
likely outcomes into shorter codewords and less likely outcomes into longer
codewords. By doing so, it is possible to use fewer than n bits on the average to
describe the outcome of the random experiment. In particular, in the extreme
case in which p = 0 or 1, we actually do not need to describe the outcome of
the experiment because it is deterministic.

At the beginning of Chapter 2, we mentioned that the entropy H(X)
measures the amount of information contained in a random variable X. In
this chapter, we substantiate this claim by exploring the role of entropy in the
context of zero-error data compression.
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4.1 The Entropy Bound

In this section, we establish that H(X) is a fundamental lower bound on the
expected length of the number of symbols needed to describe the outcome of
a random variable X with zero error. This is called the entropy bound.

Definition 4.1. A D-ary source code C for a source random variable X is a
mapping from X to D∗, the set of all finite length sequences of symbols taken
from a D-ary code alphabet.

Consider an information source {Xk, k ≥ 1}, where Xk are discrete ran-
dom variables which take values in the same alphabet. We apply a source
code C to each Xk and concatenate the codewords. Once the codewords are
concatenated, the boundaries of the codewords are no longer explicit. In other
words, when the code C is applied to a source sequence, a sequence of code
symbols are produced, and the codewords may no longer be distinguishable.
We are particularly interested in uniquely decodable codes which are defined
as follows.

Definition 4.2. A code C is uniquely decodable if for any finite source se-
quence, the sequence of code symbols corresponding to this source sequence is
different from the sequence of code symbols corresponding to any other (finite)
source sequence.

Suppose we use a code C to encode a source file into a coded file. If C is
uniquely decodable, then we can always recover the source file from the coded
file. An important class of uniquely decodable codes, called prefix codes, are
discussed in the next section. But we first look at an example of a code which
is not uniquely decodable.

Example 4.3. Let X = {A,B,C,D}. Consider the code C defined by

x C(x)
A 0
B 1
C 01
D 10

Then all the three source sequences AAD, ACA, and AABA produce the code
sequence 0010. Thus from the code sequence 0010, we cannot tell which of the
three source sequences it comes from. Therefore, C is not uniquely decodable.

In the next theorem, we prove that for any uniquely decodable code, the
lengths of the codewords have to satisfy an inequality called the Kraft inequal-
ity.
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Theorem 4.4 (Kraft Inequality). Let C be a D-ary source code, and let
l1, l2, · · · , lm be the lengths of the codewords. If C is uniquely decodable, then

m∑
k=1

D−lk ≤ 1. (4.2)

Proof. Let N be an arbitrary positive integer, and consider the identity(
m∑
k=1

D−lk

)N
=

m∑
k1=1

m∑
k2=1

· · ·
m∑

kN=1

D−(lk1+lk2+···+lkN ). (4.3)

By collecting terms on the right-hand side, we write(
m∑
k=1

D−lk

)N
=
Nlmax∑
i=1

AiD
−i (4.4)

where
lmax = max

1≤k≤m
lk (4.5)

and Ai is the coefficient of D−i in
(∑m

k=1D
−lk
)N . Now observe that Ai gives

the total number of sequences of N codewords with a total length of i code
symbols. Since the code is uniquely decodable, these code sequences must be
distinct, and therefore Ai ≤ Di because there are Di distinct sequences of i
code symbols. Substituting this inequality into (4.4), we have(

m∑
k=1

D−lk

)N
≤
Nlmax∑
i=1

1 = Nlmax, (4.6)

or
m∑
k=1

D−lk ≤ (Nlmax)1/N . (4.7)

Since this inequality holds for any N , upon letting N →∞, we obtain (4.2),
completing the proof. ut

Let X be a source random variable with probability distribution

{p1, p2, · · · , pm}, (4.8)

wherem ≥ 2. When we use a uniquely decodable code C to encode the outcome
of X, we are naturally interested in the expected length of a codeword, which
is given by

L =
∑
i

pili. (4.9)
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We will also refer to L as the expected length of the code C. The quantity L
gives the average number of symbols we need to describe the outcome of X
when the code C is used, and it is a measure of the efficiency of the code C.
Specifically, the smaller the expected length L is, the better the code C is.

In the next theorem, we will prove a fundamental lower bound on the
expected length of any uniquely decodable D-ary code. We first explain why
this is the lower bound we should expect. In a uniquely decodable code, we use
L D-ary symbols on the average to describe the outcome of X. Recall from
the remark following Theorem 2.43 that a D-ary symbol can carry at most
one D-it of information. Then the maximum amount of information which
can be carried by the codeword on the average is L · 1 = L D-its. Since the
code is uniquely decodable, the amount of entropy carried by the codeword
on the average is H(X). Therefore, we have

HD(X) ≤ L. (4.10)

In other words, the expected length of a uniquely decodable code is at least
the entropy of the source. This argument is rigorized in the proof of the next
theorem.

Theorem 4.5 (Entropy Bound). Let C be a D-ary uniquely decodable code
for a source random variable X with entropy HD(X). Then the expected length
of C is lower bounded by HD(X), i.e.,

L ≥ HD(X). (4.11)

This lower bound is tight if and only if li = − logD pi for all i.

Proof. Since C is uniquely decodable, the lengths of its codewords satisfy the
Kraft inequality. Write

L =
∑
i

pi logDD
li (4.12)

and recall from Definition 2.35 that

HD(X) = −
∑
i

pi logD pi. (4.13)

Then

L−HD(X) =
∑
i

pi logD(piDli) (4.14)

= (lnD)−1
∑
i

pi ln(piDli) (4.15)

≥ (lnD)−1
∑
i

pi

(
1− 1

piDli

)
(4.16)

= (lnD)−1

[∑
i

pi −
∑
i

D−li

]
(4.17)
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≥ (lnD)−1(1− 1) (4.18)
= 0, (4.19)

where we have invoked the fundamental inequality in (4.16) and the Kraft
inequality in (4.18). This proves (4.11). In order for this lower bound to be
tight, both (4.16) and (4.18) have to be tight simultaneously. Now (4.16) is
tight if and only if piDli = 1, or li = − logD pi for all i. If this holds, we have∑

i

D−li =
∑
i

pi = 1, (4.20)

i.e., (4.18) is also tight. This completes the proof of the theorem. ut

The entropy bound can be regarded as a generalization of Theorem 2.43,
as is seen from the following corollary.

Corollary 4.6. H(X) ≤ log |X |.

Proof. Considering encoding each outcome of a random variable X by a dis-
tinct symbol in {1, 2, · · · , |X |}. This is obviously a |X |-ary uniquely decodable
code with expected length 1. Then by the entropy bound, we have

H|X |(X) ≤ 1, (4.21)

which becomes
H(X) ≤ log |X | (4.22)

when the base of the logarithm is not specified. ut

Motivated by the entropy bound, we now introduce the redundancy of a
uniquely decodable code.

Definition 4.7. The redundancy R of a D-ary uniquely decodable code is the
difference between the expected length of the code and the entropy of the source.

We see from the entropy bound that the redundancy of a uniquely decod-
able code is always nonnegative.

4.2 Prefix Codes

4.2.1 Definition and Existence

Definition 4.8. A code is called a prefix-free code if no codeword is a prefix
of any other codeword. For brevity, a prefix-free code will be referred to as a
prefix code.
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Example 4.9. The code C in Example 4.3 is not a prefix code because the
codeword 0 is a prefix of the codeword 01, and the codeword 1 is a prefix of
the codeword 10. It can easily be checked that the following code C′ is a prefix
code.

x C′(x)
A 0
B 10
C 110
D 1111

A D-ary tree is a graphical representation of a collection of finite sequences
of D-ary symbols. In a D-ary tree, each node has at most D children. If a
node has at least one child, it is called an internal node, otherwise it is called
a leaf. The children of an internal node are labeled by the D symbols in the
code alphabet.

A D-ary prefix code can be represented by a D-ary tree with the leaves of
the tree being the codewords. Such a tree is called the code tree for the prefix
code. Figure 4.1 shows the code tree for the prefix code C′ in Example 4.9.

As we have mentioned in Section 4.1, once a sequence of codewords are
concatenated, the boundaries of the codewords are no longer explicit. Prefix
codes have the desirable property that the end of a codeword can be rec-
ognized instantaneously so that it is not necessary to make reference to the
future codewords during the decoding process. For example, for the source se-
quence BCDAC · · ·, the code C′ in Example 4.9 produces the code sequence
1011011110110 · · ·. Based on this binary sequence, the decoder can reconstruct
the source sequence as follows. The first bit 1 cannot form the first codeword
because 1 is not a valid codeword. The first two bits 10 must form the first
codeword because it is a valid codeword and it is not the prefix of any other
codeword. The same procedure is repeated to locate the end of the next code-
word, and the code sequence is parsed as 10, 110, 1111, 0, 110, · · ·. Then the
source sequence BCDAC · · · can be reconstructed correctly.

0 

10 

110 

1111 

Fig. 4.1. The code tree for the code C′.
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Since a prefix code can always be decoded correctly, it is a uniquely de-
codable code. Therefore, by Theorem 4.4, the codeword lengths of a prefix
code also satisfies the Kraft inequality. In the next theorem, we show that the
Kraft inequality fully characterizes the existence of a prefix code.

Theorem 4.10. There exists a D-ary prefix code with codeword lengths l1,
l2, · · · , lm if and only if the Kraft inequality

m∑
k=1

D−lk ≤ 1 (4.23)

is satisfied.

Proof. We only need to prove the existence of a D-ary prefix code with code-
word lengths l1, l2, · · · , lm if these lengths satisfy the Kraft inequality. Without
loss of generality, assume that l1 ≤ l2 ≤ · · · ≤ lm.

Consider all the D-ary sequences of lengths less than or equal to lm and
regard them as the nodes of the full D-ary tree of depth lm. We will refer to
a sequence of length l as a node of order l. Our strategy is to choose nodes
as codewords in nondecreasing order of the codeword lengths. Specifically, we
choose a node of order l1 as the first codeword, then a node of order l2 as the
second codeword, so on and so forth, such that each newly chosen codeword is
not prefixed by any of the previously chosen codewords. If we can successfully
choose all the m codewords, then the resultant set of codewords forms a prefix
code with the desired set of lengths.

There are Dl1 > 1 (since l1 ≥ 1 ) nodes of order l1 which can be chosen
as the first codeword. Thus choosing the first codeword is always possible.
Assume that the first i codewords have been chosen successfully, where 1 ≤
i ≤ m−1, and we want to choose a node of order li+1 as the (i+1)st codeword
such that it is not prefixed by any of the previously chosen codewords. In other
words, the (i + 1)st node to be chosen cannot be a descendant of any of the
previously chosen codewords. Observe that for 1 ≤ j ≤ i, the codeword with
length lj has Dli+1−lj descendents of order li+1. Since all the previously chosen
codewords are not prefeces of each other, their descendents of order li+1 do not
overlap. Therefore, upon noting that the total number of nodes of order li+1

is Dli+1 , the number of nodes which can be chosen as the (i+ 1)st codeword
is

Dli+1 −Dli+1−l1 − · · · −Dli+1−li . (4.24)

If l1, l2, · · · , lm satisfy the Kraft inequality, we have

D−l1 + · · ·+D−li +D−li+1 ≤ 1. (4.25)

Multiplying by Dli+1 and rearranging the terms, we have

Dli+1 −Dli+1−l1 − · · · −Dli+1−li ≥ 1. (4.26)
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The left hand side is the number of nodes which can be chosen as the (i+1)st
codeword as given in (4.24). Therefore, it is possible to choose the (i + 1)st
codeword. Thus we have shown the existence of a prefix code with codeword
lengths l1, l2, · · · , lm, completing the proof. ut

A probability distribution {pi} such that for all i, pi = D−ti , where ti is a
positive integer, is called a D-adic distribution. When D = 2, {pi} is called a
dyadic distribution. From Theorem 4.5 and the above theorem, we can obtain
the following result as a corollary.

Corollary 4.11. There exists a D-ary prefix code which achieves the entropy
bound for a distribution {pi} if and only if {pi} is D-adic.

Proof. Consider a D-ary prefix code which achieves the entropy bound for
a distribution {pi}. Let li be the length of the codeword assigned to the
probability pi. By Theorem 4.5, for all i, li = − logD pi, or pi = D−li . Thus
{pi} is D-adic.

Conversely, suppose {pi} is D-adic, and let pi = D−ti for all i. Let li = ti
for all i. Then by the Kraft inequality, there exists a prefix code with codeword
lengths {li}, because ∑

i

D−li =
∑
i

D−ti =
∑
i

pi = 1. (4.27)

Assigning the codeword with length li to the probability pi for all i, we see
from Theorem 4.5 that this code achieves the entropy bound. ut

4.2.2 Huffman Codes

As we have mentioned, the efficiency of a uniquely decodable code is measured
by its expected length. Thus for a given source X, we are naturally interested
in prefix codes which have the minimum expected length. Such codes, called
optimal codes, can be constructed by the Huffman procedure, and these codes
are referred to as Huffman codes. In general, there exists more than one opti-
mal code for a source, and some optimal codes cannot be constructed by the
Huffman procedure.

For simplicity, we first discuss binary Huffman codes. A binary prefix code
for a source X with distribution {pi} is represented by a binary code tree,
with each leaf in the code tree corresponding to a codeword. The Huffman
procedure is to form a code tree such that the expected length is minimum.
The procedure is described by a very simple rule:

Keep merging the two smallest probability masses until one probabil-
ity mass (i.e., 1) is left.

The merging of two probability masses corresponds to the formation of an
internal node of the code tree. We now illustrate the Huffman procedure by
the following example.
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Example 4.12. Let X be the source with X = {A,B,C,D,E}, and the prob-
abilities are 0.35, 0.1, 0.15, 0.2, 0.2, respectively. The Huffman procedure is
shown in Figure 4.2. In the first step, we merge probability masses 0.1 and 0.15

codeword 
0.35 00 

0.1 

0.15 

0.2 

0.2 

010 

011 

10 

11 

1 

0.6 
0.25 

0.4 

p i 

Fig. 4.2. The Huffman procedure.

into a probability mass 0.25. In the second step, we merge probability masses
0.2 and 0.2 into a probability mass 0.4. In the third step, we merge probability
masses 0.35 and 0.25 into a probability mass 0.6. Finally, we merge probabil-
ity masses 0.6 and 0.4 into a probability mass 1. A code tree is then formed.
Upon assigning 0 and 1 (in any convenient way) to each pair of branches at
an internal node, we obtain the codeword assigned to each source symbol.

In the Huffman procedure, sometimes there is more than one choice of
merging the two smallest probability masses. We can take any one of these
choices without affecting the optimality of the code eventually obtained.

For an alphabet of size m, it takes m − 1 steps to complete the Huffman
procedure for constructing a binary code, because we merge two probability
masses in each step. In the resulting code tree, there are m leaves and m− 1
internal nodes.

In the Huffman procedure for constructing a D-ary code, the smallest
D probability masses are merged in each step. If the resulting code tree is
formed in k + 1 steps, where k ≥ 0, then there will be k + 1 internal nodes
and D + k(D − 1) leaves, where each leaf corresponds to a source symbol in
the alphabet. If the alphabet size m has the form D + k(D − 1), then we
can apply the Huffman procedure directly. Otherwise, we need to add a few
dummy symbols with probability 0 to the alphabet in order to make the total
number of symbols have the form D + k(D − 1).

Example 4.13. If we want to construct a quaternary Huffman code (D = 4)
for the source in the last example, we need to add 2 dummy symbols so that
the total number of symbols becomes 7 = 4 + (1)3, where k = 1. In general,
we need to add at most D − 2 dummy symbols.

In Section 4.1, we have proved the entropy bound for a uniquely decodable
code. This bound also applies to a prefix code since a prefix code is uniquely
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decodable. In particular, it applies to a Huffman code, which is a prefix code
by construction. Thus the expected length of a Huffman code is at least the
entropy of the source. In Example 4.12, the entropy H(X) is 2.202 bits, while
the expected length of the Huffman code is

0.35(2) + 0.1(3) + 0.15(3) + 0.2(2) + 0.2(2) = 2.25. (4.28)

We now turn to proving the optimality of a Huffman code. For simplicity,
we will only prove the optimality of a binary Huffman code. Extension of the
proof to the general case is straightforward.

Without loss of generality, assume that

p1 ≥ p2 ≥ · · · ≥ pm. (4.29)

Denote the codeword assigned to pi by ci, and denote its length by li. To prove
that a Huffman code is actually optimal, we make the following observations.

Lemma 4.14. In an optimal code, shorter codewords are assigned to larger
probabilities.

Proof. Consider 1 ≤ i < j ≤ m such that pi > pj . Assume that in a code, the
codewords ci and cj are such that li > lj , i.e., a shorter codeword is assigned
to a smaller probability. Then by exchanging ci and cj , the expected length
of the code is changed by

(pilj + pj li)− (pili + pj lj) = (pi − pj)(lj − li) < 0 (4.30)

since pi > pj and li > lj . In other words, the code can be improved and
therefore is not optimal. The lemma is proved. ut

Lemma 4.15. There exists an optimal code in which the codewords assigned
to the two smallest probabilities are siblings, i.e., the two codewords have the
same length and they differ only in the last symbol.

Proof. The reader is encouraged to trace the steps in this proof by drawing
a code tree. Consider any optimal code. From the last lemma, the codeword
cm assigned to pm has the longest length. Then the sibling of cm cannot be
the prefix of another codeword.

We claim that the sibling of cm must be a codeword. To see this, assume
that it is not a codeword (and it is not the prefix of another codeword). Then
we can replace cm by its parent to improve the code because the length of
the codeword assigned to pm is reduced by 1, while all the other codewords
remain unchanged. This is a contradiction to the assumption that the code is
optimal. Therefore, the sibling of cm must be a codeword.

If the sibling of cm is assigned to pm−1, then the code already has the
desired property, i.e., the codewords assigned to the two smallest probabilities
are siblings. If not, assume that the sibling of cm is assigned to pi, where i <
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m− 1. Since pi ≥ pm−1, lm−1 ≥ li = lm. On the other hand, by Lemma 4.14,
lm−1 is always less than or equal to lm, which implies that lm−1 = lm = li.
Then we can exchange the codewords for pi and pm−1 without changing the
expected length of the code (i.e., the code remains optimal) to obtain the
desired code. The lemma is proved. ut

Suppose ci and cj are siblings in a code tree. Then li = lj . If we replace
ci and cj by a common codeword at their parent, call it cij , then we obtain
a reduced code tree, and the probability of cij is pi + pj . Accordingly, the
probability set becomes a reduced probability set with pi and pj replaced by
a probability pi + pj . Let L and L′ be the expected lengths of the original
code and the reduced code, respectively. Then

L− L′ = (pili + pj lj)− (pi + pj)(li − 1) (4.31)
= (pili + pj li)− (pi + pj)(li − 1) (4.32)
= pi + pj , (4.33)

which implies
L = L′ + (pi + pj). (4.34)

This relation says that the difference between the expected length of the
original code and the expected length of the reduced code depends only on
the values of the two probabilities merged but not on the structure of the
reduced code tree.

Theorem 4.16. The Huffman procedure produces an optimal prefix code.

Proof. Consider an optimal code in which cm and cm−1 are siblings. Such an
optimal code exists by Lemma 4.15. Let {p′i} be the reduced probability set
obtained from {pi} by merging pm and pm−1. From (4.34), we see that L′ is
the expected length of an optimal code for {p′i} if and only if L is the expected
length of an optimal code for {pi}. Therefore, if we can find an optimal code
for {p′i}, we can use it to construct an optimal code for {pi}. Note that by
merging pm and pm−1, the size of the problem, namely the total number of
probability masses, is reduced by one. To find an optimal code for {p′i}, we
again merge the two smallest probability in {p′i}. This is repeated until the
size of the problem is eventually reduced to 2, which we know that an optimal
code has two codewords of length 1. In the last step of the Huffman procedure,
two probability masses are merged, which corresponds to the formation of a
code with two codewords of length 1. Thus the Huffman procedure indeed
produces an optimal code. ut

We have seen that the expected length of a Huffman code is lower bounded
by the entropy of the source. On the other hand, it would be desirable to obtain
an upper bound in terms of the entropy of the source. This is given in the
next theorem.
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Theorem 4.17. The expected length of a Huffman code, denoted by LHuff ,
satisfies

LHuff < HD(X) + 1. (4.35)

This bound is the tightest among all the upper bounds on LHuff which depend
only on the source entropy.

Proof. We will construct a prefix code with expected length less than H(X)+
1. Then, because a Huffman code is an optimal prefix code, its expected length
LHuff is upper bounded by H(X) + 1.

Consider constructing a prefix code with codeword lengths {li}, where

li = d− logD pie. (4.36)

Then
− logD pi ≤ li < − logD pi + 1, (4.37)

or
pi ≥ D−li > D−1pi. (4.38)

Thus ∑
i

D−li ≤
∑
i

pi = 1, (4.39)

i.e., {li} satisfies the Kraft inequality, which implies that it is possible to
construct a prefix code with codeword lengths {li}.

It remains to show that L, the expected length of this code, is less than
H(X) + 1. Toward this end, consider

L =
∑
i

pili (4.40)

<
∑
i

pi(− logD pi + 1) (4.41)

= −
∑
i

pi logD pi +
∑
i

pi (4.42)

= H(X) + 1, (4.43)

where (4.41) follows from the upper bound in (4.37). Thus we conclude that

LHuff ≤ L < H(X) + 1. (4.44)

To see that this upper bound is the tightest possible, we have to show that
there exists a sequence of distributions Pk such that LHuff approachesH(X)+1
as k →∞. This can be done by considering the sequence ofD-ary distributions

Pk =
{

1− D − 1
k

,
1
k
, · · · , 1

k

}
, (4.45)
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where k ≥ D. The Huffman code for each Pk consists of D codewords of length
1. Thus LHuff is equal to 1 for all k. As k →∞, H(X)→ 0, and hence LHuff

approaches H(X) + 1. The theorem is proved. ut

The code constructed in the above proof is known as the Shannon code.
The idea is that in order for the code to be near-optimal, we should choose li
close to − log pi for all i. When {pi} is D-adic, li can be chosen to be exactly
− log pi because the latter are integers. In this case, the entropy bound is
tight.

From the entropy bound and the above theorem, we have

H(X) ≤ LHuff < H(X) + 1. (4.46)

Now suppose we use a Huffman code to encode X1, X2, · · · , Xn which are n
i.i.d. copies of X. Let us denote the length of this Huffman code by LnHuff .
Then (4.46) becomes

nH(X) ≤ LnHuff < nH(X) + 1. (4.47)

Dividing by n, we obtain

H(X) ≤ 1
n
LnHuff < H(X) +

1
n
. (4.48)

As n → ∞, the upper bound approaches the lower bound. Therefore,
n−1LnHuff , the coding rate of the code, namely the average number of code
symbols needed to encode a source symbol, approaches H(X) as n → ∞.
But of course, as n becomes large, constructing a Huffman code becomes very
complicated. Nevertheless, this result indicates that entropy is a fundamental
measure of information.

4.3 Redundancy of Prefix Codes

The entropy bound for a uniquely decodable code has been proved in Sec-
tion 4.1. In this section, we present an alternative proof specifically for prefix
codes which offers much insight into the redundancy of such codes.

Let X be a source random variable with probability distribution

{p1, p2, · · · , pm}, (4.49)

where m ≥ 2. A D-ary prefix code for X can be represented by a D-ary code
tree with m leaves, where each leaf corresponds to a codeword. We denote the
leaf corresponding to pi by ci and the order of ci by li, and assume that the
alphabet is

{0, 1, · · · , D − 1}. (4.50)
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Let I be the index set of all the internal nodes (including the root) in the
code tree.

Instead of matching codewords by brute force, we can use the code tree of
a prefix code for more efficient decoding. To decode a codeword, we trace the
path specified by the codeword from the root of the code tree until it termi-
nates at the leaf corresponding to that codeword. Let qk be the probability of
reaching an internal node k ∈ I during the decoding process. The probability
qk is called the reaching probability of internal node k. Evidently, qk is equal
to the sum of the probabilities of all the leaves descending from node k.

Let p̃k,j be the probability that the jth branch of node k is taken during
the decoding process. The probabilities p̃k,j , 0 ≤ j ≤ D − 1, are called the
branching probabilities of node k, and

qk =
∑
j

p̃k,j . (4.51)

Once node k is reached, the conditional branching distribution is{
p̃k,0
qk

,
p̃k,1
qk

, · · · , p̃k,D−1

qk

}
. (4.52)

Then define the conditional entropy of node k by

hk = HD

({
p̃k,0
qk

,
p̃k,1
qk

, · · · , p̃k,D−1

qk

})
, (4.53)

where with a slight abuse of notation, we have used HD(·) to denote the
entropy in the base D of the conditional branching distribution in the paren-
thesis. By Theorem 2.43, hk ≤ 1. The following lemma relates the entropy of
X with the structure of the code tree.

Lemma 4.18. HD(X) =
∑
k∈I qkhk.

Proof. We prove the lemma by induction on the number of internal nodes of
the code tree. If there is only one internal node, it must be the root of the tree.
Then the lemma is trivially true upon observing that the reaching probability
of the root is equal to 1.

Assume the lemma is true for all code trees with n internal nodes. Now
consider a code tree with n+ 1 internal nodes. Let k be an internal node such
that k is the parent of a leaf c with maximum order. Each sibling of c may or
may not be a leaf. If it is not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum order. Now consider
revealing the outcome of X in two steps. In the first step, if the outcome
of X is not a leaf descending from node k, we identify the outcome exactly,
otherwise we identify the outcome to be a child of node k. We call this random
variable V . If we do not identify the outcome exactly in the first step, which
happens with probability qk, we further identify in the second step which of
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the children (child) of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are not leaves). We call this
random variable W . If the second step is not necessary, we assume that W
takes a constant value with probability 1. Then X = (V,W ).

The outcome of V can be represented by a code tree with n internal nodes
which is obtained by pruning the original code tree at node k. Then by the
induction hypothesis,

H(V ) =
∑

k′∈I\{k}

qk′hk′ . (4.54)

By the chain rule for entropy, we have

H(X) = H(V ) +H(W |V ) (4.55)

=
∑

k′∈I\{k}

qk′hk′ + (1− qk) · 0 + qkhk (4.56)

=
∑
k′∈I

qk′hk′ . (4.57)

The lemma is proved. ut

The next lemma expresses the expected length L of a prefix code in terms
of the reaching probabilities of the internal nodes of the code tree.

Lemma 4.19. L =
∑
k∈I qk.

Proof. Define

aki =
{

1 if leaf ci is a descendent of internal node k
0 otherwise. (4.58)

Then
li =

∑
k∈I

aki, (4.59)

because there are exactly li internal nodes of which ci is a descendent if the
order of ci is li. On the other hand,

qk =
∑
i

akipi. (4.60)

Then

L =
∑
i

pili (4.61)

=
∑
i

pi
∑
k∈I

aki (4.62)

=
∑
k∈I

∑
i

piaki (4.63)

=
∑
k∈I

qk, (4.64)
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proving the lemma. ut

Define the local redundancy of an internal node k by

rk = qk(1− hk). (4.65)

This quantity is local to node k in the sense that it depends only on the
branching probabilities of node k, and it vanishes if and only if p̃k,j = qk/D
for all j, i.e., if and only if the node is balanced. Note that rk ≥ 0 because
hk ≤ 1.

The next theorem says that the redundancy R of a prefix code is equal to
the sum of the local redundancies of all the internal nodes of the code tree.

Theorem 4.20 (Local Redundancy Theorem). Let L be the expected
length of a D-ary prefix code for a source random variable X, and R be the
redundancy of the code. Then

R =
∑
k∈I

rk. (4.66)

Proof. By Lemmas 4.18 and 4.19, we have

R = L−HD(X) (4.67)

=
∑
k∈I

qk −
∑
k

qkhk (4.68)

=
∑
k∈I

qk(1− hk) (4.69)

=
∑
k∈I

rk. (4.70)

The theorem is proved. ut

We now present an slightly different version of the entropy bound.

Corollary 4.21 (Entropy Bound). Let R be the redundancy of a prefix
code. Then R ≥ 0 with equality if and only if all the internal nodes in the code
tree are balanced.

Proof. Since rk ≥ 0 for all k, it is evident from the local redundancy theorem
that R ≥ 0. Moreover R = 0 if and only if rk = 0 for all k, which means that
all the internal nodes in the code tree are balanced. ut

Remark Before the entropy bound was stated in Theorem 4.5, we gave
the intuitive explanation that the entropy bound results from the fact that
a D-ary symbol can carry at most one D-it of information. Therefore, when
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the entropy bound is tight, each code symbol has to carry exactly one D-it
of information. Now consider revealing a random codeword one symbol after
another. The above corollary states that in order for the entropy bound to
be tight, all the internal nodes in the code tree must be balanced. That is, as
long as the codeword is not completed, the next code symbol to be revealed
always carries one D-it of information because it distributes uniformly on the
alphabet. This is consistent with the intuitive explanation we gave for the
entropy bound.

Example 4.22. The local redundancy theorem allows us to lower bound the
redundancy of a prefix code based on partial knowledge on the structure of
the code tree. More specifically,

R ≥
∑
k∈I′

rk (4.71)

for any subset I ′ of I.
Let pm−1, pm be the two smallest probabilities in the source distribution.

In constructing a binary Huffman code, pm−1 and pm are merged. Then the
redundancy of a Huffman code is lower bounded by

(pm−1 + pm)
[
1−H2

({
pm−1

pm−1 + pm
,

pm
pm−1 + pm

})]
, (4.72)

the local redundancy of the parent of the two leaves corresponding to pm−1 and
pm. See Yeung [358] for progressive lower and upper bounds on the redundancy
of a Huffman code.

Problems

1. Construct a binary Huffman code for the distribution {0.25, 0.05, 0.1,
0.13, 0.2, 0.12, 0.08, 0.07}.

2. Construct a ternary Huffman code for the source distribution in Prob-
lem 1.

3. Show that a Huffman code is an optimal uniquely decodable code for a
given source distribution.

4. Construct an optimal binary prefix code for the source distribution in
Problem 1 such that all the codewords have even lengths.

5. Prove directly that the codeword lengths of a prefix code satisfy the Kraft
inequality without using Theorem 4.4.

6. Prove that if p1 > 0.4, then the shortest codeword of a binary Huffman
code has length equal to 1. Then prove that the redundancy of such a
Huffman code is lower bounded by 1− hb(p1). (Johnsen [172].)

7. Suffix codes A code is a suffix code if no codeword is a suffix of any other
codeword. Show that a suffix code is uniquely decodable.
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8. Fix-free codes A code is a fix-free code if it is both a prefix code and a
suffix code. Let l1, l2, · · · , lm be m positive integers. Prove that if

m∑
k=1

2−lk ≤ 1
2
,

then there exists a binary fix-free code with codeword lengths l1, l2, · · · , lm.
(Ahlswede et al. [6].)

9. Random coding for prefix codes Construct a binary prefix code with code-
word lengths l1 ≤ l2 ≤ · · · ≤ lm as follows. For each 1 ≤ k ≤ m, the
codeword with length lk is chosen independently from the set of all 2lk
possible binary strings with length lk according the uniform distribution.
Let Pm(good) be the probability that the code so constructed is a prefix
code.
a) Prove that P2(good) = (1− 2−l1)+, where

(x)+ =
{
x if x ≥ 0
0 if x < 0.

b) Prove by induction on m that

Pm(good) =
m∏
k=1

1−
k−1∑
j=1

s−lj

+

.

c) Observe that there exists a prefix code with codeword lengths l1, l2, · · ·,
lm if and only if Pm(good) > 0. Show that Pm(good) > 0 is equivalent
to the Kraft inequality.

By using this random coding method, one can derive the Kraft inequality
without knowing the inequality ahead of time. (Ye and Yeung [354].)

10. Let X be a source random variable. Suppose a certain probability mass
pk in the distribution of X is given. Let

lj =
{
d− log pje if j = k
d− log(pj + xj)e if j 6= k,

where

xj = pj

(
pk − 2−d− log pke

1− pk

)
for all j 6= k.
a) Show that 1 ≤ lj ≤ d− log pje for all j.
b) Show that {lj} satisfies the Kraft inequality.
c) Obtain an upper bound on LHuff in terms of H(X) and pk which is

tighter than H(X)+1. This shows that when partial knowledge about
the source distribution in addition to the source entropy is available,
tighter upper bounds on LHuff can be obtained.

(Ye and Yeung [355].)
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Historical Notes

The foundation for the material in this chapter can be found in Shannon’s
original paper [291]. The Kraft inequality for uniquely decodable codes was
first proved by McMillan [241]. The proof given here is due to Karush [175].
The Huffman coding procedure was devised and proved to be optimal by
Huffman [156]. The same procedure was devised independently by Zimmerman
[375]. Linder et al. [211] have proved the existence of an optimal prefix code
for an infinite source alphabet which can be constructed from Huffman codes
for truncations of the source distribution. The local redundancy theorem is
due to Yeung [358]. A comprehensive survey of code trees for lossless data
compression can be found in Abrahams [1].





5

Weak Typicality

In the last chapter, we have discussed the significance of entropy in the con-
text of zero-error data compression. In this chapter and the next, we explore
entropy in terms of the asymptotic behavior of i.i.d. sequences. Specifically,
two versions of the asymptotic equipartition property (AEP), namely the weak
AEP and the strong AEP, are discussed. The role of these AEP’s in infor-
mation theory is analogous to the role of the weak law of large numbers in
probability theory. In this chapter, the weak AEP and its relation with the
source coding theorem are discussed. All the logarithms are in the base 2
unless otherwise specified.

5.1 The Weak AEP

We consider an information source {Xk, k ≥ 1} where Xk are i.i.d. with
distribution p(x). We use X to denote the generic random variable and
H(X) to denote the common entropy for all Xk, where H(X) < ∞. Let
X = (X1, X2, · · · , Xn). Since Xk are i.i.d.,

p(X) = p(X1)p(X2) · · · p(Xn). (5.1)

Note that p(X) is a random variable because it is a function of the random
variables X1, X2, · · · , Xn. We now prove an asymptotic property of p(X) called
the weak asymptotic equipartition property (weak AEP).

Theorem 5.1 (Weak AEP I).

− 1
n

log p(X)→ H(X) (5.2)

in probability as n→∞, i.e., for any ε > 0, for n sufficiently large,

Pr
{∣∣∣∣− 1

n
log p(X)−H(X)

∣∣∣∣ ≤ ε} > 1− ε. (5.3)
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Proof. Since X1, X2, · · · , Xn are i.i.d., by (5.1),

− 1
n

log p(X) = − 1
n

n∑
k=1

log p(Xk). (5.4)

The random variables log p(Xk) are also i.i.d. Then by the weak law of large
numbers, the right hand side of (5.4) tends to

−E log p(X) = H(X), (5.5)

in probability, proving the theorem. ut

The weak AEP is nothing more than a straightforward application of the
weak law of large numbers. However, as we will see shortly, this property has
significant implications.

Definition 5.2. The weakly typical set Wn
[X]ε with respect to p(x) is the set

of sequences x = (x1, x2, · · · , xn) ∈ Xn such that∣∣∣∣− 1
n

log p(x)−H(X)
∣∣∣∣ ≤ ε, (5.6)

or equivalently,

H(X)− ε ≤ − 1
n

log p(x) ≤ H(X) + ε, (5.7)

where ε is an arbitrarily small positive real number. The sequences in Wn
[X]ε

are called weakly ε-typical sequences.

The quantity

− 1
n

log p(x) = − 1
n

n∑
k=1

log p(xk) (5.8)

is called the empirical entropy of the sequence x. The empirical entropy of
a weakly typical sequence is close to the true entropy H(X). The important
properties of the set Wn

[X]ε are summarized in the next theorem which we will
see is equivalent to the weak AEP.

Theorem 5.3 (Weak AEP II). The following hold for any ε > 0:

1) If x ∈Wn
[X]ε, then

2−n(H(X)+ε) ≤ p(x) ≤ 2−n(H(X)−ε). (5.9)

2) For n sufficiently large,

Pr{X ∈Wn
[X]ε} > 1− ε. (5.10)
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3) For n sufficiently large,

(1− ε)2n(H(X)−ε) ≤ |Wn
[X]ε| ≤ 2n(H(X)+ε). (5.11)

Proof. Property 1 follows immediately from the definition of Wn
[X]ε in (5.7).

Property 2 is equivalent to Theorem 5.1. To prove Property 3, we use the
lower bound in (5.9) and consider

|Wn
[X]ε|2

−n(H(X)+ε) ≤ Pr{Wn
[X]ε} ≤ 1, (5.12)

which implies
|Wn

[X]ε| ≤ 2n(H(X)+ε). (5.13)

Note that this upper bound holds for any n ≥ 1. On the other hand, using
the upper bound in (5.9) and Theorem 5.1, for n sufficiently large, we have

1− ε ≤ Pr{Wn
[X]ε} ≤ |W

n
[X]ε|2

−n(H(X)−ε). (5.14)

Then
|Wn

[X]ε| ≥ (1− ε)2n(H(X)−ε). (5.15)

Combining (5.13) and (5.15) gives Property 3. The theorem is proved. ut

Remark Theorem 5.3 is a consequence of Theorem 5.1. However, Property
2 in Theorem 5.3 is equivalent to Theorem 5.1. Therefore, Theorem 5.1 and
Theorem 5.3 are equivalent, and they will both be referred to as the weak
AEP.

The weak AEP has the following interpretation. Suppose X = (X1, X2, · · · ,
Xn) is drawn i.i.d. according to p(x), where n is large. After the sequence is
drawn, we ask what the probability of occurrence of the sequence is. The weak
AEP says that the probability of occurrence of the sequence drawn is close
to 2−nH(X) with very high probability. Such a sequence is called a weakly
typical sequence. Moreover, the total number of weakly typical sequences is
approximately equal to 2nH(X). The weak AEP, however, does not say that
most of the sequences in Xn are weakly typical. In fact, the number of weakly
typical sequences is in general insignificant compared with the total number
of sequences, because

|Wn
[X]δ|
|X |n

≈ 2nH(X)

2n log |X | = 2−n(log |X |−H(X)) → 0 (5.16)

as n → ∞ as long as H(X) is strictly less than log |X |. The idea is that,
although the size of the weakly typical set may be insignificant compared with
the size of the set of all sequences, the former has almost all the probability.

When n is large, one can almost think of the sequence X as being obtained
by choosing a sequence from the weakly typical set according to the uniform
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distribution. Very often, we concentrate on the properties of typical sequences
because any property which is proved to be true for typical sequences will then
be true with high probability. This in turn determines the average behavior
of a large sample.

Remark The most likely sequence is in general not weakly typical although
the probability of the weakly typical set is close to 1 when n is large. For
example, for Xk i.i.d. with p(0) = 0.1 and p(1) = 0.9, (1, 1, · · · , 1) is the most
likely sequence, but it is not weakly typical because its empirical entropy is not
close to the true entropy. The idea is that as n→∞, the probability of every
sequence, including that of the most likely sequence, tends to 0. Therefore, it
is not necessary for a weakly typical set to include the most likely sequence
in order to possess a probability close to 1.

5.2 The Source Coding Theorem

To encode a random sequence X = (X1, X2, · · · , Xn) drawn i.i.d. according
to p(x) by a block code, we construct a one-to-one mapping from a subset A
of Xn to an index set

I = {1, 2, · · · ,M}, (5.17)

where |A| = M ≤ |X |n. We do not have to assume that |X | is finite. The
indices in I are called codewords, and the integer n is called the block length
of the code. If a sequence x ∈ A occurs, the encoder outputs the corresponding
codeword which is specified by approximately logM bits. If a sequence x 6∈
A occurs, the encoder outputs the constant codeword 1. In either case, the
codeword output by the encoder is decoded to the sequence inA corresponding
to that codeword by the decoder. If a sequence x ∈ A occurs, then x is decoded
correctly by the decoder. If a sequence x 6∈ A occurs, then x is not decoded
correctly by the decoder. For such a code, its performance is measured by
the coding rate defined as n−1 logM (in bits per source symbol), and the
probability of error is given by

Pe = Pr{X 6∈ A}. (5.18)

If the code is not allowed to make any error, i.e., Pe = 0, it is clear that
M must be taken to be |X |n, or A = Xn. In that case, the coding rate is
equal to log |X |. However, if we allow Pe to be any small quantity, Shannon
[291] showed that there exists a block code whose coding rate is arbitrarily
close to H(X) when n is sufficiently large. This is the direct part of Shannon’s
source coding theorem, and in this sense the source sequence X is said to be
reconstructed almost perfectly.

We now prove the direct part of the source coding theorem by constructing
a desired code. First, we fix ε > 0 and take
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A = Wn
[X]ε (5.19)

and
M = |A|. (5.20)

For sufficiently large n, by the weak AEP,

(1− ε)2n(H(X)−ε) ≤M = |A| = |Wn
[X]ε| ≤ 2n(H(X)+ε). (5.21)

Therefore, the coding rate n−1 logM satisfies

1
n

log(1− ε) +H(X)− ε ≤ 1
n

logM ≤ H(X) + ε. (5.22)

Also by the weak AEP,

Pe = Pr{X 6∈ A} = Pr{X 6∈Wn
[X]ε} < ε. (5.23)

Letting ε → 0, the coding rate tends to H(X), while Pe tends to 0. This
proves the direct part of the source coding theorem.

The converse part of the source coding theorem says that if we use a block
code with block length n and coding rate less than H(X) − ζ, where ζ > 0
does not change with n, then Pe → 1 as n→∞. To prove this, consider any
code with block length n and coding rate less than H(X)− ζ, so that M , the
total number of codewords, is at most 2n(H(X)−ζ). We can use some of these
codewords for the typical sequences x ∈ Wn

[X]ε, and some for the non-typical
sequences x 6∈ Wn

[X]ε. The total probability of the typical sequences covered
by the code, by the weak AEP, is upper bounded by

2n(H(X)−ζ)2−n(H(X)−ε) = 2−n(ζ−ε). (5.24)

Therefore, the total probability covered by the code is upper bounded by

2−n(ζ−ε) + Pr{X 6∈Wn
[X]ε} < 2−n(ζ−ε) + ε (5.25)

for n sufficiently large, again by the weak AEP. This probability is equal to
1−Pe because Pe is the probability that the source sequence X is not covered
by the code. Thus

1− Pe < 2−n(ζ−ε) + ε, (5.26)

or
Pe > 1− (2−n(ζ−ε) + ε). (5.27)

This inequality holds when n is sufficiently large for any ε > 0, in particular
for ε < ζ. Then for any ε < ζ, Pe > 1− 2ε when n is sufficiently large. Hence,
Pe → 1 as n→∞ and then ε→ 0. This proves the converse part of the source
coding theorem.
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5.3 Efficient Source Coding

Theorem 5.4. Let Y = (Y1, Y2, · · · , Ym) be a random binary sequence of
length m. Then H(Y) ≤ m with equality if and only if Yi are drawn i.i.d.
according to the uniform distribution on {0, 1}.

Proof. By the independence bound for entropy,

H(Y) ≤
m∑
i=1

H(Yi) (5.28)

with equality if and only if Yi are mutually independent. By Theorem 2.43,

H(Yi) ≤ log 2 = 1 (5.29)

with equality if and only if Yi distributes uniformly on {0, 1}. Combining
(5.28) and (5.29), we have

H(Y) ≤
m∑
i=1

H(Yi) ≤ m, (5.30)

where this upper bound is tight if and only if Yi are mutually independent
and each of them distributes uniformly on {0, 1}. The theorem is proved. ut

Let Y = (Y1, Y2, · · · , Yn) be a sequence of length n such that Yi are drawn
i.i.d. according to the uniform distribution on {0, 1}, and let Y denote the
generic random variable. Then H(Y ) = 1. According to the source coding
theorem, for almost perfect reconstruction of Y, the coding rate of the source
code must be at least 1. It turns out that in this case it is possible to use a
source code with coding rate exactly equal to 1 while the source sequence Y
can be reconstructed with zero error. This can be done by simply encoding
all the 2n possible binary sequences of length n, i.e., by taking M = 2n. Then
the coding rate is given by

n−1 logM = n−1 log 2n = 1. (5.31)

Since each symbol in Y is a bit and the rate of the best possible code describing
Y is 1 bit per symbol, Y1, Y2, · · · , Yn are called fair bits, with the connotation
that they are incompressible.

It turns out that the whole idea of efficient source coding by a block
code is to describe the information source by a binary sequence consisting
of “almost fair” bits. Consider a sequence of block codes which encode X =
(X1, X2, · · · , Xn) into Y = (Y1, Y2, · · · , Ym), where Xk are i.i.d. with generic
random variable X, Y is a binary sequence with length

m ≈ nH(X), (5.32)
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and n → ∞. For simplicity, we assume that the common alphabet X is fi-
nite. Let X̂ ∈ Xn be the reconstruction of X by the decoder and Pe be the
probability of error, i.e.,

Pe = Pr{X 6= X̂}. (5.33)

Further assume Pe → 0 as n → ∞. We will show that Y consists of almost
fair bits.

By Fano’s inequality,

H(X|X̂) ≤ 1 + Pe log |X |n = 1 + nPe log |X |. (5.34)

Since X̂ is a function of Y,

H(Y) = H(Y, X̂) ≥ H(X̂). (5.35)

It follows that

H(Y) ≥ H(X̂) (5.36)

≥ I(X; X̂) (5.37)

= H(X)−H(X|X̂) (5.38)
≥ nH(X)− (1 + nPe log |X |) (5.39)
= n(H(X)− Pe log |X |)− 1. (5.40)

On the other hand, by Theorem 5.4,

H(Y) ≤ m. (5.41)

Combining (5.40) and (5.41), we have

n(H(X)− Pe log |X |)− 1 ≤ H(Y) ≤ m. (5.42)

Since Pe → 0 as n → ∞, the above lower bound on H(Y) is approximately
equal to

nH(X) ≈ m (5.43)

when n is large (cf. (5.32)). Therefore,

H(Y) ≈ m. (5.44)

In light of Theorem 5.4, Y almost attains the maximum possible entropy. In
this sense, we say that Y consists of almost fair bits.

5.4 The Shannon-McMillan-Breiman Theorem

For an i.i.d. information source {Xk} with generic random variable X and
generic distribution p(x), the weak AEP states that
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− 1
n

log p(X)→ H(X) (5.45)

in probability as n → ∞, where X = (X1, X2, · · · , Xn). Here H(X) is the
entropy of the generic random variables X as well as the entropy rate of the
source {Xk}.

In Section 2.10, we showed that the entropy rate H of a source {Xk}
exists if the source is stationary. The Shannon-McMillan-Breiman theorem
states that if {Xk} is also ergodic, then

Pr
{
− lim
n→∞

1
n

log Pr{X} = H

}
= 1. (5.46)

This means that if {Xk} is stationary and ergodic, then − 1
n log Pr{X} not

only almost always converges, but it also almost always converges to H. For
this reason, the Shannon-McMillan-Breiman theorem is also referred to as the
weak AEP for ergodic stationary sources.

The formal definition of an ergodic source and the statement of the
Shannon-McMillan-Breiman theorem require the use of measure theory which
is beyond the scope of this book. We point out that the event in (5.46) in-
volves an infinite collection of random variables which cannot be described
by a joint distribution except in very special cases. Without measure theory,
the probability of this event in general cannot be properly defined. However,
this does not prevent us from developing some appreciation of the Shannon-
McMillan-Breiman theorem.

Let X be the common alphabet for a stationary source {Xk}. Roughly
speaking, a stationary source {Xk} is ergodic if the time average exhibited
by a single realization of the source is equal to the ensemble average with
probability 1. More specifically, for any k1, k2, · · · , km,

Pr

{
lim
n→∞

1
n

n−1∑
l=0

f(Xk1+l, Xk2+l, · · · , Xkm+l)

= Ef(Xk1 , Xk2 , · · · , Xkm)

}
= 1, (5.47)

where f is a function defined on Xm which satisfies suitable conditions. For
the special case that {Xk} satisfies

Pr

{
lim
n→∞

1
n

n∑
l=1

Xl = EXk

}
= 1, (5.48)

we say that {Xk} is mean ergodic.

Example 5.5. The i.i.d. source {Xk} is mean ergodic under suitable conditions
because the strong law of the large numbers states that (5.48) is satisfied.
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Example 5.6. Consider the source {Xk} defined as follows. Let Z be a binary
random variable uniformly distributed on {0, 1}. For all k, let Xk = Z. Then

Pr

{
lim
n→∞

1
n

n∑
l=1

Xl = 0

}
=

1
2

(5.49)

and

Pr

{
lim
n→∞

1
n

n∑
l=1

Xl = 1

}
=

1
2
. (5.50)

Since EXk = 1
2 ,

Pr

{
lim
n→∞

1
n

n∑
l=1

Xl = EXk

}
= 0. (5.51)

Therefore, {Xk} is not mean ergodic and hence not ergodic.

If an information source {Xk} is stationary and ergodic, by the Shannon-
McMillan-Breiman theorem,

− 1
n

log Pr{X} ≈ H (5.52)

when n is large. That is, with probability close to 1, the probability of the
sequence X which occurs is approximately equal to 2−nH . Then by means of
arguments similar to the proof of Theorem 5.3, we see that there exist approx-
imately 2nH sequences in Xn whose probabilities are approximately equal to
2−nH , and the total probability of these sequences is almost 1. Therefore, by
encoding these sequences with approximately nH bits, the source sequence X
can be recovered with an arbitrarily small probability of error when the block
length n is sufficiently large. This is a generalization of the direct part of the
source coding theorem which gives a physical meaning to the entropy rate of
an ergodic stationary sources. We remark that if a source is stationary but
not ergodic, although the entropy rate always exists, it may not carry any
physical meaning.

As an example, by regarding printed English as a stationary ergodic pro-
cess, Shannon [294] estimated by a guessing game that its entropy rate is
about 1.3 bits per letter. Cover and King [70] described a gambling estimate
of the entropy rate of printed English which gives 1.34 bits per letter. These
results show that it is not possible to describe printed English accurately by
using less than about 1.3 bits per letter.
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Problems

1. Show that for any ε > 0, Wn
[X]ε is nonempty for sufficiently large n.

2. The source coding theorem with a general block code In proving the con-
verse of the source coding theorem, we assume that each codeword in I
corresponds to a unique sequence in Xn. More generally, a block code
with block length n is defined by an encoding function f : Xn → I and a
decoding function g : I → Xn. Prove that Pe → 1 as n → ∞ even if we
are allowed to use a general block code.

3. Following Problem 2, we further assume that we can use a block code
with probabilistic encoding and decoding. For such a code, encoding is
defined by a transition matrix F from Xn to I and decoding is defined by
a transition matrix G from I to Xn. Prove that Pe → 1 as n → ∞ even
if we are allowed to use such a code.

4. In the discussion in Section 5.3, we made the assumption that the com-
mon alphabet X is finite. Can you draw the same conclusion when X is
countable but H(X) is finite? Hint: use Problem 2.

5. Alternative definition of weak typicality Let X = (X1, X2, · · · , Xn) be
an i.i.d. sequence whose generic random variable X is distributed with
p(x). Let qx be the empirical distribution of the sequence x, i.e., qx(x) =
n−1N(x; x) for all x ∈ X , where N(x; x) is the number of occurrence of
x in x.
a) Show that for any x ∈ Xn,

− 1
n

log p(x) = D(qx‖p) +H(qx).

b) Show that for any ε > 0, the weakly typical set Wn
[X]ε with respect to

p(x) is the set of sequences x ∈ Xn such that

|D(qx‖p) +H(qx)−H(p)| ≤ ε.

c) Show that for sufficiently large n,

Pr{|D(qx‖p) +H(qx)−H(p)| ≤ ε} > 1− ε.

(Ho and Yeung [150].)
6. Let p and q be two probability distributions on the same alphabet X such

that H(p) 6= H(q). Show that there exists an ε > 0 such that

pn
({

xn ∈ Xn :

∣∣∣− 1

n
log pn(xn)−H(q)

∣∣∣ < ε
})
→ 0

as n → ∞. Give an example that p 6= q but the above convergence does
not hold.

7. Let p and q be two probability distributions on the same alphabet X with
the same support.
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a) Prove that for any δ > 0,

pn
({

xn ∈ Xn :

∣∣∣− 1

n
log qn(xn)− (H(p) +D(p‖q))

∣∣∣ < δ
})
→ 1

as n→∞.
b) Prove that for any δ > 0,∣∣∣{xn ∈ Xn :

∣∣∣− 1

n
log qn(xn)− (H(p) +D(p‖q))

∣∣∣ < δ
}∣∣∣ ≤ 2n(H(p)+D(p‖q)+δ).

8. Universal source coding Let F = {{X(s)
k , k ≥ 1} : s ∈ S} be a family

of i.i.d. information sources indexed by a finite set S with a common
alphabet X . Define

H̄ = max
s∈S

H(X(s))

where X(s) is the generic random variable for {X(s)
k , k ≥ 1}, and

Anε (S) =
⋃
s∈S

Wn
[X(s)]ε,

where ε > 0.
a) Prove that for all s ∈ S,

Pr{X(s) ∈ Anε (S)} → 1

as n→∞, where X(s) = (X(s)
1 , X

(s)
2 , · · · , X(s)

n ).
b) Prove that for any ε′ > ε,

|Anε (S)| ≤ 2n(H̄+ε′)

for sufficiently large n.
c) Suppose we know that an information source is in the family F but

we do not know which one it is. Devise a compression scheme for the
information source such that it is asymptotically optimal for every
possible source in F .

9. Let {Xk, k ≥ 1} be an i.i.d. information source with generic random vari-
able X and alphabet X . Assume∑

x

p(x)[log p(x)]2 <∞

and define

Zn = − log p(X)√
n

−
√
nH(X)

for n = 1, 2, · · ·. Prove that Zn → Z in distribution, where Z is a Gaussian
random variable with mean 0 and variance

∑
x p(x)[log p(x)]2 −H(X)2.
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Historical Notes

The weak asymptotic equipartition property (AEP), which is instrumental in
proving the source coding theorem, was first proved by Shannon in his original
paper [291]. In this paper, he also stated that this property can be extended to
an ergodic stationary source. Subsequently, McMillan [240] and Breiman [46]
proved this property for an ergodic stationary source with a finite alphabet.
Chung [66] extended the theme to a countable alphabet.
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Strong Typicality

Weak typicality requires that the empirical entropy of a sequence is close to
the true entropy. In this chapter, we introduce a stronger notion of typicality
which requires that the relative frequency of each possible outcome is close to
the corresponding probability. As we will see later, strong typicality is more
powerful and flexible than weak typicality as a tool for theorem proving for
memoryless problems. However, strong typicality can be used only for random
variables with finite alphabets. Throughout this chapter, typicality refers to
strong typicality and all the logarithms are in the base 2 unless otherwise
specified.

6.1 Strong AEP

We consider an information source {Xk, k ≥ 1} where Xk are i.i.d. with
distribution p(x). We use X to denote the generic random variable and
H(X) to denote the common entropy for all Xk, where H(X) < ∞. Let
X = (X1, X2, · · · , Xn).

Definition 6.1. The strongly typical set Tn[X]δ with respect to p(x) is the set
of sequences x = (x1, x2, · · · , xn) ∈ Xn such that N(x; x) = 0 for x 6∈ SX , and∑

x

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ ≤ δ, (6.1)

where N(x; x) is the number of occurrences of x in the sequence x, and δ is
an arbitrarily small positive real number. The sequences in Tn[X]δ are called
strongly δ-typical sequences.

Throughout this chapter, we adopt the convention that all the summations,
products, unions, etc, are taken over the corresponding supports unless oth-
erwise specified. The strongly typical set Tn[X]δ shares similar properties with
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its weakly typical counterpart, which is summarized as the strong asymptotic
equipartition property (strong AEP) below. The interpretation of the strong
AEP is similar to that of the weak AEP.

Theorem 6.2 (Strong AEP). There exists η > 0 such that η → 0 as δ → 0,
and the following hold:

1) If x ∈ Tn[X]δ, then

2−n(H(X)+η) ≤ p(x) ≤ 2−n(H(X)−η). (6.2)

2) For n sufficiently large,

Pr{X ∈ Tn[X]δ} > 1− δ. (6.3)

3) For n sufficiently large,

(1− δ)2n(H(X)−η) ≤ |Tn[X]δ| ≤ 2n(H(X)+η). (6.4)

Proof To prove Property 1, for x ∈ Tn[X]δ, we write

p(x) =
∏
x

p(x)N(x;x). (6.5)

Then

log p(x)

=
∑
x

N(x; x) log p(x) (6.6)

=
∑
x

(N(x; x)− np(x) + np(x)) log p(x) (6.7)

= n
∑
x

p(x) log p(x)− n
∑
x

(
1
n
N(x; x)− p(x)

)
(− log p(x)) (6.8)

= −n

[
H(X) +

∑
x

(
1
n
N(x; x)− p(x)

)
(− log p(x))

]
. (6.9)

Since x ∈ Tn[X]δ, ∑
x

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ ≤ δ, (6.10)

which implies ∣∣∣∣∣∑
x

(
1
n
N(x; x)− p(x)

)
(− log p(x))

∣∣∣∣∣
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≤
∑
x

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ (− log p(x)) (6.11)

≤ − log
(

min
x
p(x)

)∑
x

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ (6.12)

≤ −δ log
(

min
x
p(x)

)
(6.13)

= η, (6.14)

where
η = −δ log

(
min
x
p(x)

)
> 0. (6.15)

Therefore,

−η ≤
∑
x

(
1
n
N(x; x)− p(x)

)
(− log p(x)) ≤ η. (6.16)

It then follows from (6.9) that

−n(H(X) + η) ≤ log p(x) ≤ −n(H(X)− η), (6.17)

or
2−n(H(X)+η) ≤ p(x) ≤ 2−n(H(X)−η), (6.18)

where η → 0 as δ → 0, proving Property 1.
To prove Property 2, we write

N(x; X) =
n∑
k=1

Bk(x), (6.19)

where

Bk(x) =
{

1 if Xk = x
0 if Xk 6= x. (6.20)

Then Bk(x), k = 1, 2, · · · , n are i.i.d. random variables with

Pr{Bk(x) = 1} = p(x) (6.21)

and
Pr{Bk(x) = 0} = 1− p(x). (6.22)

Note that
EBk(x) = (1− p(x)) · 0 + p(x) · 1 = p(x). (6.23)

By the weak law of large numbers, for any δ > 0 and for any x ∈ X ,

Pr

{∣∣∣∣∣ 1n
n∑
k=1

Bk(x)− p(x)

∣∣∣∣∣ > δ

|X |

}
<

δ

|X |
(6.24)

for n sufficiently large. Then
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Pr
{∣∣∣∣ 1nN(x; X)− p(x)

∣∣∣∣ > δ

|X |
for some x

}
= Pr

{∣∣∣∣∣ 1n
n∑
k=1

Bk(x)− p(x)

∣∣∣∣∣ > δ

|X |
for some x

}
(6.25)

= Pr

{⋃
x

{∣∣∣∣∣ 1n
n∑
k=1

Bk(x)− p(x)

∣∣∣∣∣ > δ

|X |

}}
(6.26)

≤
∑
x

Pr

{∣∣∣∣∣ 1n
n∑
k=1

Bk(x)− p(x)

∣∣∣∣∣ > δ

|X |

}
(6.27)

<
∑
x

δ

|X |
(6.28)

= δ, (6.29)

where we have used the union bound1 to obtain (6.27). Since∑
x

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ > δ (6.30)

implies ∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ > δ

|X |
for some x ∈ X , (6.31)

we have

Pr
{

X ∈ Tn[X]δ

}
= Pr

{∑
x

∣∣∣∣ 1nN(x; X)− p(x)
∣∣∣∣ ≤ δ

}
(6.32)

= 1− Pr

{∑
x

∣∣∣∣ 1nN(x; X)− p(x)
∣∣∣∣ > δ

}
(6.33)

≥ 1− Pr
{∣∣∣∣ 1nN(x; X)− p(x)

∣∣∣∣ > δ

|X |
for some x ∈ X

}
(6.34)

> 1− δ, (6.35)

proving Property 2.
Finally, Property 3 follows from Property 1 and Property 2 in exactly the

same way as in Theorem 5.3, so the proof is omitted. ut

Remark Analogous to weak typicality, we note that the upper bound on
|Tn[X]δ| in Property 3 holds for all n ≥ 1, and for any δ > 0, there exists at
least one strongly typical sequence when n is sufficiently large. See Problem 1
in Chapter 5.
1 The union bound refers to Pr{A ∪B} ≤ Pr{A}+ Pr{B}.
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In the rest of the section, we prove an enhancement of Property 2 of the
strong AEP which gives an exponential bound on the probability of obtaining
a non-typical vector2. This result, however, will not be used until Chapter 21.

Theorem 6.3. For sufficiently large n, there exists ϕ(δ) > 0 such that

Pr{X 6∈ Tn[X]δ} < 2−nϕ(δ). (6.36)

The proof of this theorem is based on the Chernoff bound [63] which we
prove in the next lemma.

Lemma 6.4 (Chernoff Bound). Let Y be a real random variable and s be
any nonnegative real number. Then for any real number a,

log Pr{Y ≥ a} ≤ −sa+ logE
[
2sY
]

(6.37)

and
log Pr{Y ≤ a} ≤ sa+ logE

[
2−sY

]
. (6.38)

Proof. Let

u(y) =
{

1 if y ≥ 0
0 if y < 0. (6.39)

Then for any s ≥ 0,
u(y − a) ≤ 2s(y−a). (6.40)

This is illustrated in Fig. 6.1. Then

!1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

a y 

1 

s  y!a  2  (       )

u  y!a (       ) 

Fig. 6.1. An illustration of u(y − a) ≤ 2s(y−a).

2 This result is due to Ning Cai and Raymond W. Yeung. An alternative proof
based on Pinsker’s inequality (Theorem 2.33) and the method of types has been
given by Prakash Narayan (private communication).
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E[u(Y − a)] ≤ E
[
2s(Y−a)

]
= 2−saE

[
2sY
]
. (6.41)

Since

E[u(Y − a)] = Pr{Y ≥ a} · 1 + Pr{Y < a} · 0 = Pr{Y ≥ a}, (6.42)

we see that
Pr{Y ≥ a} ≤ 2−saE

[
2sY
]

= 2−sa+logE[2sY ]. (6.43)

Then (6.37) is obtained by taking logarithm in the base 2. Upon replacing Y
by −Y and a by −a in (6.37), (6.38) is obtained. The lemma is proved. ut

Proof of Theorem 6.3. We will follow the notation in the proof of Theorem 6.2.
Consider x ∈ X such that p(x) > 0. Applying (6.37), we have

log Pr

{
n∑
k=1

Bk(x) ≥ n (p(x) + δ)

}
≤ −sn (p(x) + δ) + logE

[
2s
∑n

k=1
Bk(x)

]
(6.44)

a)
= −sn (p(x) + δ) + log

(
n∏
k=1

E
[
2sBk(x)

])
(6.45)

b)
= −sn (p(x) + δ) + n log(1− p(x) + p(x)2s) (6.46)
c)

≤ −sn (p(x) + δ) + n(ln 2)−1(−p(x) + p(x)2s) (6.47)
= −n

[
s (p(x) + δ) + (ln 2)−1p(x)(1− 2s)

]
, (6.48)

where

a) follows because Bk(x) are mutually independent;
b) is a direct evaluation of the expectation from the definition of Bk(x) in
(6.20);

c) follows from the fundamental inequality ln a ≤ a− 1.

In (6.48), upon defining

βx(s, δ) = s (p(x) + δ) + (ln 2)−1p(x)(1− 2s), (6.49)

we have

log Pr

{
n∑
k=1

Bk(x) ≥ n (p(x) + δ)

}
≤ −nβx(s, δ), (6.50)

or

Pr

{
n∑
k=1

Bk(x) ≥ n (p(x) + δ)

}
≤ 2−nβx(s,δ). (6.51)

It is readily seen that
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βx(0, δ) = 0. (6.52)

Regarding δ as fixed and differentiate with respect to s, we have

β′x(s, δ) = p(x)(1− 2s) + δ. (6.53)

Then
β′x(0, δ) = δ > 0 (6.54)

and it is readily verified that

β′x(s, δ) ≥ 0 (6.55)

for

0 ≤ s ≤ log
(

1 +
δ

p(x)

)
. (6.56)

Therefore, we conclude that βx(s, δ) is strictly positive for

0 < s ≤ log
(

1 +
δ

p(x)

)
. (6.57)

On the other hand, by applying (6.38), we can obtain in the same fashion
the bound

log Pr

{
n∑
k=1

Bk(x) ≤ n (p(x)− δ)

}
≤ −nσx(s, δ), (6.58)

or

Pr

{
n∑
k=1

Bk(x) ≤ n (p(x)− δ)

}
≤ 2−nσx(s,δ), (6.59)

where
σx(s, δ) = −s (p(x)− δ) + (ln 2)−1p(x)(1− 2−s). (6.60)

Then
σx(0, δ) = 0, (6.61)

and
σ′x(s, δ) = p(x)(2−s − 1) + δ, (6.62)

which is nonnegative for

0 ≤ s ≤ − log
(

1− δ

p(x)

)
. (6.63)

In particular,
σ′x(0, δ) = δ > 0. (6.64)

Therefore, we conclude that σx(s, δ) is strictly positive for
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0 < s ≤ − log
(

1− δ

p(x)

)
. (6.65)

By choosing s satisfying

0 < s ≤ min
[
log
(

1 +
δ

p(x)

)
,− log

(
1− δ

p(x)

)]
, (6.66)

both βx(s, δ) and σx(s, δ) are strictly positive. From (6.51) and (6.59), we
have

Pr

{∣∣∣∣∣ 1n
n∑
k=1

Bk(x)− p(x)

∣∣∣∣∣ ≥ δ
}

= Pr

{∣∣∣∣∣
n∑
k=1

Bk(x)− np(x)

∣∣∣∣∣ ≥ nδ
}

(6.67)

≤ Pr

{
n∑
k=1

Bk(x) ≥ n (p(x) + δ)

}

+Pr

{
n∑
k=1

Bk(x) ≤ n (p(x)− δ)

}
(6.68)

≤ 2−nβx(s,δ) + 2−nσx(s,δ) (6.69)
≤ 2 · 2−nmin(βx(s,δ),σx(s,δ)) (6.70)

= 2−n[min(βx(s,δ),σx(s,δ))− 1
n ] (6.71)

= 2−nϕx(δ), (6.72)

where
ϕx(δ) = min(βx(s, δ), σx(s, δ))− 1

n
. (6.73)

Then ϕx(δ) is strictly positive for sufficiently large n because both βx(s, δ)
and σx(s, δ) are strictly positive.

Finally, consider

Pr{X ∈ Tn[X]δ}

= Pr

{∑
x

∣∣∣∣ 1nN(x; X)− p(x)
∣∣∣∣ ≤ δ

}
(6.74)

≥ Pr
{∣∣∣∣ 1nN(x; X)− p(x)

∣∣∣∣ ≤ δ

|X |
for all x ∈ X

}
(6.75)

= 1− Pr
{∣∣∣∣ 1nN(x; X)− p(x)

∣∣∣∣ > δ

|X |
for some x ∈ X

}
(6.76)

≥ 1−
∑
x

Pr
{∣∣∣∣ 1nN(x; X)− p(x)

∣∣∣∣ > δ

|X |

}
(6.77)
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= 1−
∑
x

Pr

{∣∣∣∣∣ 1n
n∑
k=1

Bk(x)− p(x)

∣∣∣∣∣ > δ

|X |

}
(6.78)

= 1−
∑

x:p(x)>0

Pr

{∣∣∣∣∣ 1n
n∑
k=1

Bk(x)− p(x)

∣∣∣∣∣ > δ

|X |

}
(6.79)

≥ 1−
∑

x:p(x)>0

2−nϕx
(
δ
|X|

)
, (6.80)

where the last step follows from (6.72). Define

ϕ(δ) =
1
2

[
min

x:p(x)>0
ϕx

(
δ

|X |

)]
. (6.81)

Then for sufficiently large n,

Pr{X ∈ Tn[X]δ} > 1− 2−nϕ(δ), (6.82)

or
Pr{X 6∈ Tn[X]δ} < 2−nϕ(δ), (6.83)

where ϕ(δ) is strictly positive. The theorem is proved. ut

6.2 Strong Typicality Versus Weak Typicality

As we have mentioned at the beginning of the chapter, strong typicality is
more powerful and flexible than weak typicality as a tool for theorem proving
for memoryless problems, but it can be used only for random variables with
finite alphabets. We will prove in the next proposition that strong typicality is
stronger than weak typicality in the sense that the former implies the latter.

Proposition 6.5. For any x ∈ Xn, if x ∈ Tn[X]δ, then x ∈ Wn
[X]η, where

η → 0 as δ → 0.

Proof. By Property 1 of strong AEP (Theorem 6.2), if x ∈ Tn[X]δ, then

2−n(H(X)+η) ≤ p(x) ≤ 2−n(H(X)−η), (6.84)

or
H(X)− η ≤ − 1

n
log p(x) ≤ H(X) + η, (6.85)

where η → 0 as δ → 0. Then x ∈ Wn
[X]η by Definition 5.2. The proposition is

proved. ut

We have proved in this proposition that strong typicality implies weak
typicality, but the converse is not true. This idea can be explained without
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any detailed analysis. Let X be distributed with p such that p(0) = 0.5,
p(1) = 0.25, and p(2) = 0.25. Consider a sequence x of length n and let q(i)
be the relative frequency of occurrence of symbol i in x, i.e., 1

nN(i; x), where
i = 0, 1, 2. In order for the sequence x to be weakly typical, we need

− 1
n

log p(x)

= −q(0) log 0.5− q(1) log 0.25− q(2) log 0.25 (6.86)
≈ H(X) (6.87)
= −(0.5) log 0.5− (0.25) log 0.25− (0.25) log 0.25. (6.88)

Obviously, this can be satisfied by choosing q(i) = p(i) for all i. But alterna-
tively, we can choose q(0) = 0.5, q(1) = 0.5, and q(2) = 0. With such a choice
of {q(i)}, the sequence x is weakly typical with respect to p but obviously not
strongly typical with respect to p, because the relative frequency of occurrence
of each symbol i is q(i), which is not close to p(i) for i = 1, 2.

Therefore, we conclude that strong typicality is indeed stronger than weak
typicality. However, as we have pointed out at the beginning of the chapter,
strong typicality can only be used for random variables with finite alphabets.

6.3 Joint Typicality

In this section, we discuss strong joint typicality with respect to a bivariate
distribution. Generalization to a multivariate distribution is straightforward.

Consider a bivariate information source {(Xk, Yk), k ≥ 1} where (Xk, Yk)
are i.i.d. with distribution p(x, y). We use (X,Y ) to denote the pair of generic
random variables.

Definition 6.6. The strongly jointly typical set Tn[XY ]δ with respect to p(x, y)
is the set of (x,y) ∈ Xn × Yn such that N(x, y; x,y) = 0 for (x, y) 6∈ SXY ,
and ∑

x

∑
y

∣∣∣∣ 1nN(x, y; x,y)− p(x, y)
∣∣∣∣ ≤ δ, (6.89)

where N(x, y; x,y) is the number of occurrences of (x, y) in the pair of se-
quences (x,y), and δ is an arbitrarily small positive real number. A pair of
sequences (x,y) is called strongly jointly δ-typical if it is in Tn[XY ]δ.

Strong typicality satisfies the following consistency property.

Theorem 6.7 (Consistency). If (x,y) ∈ Tn[XY ]δ, then x ∈ Tn[X]δ and y ∈
Tn[Y ]δ.

Proof. If (x,y) ∈ Tn[XY ]δ, then
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x

∑
y

∣∣∣∣ 1nN(x, y; x,y)− p(x, y)
∣∣∣∣ ≤ δ. (6.90)

Upon observing that

N(x; x) =
∑
y

N(x, y; x,y), (6.91)

we have ∑
x

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣

=
∑
x

∣∣∣∣∣ 1n∑
y

N(x, y; x,y)−
∑
y

p(x, y)

∣∣∣∣∣ (6.92)

=
∑
x

∣∣∣∣∣∑
y

(
1
n
N(x, y; x,y)− p(x, y)

)∣∣∣∣∣ (6.93)

≤
∑
x

∑
y

∣∣∣∣ 1nN(x, y; x,y)− p(x, y)
∣∣∣∣ (6.94)

≤ δ. (6.95)

Therefore, x ∈ Tn[X]δ. Similarly, y ∈ Tn[Y ]δ. The theorem is proved. ut

The following thoerem asserts that strong typicality is preserved when a
function is applied to a vector.

Theorem 6.8 (Preservation). Let Y = f(X). If

x = (x1, x2, · · · , xn) ∈ Tn[X]δ, (6.96)

then
f(x) = (y1, y2, · · · , yn) ∈ Tn[Y ]δ, (6.97)

where yi = f(xi) for 1 ≤ i ≤ n.

Proof. Consider x ∈ Tn[X]δ, i.e.,

∑
x

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ < δ. (6.98)

Since Y = f(X),
p(y) =

∑
x∈f−1(y)

p(x) (6.99)

for all y ∈ Y. On the other hand,
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N(y; f(x)) =
∑

x∈f−1(y)

N(x; x) (6.100)

for all y ∈ Y. Then∑
y

∣∣∣∣ 1nN(y; f(x))− p(y)
∣∣∣∣

=
∑
y

∣∣∣∣∣∣
∑

x∈f−1(y)

(
1
n
N(x; x)− p(x)

)∣∣∣∣∣∣ (6.101)

≤
∑
y

∑
x∈f−1(y)

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ (6.102)

=
∑
x

∣∣∣∣ 1nN(x; x)− p(x)
∣∣∣∣ (6.103)

< δ. (6.104)

Therefore, f(x) ∈ Tn[Y ]δ, proving the lemma. ut

For a bivariate i.i.d. source {(Xk, Yk)}, we have the strong joint asymp-
totic equipartition property (strong JAEP), which can readily be obtained by
applying the strong AEP to the source {(Xk, Yk)}.

Theorem 6.9 (Strong JAEP). Let

(X,Y) = ((X1, Y1), (X2, Y2), · · · , (Xn, Yn)), (6.105)

where (Xi, Yi) are i.i.d. with generic pair of random variables (X,Y ). Then
there exists λ > 0 such that λ→ 0 as δ → 0, and the following hold:

1) If (x,y) ∈ Tn[XY ]δ, then

2−n(H(X,Y )+λ) ≤ p(x,y) ≤ 2−n(H(X,Y )−λ). (6.106)

2) For n sufficiently large,

Pr{(X,Y) ∈ Tn[XY ]δ} > 1− δ. (6.107)

3) For n sufficiently large,

(1− δ)2n(H(X,Y )−λ) ≤ |Tn[XY ]δ| ≤ 2n(H(X,Y )+λ). (6.108)

From the strong JAEP, we can see the following. Since there are approxi-
mately 2nH(X,Y ) typical (x,y) pairs and approximately 2nH(X) typical x, for
a typical x, the number of y such that (x,y) is jointly typical is approximately
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2nH(X,Y )

2nH(X)
= 2nH(Y |X) (6.109)

on the average. The next theorem reveals that this is not only true on the
average, but it is in fact true for every typical x as long as there exists at least
one y such that (x,y) is jointly typical.

Theorem 6.10. For any x ∈ Tn[X]δ, define

Tn[Y |X]δ(x) = {y ∈ Tn[Y ]δ : (x,y) ∈ Tn[XY ]δ}. (6.110)

If |Tn[Y |X]δ(x)| ≥ 1, then

2n(H(Y |X)−ν) ≤ |Tn[Y |X]δ(x)| ≤ 2n(H(Y |X)+ν), (6.111)

where ν → 0 as n→∞ and δ → 0.

We first prove the following lemma which is along the line of Stirling’s
approximation [101].

Lemma 6.11. For any n > 0,

n lnn− n < lnn! < (n+ 1) ln(n+ 1)− n. (6.112)

Proof. First, we write

lnn! = ln 1 + ln 2 + · · ·+ lnn. (6.113)

Since lnx is a monotonically increasing function of x, we have∫ k

k−1

lnx dx < ln k <
∫ k+1

k

lnx dx. (6.114)

Summing over 1 ≤ k ≤ n, we have∫ n

0

lnx dx < lnn! <
∫ n+1

1

lnx dx, (6.115)

or
n lnn− n < lnn! < (n+ 1) ln(n+ 1)− n. (6.116)

The lemma is proved. ut

Proof of Theorem 6.10. Let δ be a small positive real number and n be a
large positive integer to be specified later. Fix an x ∈ Tn[X]δ, so that

∑
x

∣∣∣∣ 1nN(X; x)− p(x)
∣∣∣∣ ≤ δ. (6.117)
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This implies that for all x ∈ X ,∣∣∣∣ 1nN(X; x)− p(x)
∣∣∣∣ ≤ δ, (6.118)

or
p(x)− δ ≤ 1

n
N(x; x) ≤ p(x) + δ. (6.119)

We first prove the upper bound on |Tn[Y |X]δ(x)|. For any ν > 0, consider

2−n(H(X)−ν/2)
a)

≥ p(x) (6.120)

=
∑

y∈Yn
p(x,y) (6.121)

≥
∑

y∈Tn[Y |X]δ(x)

p(x,y) (6.122)

b)

≥
∑

y∈Tn[Y |X]δ(x)

2−n(H(X)+ν/2) (6.123)

≥ |Tn[Y |X]δ(x)|2−n(H(X)+ν/2), (6.124)

where a) and b) follow from the strong AEP (Theorem 6.2) and the strong
joint AEP (Theorem 6.9), respectively. Then we obtain

|Tn[Y |X]δ(x)| ≤ 2−n(H(X)+ν), (6.125)

which is the upper bound to be proved.
Assume that |Tn[Y |X]δ(x)| ≥ 1. We now prove the lower bound on |Tn[Y |X]δ(x)|.

Let
{K(x, y), (x, y) ∈ X × Y} (6.126)

be any set of nonnegative integers such that

1. ∑
y

K(x, y) = N(x; x) (6.127)

for all x ∈ X , and
2. for any y ∈ Yn, if

N(x, y; x,y) = K(x, y) (6.128)

for all (x, y) ∈ X × Y, then (x,y) ∈ Tn[XY ]δ.

Then by Definition 6.6, {K(x, y)} satisfy∑
x

∑
y

∣∣∣∣ 1nK(x, y)− p(x, y)
∣∣∣∣ ≤ δ, (6.129)
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which implies that for all (x, y) ∈ X × Y,∣∣∣∣ 1nK(x, y)− p(x, y)
∣∣∣∣ ≤ δ, (6.130)

or
p(x, y)− δ ≤ 1

n
K(x, y) ≤ p(x, y) + δ. (6.131)

Such a set {K(x, y)} exists because Tn[Y |X]δ(x) is assumed to be nonempty.
Straightforward combinatorics reveals that the number of y which satisfy the
constraints in (6.128) is equal to

M(K) =
∏
x

N(x; x)!∏
yK(x, y)!

, (6.132)

and it is readily seen that

|Tn[Y |X]δ(x)| ≥M(K). (6.133)

Using Lemma 6.11, we can lower bound lnM(K) as follows.

lnM(K)

≥
∑
x

{
N(x; x) lnN(x; x)−N(x; x)

−
∑
y

[(K(x, y) + 1) ln(K(x, y) + 1)−K(x, y)]

}
(6.134)

a)
=
∑
x

[
N(x; x) lnN(x; x)

−
∑
y

(K(x, y) + 1) ln(K(x, y) + 1)

]
(6.135)

b)

≥
∑
x

{N(x; x) ln(n (p(x)− δ))

−
∑
y

(K(x, y) + 1) ln
[
n

(
p(x, y) + δ +

1
n

)]}
. (6.136)

In the above, a) follows from (6.127), and b) is obtained by applying the
lower bound on n−1N(x; x) in (6.119) and the upper bound on n−1K(x, y) in
(6.131). Also from (6.127), the coefficient of lnn in (6.136) is given by

∑
x

[
N(x; x)−

∑
y

(K(x, y) + 1)

]
= −|X ||Y|. (6.137)

Let δ be sufficiently small and n be sufficiently large so that
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0 < p(x)− δ < 1 (6.138)

and
p(x, y) + δ +

1
n
< 1 (6.139)

for all x and y. Then in (6.136), both the logarithms

ln(p(x)− δ) (6.140)

and

ln
(
p(x, y) + δ +

1
n

)
(6.141)

are negative. Note that the logarithm in (6.140) is well-defined by virtue of
(6.138). Rearranging the terms in (6.136), applying the upper bound in (6.119)
and the lower bound3 in (6.131), and dividing by n, we have

n−1 lnM(K)

≥
∑
x

(p(x) + δ) ln (p(x)− δ)−
∑
x

∑
y

(
p(x, y)− δ +

1
n

)
× ln

(
p(x, y) + δ +

1
n

)
− |X ||Y| lnn

n
(6.142)

= −He(X) +He(X,Y ) + Ll(n, δ) (6.143)
= He(Y |X) + Ll(n, δ), (6.144)

where Ll(n, δ) denotes a function of n and δ which tends to 0 as n→∞ and
δ → 0. Changing the base of the logarithm to 2, we have

n−1 logM(K) ≥ H(Y |X) + Ll(n, δ). (6.145)

Then it follows from (6.133) that

n−1 log |Tn[Y |X]δ(x)| ≥ H(Y |X) + Ll(n, δ). (6.146)

Upon replacing Ll(n, δ), we obtain

|Tn[Y |X]δ(x)| ≥ 2n(H(Y |X)−ν), (6.147)

where ν → 0 as n→∞ and δ → 0 as discussed. The theorem is proved. ut

The above theorem says that for any typical x, as long as there is one
typical y such that (x,y) is jointly typical, there are approximately 2nH(Y |X)

y such that (x,y) is jointly typical. This theorem has the following corollary
that the number of such typical x grows with n at almost the same rate as
the total number of typical x.
3 For the degenerate case when p(x, y) = 1 for some x and y, p(x, y) + δ + 1

n
> 1,

and the logarithm in (6.141) is in fact positive. Then the upper bound instead of
the lower bound should be applied. The details are omitted.
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Corollary 6.12. For a joint distribution p(x, y) on X × Y, let Sn[X]δ be the
set of all sequences x ∈ Tn[X]δ such that Tn[Y |X]δ(x) is nonempty. Then

|Sn[X]δ| ≥ (1− δ)2n(H(X)−ψ), (6.148)

where ψ → 0 as n→∞ and δ → 0.

Proof. By the consistency of strong typicality (Theorem 6.7), if (x,y) ∈
Tn[XY ]δ, then x ∈ Tn[X]δ. In particular, x ∈ Sn[X]δ. Then

Tn[XY ]δ =
⋃

x∈Sn[X]δ

{(x,y) : y ∈ Tn[Y |X]δ(x)}. (6.149)

Using the lower bound on |Tn[XY ]δ| in Theorem 6.9 and the upper bound on
|Tn[Y |X]δ(x)| in the last theorem, we have

(1− δ)2n(H(X,Y )−λ) ≤ |Tn[XY ]δ| ≤ |S
n
[X]δ|2

n(H(Y |X)+ν) (6.150)

which implies
|Sn[X]δ| ≥ (1− δ)2n(H(X)−(λ+ν)). (6.151)

The theorem is proved upon letting ψ = λ+ ν. ut

We have established a rich set of structural properties for strong typicality
with respect to a bivariate distribution p(x, y), which is summarized in the
two-dimensional strong joint typicality array in Figure 6.2. In this array, the

2 nH ( Y ) 

2 nH ( X,Y ) 2 nH ( X ) 

y S [ Y ] 
n 

x S [ X ] 
n 

( x , y ) T [ XY ] 
n 

. 

. 

. . 
. 
. 

. . . 
. 

. . . . 

. 

Fig. 6.2. A two-dimensional strong joint typicality array.

rows and the columns are the typical sequences x ∈ Sn[X]δ and y ∈ Sn[Y ]δ,
respectively. The total number of rows and columns are approximately equal
to 2nH(X) and 2nH(Y ), respectively. An entry indexed by (x,y) receives a dot
if (x,y) is strongly jointly typical. The total number of dots is approximately
equal to 2nH(X,Y ). The number of dots in each row is approximately equal to
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2nH(Y |X), while the number of dots in each column is approximately equal to
2nH(X|Y ).

For reasons which will become clear in Chapter 16, the strong joint typical-
ity array in Figure 6.2 is said to exhibit an asymptotic quasi-uniform structure.
By a two-dimensional asymptotic quasi-uniform structure, we mean that in
the array all the columns have approximately the same number of dots, and
all the rows have approximately the same number of dots. The strong joint
typicality array for a multivariate distribution continues to exhibit an asymp-
totic quasi-uniform structure. The three-dimensional strong joint typicality
array with respect to a distribution p(x, y, z) is illustrated in Figure 6.3. As

2 nH ( Y ) 

2 nH ( Z ) 

( x 0 , y 0 ) 

z 0 

z S [ Z ] 
n 

y S [ Y ] 
n 

2 nH ( X ) x S [ X ] 
n 

Fig. 6.3. A three-dimensional strong joint typicality array.

before, an entry (x,y, z) receives a dot if (x,y, z) is strongly jointly typical.
This is not shown in the figure otherwise it will be very confusing. The total
number of dots in the whole array is approximately equal to 2nH(X,Y,Z). These
dots are distributed in the array such that all the planes parallel to each other
have approximately the same number of dots, and all the cylinders parallel
to each other have approximately the same number of dots. More specifically,
the total number of dots on the plane for any fixed z0 ∈ Sn[Z]δ (as shown) is
approximately equal to 2nH(X,Y |Z), and the total number of dots in the cylin-
der for any fixed (x0,y0) pair in Sn[XY ]δ (as shown) is approximately equal to
2nH(Z|X,Y ), so on and so forth.

We see from the strong AEP and Corollary 6.12 that Sn[X]δ and Tn[X]δ grow
with n at approximately the same rate. We end this section by stating in the
next proposition that Sn[X]δ indeed contains almost all the probability when n
is large. The proof is left as an exercise (see Problem 4).

Proposition 6.13. With respect to a joint distribution p(x, y) on X ×Y, for
any δ > 0,

Pr{X ∈ Sn[X]δ} > 1− δ (6.152)
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for n sufficiently large.

6.4 An Interpretation of the Basic Inequalities

The asymptotic quasi-uniform structure exhibited in a strong joint typicality
array discussed in the last section is extremely important in information the-
ory. Later in the book, we will see how this structure is involved in proving
results such as the channel coding theorem and the rate-distortion theorem. In
this section, we show how the basic inequalities can be revealed by examining
this structure. It has further been shown by Chan [56] that all unconstrained
information inequalities can be obtained from this structure, thus giving a
physical meaning to these inequalities.

Consider random variables X,Y , and Z and a fixed z ∈ Sn[Z]δ, so that
Tn[XY |Z]δ(z) is nonempty. By the consistency of strong typicality, if (x,y, z) ∈
Tn[XY Z]δ, then (x, z) ∈ Tn[XZ]δ and (y, z) ∈ Tn[Y Z]δ, or x ∈ Tn[X|Z]δ(z) and
y ∈ Tn[Y |Z]δ(z), respectively. Thus

Tn[XY |Z]δ(z) ⊂ Tn[X|Z]δ(z)× Tn[Y |Z]δ(z), (6.153)

which implies
|Tn[XY |Z]δ(z)| ≤ |Tn[X|Z]δ(z)||Tn[Y |Z]δ(z)|. (6.154)

Applying the lower bound in Theorem 6.10 to Tn[XY |Z]δ(z) and the upper
bound to Tn[X|Z]δ(z) and Tn[Y |Z]δ(z), we have

2n(H(X,Y |Z)−ζ) ≤ 2n(H(X|Z)+γ)2n(H(Y |Z)+φ), (6.155)

where ζ, γ, φ → 0 as n → ∞ and δ → 0. Taking logarithm to the base 2 and
dividing by n, we obtain

H(X,Y |Z) ≤ H(X|Z) +H(Y |Z) (6.156)

upon letting n→∞ and δ → 0. This inequality is equivalent to

I(X;Y |Z) ≥ 0. (6.157)

Thus we have proved the nonnegativity of conditional mutual information.
Since all Shannon’s information measures are special cases of conditional mu-
tual information, we have proved the nonnegativity of all Shannon’s informa-
tion measures, namely the basic inequalities.

Problems

1. Show that (x,y) ∈ Tn[X,Y ]δ and (y, z) ∈ Tn[Y,Z]δ do not imply (x, z) ∈
Tn[X,Z]δ.
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2. Let X = (X1, X2, · · · , Xn), where Xk are i.i.d. with generic random vari-
able X. Prove that

Pr{X ∈ Tn[X]δ} ≥ 1− |X |
3

nδ2

for any n and δ > 0. This shows that Pr{X ∈ Tn[X]δ} → 1 as δ → 0 and
n→∞ if

√
nδ →∞.

3. Prove that for a random variable X with a countable alphabet, Property
2 of the strong AEP holds, while Properties 1 and 3 do not hold.

4. Prove Proposition 6.13. Hint: First prove that if (X,Y) ∈ Tn[XY ]δ, then
X ∈ Sn[X]δ.

5. Let P(X ) be the set of all probability distributions over a finite alphabet
X . Find a polynomial Q(n) such that for any integer n, there exists a
subset Pn(X ) of P(X ) such that
a) |Pn(X )| ≤ Q(n);
b) for all P ∈ P(X ), there exists Pn ∈ Pn(X ) such that

|Pn(x)− P (x)| < 1
n

for all x ∈ X .
Hint: Let Pn(X ) be the set of all probability distributions over X such that
all the probability masses can be expressed as fractions with denominator
n.

6. Let p be any probability distribution over a finite set X and η be a real
number in (0, 1). Prove that for any subset A of Xn with pn(A) ≥ η,

|A ∩ Tn[X]δ| ≥ 2n(H(p)−δ′),

where δ′ → 0 as δ → 0 and n→∞.

In the following problems, for a sequence x ∈ Xn, let qx be the empirical
distribution of x, i.e., qx(x) = n−1N(x; x) for all x ∈ X . Similarly, for a pair
of sequences (x,y) ∈ Xn × Yn, let qx,y be the joint empirical distribution of
(x,y), i.e., qx,y(x, y) = n−1N(x, y; x,y) for all (x, y) ∈ X × Y.

7. Alternative definition of strong typicality Show that (6.1) is equivalent to

V (qx, p) ≤ δ,

where V (·, ·) denotes the variational distance. Thus strong typicality can
be regarded as requiring the empirical distribution of a sequence to be
close to the probability distribution of the generic random variable in
variational distance. Also compare the result here with the alternative
definition of weak typicality (Problem 5 in Chapter 5).
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8. The empirical distribution qx of the sequence x is also called the type of
x. Assuming that X is finite, show that there are a total of

(
n+|X |−1

n

)
distinct types qx. Hint: There are

(
a+b−1
a

)
ways to distribute a identical

balls in b boxes.
9. Unified typicality Let X = (X1, X2, · · · , Xn) be an i.i.d. sequence whose

generic random variable X is distributed with p(x), where the alpbabet
X is countable. For any η > 0, the unified typical set Un[X]η with respect
to p(x) is the set of sequences x ∈ Xn such that

D(qx‖p) + |H(qx)−H(p)| ≤ η.

a) Show that for any x ∈ Xn, if x ∈ Un[X]η, then x ∈Wn
[X]η.

b) Show that for any x ∈ Xn, if x ∈ Un[X]η, then x ∈ Tn[X]δ, where
δ =
√
η · 2 ln 2.

Therefore, unified typicality implies both weak typicality and strong typ-
icality.

10. The AEP for unified typicality Unified typicality defined in Problem 9,
unlike strong typicality, can be applied to random variables whose alpha-
bets are countable . At the same time, it preserves the essential properties
of strong typicality. The following outlines the proof of the AEP which
has been discussed in Theorem 5.3 and Theorem 6.2 for weak typicality
and strong typicality, respectively.
a) Show that

2−n(H(X)+η) ≤ p(x) ≤ 2−n(H(X)−η),

i.e., Property 1 of the AEP.
b) Show that for sufficiently large n,

Pr{H(qx)−H(p) > ε} < ε.

Hint: Use the results in Problem 9 above and Problem 5 in Chapter 5.
c) It can be proved by means of the result in Problem 9 that

Pr{H(p)−H(qx) > ε} < ε

(see Ho and Yeung [150]). By assuming this inequality, prove that

Pr{|H(qx)−H(p)| ≤ ε} < 1− 2ε.

d) Show that if |H(qx) −H(p)| ≤ ε and |D(qx‖p) + H(qx) −H(p)| ≤ ε,
then

D(qx‖p) + |H(qx)−H(p)| ≤ 3ε.

e) Use the results in c) and d) above and the result in c) in Problem 5
in Chapter 5 to show that

Pr{D(qx‖p) + |H(qx)−H(p)| ≤ η} > 1− η.

This proves Property 2 of the AEP. Property 3 of the AEP follows
from Property 1 as in the proof of Theorem 5.3.
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11. Consistency of unified typicality For any η > 0, the unified jointly typical
set Un[XY ]η with respect to pXY (x, y) is the set of sequences (x,y) ∈ Xn×
Yn such that

D(qx,y‖pXY ) + |H(qx,y)−H(pXY )|
+|H(qx)−H(pX)|+ |H(qy)−H(pY )| ≤ η.

Show that if (x,y) ∈ Un[XY ]η, then x ∈ Un[X]η and y ∈ Un[Y ]η.

Historical Notes

Strong typicality was used by Wolfowitz [346] for proving channel coding the-
orems and by Berger [27] for proving the rate-distortion theorem and various
results in multiterminal source coding. The method of types, a refinement
of the notion of strong typicality, was systematically developed in the book
by Csiszár and Körner [75]. The interpretation of the basic inequalities in
Section 6.4 is a preamble to the relation between entropy and groups to be
discussed in Chapter 16.

Recently, Ho and Yeung [150] introduced the notion of unified typicality
which is stronger than both weak typicality and strong typicality. This notion
of typicality can be applied to random variables with countable alphabets,
while at the same time preserve the essential properties of strong typicality.
See Problems 9, 10, and 11 for a discussion.
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Discrete Memoryless Channels

In all practical communication systems, when a signal is transmitted from
one point to another point, the signal is inevitably contaminated by random
noise, i.e., the signal received is correlated with but possibly different from the
signal transmitted. We use a noisy channel to model such a situation. A noisy
channel is a “system” which has one input terminal and one output terminal1,
with the input connected to the transmission point and the output connected
to the receiving point. When the signal is transmitted through the channel,
it is distorted in a random way which depends on the channel characteristics.
As such, the signal received may be different from the signal transmitted.

In communication engineering, we are interested in conveying messages
reliably through a noisy channel at the maximum possible rate. We first look
at a simple channel called the binary symmetric channel (BSC), which is
represented by the transition diagram in Figure 7.1. In this channel both the
input X and the output Y take values in the set {0, 1}. There is a certain
probability, denoted by ε, that the output is not equal to the input. That is,
if the input is 0, then the output is 0 with probability 1 − ε, and is 1 with
probability ε. Likewise, if the input is 1, then the output is 1 with probability
1 − ε, and is 0 with probability ε. The parameter ε is called the crossover
probability of the BSC.

Let {A,B} be the message set which contains two possible messages to
be conveyed through a BSC with 0 ≤ ε < 0.5. We further assume that the
two messages A and B are equally likely. If the message is A, we map it to
the codeword 0, and if the message is B, we map it to the codeword 1. This
is the simplest example of a channel code. The codeword is then transmitted
through the channel. Our task is to decode the message based on the output of
the channel, and an error is said to occur if the message is decoded incorrectly.

Consider

Pr{A|Y = 0} = Pr{X = 0|Y = 0} (7.1)

1 The discussion on noisy channels here is confined to point-to-point channels.
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0 

1 

0 

1 

X Y 

1 

1 

Fig. 7.1. A binary symmetric channel.

=
Pr{X = 0}Pr{Y = 0|X = 0}

Pr{Y = 0}
(7.2)

=
0.5(1− ε)
Pr{Y = 0}

. (7.3)

Since
Pr{Y = 0} = Pr{Y = 1} = 0.5 (7.4)

by symmetry2, it follows that

Pr{A|Y = 0} = 1− ε (7.5)

and
Pr{B|Y = 0} = 1− Pr{A|Y = 0} = ε. (7.6)

Since ε < 0.5,
Pr{B|Y = 0} < Pr{A|Y = 0}. (7.7)

Therefore, in order to minimize the probability of error, we decode a received
0 to the message A. By symmetry, we decode a received 1 to the message B.

An error occurs if a 0 is received and the message is B, or if a 1 is received
and the message is A. Therefore, the probability of error, denoted by Pe, is
given by

Pe = Pr{Y = 0}Pr{B|Y = 0}+ Pr{Y = 1}Pr{A|Y = 1} (7.8)
= 0.5ε+ 0.5ε (7.9)
= ε, (7.10)

2 More explicitly,

Pr{Y = 0} = Pr{A}Pr{Y = 0|A}+ Pr{B}Pr{Y = 0|B}
= 0.5 Pr{Y = 0|X = 0}+ 0.5 Pr{Y = 0|X = 1}
= 0.5(1− ε) + 0.5ε

= 0.5.
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where (7.9) follows from (7.6) because

Pr{A|Y = 1} = Pr{B|Y = 0} = ε (7.11)

by symmetry.
Let us assume that ε 6= 0. Then the above scheme obviously does not

provide perfectly reliable communication. If we are allowed to use the channel
only once, then this is already the best we can do. However, if we are allowed
to use the same channel repeatedly, then we can improve the reliability by
generalizing the above scheme.

We now consider the following channel code which we refer to as the binary
repetition code. Let n ≥ 1 be an odd positive integer which is called the block
length of the code. In this code, the message A is mapped to the sequence of
n 0’s, and the message B is mapped to the sequence of n 1’s. The codeword,
which consists of a sequence of either n 0’s or n 1’s, is transmitted through
the channel in n uses. Upon receiving a sequence of n bits at the output of
the channel, we use the majority vote to decode the message, i.e., if there are
more 0’s than 1’s in the sequence, we decode the sequence to the message
A, otherwise we decode the sequence to the message B. Note that the block
length is chosen to be odd so that there cannot be a tie. When n = 1, this
scheme reduces to the previous scheme.

For this more general scheme, we continue to denote the probability of
error by Pe. Let N0 and N1 be the number of 0’s and 1’s in the received
sequence, respectively. Clearly,

N0 +N1 = n. (7.12)

For large n, if the message is A, the number of 0’s received is approximately
equal to

E[N0|A] = n(1− ε) (7.13)

and the number of 1’s received is approximately equal to

E[N1|A] = nε (7.14)

with high probability by the weak law of large numbers. This implies that the
probability of an error, namely the event {N0 < N1}, is small because

n(1− ε) > nε (7.15)

with the assumption that ε < 0.5. Specifically,

Pr{error|A} = Pr{N0 < N1|A} (7.16)
= Pr{n−N1 < N1|A} (7.17)
= Pr{N1 > 0.5n|A} (7.18)
≤ Pr{N1 > (ε+ φ)n|A}, (7.19)
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where
0 < φ < 0.5− ε, (7.20)

so that φ is positive and
ε+ φ < 0.5. (7.21)

Note that such a φ exists because ε < 0.5. Then by the weak law of large
numbers, the upper bound in (7.19) tends to 0 as n → ∞. By symmetry,
Pr{error|B} also tends to 0 as n→∞. Therefore,

Pe = Pr{A}Pr{error|A}+ Pr{B}Pr{error|B} (7.22)

tends to 0 as n → ∞. In other words, by using a long enough repetition
code, we can make Pe arbitrarily small. In this sense, we say that reliable
communication is achieved asymptotically.

We point out that for a BSC with ε > 0, for any given transmitted se-
quence of length n, the probability of receiving any given sequence of length
n is nonzero. It follows that for any two distinct input sequences, there is
always a nonzero probability that the same output sequence is produced so
that the two input sequences become indistinguishable. Therefore, except for
very special channels (e.g., the BSC with ε = 0), no matter how the encod-
ing/decoding scheme is devised, a nonzero probability of error is inevitable,
and asymptotically reliable communication is the best we can hope for.

Though a rather naive approach, asymptotically reliable communication
can be achieved by using the repetition code. The repetition code, however,
is not without catch. For a channel code, the rate of the code in bit(s) per
use, is defined as the ratio of the logarithm of the size of the message set
in the base 2 to the block length of the code. Roughly speaking, the rate of
a channel code is the average number of bits the channel code attempts to
convey through the channel per use of the channel. For a binary repetition
code with block length n, the rate is 1

n log 2 = 1
n , which tends to 0 as n→∞.

Thus in order to achieve asymptotic reliability by using the repetition code,
we cannot communicate through the noisy channel at any positive rate!

In this chapter, we characterize the maximum rate at which information
can be communicated through a discrete memoryless channel (DMC) with an
arbitrarily small probability of error. This maximum rate, which is generally
positive, is known as the channel capacity. Then we discuss the use of feed-
back in communicating through a channel, and show that feedback does not
increase the capacity. At the end of the chapter, we discuss transmitting an
information source through a DMC, and we show that asymptotic optimality
can be achieved by separating source coding and channel coding.

7.1 Definition and Capacity

Definition 7.1. Let X and Y be discrete alphabets, and p(y|x) be a transition
matrix from X to Y. A discrete channel p(y|x) is a single-input single-output
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system with input random variable X taking values in X and output random
variable Y taking values in Y such that

Pr{X = x, Y = y} = Pr{X = x}p(y|x) (7.23)

for all (x, y) ∈ X × Y.

Remark From (7.23), we see that if Pr{X = x} > 0, then

Pr{Y = y|X = x} =
Pr{X = x, Y = y}

Pr{X = x}
= p(y|x). (7.24)

Note that Pr{Y = y|X = x} is undefined if Pr{X = x} = 0. Nevertheless,
(7.23) is valid for both cases.

We now present an alternative description of a discrete channel. Let X
and Y be discrete alphabets. Let X be a random variable taking values in X
and p(y|x) be any transition matrix from X to Y. Define random variables
Zx with Zx = Y for x ∈ X such that

Pr{Zx = y} = p(y|x) (7.25)

for all y ∈ Y. We assume that Zx, x ∈ X are mutually independent and also
independent of X. Further define the random variable

Z = (Zx : x ∈ X ), (7.26)

called the noise variable. Note that Z is independent of X. Now define a
random variable taking values in Y as

Y = Zx if X = x. (7.27)

Evidently, Y is a function of X and Z. Then for x ∈ X such that Pr{X =
x} > 0, we have

Pr{X = x, Y = y} = Pr{X = x}Pr{Y = y|X = x} (7.28)
= Pr{X = x}Pr{Zx = y|X = x} (7.29)
= Pr{X = x}Pr{Zx = y} (7.30)
= Pr{X = x}p(y|x), (7.31)

i.e., (7.23) in Definition 7.1, where (7.30) follows from the assumption that Zx
is independent of Zx. For x ∈ X such that Pr{X = x} = 0, since Pr{X = x} =
0 implies Pr{X = x, Y = y} = 0, (7.23) continues to hold. Then by regarding
X and Y as the input and output random variables, we have obtained an
alternative description of the discrete channel p(y|x).

Since Y is a function of X and Z, we can write

Y = α(X,Z). (7.32)

Then we have the following equivalent definition for a discrete channel.



138 7 Discrete Memoryless Channels

 
 

 

X

Z 

Y ! 

(b)(a) 

x y p(y|x) 

Fig. 7.2. Illustrations of (a) a discrete channel p(y|x) and (b) a discrete channel
(α,Z).

Definition 7.2. Let X , Y, and Z be discrete alphabets. Let α : X × Z → Y,
and Z be a random variable taking values in Z, called the noise variable.
A discrete channel (α,Z) is a single-input single-output system with input
alphabet X and output alphabet Y. For any input random variable X, the
noise variable Z is independent of X, and the output random variable Y is
given by

Y = α(X,Z). (7.33)

Figure 7.2 illustrates a discrete channel p(y|x) and a discrete channel
(α,Z). The next definition gives the condition for the equivalence of the two
specifications of a discrete channel according to Definitions 7.1 and 7.2, re-
spectively.

Definition 7.3. Two discrete channels p(y|x) and (α,Z) defined on the same
input alphabet X and output alphabet Y are equivalent if

Pr{α(x, Z) = y} = p(y|x) (7.34)

for all x and y.

We point out that the adjective “discrete” in a discrete channel refers to the
input and output alphabets of the channel being discrete. As part of a discrete-
time communication system, a discrete channel can be used repeatedly at
every time index i = 1, 2, · · ·. As the simplest model, we may assume that
the noise for the transmission over the channel at different time indices are
independent of each other. In the next definition, we will introduce the discrete
memoryless channel (DMC) as a discrete-time extension of a discrete channel
that captures this modeling assumption.

To properly formulate a DMC, we regard it as a subsystem of a discrete-
time stochastic system which will be referred to as “the system” in the sequel.
In such a system, random variables are generated sequentially in discrete-time,
and more than one random variable may be generated instantaneously but
sequentially at a particular time index.



7.1 Definition and Capacity 139

X 1 Y 1 

X 2 Y 2 

X 3 Y 3 

.
.
.
 

y x p (       ) 

y x p (       ) 

y x p (       ) 

Fig. 7.3. An illustration of a discrete memoryless channel p(y|x).

Definition 7.4. A discrete memoryless channel (DMC) p(y|x) is a sequence
of replicates of a generic discrete channel p(y|x). These discrete channels
are indexed by a discrete-time index i, where i ≥ 1, with the ith channel
being available for transmission at time i. Transmission through a channel is
assumed to be instantaneous. Let Xi and Yi be respectively the input and the
output of the DMC at time i, and let Ti− denote all the random variables that
are generated in the system before Xi. The equality

Pr{Yi = y,Xi = x, Ti− = t} = Pr{Xi = x, Ti− = t}p(y|x) (7.35)

holds for all (x, y, t) ∈ X × Y × Ti−.

Remark Similar to the remark following Definition 7.1, if Pr{Xi = x, Ti− =
t} > 0, then

Pr{Yi = y|Xi = x, Ti− = t} =
Pr{Yi = y,Xi = x, Ti− = t}

Pr{Xi = x, Ti− = t}
(7.36)

= p(y|x). (7.37)

Note that Pr{Yi = y|Xi = x, Ti− = t} is undefined if Pr{Xi = x, Ti− = t} = 0.
Nevertheless, (7.35) is valid for both cases.

Invoking Proposition 2.5, we see from (7.35) that

Ti− → Xi → Yi (7.38)

forms a Markov chain, i.e., the output of the DMC at time i is independent
of all the random variables that have already been generated in the system
conditioning on the input at time i. This captures the memorylessness of a
DMC. Figure 7.3 is an illustration of a DMC p(y|x).

Paralleling Definition 7.2 for a discrete channel, we now present an alter-
native definition of a DMC.

Definition 7.5. A discrete memoryless channel (α,Z) is a sequence of repli-
cates of a generic discrete channel (α,Z). These discrete channels are indexed
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Fig. 7.4. An illustration of a discrete memoryless channel (α,Z).

by a discrete-time index i, where i ≥ 1, with the ith channel being available
for transmission at time i. Transmission through a channel is assumed to be
instantaneous. Let Xi and Yi be respectively the input and the output of the
DMC at time i, and let Ti− denote all the random variables that are generated
in the system before Xi. The noise variable Zi for the transmission at time i
is a copy of the generic noise variable Z, and it is independent of (Xi, Ti−).
The output of the DMC at time i is given by

Yi = α(Xi, Zi). (7.39)

Figure 7.4 is an illustration of a discrete memoryless channel (α,Z). We
now show the equivalence between Definitions 7.4 and 7.5. Suppose the generic
discrete channel p(y|x) in Definition 7.4 is equivalent to the generic discrete
channel (α,Z) in Definition 7.5, i.e., (7.34) holds. Consider the DMC (α,Z)
in Definition 7.5. We will show that it is equivalent to the DMC p(y|x) in
Definition 7.3. For the DMC (α,Z), consider

0 ≤ I(Ti−;Yi|Xi) (7.40)
≤ I(Ti−;Yi, Xi, Zi|Xi) (7.41)
= I(Ti−;Xi, Zi|Xi) (7.42)
= I(Ti−;Zi|Xi) (7.43)
= 0, (7.44)

where the first equality follows from (7.39) and the last equality follows from
the assumption that Zi is independent of (Xi, Ti−). Therefore,

I(Ti−;Yi|Xi) = 0, (7.45)

or Ti− → Xi → Yi forms a Markov chain. It remains to establish (7.35) for
all (x, y, t) ∈ X × Y × Ti−. For x ∈ X such that Pr{Xi = x} = 0, both
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Pr{Yi = y,Xi = x, Ti− = t} and Pr{Xi = x, Ti− = t} vanish because they are
upper bounded by Pr{Xi = x}. Therefore (7.35) holds. For x ∈ X such that
Pr{Xi = x} > 0,

Pr{Yi = y,Xi = x, Ti− = t}
a)
= Pr{Xi = x, Ti− = t}Pr{Yi = y|Xi = x} (7.46)
b)
= Pr{Xi = x, Ti− = t}Pr{α(Xi, Zi) = y|Xi = x} (7.47)
= Pr{Xi = x, Ti− = t}Pr{α(x, Zi) = y|Xi = x} (7.48)
c)
= Pr{Xi = x, Ti− = t}Pr{α(x, Zi) = y} (7.49)
d)
= Pr{Xi = x, Ti− = t}Pr{α(x, Z) = y} (7.50)
e)
= Pr{Xi = x, Ti− = t}p(y|x), (7.51)

where

a) follows from the Markov chain Ti− → Xi → Yi;
b) follows from (7.39);
c) follows from Definition 7.5 that Zi is independent of Xi;
d) follows from Definition 7.5 that Zi and the generic noise variable Z have
the same distribution;

e) follows from (7.34).

Hence, (7.35) holds for all (x, y, t) ∈ X × Y × Ti−, proving that the DMC
(α,Z) in Definition 7.4 is equivalent to the DMC (p(y|x) in Definition 7.5.

Definition 7.5 renders the following physical conceptualization of a DMC.
The DMC can be regarded as a “box” which has only two terminals, the
input and the output. The box perfectly shields its contents from the rest
of the system. At time i, upon the transmission of the input Xi, the noise
variable Zi is generated inside the box according to the distribution of the
generic noise variable Z. Since the box is perfectly shielded, the generation of
the Zi is independent of Xi and any other random variable that has already
been generated in the system. Then the function α is applied to (Xi, Zi) to
produce the output Yi.

In the rest of the section, we will define the capacity of a DMC and discuss
some of its basic properties. The capacities of two simple DMCs will also be
evaluated explicitly. To keep our discussion simple, we will assume that the
alphabets X and Y are finite.

Definition 7.6. The capacity of a discrete memoryless channel p(y|x) is de-
fined as

C = max
p(x)

I(X;Y ), (7.52)

where X and Y are respectively the input and the output of the generic discrete
channel, and the maximum is taken over all input distributions p(x).
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From the above definition, we see that

C ≥ 0 (7.53)

because
I(X;Y ) ≥ 0 (7.54)

for all input distributions p(x). By Theorem 2.43, we have

C = max
p(x)

I(X;Y ) ≤ max
p(x)

H(X) = log |X |. (7.55)

Likewise, we have
C ≤ log |Y|. (7.56)

Therefore,
C ≤ min(log |X |, log |Y|). (7.57)

Since I(X;Y ) is a continuous functional of p(x) and the set of all p(x) is a
compact set (i.e., closed and bounded) in <|X |, the maximum value of I(X;Y )
can be attained3. This justifies taking the maximum rather than the supre-
mum in the definition of channel capacity in (7.52).

We will prove subsequently that C is in fact the maximum rate at which
information can be communicated reliably through a DMC. We first give some
examples of DMC’s for which the capacities can be obtained in closed form.
In the following, X and Y denote, respectively, the input and the output of
the generic discrete channel, and all logarithms are in the base 2.

Example 7.7 (Binary Symmetric Channel). The binary symmetric channel
(BSC) has been shown in Figure 7.1. Alternatively, a BSC can be represented
by Figure 7.5. Here, Z is a binary random variable representing the noise of

X 

Z 

Y 

Fig. 7.5. An alternative representation for a binary symmetric channel.

the channel, with

Pr{Z = 0} = 1− ε and Pr{Z = 1} = ε, (7.58)

and Z is independent of X. Then

3 The assumption that X is finite is essential in this argument.
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Y = X + Z mod 2. (7.59)

This representation for a BSC is in the form prescribed by Definition 7.2.
In order to determine the capacity of the BSC, we first bound I(X;Y ) as

follows.

I(X;Y ) = H(Y )−H(Y |X) (7.60)

= H(Y )−
∑
x

p(x)H(Y |X = x) (7.61)

= H(Y )−
∑
x

p(x)hb(ε) (7.62)

= H(Y )− hb(ε) (7.63)
≤ 1− hb(ε), (7.64)

where we have used hb to denote the binary entropy function in the base 2.
In order to achieve this upper bound, we have to make H(Y ) = 1, i.e., the
output distribution of the BSC is uniform. This can be done by letting p(x)
be the uniform distribution on {0, 1}. Therefore, the upper bound on I(X;Y )
can be achieved, and we conclude that

C = 1− hb(ε) bit per use. (7.65)

Figure 7.6 is a plot of the capacity C versus the crossover probability ε. We

1 

0 0.5 1 

C 

Fig. 7.6. The capacity of a binary symmetric channel.

see from the plot that C attains the maximum value 1 when ε = 0 or ε = 1,
and attains the minimum value 0 when ε = 0.5. When ε = 0, it is easy to see
that C = 1 is the maximum rate at which information can be communicated
through the channel reliably. This can be achieved simply by transmitting
unencoded bits through the channel, and no decoding is necessary because all
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the bits are received unchanged. When ε = 1, the same can be achieved with
the additional decoding step which complements all the received bits. By doing
so, the bits transmitted through the channel can be recovered without error.
Thus from the communication point of view, for binary channels, a channel
which never makes error and a channel which always makes errors are equally
good. When ε = 0.5, the channel output is independent of the channel input.
Therefore, no information can possibly be communicated through the channel.

Example 7.8 (Binary Erasure Channel). The binary erasure channel is shown
in Figure 7.7. In this channel, the input alphabet is {0, 1}, while the output

0 

1 

0 

1 

X Y e 

1 

1 

Fig. 7.7. A binary erasure channel.

alphabet is {0, 1, e}. With probability γ, the erasure symbol e is produced at
the output, which means that the input bit is lost; otherwise the input bit is
reproduced at the output without error. The parameter γ is called the erasure
probability.

To determine the capacity of this channel, we first consider

C = max
p(x)

I(X;Y ) (7.66)

= max
p(x)

(H(Y )−H(Y |X)) (7.67)

= max
p(x)

H(Y )− hb(γ). (7.68)

Thus we only have to maximize H(Y ). To this end, let

Pr{X = 0} = a (7.69)

and define a binary random variable E by

E =
{

0 if Y 6= e
1 if Y = e. (7.70)

The random variable E indicates whether an erasure has occurred, and it is
a function of Y . Then
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H(Y ) = H(Y,E) (7.71)
= H(E) +H(Y |E) (7.72)
= hb(γ) + (1− γ)hb(a). (7.73)

Hence,

C = max
p(x)

H(Y )− hb(γ) (7.74)

= max
a

[hb(γ) + (1− γ)hb(a)]− hb(γ) (7.75)

= (1− γ) max
a

hb(a) (7.76)

= (1− γ), (7.77)

where capacity is achieved by letting a = 0.5, i.e., the input distribution is
uniform.

It is in general not possible to obtain the capacity of a DMC in closed
form, and we have to resort to numerical computation. In Chapter 9 we will
discuss the Blahut-Arimoto algorithm for computing channel capacity.

7.2 The Channel Coding Theorem

We will justify the definition of the capacity of a DMC by the proving the
channel coding theorem. This theorem, which consists of two parts, will be
formally stated at the end of the section. The direct part of the theorem asserts
that information can be communicated through a DMC with an arbitrarily
small probability of error at any rate less than the channel capacity. Here
it is assumed that the decoder knows the transition matrix of the DMC.
The converse part of the theorem asserts that if information is communicated
through a DMC at a rate higher than the capacity, then the probability of
error is bounded away from zero. For better appreciation of the definition of
channel capacity, we will first prove the converse part in Section 7.3 and then
prove the direct part in Section 7.4.

Definition 7.9. An (n,M) code for a discrete memoryless channel with input
alphabet X and output alphabet Y is defined by an encoding function

f : {1, 2, · · · ,M} → Xn (7.78)

and a decoding function

g : Yn → {1, 2, · · · ,M}. (7.79)

The set {1, 2, · · · ,M}, denoted by W, is called the message set. The sequences
f(1), f(2), · · · , f(M) in Xn are called codewords, and the set of codewords is
called the codebook.
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In order to distinguish a channel code as defined above from a channel code
with feedback which will be discussed in Section 7.6, we will refer to the former
as a channel code without feedback.

We assume that a message W is randomly chosen from the message setW
according to the uniform distribution. Therefore,

H(W ) = logM. (7.80)

With respect to a channel code for a DMC, we let

X = (X1, X2, · · · , Xn) (7.81)

and
Y = (Y1, Y2, · · · , Yn) (7.82)

be the input sequence and the output sequence of the channel, respectively.
Evidently,

X = f(W ). (7.83)

We also let
Ŵ = g(Y) (7.84)

be the estimate on the message W by the decoder. Figure 7.8 is the block
diagram for a channel code.

Encoder Channel 
p ( y | x ) Decoder 

X Y W 

Estimate 
of message 

W 

Message 

Fig. 7.8. A channel code with block length n.

Definition 7.10. For all 1 ≤ w ≤M , let

λw = Pr{Ŵ 6= w|W = w} =
∑

y∈Yn:g(y) 6=w

Pr{Y = y|X = f(w)} (7.85)

be the conditional probability of error given that the message is w.

We now define two performance measures for a channel code.

Definition 7.11. The maximal probability of error of an (n,M) code is de-
fined as

λmax = max
w

λw. (7.86)

Definition 7.12. The average probability of error of an (n,M) code is defined
as

Pe = Pr{Ŵ 6= W}. (7.87)
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From the definition of Pe, we have

Pe = Pr{Ŵ 6= W} (7.88)

=
∑
w

Pr{W = w}Pr{Ŵ 6= W |W = w} (7.89)

=
∑
w

1
M

Pr{Ŵ 6= w|W = w} (7.90)

=
1
M

∑
w

λw, (7.91)

i.e., Pe is the arithmetic mean of λw, 1 ≤ w ≤M . It then follows that

Pe ≤ λmax. (7.92)

In fact, it can be readily seen that this inequality remains valid even without
the assumption that W distributes uniformly on the message set W.

Definition 7.13. The rate of an (n,M) channel code is n−1 logM in bits per
use.

Definition 7.14. A rate R is asymptotically achievable for a discrete memo-
ryless channel if for any ε > 0, there exists for sufficiently large n an (n,M)
code such that

1
n

logM > R− ε (7.93)

and
λmax < ε. (7.94)

For brevity, an asymptotically achievable rate will be referred to as an achiev-
able rate.

In other words, a rate R is achievable if there exists a sequence of codes
whose rates approach R and whose probabilities of error approach zero. We
end this section by stating the channel coding theorem, which gives a charac-
terization of all achievable rates. This theorem will be proved in the next two
sections.

Theorem 7.15 (Channel Coding Theorem). A rate R is achievable for a
discrete memoryless channel if and only if R ≤ C, the capacity of the channel.

7.3 The Converse

Let us consider a channel code with block length n. The random variables
involved in this code are W , Xi and Yi for 1 ≤ i ≤ n, and Ŵ . We see
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from the definition of a channel code in Definition 7.9 that all the random
variables are generated sequentially according to some deterministic or prob-
abilistic rules. Specifically, the random variables are generated in the order
W,X1, Y1, X2, Y2, · · · , Xn, Yn, Ŵ . The generation of these random variables
can be represented by the dependency graph4 in Figure 7.9. In this graph, a

W 

X 1 

X 2 

X 3 

X n 

Y 1 

Y 2 

Y 3 

Y n 

X Y 
p (       ) y x | 

W 

Fig. 7.9. The dependency graph for a channel code without feedback.

node represents a random variable. If there is a (directed) edge from node X
to node Y , then node X is called a parent of node Y . We further distinguish
a solid edge and a dotted edge: a solid edge represents functional (determinis-
tic) dependency, while a dotted edge represents the probabilistic dependency
induced by the transition matrix p(y|x) of the generic discrete channel. For a
node X, its parent nodes represent all the random variables on which random
variable X depends when it is generated.

We now explain the specific structure of the dependency graph. First, Xi

is a function of W , so each Xi is connected to W by a solid edge. According
to Definition 7.4,

Ti− = (W,X1, Y1, · · · , Xi−1, Yi−1). (7.95)

By (7.35), the Markov chain

(W,X1, Y1, · · · , Xi−1, Yi−1)→ Xi → Yi (7.96)

prevails. Therefore, the generation of Yi depends only on Xi and not on
W,X1, Y1, · · · , Xi−1, Yi−1. So, Yi is connected to Xi by a dotted edge rep-
resenting the discrete channel p(y|x) at time i, and there is no connection
between Yi and any of the nodes W,X1, Y1, · · · , Xi−1, Yi−1. Finally, Ŵ is a
function of Y1, Y2, · · · , Yn, so Ŵ is connected to each Yi by a solid edge.
4 A dependency graph can be regarded as a Bayesian network [258].
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We will use q to denote the joint distribution of these random variables as
well as all the marginals, and let xi denote the ith component of a sequence x.
From the dependency graph, we see that for all (w,x,y, ŵ) ∈ W×Xn×Yn×Ŵ
such that q(x) > 0 and q(y) > 0,

q(w,x,y ŵ) = q(w)

(
n∏
i=1

q(xi|w)

)(
n∏
i=1

p(yi|xi)

)
q(ŵ|y). (7.97)

Note that q(w) > 0 for all w so that q(xi|w) are well-defined, and q(xi|w) and
q(ŵ|y) are both deterministic. Denote the set of nodes X1, X2, · · · , Xn by X
and the set of nodes Y1, Y2, · · ·, Yn by Y. We notice the following structure in
the dependency graph: all the edges from W end in X, all the edges from X
end in Y, and all the edges from Y end in Ŵ . This suggests that the random
variables W,X, Y, and Ŵ form the Markov chain

W → X→ Y → Ŵ . (7.98)

The validity of this Markov chain can be formally justified by applying Propo-
sition 2.9 to (7.97), so that for all (w,x,y, ŵ) ∈ W ×Xn ×Yn ×Ŵ such that
q(x) > 0 and q(y) > 0, we can write

q(w,x,y, ŵ) = q(w)q(x|w)q(y|x)q(ŵ|y). (7.99)

Now q(x,y) is obtained by summing over all w and ŵ in (7.97), and q(x) is
obtained by further summing over all y. After some straightforward algebra
and using

q(y|x) =
q(x,y)
q(x)

(7.100)

for all x such that q(x) > 0, we obtain

q(y|x) =
n∏
i=1

p(yi|xi). (7.101)

The Markov chain in (7.98) and the relation in (7.101) are apparent from
the setup of the problem, and the above justification may seem superfluous.
However, the methodology developed here is necessary for handling the more
delicate situation which arises when the channel is used with feedback. This
will be discussed in Section 7.6.

Consider a channel code whose probability of error is arbitrarily small.
Since W,X,Y, and Ŵ form the Markov chain in (7.98), the information di-
agram for these four random variables is as shown in Figure 7.10. Moreover,
X is a function of W , and Ŵ is a function of Y. These two relations are
equivalent to

H(X|W ) = 0, (7.102)

and
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Fig. 7.10. The information diagram for W → X→ Y → Ŵ .

H(Ŵ |Y) = 0, (7.103)

respectively. Since the probability of error is arbitrarily small, W and Ŵ are
essentially identical. To gain insight into the problem, we assume for the time
being that W and Ŵ are equivalent, so that

H(Ŵ |W ) = H(W |Ŵ ) = 0. (7.104)

Since the I-Measure µ∗ for a Markov chain is nonnegative, the constraints
in (7.102) to (7.104) imply that µ∗ vanishes on all the atoms in Figure 7.10
marked with a ‘0.’ Immediately, we see that

H(W ) = I(X; Y). (7.105)

That is, the amount of information conveyed through the channel is essentially
the mutual information between the input sequence and the output sequence
of the channel.

For a single transmission, we see from the definition of channel capacity
that the mutual information between the input and the output cannot exceed
the capacity of the channel, i.e., for all 1 ≤ i ≤ n,

I(Xi;Yi) ≤ C. (7.106)

Summing i from 1 to n, we have

n∑
i=1

I(Xi;Yi) ≤ nC. (7.107)

Upon establishing in the next lemma that

I(X; Y) ≤
n∑
i=1

I(Xi;Yi), (7.108)

the converse of the channel coding theorem then follows from
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1
n

logM =
1
n
H(W ) (7.109)

=
1
n
I(X; Y) (7.110)

≤ 1
n

n∑
i=1

I(Xi;Yi) (7.111)

≤ C. (7.112)

Lemma 7.16. For a discrete memoryless channel used with a channel code
without feedback, for any n ≥ 1,

I(X; Y) ≤
n∑
i=1

I(Xi;Yi), (7.113)

where Xi and Yi are, respectively, the input and the output of the channel at
time i.

Proof. For any (x,y) ∈ Xn × Yn, if q(x,y) > 0, then q(x) > 0 and (7.101)
holds. Therefore,

q(Y|X) =
n∏
i=1

p(Yi|Xi) (7.114)

holds for all (x,y) in the support of q(x,y). Then

−E log q(Y|X) = −E log
n∏
i=1

p(Yi|Xi) = −
n∑
i=1

E log p(Yi|Xi), (7.115)

or

H(Y|X) =
n∑
i=1

H(Yi|Xi). (7.116)

Hence,

I(X; Y) = H(Y)−H(Y|X) (7.117)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi) (7.118)

=
n∑
i=1

I(Xi;Yi). (7.119)

The lemma is proved. ut

We now formally prove the converse of the channel coding theorem. Let R
be an achievable rate, i.e., for any ε > 0, there exists for sufficiently large n
an (n,M) code such that
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1
n

logM > R− ε (7.120)

and
λmax < ε. (7.121)

Consider

logM
a)
= H(W ) (7.122)
= H(W |Ŵ ) + I(W ; Ŵ ) (7.123)
b)

≤ H(W |Ŵ ) + I(X; Y) (7.124)
c)

≤ H(W |Ŵ ) +
n∑
i=1

I(Xi;Yi) (7.125)

d)

≤ H(W |Ŵ ) + nC, (7.126)

where

a) follows from (7.80);
b) follows from the data processing theorem since W → X→ Y → Ŵ ;
c) follows from Lemma 7.16;
d) follows from (7.107).

From (7.87) and Fano’s inequality (cf. Corollary 2.48), we have

H(W |Ŵ ) < 1 + Pe logM. (7.127)

Therefore, from (7.126),

logM < 1 + Pe logM + nC (7.128)
≤ 1 + λmax logM + nC (7.129)
< 1 + ε logM + nC, (7.130)

where we have used (7.92) and (7.121), respectively, to obtain the last two
inequalities. Dividing by n and rearranging the terms, we have

1
n

logM <
1
n + C

1− ε
, (7.131)

and from (7.120), we obtain

R− ε <
1
n + C

1− ε
. (7.132)

For any ε > 0, the above inequality holds for all sufficiently large n. Letting
n→∞ and then ε→ 0, we conclude that

R ≤ C. (7.133)
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This completes the proof for the converse of the channel coding theorem.
From the above proof, we can obtain an asymptotic bound on Pe when

the rate of the code 1
n logM is greater than C. Consider (7.128) and obtain

Pe ≥ 1− 1 + nC

logM
= 1−

1
n + C

1
n logM

. (7.134)

Then

Pe ≥ 1−
1
n + C

1
n logM

≈ 1− C
1
n logM

(7.135)

when n is large. This asymptotic bound on Pe, which is strictly positive if
1
n logM > C, is illustrated in Figure 7.11.

1 

C n 
1 log   M 

P e 

Fig. 7.11. An asymptotic upper bound on Pe.

In fact, the lower bound in (7.134) implies that Pe > 0 for all n if 1
n logM >

C because if P (n0)
e = 0 for some n0, then for all k ≥ 1, by concatenating k

copies of the code, we obtain a code with the same rate and block length equal
to kn0 such that P (kn0)

e = 0, which is a contradiction to our conclusion that
Pe > 0 when n is large. Therefore, if we use a code whose rate is greater than
the channel capacity, the probability of error is non-zero for all block lengths.

The converse of the channel coding theorem we have proved is called the
weak converse. A stronger version of this result called the strong converse can
be proved, which says that Pe → 1 as n → ∞ if there exists an ε > 0 such
that 1

n logM ≥ C + ε for all n.

7.4 Achievability

We have shown in the last section that the channel capacity C is an upper
bound on all achievable rates for a DMC. In this section, we show that the
rate C is achievable, which implies that any rate R ≤ C is achievable.
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Consider a DMC p(y|x), and denote the input and the output of the generic
discrete channel by X and Y , respectively. For every input distribution p(x),
we will prove that the rate I(X;Y ) is achievable by showing for large n the
existence of a channel code such that

1. the rate of the code is arbitrarily close to I(X;Y );
2. the maximal probability of error λmax is arbitrarily small.

Then by choosing the input distribution p(x) to be one which achieves the
channel capacity, i.e., I(X;Y ) = C, we conclude that the rate C is achievable.

Before we prove the achievability of the channel capacity, we first prove
the following lemma.

Lemma 7.17. Let (X′,Y′) be n i.i.d. copies of a pair of generic random vari-
ables (X ′, Y ′), where X ′ and Y ′ are independent and have the same marginal
distributions as X and Y , respectively. Then

Pr{(X′,Y′) ∈ Tn[XY ]δ} ≤ 2−n(I(X;Y )−τ), (7.136)

where τ → 0 and δ → 0.

Proof. Consider

Pr{(X′,Y′) ∈ Tn[XY ]δ} =
∑

(x,y)∈Tn[XY ]δ

p(x)p(y). (7.137)

By the consistency of strong typicality, for (x,y) ∈ Tn[XY ]δ, x ∈ Tn[X]δ and
y ∈ Tn[Y ]δ. By the strong AEP, all the p(x) and p(y) in the above summation
satisfy

p(x) ≤ 2−n(H(X)−η) (7.138)

and
p(y) ≤ 2−n(H(Y )−ζ), (7.139)

where η, ζ → 0 as δ → 0. Again by the strong JAEP,

|Tn[XY ]δ| ≤ 2n(H(X,Y )+ξ), (7.140)

where ξ → 0 as δ → 0. Then from (7.137), we have

Pr{(X′,Y′) ∈ Tn[XY ]δ}

≤ 2n(H(X,Y )+ξ) · 2−n(H(X)−η) · 2−n(H(Y )−ζ) (7.141)
= 2−n(H(X)+H(Y )−H(X,Y )−ξ−η−ζ) (7.142)
= 2−n(I(X;Y )−ξ−η−ζ) (7.143)
= 2−n(I(X;Y )−τ), (7.144)

where
τ = ξ + η + ζ → 0 (7.145)
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as δ → 0. The lemma is proved. ut

Fix any ε > 0 and let δ be a small positive quantity to be specified later.
Toward proving the existence of a desired code, we fix an input distribution
p(x) for the generic discrete channel p(y|x), and let M be an even integer
satisfying

I(X;Y )− ε

2
<

1
n

logM < I(X;Y )− ε

4
, (7.146)

where n is sufficiently large. We now describe a random coding scheme in the
following steps:

1. Construct the codebook C of an (n,M) code randomly by generating M
codewords in Xn independently and identically according to p(x)n. Denote
these codewords by X̃(1), X̃(2), · · · , X̃(M).

2. Reveal the codebook C to both the encoder and the decoder.
3. A message W is chosen from W according to the uniform distribution.
4. The sequence X = X̃(W ), namely the W th codeword in the codebook C,

is transmitted through the channel.
5. The channel outputs a sequence Y according to

Pr{Y = y|X̃(W ) = x} =
n∏
i=1

p(yi|xi) (7.147)

(cf. (7.101) and Remark 1 in Section 7.6).
6. The sequence Y is decoded to the message w if (X̃(w),Y) ∈ Tn[XY ]δ and

there does not exists w′ 6= w such that (X̃(w′),Y) ∈ Tn[XY ]δ. Otherwise,

Y is decoded to a constant message in W. Denote by Ŵ the message to
which Y is decoded.

Remark 1 There are a total of |X |Mn possible codebooks which can be
constructed in Step 1 of the random coding scheme, where we regard two
codebooks whose sets of codewords are permutations of each other as two
different codebooks.

Remark 2 Strong typicality is used in defining the decoding function in
Step 6. This is made possible by the assumption that the alphabets X and Y
are finite.

We now analyze the performance of this random coding scheme. Let

Err = {Ŵ 6= W} (7.148)

be the event of a decoding error. In the following, we analyze Pr{Err}, the
probability of a decoding error for the random code constructed above. For
all 1 ≤ w ≤M , define the event
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Ew = {(X̃(w),Y) ∈ Tn[XY ]δ}. (7.149)

Now

Pr{Err} =
M∑
w=1

Pr{Err |W = w}Pr{W = w}. (7.150)

Since Pr{Err |W = w} are identical for all w by symmetry in the code con-
struction, we have

Pr{Err} = Pr{Err |W = 1}
M∑
w=1

Pr{W = w} (7.151)

= Pr{Err |W = 1}, (7.152)

i.e., we can assume without loss of generality that the message 1 is chosen.
Then decoding is correct if the received sequence Y is decoded to the message
1. This is the case if E1 occurs but Ew does not occur for all 2 ≤ w ≤ M . It
follows that5

Pr{Err c|W = 1} ≥ Pr{E1 ∩ Ec2 ∩ Ec3 ∩ · · · ∩ EcM |W = 1}, (7.153)

which implies

Pr{Err |W = 1}
= 1− Pr{Err c|W = 1} (7.154)
≤ 1− Pr{E1 ∩ Ec2 ∩ Ec3 ∩ · · · ∩ EcM |W = 1} (7.155)
= Pr{(E1 ∩ Ec2 ∩ Ec3 ∩ · · · ∩ EcM )c|W = 1} (7.156)
= Pr{Ec1 ∪ E2 ∪ E3 ∪ · · · ∪ EM |W = 1}. (7.157)

By the union bound, we have

Pr{Err |W = 1} ≤ Pr{Ec1|W = 1}+
M∑
w=2

Pr{Ew|W = 1}. (7.158)

First, conditioning on {W = 1}, (X̃(1),Y) are n i.i.d. copies of the pair
of generic random variables (X,Y ). By the strong JAEP (Theorem 6.9), for
any ν > 0,

Pr{Ec1|W = 1} = Pr{(X̃(1),Y) 6∈ Tn[XY ]δ|W = 1} < ν (7.159)

for sufficiently large n. This gives an upper bound on the first term on the
right hand side of (7.158).

5 If E1 does not occur or Ew occurs for some 1 ≤ w ≤ M , the received sequence
Y is decoded to the constant message, which may happen to be the message 1.
Therefore, the inequality in (7.153) is not an equality in general.
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Second, conditioning on {W = 1}, for 2 ≤ w ≤ M , (X̃(w),Y) are n
i.i.d. copies of the pair of generic random variables (X ′, Y ′), where X ′ and Y ′

have the same marginal distributions as X and Y , respectively. Furthermore,
from the random coding scheme and the memorylessness of the DMC, it is
intuitively correct that X ′ and Y ′ are independent because X̃(1) and X̃(w)
are independent and the generation of Y depends only on X̃(1).

A formal proof of this claim requires a more detailed analysis. In our
random coding scheme, the random variables are generated in the order
X̃(1), X̃(2), · · · , X̃(M),W,X1, Y1, X2, Y2, · · · , Xn, Yn, Ŵ . By considering the
joint distribution of these random variables, similar to the discussion in Sec-
tion 7.3, the Markov chain

(X̃(1), X̃(2), · · · , X̃(M),W )→ X→ Y → Ŵ (7.160)

can be established. See Problem 1 for the details. Then for any 2 ≤ w ≤ M ,
from the above Markov chain, we have

I(Y; X̃(w),W |X) = 0. (7.161)

By the chain rule for mutual information, the left hand side can be written as

I(Y;W |X) + I(Y; X̃(w)|X,W ). (7.162)

By the nonnegativity of conditional mutual information, this implies

I(Y; X̃(w)|X,W ) = 0, (7.163)

or
M∑
w=1

Pr{W = w}I(Y; X̃(w)|X,W = w) = 0. (7.164)

Since I(Y; X̃(w)|X,W = w) are all nonnegative, we see from the above that
they must all vanish. In particular,

I(Y; X̃(w)|X,W = 1) = 0. (7.165)

Then

I(Y; X̃(w)|X̃(1),W = 1) = I(Y; X̃(w)|X̃(W ),W = 1) (7.166)
= I(Y; X̃(w)|X,W = 1) (7.167)
= 0. (7.168)

On the other hand, since X̃(1), X̃(w), and W are mutually independent, we
have

I(X̃(1); X̃(w)|W = 1) = 0. (7.169)

Hence,



158 7 Discrete Memoryless Channels

I(Y; X̃(w)|W = 1)
≤ I(X̃(1),Y; X̃(w)|W = 1) (7.170)
= I(X̃(1); X̃(w)|W = 1) + I(Y; X̃(w)|X̃(1),W = 1) (7.171)
= 0 + 0 (7.172)
= 0, (7.173)

where (7.172) follows from (7.168) and (7.169), proving the claim.
Let us now return to (7.158). For any 2 ≤ w ≤ M , it follows from the

above claim and Lemma 7.17 that

Pr{Ew|W = 1}
= Pr{(X̃(w),Y) ∈ Tn[XY ]δ|W = 1} (7.174)

≤ 2−n(I(X;Y )−τ), (7.175)

where τ → 0 as δ → 0.
From the upper bound in (7.146), we have

M < 2n(I(X;Y )− ε4 ). (7.176)

Using (7.159), (7.175), and the above upper bound on M , it follows from
(7.152) and (7.158) that

Pr{Err} < ν + 2n(I(X;Y )− ε4 ) · 2−n(I(X;Y )−τ) (7.177)
= ν + 2−n( ε4−τ). (7.178)

Since τ → 0 as δ → 0, for sufficiently small δ, we have
ε

4
− τ > 0 (7.179)

for any ε > 0, so that 2−n( ε4−τ) → 0 as n → ∞. Then by letting ν < ε
3 , it

follows from (7.178) that
Pr{Err} < ε

2
(7.180)

for sufficiently large n.
The main idea of the above analysis of Pr{Err} is the following. In con-

structing the codebook, we randomly generate M codewords in Xn according
to p(x)n, and one of the codewords is sent through the channel p(y|x). When n
is large, with high probability, the received sequence is jointly typical with the
codeword sent with respect to p(x, y). If the number of codewords M grows
with n at a rate less than I(X;Y ), then the probability that the received
sequence is jointly typical with a codeword other than the one sent through
the channel is negligible. Accordingly, the message can be decoded correctly
with probability arbitrarily close to 1.

In constructing the codebook in Step 1 of the random coding scheme, we
choose a codebook C with a certain probability Pr{C} from the ensemble of
all possible codebooks. By conditioning on the codebook chosen, we have
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Pr{Err} =
∑
C

Pr{C}Pr{Err |C}, (7.181)

i.e., Pr{Err} is a weighted average of Pr{Err |C} over all C in the ensemble
of all possible codebooks, where Pr{Err |C} is the average probability of error
of the code, i.e., Pe, when the codebook C is chosen (cf. Definition 7.12). The
reader should compare the two different expansions of Pr{Err} in (7.181) and
(7.150).

Therefore, there exists at least one codebook C∗ such that

Pr{Err |C∗} ≤ Pr{Err} < ε

2
. (7.182)

Thus we have shown that for any ε > 0, there exists for sufficiently large n an
(n,M) code such that

1
n

logM > I(X;Y )− ε

2
(7.183)

(cf. (7.146)) and
Pe <

ε

2
. (7.184)

We are still one step away from proving that the rate I(X;Y ) is achievable
because we require that λmax instead of Pe is arbitrarily small. Toward this
end, we write (7.184) as

1
M

M∑
w=1

λw <
ε

2
, (7.185)

or
M∑
w=1

λw <

(
M

2

)
ε. (7.186)

Upon ordering the codewords according to their conditional probabilities of
error, we observe that the conditional probabilities of error of the better half
of the M codewords are less than ε, otherwise the conditional probabilities of
error of the worse half of the codewords are at least ε, and they contribute at
least (M2 )ε to the summation in (7.186), which is a contradiction.

Thus by discarding the worse half of the codewords in C∗, for the resulting
codebook, the maximal probability of error λmax is less than ε. Using (7.183)
and considering

1
n

log
M

2
=

1
n

logM − 1
n

(7.187)

>
(
I(X;Y )− ε

2

)
− 1
n

(7.188)

> I(X;Y )− ε (7.189)

when n is sufficiently large, we see that the rate of the resulting code is greater
than I(X;Y )− ε. Hence, we conclude that the rate I(X;Y ) is achievable.
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Finally, upon letting the input distribution p(x) be one which achieves
the channel capacity, i.e., I(X;Y ) = C, we have proved that the rate C is
achievable. This completes the proof of the direct part of the channel coding
theorem.

7.5 A Discussion

In the last two sections, we have proved the channel coding theorem which
asserts that reliable communication through a DMC at rate R is possible if
and only if R < C, the channel capacity. By reliable communication at rate R,
we mean that the size of the message set grows exponentially with n at rate R,
while the message can be decoded correctly with probability arbitrarily close
to 1 as n → ∞. Therefore, the capacity C is a fundamental characterization
of a DMC.

The capacity of a noisy channel is analogous to the capacity of a water
pipe in the following way. For a water pipe, if we pump water through the
pipe at a rate higher than its capacity, the pipe would burst and water would
be lost. For a communication channel, if we communicate through the channel
at a rate higher than the capacity, the probability of error is bounded away
from zero, i.e., information is lost.

In proving the direct part of the channel coding theorem, we showed that
there exists a channel code whose rate is arbitrarily close to C and whose
probability of error is arbitrarily close to zero. Moreover, the existence of such
a code is guaranteed only when the block length n is large. However, the proof
does not indicate how we can find such a codebook. For this reason, the proof
we gave is called an existence proof (as oppose to a constructive proof).

For a fixed block length n, we in principle can search through the ensemble
of all possible codebooks for a good one, but this is quite prohibitive even for
small n because the number of all possible codebooks grows doubly exponen-
tially with n. Specifically, the total number of all possible (n,M) codebooks is
equal to |X |Mn. When the rate of the code is close to C, M is approximately
equal to 2nC . Therefore, the number of codebooks we need to search through
is about |X |n2nC .

Nevertheless, the proof of the direct part of the channel coding theorem
does indicate that if we generate a codebook randomly as prescribed, the
codebook is most likely to be good. More precisely, we now show that the
probability of choosing a code C such that Pr{Err |C} is greater than any
prescribed ψ > 0 is arbitrarily small when n is sufficiently large. Consider

Pr{Err} =
∑
C

Pr{C}Pr{Err |C} (7.190)

=
∑

C:Pr{Err |C}≤ψ

Pr{C}Pr{Err |C}
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+
∑

C:Pr{Err |C}>ψ

Pr{C}Pr{Err |C} (7.191)

≥
∑

C:Pr{Err |C}>ψ

Pr{C}Pr{Err |C} (7.192)

> ψ
∑

C:Pr{Err |C}>ψ

Pr{C}, (7.193)

which implies ∑
C:Pr{Err |C}>ψ

Pr{C} < Pr{Err}
ψ

. (7.194)

From (7.182), we have
Pr{Err} < ε

2
(7.195)

for any ε > 0 when n is sufficiently large. Then∑
C:Pr{Err |C}>ψ

Pr{C} < ε

2ψ
. (7.196)

Since ψ is fixed, this upper bound can be made arbitrarily small by choosing
a sufficiently small ε.

Although the proof of the direct part of the channel coding theorem does
not provide an explicit construction of a good code, it does give much insight
into what a good code is like. Figure 7.12 is an illustration of a channel code
which achieves the channel capacity. Here we assume that the input distribu-

.
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Fig. 7.12. A channel code which achieves capacity.

tion p(x) is one which achieves the channel capacity, i.e., I(X;Y ) = C. The
idea is that most of the codewords are typical sequences in Xn with respect
to p(x). (For this reason, the repetition code is not a good code.) When such
a codeword is transmitted through the channel, the received sequence is likely
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to be one of about 2nH(Y |X) sequences in Yn which are jointly typical with
the transmitted codeword with respect to p(x, y). The association between a
codeword and the about 2nH(Y |X) corresponding sequences in Yn is shown as
a cone in the figure. As we require that the probability of decoding error is
small, the cones essentially do not overlap with each other. Since the num-
ber of typical sequences with respect to p(y) is about 2nH(Y ), the number of
codewords cannot exceed about

2nH(Y )

2nH(Y |X)
= 2nI(X;Y ) = 2nC . (7.197)

This is consistent with the converse of the channel coding theorem. The direct
part of the channel coding theorem says that when n is large, as long as the
number of codewords generated randomly is not more than about 2n(C−ε),
the overlap among the cones is negligible with high probability.

Therefore, instead of searching through the ensemble of all possible code-
books for a good one, we can generate a codebook randomly, and it is likely
to be good. However, such a code is difficult to use due to the following im-
plementation issues.

A codebook with block length n and rate R consists of n2nR symbols from
the input alphabet X . This means that the size of the codebook, i.e., the
amount of storage required to store the codebook, grows exponentially with
n. This also makes the encoding process inefficient.

Another issue is regarding the computation required for decoding. Based
on the sequence received at the output of the channel, the decoder needs
to decide which of the about 2nR codewords was the one transmitted. This
requires an exponential amount of computation.

In practice, we are satisfied with the reliability of communication once
it exceeds a certain level. Therefore, the above implementation issues may
eventually be resolved with the advancement of microelectronics. But before
then, we still have to deal with these issues. For this reason, the entire field of
coding theory has been developed since the 1950’s. Researchers in this field are
devoted to searching for good codes and devising efficient decoding algorithms.

In fact, almost all the codes studied in coding theory are linear codes. By
taking advantage of the linear structures of these codes, efficient encoding and
decoding can be achieved. In particular, Berrou et al. [32] have proposed a
linear code called the turbo code6 in 1993, which is now generally believed to
be the practical way to achieve the channel capacity.

Today, channel coding has been widely used in home entertainment sys-
tems (e.g., audio CD and DVD), computer storage systems (e.g., CD-ROM,
hard disk, floppy disk, and magnetic tape), computer communication, wireless

6 The turbo code is a special case of the class of Low-density parity-check (LDPC)
codes proposed by Gallager [115] in 1962 (see MacKay [215]). However, the per-
formance of such codes was not known at that time due to lack of high speed
computers for simulation.
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communication, and deep space communication. The most popular channel
codes used in existing systems include the Hamming code, the Reed-Solomon
code7, the BCH code, and convolutional codes. We refer the interested reader
to textbooks on coding theory [37] [209] [341] for discussions of this subject.

7.6 Feedback Capacity

Feedback is common in practical communication systems for correcting possi-
ble errors which occur during transmission. As an example, during a telephone
conversation, we often have to request the speaker to repeat due to poor voice
quality of the telephone line. As another example, in data communication the
receiver may request a packet to be retransmitted if the parity check bits re-
ceived are incorrect. In general, when feedback from the receiver is available
at the transmitter, the transmitter can at any time decide what to transmit
next based on the feedback so far, and can potentially transmit information
through the channel reliably at a higher rate.

In this section, we study a model in which a DMC is used with complete
feedback. The block diagram for the model is shown in Figure 7.13. In this

Encoder Channel 
p ( y | x ) Decoder 

X i =f i ( W, Y i- 1 ) 

Y i W 

Estimate 
of message 

W 

Message 

Fig. 7.13. A channel code with feedback.

model, the symbol Yi received at the output of the channel at time i is available
instantaneously at the encoder without error. Then depending on the message
W and all the previous feedback Y1, Y2, · · · , Yi, the encoder decides the value
of Xi+1, the next symbol to be transmitted. Such a channel code is formally
defined below.

Definition 7.18. An (n,M) code with complete feedback for a discrete mem-
oryless channel with input alphabet X and output alphabet Y is defined by
encoding functions

fi : {1, 2, · · · ,M} × Yi−1 → X (7.198)

for 1 ≤ i ≤ n and a decoding function

g : Yn → {1, 2, · · · ,M}. (7.199)

7 The Reed-Solomon code was independently discovered by Arimoto [17].
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We will use Yi to denote (Y1, Y2, · · · , Yi) and Xi to denote fi(W,Yi−1).
We note that a channel code without feedback is a special case of a channel
code with complete feedback because for the latter, the encoder can ignore
the feedback.

Definition 7.19. A rate R is achievable with complete feedback for a discrete
memoryless channel p(y|x) if for any ε > 0, there exists for sufficiently large
n an (n,M) code with complete feedback such that

1
n

logM > R− ε (7.200)

and
λmax < ε. (7.201)

Definition 7.20. The feedback capacity, CFB, of a discrete memoryless chan-
nel is the supremum of all the rates achievable by codes with complete feedback.

Proposition 7.21. The supremum in the definition of CFB in Definition 7.20
is the maximum.

Proof. Consider rates R(k) which are achievable with complete feedback such
that

lim
k→∞

R(k) = R. (7.202)

Then for any ε > 0, for all k, there exists for sufficiently large n an (n,M (k))
code with complete feedback such that

1
n

logM (k) > R(k) − ε (7.203)

and
λ(k)
max < ε. (7.204)

By virtue of (7.202), let k(ε) be an integer such that for all k > k(ε),

|R−R(k)| < ε, (7.205)

which implies
R(k) > R− ε. (7.206)

Then for all k > k(ε),

1
n

logM (k) > R(k) − ε > R− 2ε. (7.207)

Therefore, it follows from (7.207) and (7.204) that R is achievable with com-
plete feedback. This implies that the supremum in Definition 7.20, which can
be achieved, is in fact the maximum. ut
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Since a channel code without feedback is a special case of a channel code
with complete feedback, any rate R achievable by the former is also achievable
by the latter. Therefore,

CFB ≥ C. (7.208)

A fundamental question is whether CFB is greater than C. The answer
surprisingly turns out to be negative for a DMC, as we now show. From the
description of a channel code with complete feedback, we obtain the depen-
dency graph for the random variables W,X,Y, Ŵ in Figure 7.14. From this

X 1 

X 2 

X 3 

Y 1 

Y 2 

Y 3 

X n Y n 

W W 

Y n- 1 

p (       ) y x | 

Fig. 7.14. The dependency graph for a channel code with feedback.

dependency graph, we see that

q(w,x,y, ŵ) = q(w)

(
n∏
i=1

q(xi|w,yi−1)

)(
n∏
i=1

p(yi|xi)

)
q(ŵ|y) (7.209)

for all (w,x,y, ŵ) ∈ W × Xn × Yn ×W such that q(w,yi−1), q(xi) > 0 for
1 ≤ i ≤ n and q(y) > 0, where yi = (y1, y2, · · · , yi). Note that q(xi|w,yi−1)
and q(ŵ|y) are deterministic.

Lemma 7.22. For all 1 ≤ i ≤ n,

(W,Yi−1)→ Xi → Yi (7.210)

forms a Markov chain.

Proof. The dependency graph for the random variables W,Xi, and Yi is
shown in Figure 7.15. Denote the set of nodes W,Xi−1, and Yi−1 by Z.
Then we see that all the edges from Z end at Xi, and the only edge from Xi

ends at Yi. This means that Yi depends on (W,Xi−1,Yi−1) only through Xi,
i.e.,
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(W,Xi−1,Yi−1)→ Xi → Yi (7.211)

forms a Markov chain, or

I(W,Xi−1,Yi−1;Yi|Xi) = 0. (7.212)

This can be formally justified by Proposition 2.9, and the details are omitted
here. Since

0 = I(W,Xi−1,Yi−1;Yi|Xi) (7.213)
= I(W,Yi−1;Yi|Xi) + I(Xi−1;Yi|W,Xi,Yi−1) (7.214)

and mutual information is nonnegative, we obtain

I(W,Yi−1;Yi|Xi) = 0, (7.215)

or
(W,Yi−1)→ Xi → Yi (7.216)

forms a Markov chain. The lemma is proved. ut

X i 

X 1 

X 2 
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Y 1 

Y 2 
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Y i- 1 X i- 1 

Z 

Fig. 7.15. The dependency graph for W,Xi, and Yi.

From the definition of CFB and by virtue of Proposition 7.21, if R ≤ CFB,
then R is a rate achievable with complete feedback. We will show that if a rate
R is achievable with complete feedback, then R ≤ C. If so, then R ≤ CFB
implies R ≤ C, which can be true if and only if CFB ≤ C. Then from (7.208),
we can conclude that CFB = C.

Let R be a rate achievable with complete feedback, i.e., for any ε > 0,
there exists for sufficiently large n an (n,M) code with complete feedback
such that
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n−1 logM > R− ε (7.217)

and
λmax < ε. (7.218)

Consider
logM = H(W ) = I(W ; Y) +H(W |Y) (7.219)

and bound I(W ; Y) and H(W |Y) as follows. First,

I(W ; Y) = H(Y)−H(Y|W ) (7.220)

= H(Y)−
n∑
i=1

H(Yi|Yi−1,W ) (7.221)

a)
= H(Y)−

n∑
i=1

H(Yi|Yi−1,W,Xi) (7.222)

b)
= H(Y)−

n∑
i=1

H(Yi|Xi) (7.223)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi) (7.224)

=
n∑
i=1

I(Xi;Yi) (7.225)

≤ nC, (7.226)

where a) follows because Xi is a function of W and Yi−1 and b) follows from
Lemma 7.22. Second,

H(W |Y) = H(W |Y, Ŵ ) ≤ H(W |Ŵ ). (7.227)

Thus
logM ≤ H(W |Ŵ ) + nC, (7.228)

which is the same as (7.126). Then by (7.217) and an application of Fano’s
inequality, we conclude as in the proof for the converse of the channel coding
theorem that

R ≤ C. (7.229)

Hence, we have proved that CFB = C.

Remark 1 The proof for the converse of the channel coding theorem in
Section 7.3 depends critically on the Markov chain

W → X→ Y → Ŵ (7.230)

and the relation in (7.101) (the latter implies Lemma 7.16). Both of them do
not hold in general in the presence of feedback.
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Remark 2 The proof for CFB = C in this section is also a proof for the
converse of the channel coding theorem, so we actually do not need the proof in
Section 7.3. However, the proof here and the proof in Section 7.3 have different
spirits. Without comparing the two proofs, one cannot possibly understand
the subtlety of the result that feedback does not increase the capacity of a
DMC.

Remark 3 Although feedback does not increase the capacity of a DMC, the
availability of feedback often makes coding much simpler. For some channels,
communication through the channel with zero probability of error can be
achieved in the presence of feedback by using a variable-length channel code.
These are discussed in the next example.

Example 7.23. Consider the binary erasure channel in Example 7.8 whose ca-
pacity is 1−γ, where γ is the erasure probability. In the presence of complete
feedback, for every information bit to be transmitted, the encoder can trans-
mit the same information bit through the channel until an erasure does not
occur, i.e., the information bit is received correctly. Then the number of uses
of the channel it takes to transmit an information bit through the channel
correctly has a truncated geometrical distribution whose mean is (1 − γ)−1.
Therefore, the effective rate at which information can be transmitted through
the channel is 1−γ. In other words, the channel capacity is achieved by using
a very simple variable-length code. Moreover, the channel capacity is achieved
with zero probability of error.

In the absence of feedback, the rate 1 − γ can also be achieved, but with
an arbitrarily small probability of error and a much more complicated code.

To conclude this section, we point out that the memoryless assumption
of the channel is essential for drawing the conclusion that feedback does not
increase the channel capacity not because the proof presented in this section
does not go through without this assumption, but because if the channel has
memory, feedback actually can increase the channel capacity. For an illustrat-
ing example, see Problem 12.

7.7 Separation of Source and Channel Coding

We have so far considered the situation in which we want to convey a message
through a DMC, where the message is randomly selected from a finite set
according to the uniform distribution. However, in most situations, we want
to convey an information source through a DMC. Let {Uk, k > −n} be an
ergodic stationary information source with entropy rate H. Denote the com-
mon alphabet by U and assume that U is finite. To convey {Uk} through the
channel, we can employ a source code with rate Rs and a channel code with
rate Rc as shown in Figure 7.16 such that Rs < Rc.
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source 
encoder 

X Y 
U channel 

encoder 
p (       ) y x | source 

decoder 
channel 
decoder 

W W 
U 

Fig. 7.16. Separation of source coding and channel coding.

Let fs and gs be respectively the encoding function and the decoding func-
tion of the source code, and f c and gc be respectively the encoding function
and the decoding function of the channel code. The block of n information
symbols U = (U−(n−1), U−(n−2), · · · , U0) is first encoded by the source encoder
into an index

W = fs(U), (7.231)

called the source codeword. Then W is mapped by the channel encoder to a
distinct channel codeword

X = f c(W ), (7.232)

where X = (X1, X2, · · · , Xn). This is possible because there are about 2nRs
source codewords and about 2nRc channel codewords, and we assume that
Rs < Rc. Then X is transmitted through the DMC p(y|x), and the sequence
Y = (Y1, Y2, · · · , Yn) is received. Based on Y, the channel decoder first esti-
mates W as

Ŵ = gc(Y). (7.233)

Finally, the source decoder decodes Ŵ to

Û = gs(Ŵ ). (7.234)

For this scheme, an error occurs if U 6= Û, and we denote the probability of
error by Pe.

We now show that if H < C, the capacity of the DMC p(y|x), then it is
possible to convey U through the channel with an arbitrarily small probability
of error. First, we choose Rs and Rc such that

H < Rs < Rc < C. (7.235)

Observe that if Ŵ = W and gs(W ) = U, then from (7.234),

Û = gs(Ŵ ) = gs(W ) = U, (7.236)

i.e., an error does not occur. In other words, if an error occurs, either Ŵ 6= W
or gs(W ) 6= U. Then by the union bound, we have

Pe ≤ Pr{Ŵ 6= W}+ Pr{gs(W ) 6= U}. (7.237)

For any ε > 0 and sufficiently large n, by the Shannon-McMillan-Breiman
theorem, there exists a source code such that

Pr{gs(W ) 6= U} ≤ ε. (7.238)
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By the channel coding theorem, there exists a channel code such that λmax ≤
ε, where λmax is the maximal probability of error. This implies

Pr{Ŵ 6= W} =
∑
w

Pr{Ŵ 6= W |W = w}Pr{W = w} (7.239)

≤ λmax
∑
w

Pr{W = w} (7.240)

= λmax (7.241)
≤ ε. (7.242)

Combining (7.238) and (7.242), we have

Pe ≤ 2ε. (7.243)

Therefore, we conclude that as long as H < C, it is possible to convey {Uk}
through the DMC reliably.

In the scheme we have discussed, source coding and channel coding are
separated. In general, source coding and channel coding can be combined.
This technique is called joint source-channel coding. It is then natural to ask
whether it is possible to convey information through the channel reliably at a
higher rate by using joint source-channel coding. In the rest of the section, we
show that the answer to this question is no to the extent that for asymptotic
reliability, we must have H ≤ C. However, whether asymptotical reliability
can be achieved for H = C depends on the specific information source and
channel.

We base our discussion on the general assumption that complete feedback
is available at the encoder as shown in Figure 7.17. Let fsci , 1 ≤ i ≤ n, be

Y i 
U p (       ) y x | U 

X i =f i   ( W, Y i - 1 ) sc 

source- 
channel 
encoder 

source- 
channel 
decoder 

Fig. 7.17. Joint source-channel coding.

the encoding functions and gsc be the decoding function of the source-channel
code. Then

Xi = fsci (U,Yi−1) (7.244)

for 1 ≤ i ≤ n, where Yi−1 = (Y1, Y2, · · · , Yi−1), and

Û = gsc(Y), (7.245)
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where Û = (Û1, Û2, · · · , Ûn). In exactly the same way as we proved (7.226) in
the last section, we can prove that

I(U; Y) ≤ nC. (7.246)

Since Û is a function of Y,

I(U; Û) ≤ I(U; Û,Y) (7.247)
= I(U; Y) (7.248)
≤ nC. (7.249)

For any ε > 0,
H(U) ≥ n(H − ε) (7.250)

for sufficiently large n. Then

n(H − ε) ≤ H(U) = H(U|Û) + I(U; Û) ≤ H(U|Û) + nC. (7.251)

Applying Fano’s inequality (Corollary 2.48), we obtain

n(H − ε) ≤ 1 + nPe log |U|+ nC, (7.252)

or
H − ε ≤ 1

n
+ Pe log |U|+ C. (7.253)

For asymptotic reliability, Pe → 0 as n → ∞. Therefore, by letting n → ∞
and then ε→ 0, we conclude that

H ≤ C. (7.254)

This result, sometimes called the separation theorem for source and chan-
nel coding, says that asymptotic optimality can be achieved by separating
source coding and channel coding. This theorem has significant engineering
implication because the source code and the channel code can be designed
separately without losing asymptotic optimality. Specifically, we only need
to design the best source code for the information source and design the best
channel code for the channel. Moreover, separation of source coding and chan-
nel coding facilitates the transmission of different information sources on the
same channel because we need only change the source code for different in-
formation sources. Likewise, separation of source coding and channel coding
also facilitates the transmission of an information source on different channels
because we need only change the channel code for different channels.

We remark that although asymptotic optimality can be achieved by sep-
arating source coding and channel coding, for finite block length, the proba-
bility of error generally can be reduced by using joint source-channel coding.
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Problems

In the following, X = (X1, X2, · · · , Xn), x = (x1, x2, · · · , xn), and so on.

1. Refer to the discussion in Section 7.4.
a) Construct the dependency graph for the random variables involved in

the random coding scheme.
b) By considering the joint distribution of these random variables, prove

the Markov chain in (7.160).
2. Show that the capacity of a DMC with complete feedback cannot be

increased by using probabilistic encoding and/or decoding schemes.
3. Memory increases capacity Consider a BSC with crossover probability

0 < ε < 1 represented by Xi = Yi + Zi mod 2, where Xi, Yi, and Zi are
respectively the input, the output, and the noise variable at time i. Then

Pr{Zi = 0} = 1− ε and Pr{Zi = 1} = ε

for all i. We assume that {Xi} and {Zi} are independent, but we make
no assumption that Zi are i.i.d. so that the channel may have memory.
a) Prove that

I(X; Y) ≤ n− hb(ε).

b) Show that the upper bound in a) can be achieved by letting Xi be
i.i.d. bits taking the values 0 and 1 with equal probability and Z1 =
Z2 = · · · = Zn.

c) Show that with the assumptions in b), I(X; Y) > nC, where C =
1− hb(ε) is the capacity of the BSC if it is memoryless.

4. Consider the channel in Problem 3, Part b).
a) Show that the channel capacity is not increased by feedback.
b) Devise a coding scheme without feedback that achieves the channel

capacity.
5. In Remark 1 toward the end of Section 7.6, it was mentioned that in the

presence of feedback, both the Markov chain W → X → Y → Ŵ and
Lemma 7.16 do not hold in general. Give examples to substantiate this
remark.

6. Prove that when a DMC is used with complete feedback,

Pr{Yi = yi|Xi = xi,Yi−1 = yi−1} = Pr{Yi = yi|Xi = xi}

for all i ≥ 1. This relation, which is a consequence of the causality of
the code, says that given the current input, the current output does not
depend on all the past inputs and outputs of the DMC.

7. Let

P (ε) =
[

1− ε ε
ε 1− ε

]
be the transition matrix for a BSC with crossover probability ε. Define
a ∗ b = (1− a)b+ a(1− b) for 0 ≤ a, b ≤ 1.
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a) Prove that a DMC with transition matrix P (ε1)P (ε2) is equivalent to
a BSC with crossover probability ε1 ∗ε2. Such a channel is the cascade
of two BSC’s with crossover probabilities ε1 and ε2, respectively.

b) Repeat a) for a DMC with transition matrix P (ε2)P (ε1).
c) Prove that

1− hb(ε1 ∗ ε2) ≤ min(1− hb(ε1), 1− hb(ε2)).

This means that the capacity of the cascade of two BSC’s is upper
bounded by the capacity of either of the two BSC’s.

d) Prove that a DMC with transition matrix P (ε)n is equivalent to a
BSC with crossover probabilities 1

2 (1− (1− 2ε)n).
8. Symmetric channel A DMC is symmetric if the rows of the transition

matrix p(y|x) are permutations of each other and so are the columns.
Determine the capacity of such a channel.
See Section 4.5 in Gallager [117] for a more general discussion.

9. Let C1 and C2 be the capacities of two DMC’s with transition matrices P1

and P2, respectively, and let C be the capacity of the DMC with transition
matrix P1P2. Prove that C ≤ min(C1, C2).

10. Two parallel channels Let C1 and C2 be the capacities of two DMC’s
p1(y1|x1) and p2(y2|x2), respectively. Determine the capacity of the DMC

p(y1, y2|x1, x2) = p1(y1|x1)p2(y2|x2).

Hint: Prove that

I(X1, X2;Y1, Y2) ≤ I(X1;Y1) + I(X2;Y2)

if p(y1, y2|x1, x2) = p1(y1|x1)p2(y2|x2).
11. In the system below, there are two channels with transition matrices

p1(y1|x) and p2(y2|x). These two channels have a common input alphabet
X and output alphabets Y1 and Y2, repespectively, where Y1 and Y2 are
disjoint. The position of the switch is determined by a random variable Z
which is independent of X, where Pr{Z = 1} = λ.

Y

Y

1

2

X Y

Z = 1

Z = 2

p (y |x)

p (y |x)

1

2

1

2
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a) Show that

I(X;Y ) = λI(X;Y1) + (1− λ)I(X;Y2).

b) The capacity of the system is given by C = maxp(x) I(X;Y ). Show
that C ≤ λC1 +(1−λ)C2, where Ci = maxp(x) I(X;Yi) is the capacity
of the channel with transition matrix pi(yi|x), i = 1, 2.

c) If both C1 and C2 can be achieved by a common input distribution,
show that C = λC1 + (1− λ)C2.

12. Feedback increases capacity Consider a ternary channel with memory with
input/output alphabet {0, 1, 2} as follows. At time 1, the output of the
channel Y1 has a uniform distribution on {0, 1, 2} and is independent of
the input X1 (i.e., the channel outputs each of the values 0, 1, and 2 with
probability 1

3 regardless of the input). At time 2, the transition from X2

to Y2 which depends on the value of Y1 is depicted below:

0

1

2

0

1

2

Y  = 01

0

1

2

0

1

2

0

1

2

0

1

2

1 1Y  = 1 Y  = 2

For every two subsequent transmissions, the channel replicates itself inde-
pendently. So we only need to consider the first two transmissions. In the
sequel, we regard this channel as described by a generic discrete channel
(with transmission duration equals 2) with two input symbols X1 and X2

and two output symbols Y1 and Y2, and we will refer to this channel as
the block channel.
a) Determine the capacity this block channel when it is used without

feedback. Hint: Use the results in Problems 8 and 11.
b) Consider the following coding scheme when the block channel is used

with feedback. Let the message W = (W1,W2) with W1 = {0, 1, 2}
and W2 = {0, 1}. Let W1 and W2 be independent, and each of them
distributes uniformly on its alphabet. First, Let X1 = W1 and trans-
mit X1 through the channel to obtain Y1, which is independent of X1.
Then based on the value of Y1, we determine X2 as follows:
i) If Y1 = 0, let X2 = 0 if W2 = 0, and let X2 = 1 if W2 = 1.
ii) If Y1 = 1, let X2 = 1 if W2 = 0, and let X2 = 2 if W2 = 1.

iii) If Y1 = 2, let X2 = 0 if W2 = 0, and let X2 = 2 if W2 = 1.
Then transmit X2 through the channel to obtain Y2. Based on this
coding scheme, show that for the capacity of this block channel can
be increased by feedback.

13. Channel with memory and directed information The memorylessness of a
DMC is characterized by the Markov chain Ti− → Xi → Yi according to
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the discussion following Definition 7.4. In general, a channel with memory
satisfies the Markov chain T ′i− → (Xi,Yi−1)→ Yi, where T ′i− denotes all
the random variables generated in the system before Xi (i.e., the random
variables denoted by Ti−) except for Xi−1 and Yi−1. Consider the use of
such a channel in the presence of complete feedback.
a) Give the dependency graph for all the random variables involved in the

coding scheme. Note that the memory of the channel is manifested by
the dependence of Yi on Xi−1 and Yi−1 (in addition to its dependence
on Xi) for 1 ≤ i ≤ n.

b) Verify the correctness of the following derivation:

I(W ; Y) = H(Y)−H(Y|W )

=
n∑
i=1

[H(Yi|Yi−1)−H(Yi|W,Yi−1)]

≤
n∑
i=1

[H(Yi|Yi−1)−H(Yi|W,Xi,Yi−1)]

=
n∑
i=1

[H(Yi|Yi−1)−H(Yi|Xi,Yi−1)]

=
n∑
i=1

I(Yi; Xi|Yi−1).

The above upper bound on I(W ; Y), denoted by I(X→ Y), is called
the directed information from X to Y.

c) Show that the inequality in the derivation in b) is in fact an equality.
Hint: Use Definition 7.18.

d) In the spirit of the informal discussion in Section 7.3, we impose the
constraint H(W |Y) = 0. Show that

H(W ) = I(X→ Y).

This is the generalization of (7.105) for a channel with memory in the
presence of complete feedback.

e) Show that I(X → Y) = I(X; Y) if the channel code does not make
use of the feedback. Hint: First show that

H(Yi|Xi,Yi−1) = H(Yi|W,Xi,Yi−1) = H(Yi|W,X,Yi−1).

(Marko [220] and Massey [224].)
14. Maximum likelihood decoding In maximum likelihood decoding for a given

channel and a given codebook, if a received sequence y is decoded to a
codeword x, then x maximizes Pr{y|x′} among all codewords x′ in the
codebook.
a) Prove that maximum likelihood decoding minimizes the average prob-

ability of error.
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b) Does maximum likelihood decoding also minimize the maximal prob-
ability of error? Give an example if your answer is no.

15. Minimum distance decoding The Hamming distance between two binary
sequences x and y, denoted by d(x,y), is the number of places where x and
y differ. In minimum distance decoding for a memoryless BSC, if a received
sequence y is decoded to a codeword x, then x minimizes d(x′,y) over all
codewords x′ in the codebook. Prove that minimum distance decoding is
equivalent to maximum likelihood decoding if the crossover probability of
the BSC is less than 0.5.

16. The following figure shows a communication system with two DMC’s with
complete feedback. The capacities of the two channels are respectively C1

and C2.

Decoder 
2 

W W Encoder 
1 

Channel 
1 

Encoder 
2 

Channel 
2 

a) Give the dependency graph for all the random variables involved in
the coding scheme.

b) Prove that the capacity of the system is min(C1, C2).
17. Binary arbitrarily varying channel Consider a memoryless BSC whose

crossover probability is time-varying. Specifically, the crossover probabil-
ity ε(i) at time i is an arbitrary value in [ε1, ε2], where 0 ≤ ε1 < ε2 < 0.5.
Prove that the capacity of this channel is 1 − hb(ε2). (Ahlswede and
Wolfowitz [12].)

18. Consider a BSC with crossover probability ε ∈ [ε1, ε2], where 0 < ε1 <
ε2 < 0.5, but the exact value of ε is unknown. Prove that the capacity of
this channel is 1− hb(ε2).

Historical Notes

The concept of channel capacity was introduced in Shannon’s original pa-
per [291], where he stated the channel coding theorem and outlined a proof.
The first rigorous proof was due to Feinstein [98]. The random coding error
exponent was developed by Gallager [116] in a simplified proof.

The converse of the channel coding theorem was proved by Fano [95],
where he used an inequality now bearing his name. The strong converse was
first proved by Wolfowitz [345]. An iterative algorithm for calculating the
channel capacity developed independently by Arimoto [18] and Blahut [35]
will be discussed in Chapter 9. Shannon [295] proved that the capacity of a
discrete memoryless channel cannot be increased by feedback.
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The definition of a discrete memoryless channel in this chapter is new.
With this definition, coding over such a channel with or without feedback can
be rigorously formulated.
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Rate-Distortion Theory

Let H be the entropy rate of an information source. By the source coding the-
orem, it is possible to design a source code with rate R which reconstructs the
source sequence X = (X1, X2, · · · , Xn) with an arbitrarily small probability
of error provided R > H and the block length n is sufficiently large. However,
there are situations in which we want to convey an information source by a
source code with rate less than H. Then we are motivated to ask: what is the
best we can do when R < H?

A natural approach is to design a source code such that for part of the time
the source sequence is reconstructed correctly, while for the other part of the
time the source sequence is reconstructed incorrectly, i.e., an error occurs. In
designing such a code, we try to minimize the probability of error. However,
this approach is not viable asymptotically because the converse of the source
coding theorem says that if R < H, then the probability of error inevitably
tends to 1 as n→∞.

Therefore, if R < H, no matter how the source code is designed, the source
sequence is almost always reconstructed incorrectly when n is large. An alter-
native approach is to design a source code called a rate-distortion code which
reproduces the source sequence with distortion. In order to formulate the
problem properly, we need a distortion measure between each source sequence
and each reproduction sequence. Then we try to design a rate-distortion code
which with high probability reproduces the source sequence with a distortion
within a tolerance level.

Clearly, a smaller distortion can potentially be achieved if we are allowed
to use a higher coding rate. Rate-distortion theory, the subject matter of this
chapter, gives a characterization of the asymptotic optimal tradeoff between
the coding rate of a rate-distortion code for a given information source and the
allowed distortion in the reproduction sequence with respect to a distortion
measure.
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8.1 Single-Letter Distortion Measures

Let {Xk, k ≥ 1} be an i.i.d. information source with generic random variable
X. We assume that the source alphabet X is finite. Let p(x) be the probability
distribution of X, and we assume without loss of generality that the support
of X is equal to X . Consider a source sequence

x = (x1, x2, · · · , xn) (8.1)

and a reproduction sequence

x̂ = (x̂1, x̂2, · · · , x̂n). (8.2)

The components of x̂ can take values in X , but more generally, they can take
values in any finite set X̂ which may be different from X . The set X̂ , which is
also assumed to be finite, is called the reproduction alphabet. To measure the
distortion between x and x̂, we introduce the single-letter distortion measure
and the average distortion measure.

Definition 8.1. A single-letter distortion measure is a mapping

d : X × X̂ → <+, (8.3)

where <+ is the set of nonnegative real numbers1. The value d(x, x̂) denotes
the distortion incurred when a source symbol x is reproduced as x̂.

Definition 8.2. The average distortion between a source sequence x ∈ Xn
and a reproduction sequence x̂ ∈ X̂n induced by a single-letter distortion mea-
sure d is defined by

d(x, x̂) =
1
n

n∑
k=1

d(xk, x̂k). (8.4)

In Definition 8.2, we have used d to denote both the single-letter distor-
tion measure and the average distortion measure, but this abuse of notation
should cause no ambiguity. Henceforth, we will refer to a single-letter distor-
tion measure simply as a distortion measure.

Very often, the source sequence x represents quantized samples of a con-
tinuous signal, and the user attempts to recognize certain objects and derive
meaning from the reproduction sequence x̂. For example, x may represent a
video signal, an audio signal, or an image. The ultimate purpose of a distor-
tion measure is to reflect the distortion between x and x̂ as perceived by the
user. This goal is difficult to achieve in general because measurements of the
distortion between x and x̂ must be made within context unless the symbols
in X carry no physical meaning. Specifically, when the user derives meaning

1 Note that d(x, x̂) is finite for all (x, x̂) ∈ X × X̂ .
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from x̂, the distortion in x̂ as perceived by the user depends on the context.
For example, the perceived distortion is small for a portrait contaminated by
a fairly large noise, while the perceived distortion is large for the image of a
book page contaminated by the same noise. Hence, a good distortion measure
should be context dependent.

Although the average distortion is not necessarily the best way to measure
the distortion between a source sequence and a reproduction sequence, it has
the merit of being simple and easy to use. Moreover, rate-distortion theory,
which is based on the average distortion measure, provides a framework for
data compression when distortion is inevitable.

Example 8.3. When the symbols in X and X̂ represent real values, a popular
distortion measure is the square-error distortion measure which is defined by

d(x, x̂) = (x− x̂)2. (8.5)

The average distortion measure so induced is often referred to as the mean-
square error.

Example 8.4. When X and X̂ are identical and the symbols in X do not carry
any particular meaning, a frequently used distortion measure is the Hamming
distortion measure, which is defined by

d(x, x̂) =
{

0 if x = x̂
1 if x 6= x̂. (8.6)

The Hamming distortion measure indicates the occurrence of an error. In
particular, for an estimate X̂ of X, we have

Ed(X, X̂) = Pr{X = X̂} · 0 + Pr{X 6= X̂} · 1 = Pr{X 6= X̂}, (8.7)

i.e., the expectation of the Hamming distortion measure between X and X̂ is
the probability of error.

For x ∈ Xn and x̂ ∈ X̂n, the average distortion d(x, x̂) induced by the
Hamming distortion measure gives the frequency of error in the reproduction
sequence x̂.

Definition 8.5. For a distortion measure d, for each x ∈ X , let x̂∗(x) ∈ X̂
minimize d(x, x̂) over all x̂ ∈ X̂ . A distortion measure d is said to be normal
if

cx
def= d(x, x̂∗(x)) = 0 (8.8)

for all x ∈ X .

The square-error distortion measure and the Hamming distortion measure
are examples of normal distortion measures. Basically, a normal distortion
measure is one which allowsX to be reproduced with zero distortion. Although
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a distortion measure d is not normal in general, a normalization of d can always
be obtained by defining the distortion measure

d̃(x, x̂) = d(x, x̂)− cx (8.9)

for all (x, x̂) ∈ X × X̂ . Evidently, d̃ is a normal distortion measure, and it is
referred to as the normalization of d.

Example 8.6. Let d be a distortion measure defined by

d(x, x̂) a b c
1 2 7 5
2 4 3 8

Then d̃, the normalization of d, is given by

d̃(x, x̂) a b c
1 0 5 3
2 1 0 5

Note that for every x ∈ X , there exists an x̂ ∈ X̂ such that d̃(x, x̂) = 0.

Let X̂ be any estimate of X which takes values in X̂ , and denote the joint
distribution for X and X̂ by p(x, x̂). Then

Ed(X, X̂) =
∑
x

∑
x̂

p(x, x̂)d(x, x̂) (8.10)

=
∑
x

∑
x̂

p(x, x̂)
[
d̃(x, x̂) + cx

]
(8.11)

= Ed̃(X, X̂) +
∑
x

p(x)
∑
x̂

p(x̂|x)cx (8.12)

= Ed̃(X, X̂) +
∑
x

p(x)cx

(∑
x̂

p(x̂|x)

)
(8.13)

= Ed̃(X, X̂) +
∑
x

p(x)cx (8.14)

= Ed̃(X, X̂) +∆, (8.15)

where
∆ =

∑
x

p(x)cx (8.16)

is a constant which depends only on p(x) and d but not on the conditional
distribution p(x̂|x). In other words, for a given X and a distortion measure d,
the expected distortion between X and an estimate X̂ of X is always reduced
by a constant upon using d̃ instead of d as the distortion measure. For reasons
which will be explained in Section 8.3, it is sufficient for us to assume that a
distortion measure is normal.
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Definition 8.7. Let x̂∗ minimizes Ed(X, x̂) over all x̂ ∈ X̂ , and define

Dmax = Ed(X, x̂∗). (8.17)

x̂∗ is the best estimate of X if we know nothing about X, and Dmax is the
minimum expected distortion between X and a constant estimate of X. The
significance of Dmax can be seen by taking the reproduction sequence X̂ to be
(x̂∗, x̂∗, · · · , x̂∗). Since d(Xk, x̂

∗) are i.i.d., by the weak law of large numbers

d(X, X̂) =
1
n

n∑
k=1

d(Xk, x̂
∗)→ Ed(X, x̂∗) = Dmax (8.18)

in probability, i.e., for any ε > 0,

Pr{d(X, X̂) > Dmax + ε} ≤ ε (8.19)

for sufficiently large n. Note that X̂ is a constant sequence which does not
depend on X. In other words, even when no description of X is available, we
can still achieve an average distortion no more than Dmax+ε with probability
arbitrarily close to 1 when n is sufficiently large.

The notation Dmax may seem confusing because the quantity stands for
the minimum rather than the maximum expected distortion between X and
a constant estimate of X. But we see from the above discussion that this
notation is in fact appropriate because Dmax is the maximum distortion we
have to be concerned about. Specifically, it is not meanful to impose a con-
straint D ≥ Dmax on the reproduction sequence because it can be achieved
even without receiving any information about the sequence produced by the
source.

8.2 The Rate-Distortion Function R(D)

Throughout this chapter, all the discussions are with respect to an i.i.d. infor-
mation source {Xk, k ≥ 1} with generic random variable X and a distortion
measure d. All logarithms are in the base 2 unless otherwise specified.

Definition 8.8. An (n,M) rate-distortion code is defined by an encoding
function

f : Xn → {1, 2, · · · ,M} (8.20)

and a decoding function

g : {1, 2, · · · ,M} → X̂n. (8.21)

The set {1, 2, · · · ,M}, denoted by I, is called the index set. The reproduction
sequences g(f(1)), g(f(2)), · · · , g(f(M)) in X̂n are called codewords, and the
set of codewords is called the codebook.
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Encoder Decoder 
f ( X ) X 

source 
sequence 

reproduction 
sequence 

X 

Fig. 8.1. A rate-distortion code with block length n.

Figure 8.1 is an illustration of a rate-distortion code.

Definition 8.9. The rate of an (n,M) rate-distortion code is n−1 logM in
bits per symbol.

Definition 8.10. A rate-distortion pair (R,D) is asymptotically achievable if
for any ε > 0, there exists for sufficiently large n an (n,M) rate-distortion
code such that

1
n

logM ≤ R+ ε (8.22)

and
Pr{d(X, X̂) > D + ε} ≤ ε, (8.23)

where X̂ = g(f(X)). For brevity, an asymptotically achievable pair will be
referred to as an achievable pair.

Remark It is clear from the definition that if (R,D) is achievable, then
(R′, D) and (R,D′) are also achievable for all R′ ≥ R and D′ ≥ D.

Definition 8.11. The rate-distortion region is the subset of <2 containing all
achievable pairs (R,D).

Theorem 8.12. The rate-distortion region is closed and convex.

Proof. We first show that the rate-distortion region is closed. Consider achiev-
able rate-distortion pairs (R(k), D(k)) such that

lim
k→∞

(R(k), D(k)) = (R,D). (8.24)

Then for any ε > 0, for all k, there exists for sufficiently large n an (n,M (k))
code such that

1
n

logM (k) ≤ R(k) + ε (8.25)

and
Pr{d(X(k), X̂(k)) > D(k) + ε} ≤ ε, (8.26)

where f (k) and g(k) are respectively the encoding function and the decoding
function of the (n,M (k)) code, and X̂(k) = g(k)(f (k)(X)). By virtue of (8.24),
let k(ε) be an integer such that for all k > k(ε),

|R−R(k)| < ε (8.27)
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and
|D −D(k)| < ε, (8.28)

which imply
R(k) < R+ ε (8.29)

and
D(k) < D + ε, (8.30)

respectively. Then for all k > k(ε),

1
n

logM (k) ≤ R(k) + ε < R+ 2ε (8.31)

and

Pr{d(X(k), X̂(k)) > D + 2ε} ≤ Pr{d(X(k), X̂(k)) > D(k) + ε} (8.32)
≤ ε. (8.33)

Note that (8.32) follows because

D + 2ε > D(k) + ε (8.34)

by (8.30). From (8.31) and (8.33), we see that (R,D) is also achievable. Thus
we have proved that the rate-distortion region is closed.

We will prove the convexity of the rate-distortion region by a time-sharing
argument whose idea is the following. Roughly speaking, if we can use a code
C1 to achieve (R(1), D(1)) and a code C2 to achieve (R(2), D(2)), then for any
rational number λ between 0 and 1, we can use C1 for a fraction λ of the time
and use C2 for a fraction λ̄ of the time to achieve (R(λ), D(λ)), where

R(λ) = λR(1) + λ̄R(2), (8.35)
D(λ) = λD(1) + λ̄D(2), (8.36)

and λ̄ = 1− λ. Since the rate-distortion region is closed as we have proved, λ
can be taken as any real number between 0 and 1, and the convexity of the
region follows.

We now give a formal proof for the convexity of the rate-distortion region.
Let

λ =
r

r + s
, (8.37)

where r and s are positive integers. Then λ is a rational number between
0 and 1. We now prove that if (R(1), D(1)) and (R(2), D(2)) are achievable,
then (R(λ), D(λ)) is also achievable. Assume (R(1), D(1)) and (R(2), D(2)) are
achievable. Then for any ε > 0 and sufficiently large n, there exist an (n,M (1))
code and an (n,M (2)) code such that

1
n

logM (i) ≤ R(i) + ε (8.38)
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and
Pr{d(X, X̂(i)) > D(i) + ε} ≤ ε, (8.39)

i = 1, 2. Let
M(λ) = (M (1))r(M (2))s (8.40)

and
n(λ) = (r + s)n. (8.41)

We now construct an (n(λ),M(λ)) code by concatenating r copies of the
(n,M (1)) code followed by s copies of the (n,M (2)) code. We call these r + s
codes subcodes of the (n(λ),M(λ)) code. For this code, let

Y = (X(1),X(2), · · · ,X(r + s)) (8.42)

and
Ŷ = (X̂(1), X̂(2), · · · , X̂(r + s)), (8.43)

where X(j) and X̂(j) are the source sequence and the reproduction sequence
of the jth subcode, respectively. Then for this (n(λ),M(λ)) code,

1
n(λ)

logM(λ) =
1

(r + s)n
log[(M (1))r(M (2))s] (8.44)

=
1

(r + s)n
(r logM (1) + s logM (2)) (8.45)

= λ

(
1
n

logM (1)

)
+ λ̄

(
1
n

logM (2)

)
(8.46)

≤ λ(R(1) + ε) + λ̄(R(2) + ε) (8.47)
= (λR(1) + λ̄R(2)) + ε (8.48)
= R(λ) + ε, (8.49)

where (8.47) follows from (8.38), and

Pr{d(Y, Ŷ) > D(λ) + ε}

= Pr

 1
r + s

r+s∑
j=1

d(X(j), X̂(j)) > D(λ) + ε

 (8.50)

≤ Pr
{
d(X(j), X̂(j)) > D(1) + ε for some 1 ≤ j ≤ r or

d(X(j), X̂(j)) > D(2) + ε for some r + 1 ≤ j ≤ r + s
}

(8.51)

≤
r∑
j=1

Pr{d(X(j), X̂(j)) > D(1) + ε}

+
r+s∑
j=r+1

Pr{d(X(j), X̂(j)) > D(2) + ε} (8.52)

≤ (r + s)ε, (8.53)
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where (8.52) follows from the union bound and (8.53) follows from (8.39).
Hence, we conclude that the rate-distortion pair (R(λ), D(λ)) is achievable.
This completes the proof of the theorem. ut

Definition 8.13. The rate-distortion function R(D) is the minimum of all
rates R for a given distortion D such that (R,D) is achievable.

Definition 8.14. The distortion-rate function D(R) is the minimum of all
distortions D for a given rate R such that (R,D) is achievable.

Both the functions R(D) and D(R) are equivalent descriptions of the
boundary of the rate-distortion region. They are sufficient to describe the
rate-distortion region because the region is closed. Note that in defining R(D),
the minimum instead of the infimum is taken because for a fixed D, the set
of all R such that (R,D) is achievable is closed and lower bounded by zero.
Similarly, the minimum instead of the infimum is taken in defining D(R). In
the subsequent discussions, only R(D) will be used.

Theorem 8.15. The following properties hold for the rate-distortion function
R(D):

1. R(D) is non-increasing in D.
2. R(D) is convex.
3. R(D) = 0 for D ≥ Dmax.
4. R(0) ≤ H(X).

Proof. From the remark following Definition 8.10, since (R(D), D) is achiev-
able, (R(D), D′) is also achievable for all D′ ≥ D. Therefore, R(D) ≥ R(D′)
because R(D′) is the minimum of all R such that (R,D′) is achievable. This
proves Property 1.

Property 2 follows immediately from the convexity of the rate-distortion
region which was proved in Theorem 8.12. From the discussion toward the
end of the last section, we see for any ε > 0, it is possible to achieve

Pr{d(X, X̂) > Dmax + ε} ≤ ε (8.54)

for sufficiently large n with no description of X available. Therefore, (0, D) is
achievable for all D ≥ Dmax, proving Property 3.

Property 4 is a consequence of the assumption that the distortion measure
d is normalized, which can be seen as follows. By the source coding theorem,
for any ε > 0, by using a rate no more than H(X) + ε, we can describe the
source sequence X of length n with probability of error less than ε when n is
sufficiently large. Since d is normalized, for each k ≥ 1, let

X̂k = x̂∗(Xk) (8.55)

(cf. Definition 8.5), so that whenever an error does not occur,
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d(Xk, X̂k) = d(Xk, x̂
∗(Xk)) = 0 (8.56)

by (8.8) for each k, and

d(X, X̂) =
1
n

n∑
k=1

d(Xk, X̂k) =
1
n

n∑
k=1

d(Xk, x̂
∗(Xk)) = 0. (8.57)

Therefore,
Pr{d(X, X̂) > ε} ≤ ε, (8.58)

which shows that the pair (H(X), 0) is achievable. This in turn implies that
R(0) ≤ H(X) because R(0) is the minimum of all R such that (R, 0) is
achievable. ut

Figure 8.2 is an illustration of a rate-distortion function R(D). The reader

D 

R ( D ) 

R ( 0 ) 

H ( X ) 

The rate 
distortion 
region 

D max 

Fig. 8.2. A rate-distortion function R(D).

should note the four properties of R(D) in Theorem 8.15. The rate-distortion
theorem, which will be stated in the next section, gives a characterization of
R(D).

8.3 The Rate-Distortion Theorem

Definition 8.16. For D ≥ 0, the information rate-distortion function is de-
fined by

RI(D) = min
X̂:Ed(X,X̂)≤D

I(X; X̂). (8.59)
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In defining RI(D), the minimization is taken over all random variables X̂
jointly distributed with X such that

Ed(X, X̂) ≤ D. (8.60)

Since p(x) is given, the minimization is taken over the set of all p(x̂|x) such
that (8.60) is satisfied, namely the setp(x̂|x) :

∑
x,x̂

p(x)p(x̂|x)d(x, x̂) ≤ D

 . (8.61)

Since this set is compact in <|X ||X̂ | and I(X; X̂) is a continuous functional of
p(x̂|x), the minimum value of I(X; X̂) can be attained2. This justifies taking
the minimum instead of the infimum in the definition of RI(D).

We have seen in Section 8.1 that we can obtain a normalization d̃ for any
distortion measure d with

Ed̃(X, X̂) = Ed(X, X̂)−∆ (8.62)

for any X̂, where ∆ is a constant which depends only on p(x) and d. Thus if d
is not normal, we can always replace d by d̃ and D by D−∆ in the definition
of RI(D) without changing the minimization problem. Therefore, we do not
lose any generality by assuming that a distortion measure d is normal.

Theorem 8.17 (The Rate-Distortion Theorem). R(D) = RI(D).

The rate-distortion theorem, which is the main result in rate-distortion
theory, says that the minimum coding rate for achieving a distortion D is
RI(D). This theorem will be proved in the next two sections. In the next
section, we will prove the converse of this theorem, i.e., R(D) ≥ RI(D), and
in Section 8.5, we will prove the achievability of RI(D), i.e., R(D) ≤ RI(D).

In order for RI(D) to be a characterization of R(D), it has to satisfy
the same properties as R(D). In particular, the four properties of R(D) in
Theorem 8.15 should also be satisfied by RI(D).

Theorem 8.18. The following properties hold for the information rate-distortion
function RI(D):

1. RI(D) is non-increasing in D.
2. RI(D) is convex.
3. RI(D) = 0 for D ≥ Dmax.
4. RI(0) ≤ H(X).

2 The assumption that both X and X̂ are finite is essential in this argument.
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Proof. Referring to the definition of RI(D) in (8.59), for a larger D, the
minimization is taken over a larger set. Therefore, RI(D) is non-increasing in
D, proving Property 1.

To prove Property 2, consider any D(1), D(2) ≥ 0 and let λ be any number
between 0 and 1. Let X̂(i) achieves RI(D(i)) for i = 1, 2, i.e.,

RI(D(i)) = I(X; X̂(i)), (8.63)

where
Ed(X, X̂(i)) ≤ D(i), (8.64)

and let X̂(i) be defined by the transition matrix pi(x̂|x). Let X̂(λ) be jointly
distributed with X which is defined by

pλ(x̂|x) = λp1(x̂|x) + λ̄p2(x̂|x), (8.65)

where λ̄ = 1− λ. Then

Ed(X, X̂(λ))

=
∑
x,x̂

p(x)pλ(x̂|x)d(x, x̂) (8.66)

=
∑
x,x̂

p(x)(λp1(x̂|x) + λ̄p2(x̂|x))d(x, x̂) (8.67)

= λ

∑
x,x̂

p(x)p1(x̂|x)d(x, x̂)

+ λ̄

∑
x,x̂

p(x)p2(x̂|x)d(x, x̂)

 (8.68)

= λEd(X, X̂(1)) + λ̄Ed(X, X̂(2)) (8.69)
≤ λD(1) + λ̄D(2) (8.70)
= D(λ), (8.71)

where
D(λ) = λD(1) + λ̄D(2), (8.72)

and (8.70) follows from (8.64). Now consider

λRI(D(1)) + λ̄RI(D(2)) = λI(X; X̂(1)) + λ̄I(X; X̂(2)) (8.73)
≥ I(X; X̂(λ)) (8.74)
≥ RI(D(λ)), (8.75)

where the inequality in (8.74) follows from the convexity of mutual information
with respect to the transition matrix p(x̂|x) (see Example 3.13), and the
inequality in (8.75) follows from (8.71) and the definition of RI(D). Therefore,
we have proved Property 2.

To prove Property 3, let X̂ take the value x̂∗ as defined in Definition 8.7
with probability 1. Then
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I(X; X̂) = 0 (8.76)

and
Ed(X; X̂) = Ed(X; x̂∗) = Dmax. (8.77)

Then for D ≥ Dmax,
RI(D) ≤ I(X; X̂) = 0. (8.78)

On the other hand, since RI(D) is nonnegative, we conclude that

RI(D) = 0. (8.79)

This proves Property 3.
Finally, to prove Property 4, we let

X̂ = x̂∗(X), (8.80)

where x̂∗(x) is defined in Definition 8.5. Then

Ed(X, X̂) = Ed(X, x̂∗(X)) (8.81)

=
∑
x

p(x)d(x, x̂∗(x)) (8.82)

= 0 (8.83)

by (8.8) since we assume that d is a normal distortion measure. Moreover,

RI(0) ≤ I(X; X̂) ≤ H(X). (8.84)

Then Property 4 and hence the theorem is proved. ut

Corollary 8.19. If RI(0) > 0, then RI(D) is strictly decreasing for 0 ≤
D ≤ Dmax, and the inequality constraint in Definition 8.16 for RI(D) can be
replaced by an equality constraint.

Proof. Assume that RI(0) > 0. We first show that RI(D) > 0 for 0 ≤ D <
Dmax by contradiction. Suppose RI(D′) = 0 for some 0 ≤ D′ < Dmax, and
let RI(D′) be achieved by some X̂. Then

RI(D′) = I(X; X̂) = 0 (8.85)

implies that X and X̂ are independent, or

p(x, x̂) = p(x)p(x̂) (8.86)

for all x and x̂. It follows that
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D′ ≥ Ed(X, X̂) (8.87)

=
∑
x

∑
x̂

p(x, x̂)d(x, x̂) (8.88)

=
∑
x

∑
x̂

p(x)p(x̂)d(x, x̂) (8.89)

=
∑
x̂

p(x̂)
∑
x

p(x)d(x, x̂) (8.90)

=
∑
x̂

p(x̂)Ed(X, x̂) (8.91)

≥
∑
x̂

p(x̂)Ed(X, x̂∗) (8.92)

=
∑
x̂

p(x̂)Dmax (8.93)

= Dmax, (8.94)

where x̂∗ and Dmax are defined in Definition 8.7. This leads to a contradiction
because we have assumed that 0 ≤ D′ < Dmax. Therefore, we conclude that
RI(D) > 0 for 0 ≤ D < Dmax.

Since RI(0) > 0 and RI(Dmax) = 0, and RI(D) is non-increasing and
convex from the above theorem, RI(D) must be strictly decreasing for 0 ≤
D ≤ Dmax. We now prove by contradiction that the inequality constraint in
Definition 8.16 for RI(D) can be replaced by an equality constraint. Assume
that RI(D) is achieved by some X̂∗ such that

Ed(X, X̂∗) = D′′ < D. (8.95)

Then

RI(D′′) = min
X̂:Ed(X,X̂)≤D′′

I(X; X̂) ≤ I(X; X̂∗) = RI(D). (8.96)

This is a contradiction becauseRI(D) is strictly decreasing for 0 ≤ D ≤ Dmax.
Hence,

Ed(X, X̂∗) = D. (8.97)

This implies that the inequality constraint in Definition 8.16 for RI(D) can
be replaced by an equality constraint. ut

Remark In all problems of interest, R(0) = RI(0) > 0. Otherwise, R(D) = 0
for all D ≥ 0 because R(D) is nonnegative and non-increasing.

Example 8.20 (Binary Source). Let X be a binary random variable with

Pr{X = 0} = 1− γ and Pr{X = 1} = γ. (8.98)

Let X̂ = {0, 1} be the reproduction alphabet for X, and let d be the Hamming
distortion measure. We first consider the case that 0 ≤ γ ≤ 1

2 . Then if we make
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a guess on the value of X, we should guess 0 in order to minimize the expected
distortion. Therefore, x̂∗ = 0 and

Dmax = Ed(X, 0) (8.99)
= Pr{X = 1} (8.100)
= γ. (8.101)

We will show that for 0 ≤ γ ≤ 1
2 ,

RI(D) =
{
hb(γ)− hb(D) if 0 ≤ D < γ
0 if D ≥ γ. (8.102)

Let X̂ be an estimate of X taking values in X̂ , and let Y be the Hamming
distortion measure between X and X̂, i.e.,

Y = d(X, X̂). (8.103)

Observe that conditioning on X̂, X and Y determine each other. Therefore,

H(X|X̂) = H(Y |X̂). (8.104)

Then for D < γ = Dmax and any X̂ such that

Ed(X, X̂) ≤ D, (8.105)

we have

I(X; X̂) = H(X)−H(X|X̂) (8.106)
= hb(γ)−H(Y |X̂) (8.107)
≥ hb(γ)−H(Y ) (8.108)
= hb(γ)− hb(Pr{X 6= X̂}) (8.109)
≥ hb(γ)− hb(D), (8.110)

where the last inequality is justified because

Pr{X 6= X̂} = Ed(X, X̂) ≤ D (8.111)

and hb(a) is increasing for 0 ≤ a ≤ 1
2 . Minimizing over all X̂ satisfying (8.105)

in (8.110), we obtain the lower bound

RI(D) ≥ hb(γ)− hb(D). (8.112)

To show that this lower bound is achievable, we need to construct an X̂ such
that the inequalities in both (8.108) and (8.110) are tight. The tightness of
the inequality in (8.110) simply says that

Pr{X 6= X̂} = D, (8.113)
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while the tightness of the inequality in (8.108) says that Y should be inde-
pendent of X̂.

It would be more difficult to make Y independent of X̂ if we specify X̂
by p(x̂|x). Instead, we specify the joint distribution of X and X̂ by means
of a reverse binary symmetric channel (BSC) with crossover probability D
as the shown in Figure 8.3. Here, we regard X̂ as the input and X as the

0 
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1 

X X 
D 

D 
D 

D 1 

D 1 

1 2 D 
D 1 

1 2 D 

1 

Fig. 8.3. Achieving RI(D) for a binary source via a reverse binary symmetric
channel.

output of the BSC. Then Y is independent of the input X̂ because the error
event is independent of the input for a BSC, and (8.113) is satisfied by setting
the crossover probability to D. However, we need to ensure that the marginal
distribution of X so specified is equal to p(x). Toward this end, we let

Pr{X̂ = 1} = α, (8.114)

and consider

Pr{X = 1} = Pr{X̂ = 0}Pr{X = 1|X̂ = 0}
+Pr{X̂ = 1}Pr{X = 1|X̂ = 1}, (8.115)

or
γ = (1− α)D + α(1−D), (8.116)

which gives

α =
γ −D
1− 2D

. (8.117)

Since
D < Dmax = γ ≤ 1

2
, (8.118)

we have α ≥ 0. On the other hand,

γ,D ≤ 1
2

(8.119)

gives
γ +D ≤ 1. (8.120)
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This implies
γ −D ≤ 1− 2D, (8.121)

or α ≤ 1. Therefore,
0 ≤ α = Pr{X̂ = 1} ≤ 1 (8.122)

and
0 ≤ 1− α = Pr{X̂ = 0} ≤ 1. (8.123)

Hence, we have shown that the lower bound on RI(D) in (8.110) can be
achieved, and RI(D) is as given in (8.102).

For 1
2 ≤ γ ≤ 1, by exchanging the roles of the symbols 0 and 1 in the

above argument, we obtain RI(D) as in (8.102) except that γ is replaced by
1− γ. Combining the two cases, we have

RI(D) =
{
hb(γ)− hb(D) if 0 ≤ D < min(γ, 1− γ)
0 if D ≥ min(γ, 1− γ). (8.124)

for 0 ≤ γ ≤ 1. The function RI(D) for γ = 1
2 is illustrated in Figure 8.4.

R  I 

D 
0.5 0 

(D) 

1 

Fig. 8.4. The function RI(D) for the uniform binary source with the Hamming
distortion measure.

Remark In the above example, we see that RI(0) = hb(γ) = H(X). Then by
the rate-distortion theorem, H(X) is the minimum rate of a rate-distortion
code which achieves an arbitrarily small average Hamming distortion. It is
tempting to regarding this special case of the rate-distortion theorem as a
version of the source coding theorem and conclude that the rate-distortion
theorem is a generalization of the source coding theorem. However, this is in-
correct because the rate-distortion theorem only guarantees that the average
Hamming distortion between X and X̂ is small with probability arbitrarily
close to 1, but the source coding theorem guarantees that X = X̂ with prob-
ability arbitrarily close to 1, which is much stronger.
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It is in general not possible to obtain the rate-distortion function in closed
form, and we have to resort to numerical computation. In Chapter 9, we
will discuss the Blahut-Arimoto algorithm for computing the rate-distortion
function.

8.4 The Converse

In this section, we prove that the rate-distortion function R(D) is lower
bounded by the information rate-distortion function RI(D), i.e., R(D) ≥
RI(D). Specifically, we will prove that for any achievable rate-distortion pair
(R,D), R ≥ RI(D). Then by fixing D and minimizing R over all achievable
pairs (R,D), we conclude that R(D) ≥ RI(D).

Let (R,D) be any achievable rate-distortion pair. Then for any ε > 0,
there exists for sufficiently large n an (n,M) code such that

1
n

logM ≤ R+ ε (8.125)

and
Pr{d(X, X̂) > D + ε} ≤ ε, (8.126)

where X̂ = g(f(X)). Then

n(R+ ε)
a)

≥ logM (8.127)
≥ H(f(X)) (8.128)
≥ H(g(f(X))) (8.129)

= H(X̂) (8.130)

= H(X̂)−H(X̂|X) (8.131)

= I(X̂; X) (8.132)

= H(X)−H(X|X̂) (8.133)

=
n∑
k=1

H(Xk)−
n∑
k=1

H(Xk|X̂, X1, X2, · · · , Xk−1) (8.134)

b)

≥
n∑
k=1

H(Xk)−
n∑
k=1

H(Xk|X̂k) (8.135)

=
n∑
k=1

[H(Xk)−H(Xk|X̂k)] (8.136)

=
n∑
k=1

I(Xk; X̂k) (8.137)

c)

≥
n∑
k=1

RI(Ed(Xk, X̂k)) (8.138)
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= n

[
1
n

n∑
k=1

RI(Ed(Xk, X̂k))

]
(8.139)

d)

≥ nRI

(
1
n

n∑
k=1

Ed(Xk, X̂k)

)
(8.140)

= nRI(Ed(X, X̂)). (8.141)

In the above,

a) follows from (8.125);
b) follows because conditioning does not increase entropy;
c) follows from the definition of RI(D) in Definition 8.16;
d) follows from the convexity of RI(D) proved in Theorem 8.18 and
Jensen’s inequality.

Now let
dmax = max

x,x̂
d(x, x̂) (8.142)

be the maximum value which can be taken by the distortion measure d.
The reader should not confuse dmax with Dmax in Definition 8.7. Then from
(8.126), we have

Ed(X, X̂)

= E[d(X, X̂)|d(X, X̂) > D + ε]Pr{d(X, X̂) > D + ε}
+E[d(X, X̂)|d(X, X̂) ≤ D + ε]Pr{d(X, X̂) ≤ D + ε} (8.143)

≤ dmax · ε+ (D + ε) · 1 (8.144)
= D + (dmax + 1)ε. (8.145)

This shows that if the probability that the average distortion between X and
X̂ exceeds D+ε is small, then the expected average distortion between X and
X̂ can exceed D only by a small amount3. Following (8.141), we have

R+ ε ≥ RI(Ed(X, X̂)) (8.146)
≥ RI(D + (dmax + 1)ε), (8.147)

where the last inequality follows from (8.145) because RI(D) is non-increasing
in D. We note that the convexity of RI(D) implies that it is a continuous
function of D. Then taking the limit as ε→ 0, we obtain

R ≥ lim
ε→0

RI(D + (dmax + 1)ε) (8.148)

= RI

(
D + (dmax + 1) lim

ε→0
ε
)

(8.149)

= RI(D), (8.150)

3 The converse is not true.
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where we have invoked the continuity of RI(D) in obtaining (8.149). Upon
minimizing R over all achievable pairs (R,D) for a fixed D in (8.150), we have
proved that

R(D) ≥ RI(D). (8.151)

This completes the proof for the converse of the rate-distortion theorem.

8.5 Achievability of RI(D)

In this section, we prove that the rate-distortion function R(D) is upper
bounded by the information rate-distortion function RI(D), i.e., R(D) ≤
RI(D). Then by combining with the result that R(D) ≥ RI(D) from the last
section, we conclude that R(D) = RI(D), and the rate-distortion theorem is
proved.

For any 0 ≤ D ≤ Dmax, we will prove that for every random variable X̂
taking values in X̂ such that

Ed(X, X̂) ≤ D, (8.152)

the rate-distortion pair (I(X; X̂), D) is achievable. This will be proved by
showing for sufficiently large n the existence of a rate-distortion code such
that

1. the rate of the code is not more than I(X; X̂) + ε;
2. d(X, X̂) ≤ D + ε with probability almost 1.

Then by minimizing I(X; X̂) over all X̂ satisfying (8.152), we conclude that
the rate-distortion pair (RI(D), D) is achievable, which implies RI(D) ≥
R(D) because R(D) is the minimum of all R such that (R,D) is achievable.

Fix any 0 ≤ D ≤ Dmax and any ε > 0, and let δ be a small positive
quantity to be specified later. Toward proving the existence of a desired code,
we fix a random variable X̂ which satisfies (8.152) and let M be an integer
satisfying

I(X; X̂) +
ε

2
≤ 1
n

logM ≤ I(X; X̂) + ε, (8.153)

where n is sufficiently large.
We now describe a random coding scheme in the following steps:

1. Construct a codebook C of an (n,M) code by randomly generating M
codewords in X̂n independently and identically according to p(x̂)n. Denote
these codewords by X̂(1), X̂(2), · · · , X̂(M).

2. Reveal the codebook C to both the encoder and the decoder.
3. The source sequence X is generated according to p(x)n.
4. The encoder encodes the source sequence X into an index K in the set
I = {1, 2, · · · ,M}. The index K takes the value i if
a) (X, X̂(i)) ∈ Tn

[XX̂]δ
,
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b) for all i′ ∈ I, if (X, X̂(i′)) ∈ Tn
[XX̂]δ

, then i′ ≤ i;
otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.
6. The decoder outputs X̂(K) as the reproduction sequence X̂.

Remark Strong typicality is used in defining the encoding function in Step
4. This is made possible by the assumption that both the source alphabet X
and the reproduction alphabet X̂ are finite.

Let us further explain the encoding scheme described in Step 4. After the
source sequence X is generated, we search through all the codewords in the
codebook C for those which are jointly typical with X with respect to p(x, x̂).
If there is at least one such codeword, we let i be the largest index of such
codewords and let K = i. If such a codeword does not exist, we let K = 1.

The event {K = 1} occurs in one of the following two scenarios:

1. X̂(1) is the only codeword in C which is jointly typical with X.
2. No codeword in C is jointly typical with X.

In either scenario, X is not jointly typical with the codewords X̂(2), X̂(3), · · ·,
X̂(M). In other words, if K = 1, then X is jointly typical with none of the
codewords X̂(2), X̂(3), · · · , X̂(M).

Define
Ei =

{
(X, X̂(i)) ∈ Tn

[XX̂]δ

}
(8.154)

to be the event that X is jointly typical with the codeword X̂(i). We see from
the above discussion that

{K = 1} ⊂ Ec2 ∩ Ec3 ∩ · · · ∩ EcM . (8.155)

Since the codewords are generated i.i.d., conditioning on {X = x} for any
x ∈ Xn, the events Ei are mutually independent4, and they all have the same
probability. Then for any x ∈ Xn,

Pr{K = 1|X = x} ≤ Pr{Ec2 ∩ Ec3 ∩ · · · ∩ EcM |X = x} (8.156)

=
M∏
i=2

Pr{Eci |X = x} (8.157)

= (Pr{Ec1|X = x})M−1 (8.158)
= (1− Pr{E1|X = x})M−1. (8.159)

We now obtain a lower bound on Pr{E1|X = x} for x ∈ Sn[X]δ, where

Sn[X]δ = {x ∈ Tn[X]δ : |Tn
[X̂|X]δ

(x)| ≥ 1} (8.160)

4 Without conditioning on {X = x}, the events Ei are not mutually independent
because they depend on each other through X.
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(cf. Section 6.3). Consider

Pr{E1|X = x} = Pr
{

(x, X̂(1)) ∈ Tn
[XX̂]δ

}
(8.161)

=
∑

x̂:(x,x̂)∈Tn
[XX̂]δ

p(x̂). (8.162)

The summation above is over all x̂ such that (x, x̂) ∈ Tn
[XX̂]δ

. From the con-
sistency of strong typicality (Theorem 6.7), if (x, x̂) ∈ Tn

[XX̂]δ
, then x̂ ∈ Tn

[X̂]δ
.

By the strong AEP (Theorem 6.2), all p(x̂) in the above summation satisfy

p(x̂) ≥ 2−n(H(X̂)+η), (8.163)

where η → 0 as δ → 0. By Theorem 6.10,

|Tn
[X̂|X]δ

(x)| ≥ 2n(H(X̂|X)−ξ), (8.164)

where ξ → 0 as δ → 0. Then from (8.162), we have

Pr{E1|X = x} ≥ 2n(H(X̂|X)−ξ)2−n(H(X̂)+η) (8.165)

= 2−n(H(X̂)−H(X̂|X)+ξ+η) (8.166)

= 2−n(I(X;X̂)+ζ), (8.167)

where
ζ = ξ + η → 0 (8.168)

as δ → 0. Following (8.159), we have

Pr{K = 1|X = x} ≤
[
1− 2−n(I(X;X̂)+ζ)

]M−1

. (8.169)

The lower bound in (8.153) implies

M ≥ 2n(I(X;X̂)+ ε
2 ). (8.170)

Then upon taking natural logarithm in (8.169), we obtain

ln Pr{K = 1|X = x}

≤ (M − 1) ln
[
1− 2−n(I(X;X̂)+ζ)

]
(8.171)

a)

≤
(

2n(I(X;X̂)+ ε
2 ) − 1

)
ln
[
1− 2−n(I(X;X̂)+ζ)

]
(8.172)

b)

≤ −
(

2n(I(X;X̂)+ ε
2 ) − 1

)
2−n(I(X;X̂)+ζ) (8.173)

= −
[
2n( ε2−ζ) − 2−n(I(X;X̂)+ζ)

]
. (8.174)
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In the above, a) follows from (8.170) by noting that the logarithm in (8.171)
is negative, and b) follows from the fundamental inequality ln a ≤ a − 1. By
letting δ be sufficiently small so that

ε

2
− ζ > 0, (8.175)

the above upper bound on ln Pr{K = 1|X = x} tends to −∞ as n→∞, i.e.,
Pr{K = 1|X = x} → 0 as n→∞. This implies

Pr{K = 1|X = x} ≤ ε

2
(8.176)

for sufficiently large n. It then follows that

Pr{K = 1} (8.177)

=
∑

x∈Sn[X]δ

Pr{K = 1|X = x}Pr{X = x}

+
∑

x6∈Sn[X]δ

Pr{K = 1|X = x}Pr{X = x} (8.178)

≤
∑

x∈Sn[X]δ

ε

2
· Pr{X = x}+

∑
x6∈Sn[X]δ

1 · Pr{X = x} (8.179)

=
ε

2
· Pr{X ∈ Sn[X]δ}+ Pr{X 6∈ Sn[X]δ} (8.180)

≤ ε

2
· 1 + (1− Pr{X ∈ Sn[X]δ}) (8.181)

<
ε

2
+ δ, (8.182)

where we have invoked Proposition 6.13 in the last step. By letting δ be
sufficiently small so that

δ <
ε

2
(8.183)

and (8.175) is satisfied, we obtain

Pr{K = 1} < ε. (8.184)

The main idea of the above upper bound on Pr{K = 1} for sufficiently
large n is the following. In constructing the codebook, we randomly generate
M codewords in X̂n according to p(x̂)n. If M grows with n at a rate higher
than I(X; X̂), then the probability that there exists at least one codeword
which is jointly typical with the source sequence X with respect to p(x, x̂)
is very high when n is large. Further, the average distortion between X and
such a codeword is close to Ed(X, X̂) because the empirical joint distribution
of the symbol pairs in X and such a codeword is close to p(x, x̂). Then by let-
ting the reproduction sequence X̂ be such a codeword, the average distortion
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between X and X̂ is less than D + ε with probability arbitrarily close to 1
since Ed(X, X̂) ≤ D. These will be formally shown in the rest of the proof.

Now for sufficiently large n, consider

Pr{d(X, X̂) > D + ε}
= Pr{d(X, X̂) > D + ε|K = 1}Pr{K = 1}

+Pr{d(X, X̂) > D + ε|K 6= 1}Pr{K 6= 1} (8.185)

≤ 1 · ε+ Pr{d(X, X̂) > D + ε|K 6= 1} · 1 (8.186)

= ε+ Pr{d(X, X̂) > D + ε|K 6= 1}. (8.187)

We will show that by choosing the value of δ carefully, it is possible to make
d(X, X̂) always less than or equal to D + ε provided K 6= 1. Since (X, X̂) ∈
Tn

[XX̂]δ
conditioning on {K 6= 1}, we have

d(X, X̂)

=
1
n

n∑
k=1

d(Xk, X̂k) (8.188)

=
1
n

∑
x,x̂

d(x, x̂)N(x, x̂|X, X̂) (8.189)

=
1
n

∑
x,x̂

d(x, x̂)(np(x, x̂) +N(x, x̂|X, X̂)− np(x, x̂)) (8.190)

=

∑
x,x̂

p(x, x̂)d(x, x̂)

+

∑
x,x̂

d(x, x̂)
(

1
n
N(x, x̂|X, X̂)− p(x, x̂)

)
(8.191)

= Ed(X, X̂) +
∑
x,x̂

d(x, x̂)
(

1
n
N(x, x̂|X, X̂)− p(x, x̂)

)
(8.192)

≤ Ed(X, X̂) +
∑
x,x̂

d(x, x̂)
∣∣∣∣ 1nN(x, x̂|X, X̂)− p(x, x̂)

∣∣∣∣ (8.193)

a)

≤ Ed(X, X̂) + dmax
∑
x,x̂

∣∣∣∣ 1nN(x, x̂|X, X̂)− p(x, x̂)
∣∣∣∣ (8.194)

b)

≤ Ed(X, X̂) + dmaxδ (8.195)
c)

≤ D + dmaxδ, (8.196)

where

a) follows from the definition of dmax in (8.142);
b) follows because (X, X̂) ∈ Tn

[XX̂]δ
;
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c) follows from (8.152).

Therefore, by taking
δ ≤ ε

dmax
, (8.197)

we obtain

d(X, X̂) ≤ D + dmax

(
ε

dmax

)
= D + ε (8.198)

if K 6= 1. Therefore,

Pr{d(X, X̂) > D + ε|K 6= 1} = 0, (8.199)

and it follows that from (8.187) that

Pr{d(X, X̂) > D + ε} ≤ ε. (8.200)

Thus we have shown that for sufficiently large n, there exists an (n,M)
random code which satisfies

1
n

logM ≤ I(X; X̂) + ε (8.201)

(this follows from the upper bound in (8.153)) and (8.200). This implies the
existence of an (n,M) rate-distortion code which satisfies (8.201) and (8.200).
Therefore, the rate-distortion pair (I(X; X̂), D) is achievable. Then upon min-
imizing over all X̂ which satisfy (8.152), we conclude that the rate-distortion
pair (RI(D), D) is achievable, which implies RI(D) ≥ R(D). The proof is
completed.

Problems

1. Obtain the forward channel description of R(D) for the binary source with
the Hamming distortion measure.

2. Binary covering radius The Hamming ball with center c = (c1, c2, · · · , cn) ∈
{0, 1}n and radius r is the set

Sr(c) =

{
x ∈ {0, 1}n :

n∑
i=1

|xi − ci| ≤ r

}
.

Let Mr,n be the minimum number M such that there exists Hamming
balls Sr(cj), j = 1, 2, · · · ,M such that for all x ∈ {0, 1}n, x ∈ Sr(cj) for
some j.
a) Show that

Mr,n ≥
2n∑r
k=0

(
n
k

) .
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b) What is the relation between Mr,n and the rate-distortion function
for the binary source with the Hamming distortion measure?

3. Consider a source random variable X with the Hamming distortion mea-
sure.
a) Prove that

R(D) ≥ H(X)−D log(|X | − 1)− hb(D)

for 0 ≤ D ≤ Dmax.
b) Show that the above lower bound on R(D) is tight if X distributes

uniformly on X .
See Jerohin [171] (also see [75], p.133) for the tightness of this lower bound
for a general source. This bound is a special case of the Shannon lower
bound for the rate-distortion function [296] (also see [72], p.369).

4. Product source Let X and Y be two independent source random variables
with reproduction alphabets X̂ and Ŷ and distortion measures dx and dy,
and the rate-distortion functions for X and Y are denoted by Rx(Dx)
and Ry(Dy), respectively. Now for the product source (X,Y ), define a
distortion measure d : X × Y → X̂ × Ŷ by

d((x, y), (x̂, ŷ)) = dx(x, x̂) + dy(y, ŷ).

Prove that the rate-distortion function R(D) for (X,Y ) with distortion
measure d is given by

R(D) = min
Dx+Dy=D

(Rx(Dx) +Ry(Dy)).

Hint: Prove that I(X,Y ; X̂, Ŷ ) ≥ I(X; X̂) + I(Y ; Ŷ ) if X and Y are
independent. (Shannon [296].)

5. Compound source Let Θ be an index set and ZΘ = {Xθ : θ ∈ Θ} be a
collection of source random variables. The random variables in ZΘ have
a common source alphabet X , a common reproduction alphabet X̂ , and a
common distortion measure d. A compound source is an i.i.d. information
source whose generic random variable is XΦ, where Φ is equal to some θ ∈
Θ but we do not know which one it is. The rate-distortion function RΦ(D)
for XΦ has the same definition as the rate-distortion function defined in
this chapter except that (8.23) is replaced by

Pr{d(Xθ, X̂) > D + ε} ≤ ε for all θ ∈ Θ.

Show that
RΦ(D) = sup

θ∈Θ
Rθ(D),

where Rθ(D) is the rate-distortion function for Xθ.
6. Show that asymptotic optimality can always be achieved by separating

rate-distortion coding and channel coding when the information source is
i.i.d. (with a single-letter distortion measure) and the channel is memory-
less.
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7. Slepian-Wolf coding Let ε, γ, and δ be small positive quantities. For 1 ≤
i ≤ 2n(H(Y |X)+ε), randomly and independently select with replacement
2n(I(X;Y )−γ) sequences from Tn[Y ]δ according to the uniform distribution
to form a bin Bi. Let (x,y) be a fixed pair of sequences in Tn[XY ]δ. Prove
the following by choosing ε, γ, and δ appropriately:
a) the probability that y is in some Bi tends to 1 as n→∞;
b) given that y ∈ Bi, the probability that there exists another y′ ∈ Bi

such that (x,y′) ∈ Tn[XY ]δ tends to 0 as n→∞.
Let (X,Y) ∼ pn(x, y). The results in a) and b) say that if (X,Y) is jointly
typical, which happens with probability close to 1 for large n, then it is
very likely that Y is in some bin Bi, and that Y is the unique vector in
Bi which is jointly typical with X. If X is available as side-information,
then by specifying the index of the bin containing Y, which takes about
2nH(Y |X) bits, Y can be uniquely specified. Note that no knowledge about
X is involved in specifying the index of the bin containing Y. This is the
basis of the Slepian-Wolf coding [306] which launched the whole area of
multiterminal source coding (see Berger [27]).

Historical Notes

Transmission of an information source with distortion was first conceived
by Shannon in his 1948 paper [291]. He returned to the problem in 1959
and proved the rate-distortion theorem [296]. The normalization of the rate-
distortion function is due to Pinkston [261]. The rate-distortion theorem
proved here is a stronger version of the original theorem. Extensions of the
theorem to more general sources were proved in the book by Berger [26].
An iterative algorithm for computing the rate-distortion function developed
by Blahut [35] will be discussed in Chapter 9. Rose [283] has developed an
algorithm for the same purpose based on a mapping approach.
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The Blahut-Arimoto Algorithms

For a discrete memoryless channel p(y|x), the capacity

C = max
r(x)

I(X;Y ), (9.1)

where X and Y are respectively the input and the output of the generic chan-
nel and r(x) is the input distribution, characterizes the maximum asymptot-
ically achievable rate at which information can be transmitted through the
channel reliably. The expression for C in (9.1) is called a single-letter charac-
terization because it depends only the transition matrix of the generic channel
but not on the block length n of a code for the channel. When both the in-
put alphabet X and the output alphabet Y are finite, the computation of C
becomes a finite-dimensional maximization problem.

For an i.i.d. information source {Xk, k ≥ 1} with generic random variable
X, the rate-distortion function

R(D) = min
Q(x̂|x):Ed(X,X̂)≤D

I(X; X̂) (9.2)

characterizes the minimum asymptotically achievable rate of a rate-distortion
code which reproduces the information source with an average distortion no
more than D with respect to a single-letter distortion measure d. Again, the
expression for R(D) in (9.2) is a single-letter characterization because it de-
pends only on the generic random variable X but not on the block length n of
a rate-distortion code. When both the source alphabet X and the reproduction
alphabet X̂ are finite, the computation of R(D) becomes a finite-dimensional
minimization problem.

Unless for very special cases, it is not possible to obtain an expression
for C or R(D) in closed form, and we have to resort to numerical compu-
tation. However, computing these quantities is not straightforward because
the associated optimization problem is nonlinear. In this chapter, we discuss
the Blahut-Arimoto algorithms (henceforth the BA algorithms), which is an
iterative algorithm devised for this purpose.
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In order to better understand how and why the BA algorithm works,
we will first describe the algorithm in a general setting in the next section.
Specializations of the algorithm for the computation of C and R(D) will be
discussed in Section 9.2, and convergence of the algorithm will be proved in
Section 9.3.

9.1 Alternating Optimization

In this section, we describe an alternating optimization algorithm. This al-
gorithm will be specialized in the next section for computing the channel
capacity and the rate-distortion function.

Consider the double supremum

sup
u1∈A1

sup
u2∈A2

f(u1,u2), (9.3)

where Ai is a convex subset of <ni for i = 1, 2, and f is a function defined
on A1 × A2. The function f is bounded from above, and is continuous and
has continuous partial derivatives on A1 × A2. Further assume that for all
u2 ∈ A2, there exists a unique c1(u2) ∈ A1 such that

f(c1(u2),u2) = max
u′1∈A1

f(u′1,u2), (9.4)

and for all u1 ∈ A1, there exists a unique c2(u1) ∈ A2 such that

f(u1, c2(u1)) = max
u′2∈A2

f(u1,u′2). (9.5)

Let u = (u1,u2) and A = A1 ×A2. Then (9.3) can be written as

sup
u∈A

f(u). (9.6)

In other words, the supremum of f is taken over a subset of <n1+n2 which
is equal to the Cartesian product of two convex subsets of <n1 and <n2 ,
respectively.

We now describe an alternating optimization algorithm for computing f∗,
the value of the double supremum in (9.3). Let u(k) = (u(k)

1 ,u(k)
2 ) for k ≥ 0

which are defined as follows. Let u(0)
1 be an arbitrarily chosen vector in A1,

and let u(0)
2 = c2(u(0)

1 ). For k ≥ 1, u(k) is defined by

u(k)
1 = c1(u(k−1)

2 ) (9.7)

and
u(k)

2 = c2(u(k)
1 ). (9.8)
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In other words, u(k)
1 and u(k)

2 are generated in the order u(0)
1 , u(0)

2 , u(1)
1 , u(1)

2 ,

u(2)
1 , u(2)

2 , · · ·, where each vector in the sequence is a function of the previous
vector except that u(0)

1 is arbitrarily chosen in A1. Let

f (k) = f(u(k)). (9.9)

Then from (9.4) and (9.5),

f (k) = f(u(k)
1 ,u(k)

2 ) (9.10)

≥ f(u(k)
1 ,u(k−1)

2 ) (9.11)

≥ f(u(k−1)
1 ,u(k−1)

2 ) (9.12)

= f (k−1) (9.13)

for k ≥ 1. Since the sequence f (k) is non-decreasing, it must converge because
f is bounded from above. We will show in Section 9.3 that f (k) → f∗ if
f is concave. Figure 9.1 is an illustration of the alternating maximization
algorithm, where in this case both n1 and n2 are equal to 1, and f (k) → f∗.

Fig. 9.1. Alternating optimization.

The alternating optimization algorithm can be explained by the following
analogy. Suppose a hiker wants to reach the summit of a mountain. Starting
from a certain point in the mountain, the hiker moves north-south and east-
west alternately. (In our problem, the north-south and east-west directions can
be multi-dimensional.) In each move, the hiker moves to the highest possible
point. The question is whether the hiker can eventually approach the summit
starting from any point in the mountain.

Replacing f by −f in (9.3), the double supremum becomes the double
infimum
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inf
u1∈A1

inf
u2∈A2

f(u1,u2). (9.14)

All the previous assumptions on A1, A2, and f remain valid except that f is
now assumed to be bounded from below instead of bounded from above. The
double infimum in (9.14) can be computed by the same alternating optimiza-
tion algorithm. Note that with f replaced by −f , the maximums in (9.4) and
(9.5) become minimums, and the inequalities in (9.11) and (9.12) are reversed.

9.2 The Algorithms

In this section, we specialize the alternating optimization algorithm described
in the last section to compute the channel capacity and the rate-distortion
function. The corresponding algorithms are known as the BA algorithms.

9.2.1 Channel Capacity

We will use r to denote an input distribution r(x), and we write r > 0 if r is
strictly positive, i.e., r(x) > 0 for all x ∈ X . If r is not strictly positive, we
write r ≥ 0. Similar notations will be introduced as appropriate.

Lemma 9.1. Let r(x)p(y|x) be a given joint distribution on X ×Y such that
r > 0, and let q be a transition matrix from Y to X . Then

max
q

∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

=
∑
x

∑
y

r(x)p(y|x) log
q∗(x|y)
r(x)

, (9.15)

where the maximization is taken over all q such that

q(x|y) = 0 if and only if p(y|x) = 0, (9.16)

and

q∗(x|y) =
r(x)p(y|x)∑
x′ r(x′)p(y|x′)

, (9.17)

i.e., the maximizing q is the which corresponds to the input distribution r and
the transition matrix p(y|x).

In (9.15) and the sequel, we adopt the convention that the summation is
taken over all x and y such that r(x) > 0 and p(y|x) > 0. Note that the right
hand side of (9.15) gives the mutual information I(X;Y ) when r is the input
distribution for the generic channel p(y|x).

Proof. Let
w(y) =

∑
x′

r(x′)p(y|x′) (9.18)
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in (9.17). We assume with loss of generality that for all y ∈ Y, p(y|x) > 0 for
some x ∈ X . Since r > 0, w(y) > 0 for all y, and hence q∗(x|y) is well-defined.
Rearranging (9.17), we have

r(x)p(y|x) = w(y)q∗(x|y). (9.19)

Consider∑
x

∑
y

r(x)p(y|x) log
q∗(x|y)
r(x)

−
∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

=
∑
x

∑
y

r(x)p(y|x) log
q∗(x|y)
q(x|y)

(9.20)

=
∑
y

∑
x

w(y)q∗(x|y) log
q∗(x|y)
q(x|y)

(9.21)

=
∑
y

w(y)
∑
x

q∗(x|y) log
q∗(x|y)
q(x|y)

(9.22)

=
∑
y

w(y)D(q∗(x|y)‖q(x|y)) (9.23)

≥ 0, (9.24)

where (9.21) follows from (9.19), and the last step is an application of the
divergence inequality. Then the proof is completed by noting in (9.17) that
q∗ satisfies (9.16) because r > 0. ut

Theorem 9.2. For a discrete memoryless channel p(y|x),

C = sup
r>0

max
q

∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

, (9.25)

where the maximization is taken over all q which satisfies (9.16).

Proof. Let I(r,p) denote the mutual information I(X;Y ) when r is the input
distribution for the generic channel p(y|x). Then we can write

C = max
r≥0

I(r,p). (9.26)

Let r∗ achieves C. If r∗ > 0, then

C = max
r≥0

I(r,p) (9.27)

= max
r>0

I(r,p) (9.28)

= max
r>0

max
q

∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

(9.29)

= sup
r>0

max
q

∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

, (9.30)
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where (9.29) follows from Lemma 9.1 (and the maximization is over all q
which satisfies (9.16)).

Next, we consider the case when r∗ ≥ 0. Since I(r,p) is continuous in r,
for any ε > 0, there exists δ > 0 such that if

‖r− r∗‖ < δ, (9.31)

then
C − I(r,p) < ε, (9.32)

where ‖r−r∗‖ denotes the Euclidean distance between r and r∗. In particular,
there exists r̃ > 0 which satisfies (9.31) and (9.32). Then

C = max
r≥0

I(r,p) (9.33)

≥ sup
r>0

I(r,p) (9.34)

≥ I(r̃,p) (9.35)
> C − ε, (9.36)

where the last step follows because r̃ satisfies (9.32). Thus we have

C − ε < sup
r>0

I(r,p) ≤ C. (9.37)

Finally, by letting ε→ 0, we conclude that

C = sup
r>0

I(r,p) = sup
r>0

max
q

∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

. (9.38)

This accomplishes the proof. ut

Now for the double supremum in (9.3), let

f(r,q) =
∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

, (9.39)

with r and q playing the roles of u1 and u2, respectively. Let

A1 = {(r(x), x ∈ X ) : r(x) > 0 and
∑
x r(x) = 1} , (9.40)

and

A2 = {(q(x|y), (x, y) ∈ X × Y) : q(x|y) > 0
if p(x|y) > 0, q(x|y) = 0 if p(y|x) = 0,
and

∑
x q(x|y) = 1 for all y ∈ Y}. (9.41)

Then A1 is a subset of <|X | and A2 is a subset of <|X ||Y|, and it is readily
checked that both A1 and A2 are convex. For all r ∈ A1 and q ∈ A2, by
Lemma 9.1,
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f(r,q) =
∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

(9.42)

≤
∑
x

∑
y

r(x)p(y|x) log
q∗(x|y)
r(x)

(9.43)

= I(X;Y ) (9.44)
≤ H(X) (9.45)
≤ log |X |. (9.46)

Thus f is bounded from above. Since for all q ∈ A2, q(x|y) = 0 for all x and
y such that p(x|y) = 0, these components of q are degenerated. In fact, these
components of q do not appear in the definition of f(r,q) in (9.39), which
can be seen as follows. Recall the convention that the double summation in
(9.39) is over all x and y such that r(x) > 0 and p(y|x) > 0. If q(x|y) = 0,
then p(y|x) = 0, and hence the corresponding term is not included in the
double summation. Therefore, it is readily seen that f is continuous and has
continuous partial derivatives on A because all the probabilities involved in
the double summation in (9.39) are strictly positive. Moreover, for any given
r ∈ A1, by Lemma 9.1, there exists a unique q ∈ A2 which maximizes f . It
will be shown shortly that for any given q ∈ A2, there also exists a unique
r ∈ A1 which maximizes f .

The double supremum in (9.3) now becomes

sup
r∈A1

sup
q∈A2

∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

, (9.47)

which by Theorem 9.2 is equal to C, where the supremum over all q ∈ A2 is
in fact a maximum. We then apply the alternating optimization algorithm in
the last section to compute C. First, we arbitrarily choose a strictly positive
input distribution in A1 and let it be r(0). Then we define q(0) and in general
q(k) for k ≥ 0 by

q(k)(x|y) =
r(k)(x)p(y|x)∑
x′ r

(k)(x′)p(y|x′)
(9.48)

in view of Lemma 9.1. In order to define r(1) and in general r(k) for k ≥ 1,
we need to find the r ∈ A1 which maximizes f for a given q ∈ A2, where the
constraints on r are ∑

x

r(x) = 1 (9.49)

and
r(x) > 0 for all x ∈ X . (9.50)

We now use the method of Lagrange multipliers to find the best r by ignoring
temporarily the positivity constraints in (9.50). Let
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J =
∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

− λ
∑
x

r(x). (9.51)

For convenience sake, we assume that the logarithm is the natural logarithm.
Differentiating with respect to r(x) gives

∂J

∂r(x)
=
∑
y

p(y|x) log q(x|y)− log r(x)− 1− λ. (9.52)

Upon setting ∂J
∂r(x) = 0, we have

log r(x) =
∑
y

p(y|x) log q(x|y)− 1− λ, (9.53)

or
r(x) = e−(λ+1)

∏
y

q(x|y)p(y|x). (9.54)

By considering the normalization constraint in (9.49), we can eliminate λ and
obtain

r(x) =

∏
y q(x|y)p(y|x)∑

x′
∏
y q(x′|y)p(y|x′)

. (9.55)

The above product is over all y such that p(y|x) > 0, and q(x|y) > 0 for all
such y. This implies that both the numerator and the denominator on the
right hand side above are positive, and therefore r(x) > 0. In other words, the
r thus obtained happen to satisfy the positivity constraints in (9.50) although
these constraints were ignored when we set up the Lagrange multipliers. We
will show in Section 9.3.2 that f is concave. Then r as given in (9.55), which
is unique, indeed achieves the maximum of f for a given q ∈ A2 because r is
in the interior of A1. In view of (9.55), we define r(k) for k ≥ 1 by

r(k)(x) =

∏
y q

(k−1)(x|y)p(y|x)∑
x′
∏
y q

(k−1)(x′|y)p(y|x′)
. (9.56)

The vectors r(k) and q(k) are defined in the order r(0), q(0), r(1), q(1), r(2),
q(2), · · ·, where each vector in the sequence is a function of the previous vector
except that r(0) is arbitrarily chosen in A1. It remains to show by induction
that r(k) ∈ A1 for k ≥ 1 and q(k) ∈ A2 for k ≥ 0. If r(k) ∈ A1, i.e., r(k) > 0,
then we see from (9.48) that q(k)(x|y) = 0 if and only if p(x|y) = 0, i.e.,
q(k) ∈ A2. On the other hand, if q(k) ∈ A2, then we see from (9.56) that
r(k+1) > 0, i.e., r(k+1) ∈ A2. Therefore, r(k) ∈ A1 and q(k) ∈ A2 for all k ≥ 0.
Upon determining (r(k),q(k)), we can compute f (k) = f(r(k),q(k)) for all k.
It will be shown in Section 9.3 that f (k) → C.
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9.2.2 The Rate-Distortion Function

This discussion in this section is analogous to the discussion in Section 9.2.1.
Some of the details will be omitted for brevity.

For all problems of interest, R(0) > 0. Otherwise, R(D) = 0 for all D ≥ 0
since R(D) is nonnegative and non-increasing. Therefore, we assume without
loss of generality that R(0) > 0.

We have shown in Corollary 8.19 that if R(0) > 0, then R(D) is strictly
decreasing for 0 ≤ D ≤ Dmax. Since R(D) is convex, for any s ≤ 0, there
exists a point on the R(D) curve for 0 ≤ D ≤ Dmax such that the slope of a
tangent1 to the R(D) curve at that point is equal to s. Denote such a point
on the R(D) curve by (Ds, R(Ds)), which is not necessarily unique. Then this
tangent intersects with the ordinate at R(Ds) − sDs. This is illustrated in
Figure 9.2.

D 

R ( D ) 

D s 

R (      ) D s 

R (      ) - s D s 

D max 

D s 

(      ,R (      )) D s D s 

Fig. 9.2. A tangent to the R(D) curve with slope equal to s.

Let I(p,Q) denote the mutual information I(X, X̂) and D(p,Q) denote
the expected distortion Ed(X, X̂) when p is the distribution forX and Q is the
transition matrix from X to X̂ defining X̂. Then for any Q, (I(p,Q), D(p,Q))
is a point in the rate-distortion region, and the line with slope s passing
through (I(p,Q), D(p,Q)) intersects the ordinate at I(p,Q) − sD(p,Q).
Since the R(D) curve defines the boundary of the rate-distortion region and
it is above the tangent in Figure 9.2, we see that

R(Ds)− sDs = min
Q

[I(p,Q)− sD(p,Q)]. (9.57)

1 We say that a line is a tangent to the R(D) curve if it touches the R(D) curve
from below.
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For each s ≤ 0, if we can find a Qs which achieves the above minimum,
then the line passing through (0, I(p,Qs) − sD(p,Qs)), i.e., the tangent in
Figure 9.2, gives a tight lower bound on the R(D) curve. In particular, if
(R(Ds), Ds) is unique,

Ds = D(p,Qs) (9.58)

and
R(Ds) = I(p,Qs). (9.59)

By varying over all s ≤ 0, we can then trace out the whole R(D) curve. In the
rest of the section, we will devise an iterative algorithm for the minimization
problem in (9.57).

Lemma 9.3. Let p(x)Q(x̂|x) be a given joint distribution on X ×X̂ such that
Q > 0, and let t be any distribution on X̂ such that t > 0. Then

min
t>0

∑
x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t(x̂)

=
∑
x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t∗(x̂)

, (9.60)

where
t∗(x̂) =

∑
x

p(x)Q(x̂|x), (9.61)

i.e., the minimizing t(x̂) is the distribution on X̂ corresponding to the input
distribution p and the transition matrix Q.

Proof. It suffices to prove that∑
x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t(x̂)

≥
∑
x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t∗(x̂)

(9.62)

for all t > 0. The details are left as an exercise. Note in (9.61) that t∗ > 0
because Q > 0. ut

Since I(p,Q) and D(p,Q) are continuous in Q, via an argument similar
to the one we used in the proof of Theorem 9.2, we can replace the minimum
over all Q in (9.57) by the infimum over all Q > 0. By noting that the right
hand side of (9.60) is equal to I(p,Q) and

D(p,Q) =
∑
x

∑
x̂

p(x)Q(x̂|x)d(x, x̂), (9.63)

we can apply Lemma 9.3 to obtain

R(Ds)− sDs

= inf
Q>0

[
min
t>0

∑
x,x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t(x̂) −s

∑
x,x̂

p(x)Q(x̂|x)d(x,x̂)

]
(9.64)

= inf
Q>0

min
t>0

[∑
x,x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t(x̂) −s

∑
x,x̂

p(x)Q(x̂|x)d(x,x̂)

]
. (9.65)
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Now in the double infimum in (9.14), let

f(Q, t) =
∑
x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t(x̂)

−s
∑
x

∑
x̂

p(x)Q(x̂|x)d(x, x̂), (9.66)

A1 =

{
(Q(x̂|x), (x, x̂) ∈ X × X̂ ) : Q(x̂|x) > 0,

∑
x̂

Q(x̂|x) = 1 for all x ∈ X

}
, (9.67)

and
A2 = {(t(x̂), x̂ ∈ X̂ ) : t(x̂) > 0 and

∑
x̂ t(x̂) = 1}, (9.68)

with Q and t playing the roles of u1 and u2, respectively. Then A1 is a subset
of <|X ||X̂ | and A2 is a subset of <|X̂ |, and it is readily checked that both A1

and A2 are convex. Since s ≤ 0,

f(Q, t)

=
∑
x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t(x̂)

− s
∑
x

∑
x̂

p(x)Q(x̂|x)d(x, x̂)

(9.69)

≥
∑
x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t∗(x̂)

+ 0 (9.70)

= I(X; X̂) (9.71)
≥ 0. (9.72)

Therefore, f is bounded from below.
The double infimum in (9.14) now becomes

inf
Q∈A1

inf
t∈A2

[∑
x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)
t(x̂)

− s
∑
x

∑
x̂

p(x)Q(x̂|x)d(x, x̂)

]
,

(9.73)
where the infimum over all t ∈ A2 is in fact a minimum. We then apply the
alternating optimization algorithm described in Section 9.2 to compute f∗,
the value of (9.73). First, we arbitrarily choose a strictly positive transition
matrix in A1 and let it be Q(0). Then we define t(0) and in general t(k) for
k ≥ 1 by

t(k)(x̂) =
∑
x

p(x)Q(k)(x̂|x) (9.74)
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in view of Lemma 9.3. In order to define Q(1) and in general Q(k) for k ≥ 1,
we need to find the Q ∈ A1 which minimizes f for a given t ∈ A2, where the
constraints on Q are

Q(x̂|x) > 0 for all (x, x̂) ∈ X × X̂ , (9.75)

and ∑
x̂

Q(x̂|x) = 1 for all x ∈ X . (9.76)

As we did for the computation of the channel capacity, we first ignore the
positivity constraints in (9.75) when setting up the Lagrange multipliers. Then
we obtain

Q(x̂|x) =
t(x̂)esd(x,x̂)∑
x̂′ t(x̂′)esd(x,x̂′)

> 0. (9.77)

The details are left as an exercise. We then define Q(k) for k ≥ 1 by

Q(k)(x̂|x) =
t(k−1)(x̂)esd(x,x̂)∑
x̂′ t

(k−1)(x̂′)esd(x,x̂′)
. (9.78)

It will be shown in the next section that f (k) = f(Q(k), t(k))→ f∗ as k →∞.
If there exists a unique point (R(Ds), Ds) on the R(D) curve such that the
slope of a tangent at that point is equal to s, then

(I(p,Q(k)), D(p,Q(k)))→ (R(Ds), Ds). (9.79)

Otherwise, (I(p,Q(k)), D(p,Q(k))) is arbitrarily close to the segment of the
R(D) curve at which the slope is equal to s when k is sufficiently large. These
facts are easily shown to be true.

9.3 Convergence

In this section, we first prove that if f is concave, then f (k) → f∗. We then
apply this sufficient condition to prove the convergence of the BA algorithm
for computing the channel capacity. The convergence of the BA algorithm for
computing the rate-distortion function can be proved likewise. The details are
omitted.

9.3.1 A Sufficient Condition

In the alternating optimization algorithm in Section 9.1, we see from (9.7)
and (9.8) that

u(k+1) = (u(k+1)
1 ,u(k+1)

2 ) = (c1(u(k)
2 ), c2(c1(u(k)

2 ))) (9.80)

for k ≥ 0. Define
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∆f(u) = f(c1(u2), c2(c1(u2)))− f(u1,u2). (9.81)

Then

f (k+1) − f (k) = f(u(k+1))− f(u(k)) (9.82)

= f(c1(u(k)
2 ), c2(c1(u(k)

2 )))− f(u(k)
1 ,u(k)

2 ) (9.83)

= ∆f(u(k)). (9.84)

We will prove that f being concave is sufficient for f (k) → f∗. To this end,
we first prove that if f is concave, then the algorithm cannot be trapped at
u if f(u) < f∗.

Lemma 9.4. Let f be concave. If f (k) < f∗, then f (k+1) > f (k).

Proof. We will prove that ∆f(u) > 0 for any u ∈ A such that f(u) < f∗.
Then if f (k) = f(u(k)) < f∗, we see from (9.84) that

f (k+1) − f (k) = ∆f(u(k)) > 0, (9.85)

and the lemma is proved.
Consider any u ∈ A such that f(u) < f∗. We will prove by contradiction

that ∆f(u) > 0. Assume ∆f(u) = 0. Then it follows from (9.81) that

f(c1(u2), c2(c1(u2))) = f(u1,u2). (9.86)

Now we see from (9.5) that

f(c1(u2), c2(c1(u2))) ≥ f(c1(u2),u2). (9.87)

If c1(u2) 6= u1, then
f(c1(u2),u2) > f(u1,u2) (9.88)

because c1(u2) is unique. Combining (9.87) and (9.88), we have

f(c1(u2), c2(c1(u2))) > f(u1,u2), (9.89)

which is a contradiction to (9.86). Therefore,

u1 = c1(u2). (9.90)

Using this, we see from (9.86) that

f(u1, c2(u1)) = f(u1,u2), (9.91)

which implies
u2 = c2(u1). (9.92)

because c2(c1(u2)) is unique.
Since f(u) < f∗, there exists v ∈ A such that
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f(u) < f(v). (9.93)

Consider
v − u = (v1 − u1, 0) + (0,v2 − u2). (9.94)

Let z̃ be the unit vector in the direction of v − u, z1 be the unit vector in
the direction of (v1 − u1, 0), and z2 be the unit vector in the direction of
(v2 − u2, 0). Then

‖v − u‖z̃ = ‖v1 − u1‖z1 + ‖v2 − u2‖z2, (9.95)

or
z̃ = α1z1 + α2z2, (9.96)

where

αi =
‖vi − ui‖
‖v − u‖

, (9.97)

i = 1, 2. Figure 9.3 is an illustration of the vectors u, v, z̃, z1, and z2.

z 

z 1 

z 2 

( u    u   ) 1 2 , ( v    u   ) 1 2 , 

( u    v   ) 1 2 , ( v    v   ) 1 2 , 

Fig. 9.3. The vectors u, v, z̃, z1, and z2.

We see from (9.90) that f attains its maximum value at u = (u1,u2)
when u2 is fixed. In particular, f attains its maximum value at u alone the
line passing through (u1,u2) and (v1,u2). Let 5f denotes the gradient of f .
Since f is continuous and has continuous partial derivatives, the directional
derivative of f at u in the direction of z1 exists and is given by 5f · z1.
It follows from the concavity of f that f is concave along the line passing
through (u1,u2) and (v1,u2). Since f attains its maximum value at u, the
derivative of f along the line passing through (u1,u2) and (v1,u2) vanishes.
Then we see that

5f · z1 = 0. (9.98)

Similarly, we see from (9.92) that
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5f · z2 = 0. (9.99)

Then from (9.96), the directional derivative of f at u in the direction of z̃ is
given by

5f · z̃ = α1(5f · z1) + α2(5f · z2) = 0. (9.100)

Since f is concave along the line passing through u and v, this implies

f(u) ≥ f(v), (9.101)

which is a contradiction to (9.93). Hence, we conclude that ∆f(u) > 0. ut

Although we have proved that the algorithm cannot be trapped at u if
f(u) < f∗, f (k) does not necessarily converge to f∗ because the increment
in f (k) in each step may be arbitrarily small. In order to prove the desired
convergence, we will show in next theorem that this cannot be the case.

Theorem 9.5. If f is concave, then f (k) → f∗.

Proof. We have already shown in Section 9.1 that f (k) necessarily converges,
say to f ′. Hence, for any ε > 0 and all sufficiently large k,

f ′ − ε ≤ f (k) ≤ f ′. (9.102)

Let
γ = min

u∈A′
∆f(u), (9.103)

where
A′ = {u ∈ A : f ′ − ε ≤ f(u) ≤ f ′}. (9.104)

Since f has continuous partial derivatives, ∆f(u) is a continuous function of
u. Then the minimum in (9.103) exists because A′ is compact2.

We now show that f ′ < f∗ will lead to a contradiction if f is concave. If
f ′ < f∗, then from Lemma 9.4, we see that ∆f(u) > 0 for all u ∈ A′ and
hence γ > 0. Since f (k) = f(u(k)) satisfies (9.102), u(k) ∈ A′, and

f (k+1) − f (k) = ∆f(u(k)) ≥ γ (9.105)

for all sufficiently large k. Therefore, no matter how smaller γ is, f (k) will
eventually be greater than f ′, which is a contradiction to f (k) → f ′. Hence,
we conclude that f (k) → f∗. ut

2 A′ is compact because it is the inverse image of a closed interval under a contin-
uous function and A is bounded.
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9.3.2 Convergence to the Channel Capacity

In order to show that the BA algorithm for computing the channel capacity
converges as intended, i.e., f (k) → C, we only need to show that the function
f defined in (9.39) is concave. Toward this end, for

f(r,q) =
∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

(9.106)

defined in (9.39), we consider two ordered pairs (r1,q1) and (r2,q2) in A,
where A1 and A2 are defined in (9.40) and (9.41), respectively. For any 0 ≤
λ ≤ 1 and λ̄ = 1−λ, an application of the log-sum inequality (Theorem 2.32)
gives

(λr1(x) + λ̄r2(x)) log
λr1(x) + λ̄r2(x)

λq1(x|y) + λ̄q2(x|y)

≤ λr1(x) log
r1(x)
q1(x|y)

+ λ̄r2(x) log
r2(x)
q2(x|y)

. (9.107)

Taking reciprocal in the logarithms yields

(λr1(x) + λ̄r2(x)) log
λq1(x|y) + λ̄q2(x|y)
λr1(x) + λ̄r2(x)

≥ λr1(x) log
q1(x|y)
r1(x)

+ λ̄r2(x) log
q2(x|y)
r2(x)

, (9.108)

and upon multiplying by p(y|x) and summing over all x and y, we obtain

f(λr1 + λ̄r2, λq1 + λ̄q2) ≥ λf(r1,q1) + λ̄f(r2,q2). (9.109)

Therefore, f is concave. Hence, we have shown that f (k) → C.
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Problems

1. Implement the BA algorithm for computing channel capacity.
2. Implement the BA algorithm for computing the rate-distortion function.
3. Explain why in the BA Algorithm for computing channel capacity, we

should not choose an initial input distribution which contains zero prob-
ability masses.

4. Prove Lemma 9.3.
5. Consider f(Q, t) in the BA algorithm for computing the rate-distortion

function.
a) Show that for fixed s and t, f(Q, t) is minimized by

Q(x̂|x) =
t(x̂)esd(x,x̂)∑
x̂′ t(x̂′)esd(x,x̂′)

.

b) Show that f(Q, t) is convex.

Historical Notes

An iterative algorithm for computing the channel capacity was developed by
Arimoto [18], where the convergence of the algorithm was proved. Blahut [35]
independently developed two similar algorithms, the first for computing the
channel capacity and the second for computing the rate-distortion function.
The convergence of Blahut’s second algorithm was proved by Csiszár [74].
These two algorithms are now commonly referred to as the Blahut-Arimoto
algorithms. The simplified proof of convergence in this chapter is based on
Yeung and Berger [362].

The Blahut-Arimoto algorithms are special cases of a general iterative al-
gorithm due to Csiszár and Tusnády [79] which also include the EM algorithm
[83] for fitting models from incomplete data and the algorithm for finding the
log-optimal portfolio for a stock market due to Cover [68].





10

Differential Entropy

Our discussion in the previous chapters involved only discrete random vari-
ables. The actual values taken by these random variables did not play any
role in establishing the results. In this chapter and the next chapter, our dis-
cussion will involve random variables taking real values. As we will see, the
values taken by these random variables do play a crucial role in the discussion.

Let X be a real random variable with cumulative distribution function
(CDF) FX(x) = Pr{X ≤ x}, which by definition is right-continuous. The
random variable X is said to be

• discrete if FX(x) increases only at a countable number of values of x;
• continuous if FX(x) is continuous, or equivalently, Pr{X = x} = 0 for

every value of x;
• mixed if it is neither discrete nor continuous.

If FX(x) is differentiable with derivative fX(x), then fX(x) is called the prob-
ability density function1 (pdf) of X. The support of X, denoted by SX , is the
set of all x such that FX(x) > FX(x− ε) for all ε > 0. For a function g defined
on SX , we write

Eg(X) =
∫
SX

g(x)dFX(x), (10.1)

where the right hand side is a Lebesgue-Stieltjes integration which covers all
the cases (i.e., discrete, continuous, and mixed) for the CDF FX(x). It may
be regarded as a notation for the expectation of g(X) with respect to FX(x)
if the reader is not familiar with measure theory.

Let X and Y be two real random variables with joint CDF FXY (x, y) =
Pr{X ≤ x, Y ≤ y}. The marginal CDF of X is given by FX(x) = FXY (x,∞)
(likewise for Y ). If ∂2

∂x∂yFXY (x, y) exists, it is called the joint pdf of X and
Y and is denoted by fXY (x, y). For x ∈ SX , the conditional CDF of Y given
{X = x} is defined as
1 More generally, the pdf of X can still be defined if FX(x) is differentiable at all

but a countable number of values of x.
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FY |X(y|x) =
∫ y

−∞
fY |X(v|x)dv, (10.2)

where

fY |X(y|x) =
fXY (x, y)
fX(x)

(10.3)

is the conditional pdf of Y given {X = x}. All the above notations naturally
extend to two or more real random variables. When there is no ambiguity, the
subscripts specifying the random variables will be omitted.

All the random variables in this chapter are assumed to be real2. The
variance of a random variable X is defined as

varX = E(X − EX)2 = EX2 − (EX)2. (10.4)

The covariance between two random variables X and Y is defined as

cov(X,Y ) = E(X − EX)(Y − EY ) = E(XY )− (EX)(EY ). (10.5)

For a random vector X = [X1X2 · · · Xn]>, the covariance matrix is de-
fined as

KX = E(X− EX)(X− EX)> = [cov(Xi, Xj)], (10.6)

and the correlation matrix is defined as

K̃X = EXX> = [EXiXj ]. (10.7)

Then

KX = E(X− EX)(X− EX)> (10.8)
= E[XX> −X(EX>)− (EX)X> + (EX)(EX>)] (10.9)
= EXX> − (EX)(EX>)− (EX)(EX>) + (EX)(EX>) (10.10)
= EXX> − (EX)(EX>) (10.11)
= K̃X − (EX)(EX)>. (10.12)

This implies that if EX = 0, then K̃X = KX. It can readily be verified that
in general,

K̃X = KX+EX (10.13)

and
KX = K̃X−EX. (10.14)

Therefore, a correlation matrix is a covariance matrix, and vice versa. When
there is no ambiguity, the subscripts in KX and K̃X will be omitted.

2 If a real random variable X is discrete, i.e., the support SX is a countable subset
of <, all the information measures involving X are unchanged if the alphabet X
is replaced by any countable index set.
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Let N (µ, σ2) denote the Gaussian distribution with mean µ and variance
σ2, i.e., the pdf of the distribution is given by

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (10.15)

for −∞ < x < ∞. Similarly, let N (µ,K) denote the multivariate Gaussian
distribution with mean µ and covariance matrix K, i.e., the joint pdf is given
by

f(x) =
1(√

2π
)n |K|1/2 e− 1

2 (x−µ)>K−1(x−µ) (10.16)

for all x ∈ <n, where K is a symmetric positive definite matrix3 and |K| is
the determinant of K.

In the rest of the chapter, we will define various information measures
under suitable conditions. Whenever these information measures are subse-
quently mentioned, they are assumed to be defined.

10.1 Preliminaries

In this section, we present some preliminary results on matrices and linear
transformation of random variables. All the matrices and vectors are assumed
to be real.

Definition 10.1. A square matrix K is symmetric if K> = K.

Definition 10.2. An n× n matrix K is positive definite if

x>Kx > 0 (10.17)

for all nonzero column n-vector x, and is positive semidefinite if

x>Kx ≥ 0 (10.18)

for all column n-vector x.

Proposition 10.3. A covariance (correlation) matrix is both symmetric and
positive semidefinite.

Proof. Omitted. ut

If a matrix K is symmetric, it can be diagonalized as

K = QΛQ>, (10.19)

where Λ is a diagonal matrix and Q (also Q>) is an orthogonal matrix, i.e.,
3 See Definitions 10.1 and 10.2.
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Q−1 = Q>, (10.20)

or
QQ> = Q>Q = I. (10.21)

The latter says that the rows (columns) of Q form an orthonormal system.
Since

|Q|2 = |Q||Q>| = |QQ>| = |I| = 1, (10.22)

we have
|Q| = |Q>| = 1. (10.23)

From (10.19) and (10.21), we have

KQ = (QΛQ>)Q = QΛ(Q>Q) = QΛ. (10.24)

Let λi and qi denote the ith diagonal element of Λ and the ith column of Q,
respectively. Then (10.24) can be written as

Kqi = λiqi (10.25)

for all i, i.e., qi is an eigenvector of K with eigenvalue λi. The next propo-
sition further shows that these eigenvalues are nonnegative if K is positive
semidefinite.

Proposition 10.4. The eigenvalues of a positive semidefinite matrix are non-
negative.

Proof. Let K be a positive semidefinite matrix, and let q be an eigenvector
of K with eigenvalue λ, i.e.,

Kq = λq. (10.26)

Since K is positive semidefinite,

0 ≤ q>Kq = q>(λq) = λ(q>q). (10.27)

Then we conclude that λ ≥ 0 because q>q ≥ 0. ut

The above discussions on diagonalization apply to a covariance matrix
because a covariance matrix is both symmetric and positive semidefinite. As
we will see, by diagonalizing the covariance matrix, a set of correlated random
variables can be decorrelated by an orthogonal transformation. On the other
hand, a set of correlated random variables can be regarded as an orthogonal
transformation of a set of uncorrelated random variables. This is particularly
important in the context of Gaussian random variables because a set of jointly
distributed Gaussian random variables are mutually independent if and only
if they are uncorrelated.
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Proposition 10.5. Let Y = AX, where X and Y are column vectors of n
random variables and A is an n× n matrix. Then

KY = AKXA
> (10.28)

and
K̃Y = AK̃XA

>. (10.29)

Proof. To prove (10.28), consider

KY = E(Y − EY)(Y − EY)> (10.30)
= E[A(X− EX)][A(X− EX)]> (10.31)
= E[A(X− EX)(X− EX)>A>] (10.32)
= A[E(X− EX)(X− EX)>]A> (10.33)
= AKXA

>. (10.34)

The proof of (10.29) is similar. ut

Proposition 10.6. Let X and Y be column vectors of n random variables
such that

Y = Q>X, (10.35)

where QΛQ> is a diagonalization of KX. Then KY = Λ, i.e., the random
variables in Y are uncorrelated and varYi = λi, the ith diagonal element of
Λ.

Remark The matrix KX is positive semidefinite, so that λi, being an eigen-
value of KX, is nonnegative by Proposition 10.4, as required for being the
variance of a random variable.

Proof of Propostion 10.6. By Proposition 10.5,

KY = Q>KXQ (10.36)
= Q>(QΛQ>)Q (10.37)
= (Q>Q)Λ(Q>Q) (10.38)
= Λ. (10.39)

Since KY = Λ is a diagonal matrix, the random variables in Y are uncorre-
lated. The variance of Yi is given by the ith diagonal element of KY = Λ, i.e.,
λi. The proposition is proved. ut

Corollary 10.7. Let X be a column vector of n random variables such that
QΛQ> is a diagonalization of KX. Then

X = QY, (10.40)

where Y is the column vector of n uncorrelated random variables prescribed
in Proposition 10.6.
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Proposition 10.8. Let X, Y, and Z be vectors of n random variables such
that X and Z are independent and Y = X + Z. Then

KY = KX +KZ. (10.41)

Proof. Omitted. ut

In communication engineering, the second moment of a random variable
X is very often referred to as the energy of X. The total energy of a random
vector X is then equal to E

∑
iX

2
i . The following proposition shows that the

total energy of a random vector is preserved by an orthogonal transformation.

Proposition 10.9. Let Y = QX, where X and Y are column vectors of n
random variables and Q is an orthogonal matrix. Then

E

n∑
i=1

Y 2
i = E

n∑
i=1

X2
i . (10.42)

Proof. Consider

n∑
i=1

Y 2
i = Y>Y (10.43)

= (QX)>(QX) (10.44)
= X>(Q>Q)X (10.45)
= X>X (10.46)

=
n∑
i=1

X2
i . (10.47)

The proposition is proved upon taking expectation on both sides. ut

10.2 Definition

We now introduce the differential entropy for continuous random variables as
the analog of the entropy for discrete random variables.

Definition 10.10. The differential entropy h(X) of a continuous random
variable X with pdf f(x) is defined as

h(X) = −
∫
S
f(x) log f(x)dx = −E log f(X). (10.48)
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The entropy of a discrete random variable X is a measure of the average
amount of information contained in X, or equivalently, the average amount
of uncertainty removed upon revealing the outcome of X. This was justified
by the asymptotic achievability of the entropy bound for zero-error data com-
pression discussed in Chapter 4 as well as the source coding theorem discussed
in Chapter 5.

However, although entropy and differential entropy have similar mathe-
matical forms, the latter does not serve as a measure of the average amount
of information contained in a continuous random variable. In fact, a continu-
ous random variable generally contains an infinite amount of information, as
explained in the following example.

Example 10.11. Let X be uniformly distributed on [0, 1). Then we can write

X = .X1X2X3 · · · , (10.49)

the dyadic expansion of X, where X1, X2, X3, · · · is a sequence of fair bits4.
Then

H(X) = H(X1, X2, X3, · · ·) (10.50)

=
∞∑
i=1

H(Xi) (10.51)

=
∞∑
i=1

1 (10.52)

=∞. (10.53)

In the following, we give two examples in which the differential entropy
can be evaluated explicitly.

Example 10.12 (Uniform Distribution). Let X be uniformly distributed on
[0, a). Then

h(X) = −
∫ a

0

1
a

log
1
a
dx = log a. (10.54)

From this example, we see immediately that h(X) < 0 if a < 1. This poses
no contradiction because as we have mentioned, the differential entropy does
not serve as a measure of the average amount of information contained in X.
The physical meaning of differential entropy will be understood through the
AEP for continuous random variables to be discussed in Section 10.4.

Example 10.13 (Gaussian Distribution). iGaussian Distribution Let X ∼
N (0, σ2). Then taking the natural logarithm, we have
4 Fair bits refer to i.i.d. bits, each being distributed uniformly on {0, 1}. See Sec-

tion 5.3.
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h(X) = −
∫
f(x) ln f(x)dx (10.55)

= −
∫
f(x)

(
− x2

2σ2
− ln

√
2πσ2

)
dx (10.56)

=
1

2σ2

∫
x2f(x)dx+ ln

√
2πσ2

∫
f(x)dx (10.57)

=
EX2

2σ2
+

1
2

ln(2πσ2) (10.58)

=
varX + (EX)2

2σ2
+

1
2

ln(2πσ2) (10.59)

=
σ2 + 0

2σ2
+

1
2

ln(2πσ2) (10.60)

=
1
2

+
1
2

ln(2πσ2) (10.61)

=
1
2

ln e+
1
2

ln(2πσ2) (10.62)

=
1
2

ln(2πeσ2) (10.63)

in nats. Changing the base of the logarithm to any chosen positive value, we
obtain

h(X) =
1
2

log(2πeσ2). (10.64)

The following two basic properties of differential entropy can readily be
proved from the definition.

Theorem 10.14 (Translation).

h(X + c) = h(X). (10.65)

Proof. Let Y = X + c, so that fY (y) = fX(y− c) and SY = {x+ c : x ∈ SX}.
Letting x = y − c in (10.48), we have

h(X) = −
∫
SX

fX(x) log fX(x)dx (10.66)

= −
∫
SY

fX(y − c) log fX(y − c)dy (10.67)

= −
∫
SY

fY (y) log fY (y)dy (10.68)

= h(Y ) (10.69)
= h(X + c), (10.70)

accomplishing the proof. ut
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Theorem 10.15 (Scaling). For a 6= 0,

h(aX) = h(X) + log |a|. (10.71)

Proof. Let Y = aX, so that fY (y) = 1
|a|fX(ya ) and SY = {ax : x ∈ SX}.

Letting x = y
a in (10.48), we have

h(X) = −
∫
SX

fX(x) log fX(x)dx (10.72)

= −
∫
SY

fX

(y
a

)
log fX

(y
a

) dy
|a|

(10.73)

= −
∫
SY

1
|a|
fX

(y
a

)[
log
(

1
|a|
fX

(y
a

))
+ log |a|

]
dy (10.74)

= −
∫
SY

fY (y) log fY (y)dy − log |a|
∫
SY

fY (y)dy (10.75)

= h(Y )− log |a| (10.76)
= h(aX)− log |a|. (10.77)

Hence,
h(aX) = h(X) + log |a|, (10.78)

accomplishing the proof. ut

Example 10.16. We illustrate Theorem 10.14 and Theorem 10.15 by means
of the Gaussian distribution. Let X ∼ N (µX , σ2

X). By Theorem 10.14 (and
Example 10.13),

h(X) =
1
2

log(2πeσ2
X). (10.79)

Let Y = aX. Then Y ∼ N (µY , σ2
Y ), where µY = aµX and σ2

Y = a2σ2
X . By

(10.79),

h(Y ) =
1
2

log(2πeσ2
Y ) =

1
2

log(2πea2σ2
X) =

1
2

log(2πeσ2
X) + log |a|, (10.80)

which is consistent with Theorem 10.15.

Theorem 10.14 says that the differential entropy of a random variable is
unchanged by translation. Theorem 10.15 says that the differential entropy of
a random variable is generally changed by scaling. Specifically, if |a| > 1, the
differential entropy is increased by log |a|. If |a| < 1, the differential entropy
is decreased by − log |a| (note that − log |a| > 0). If a = −1, the differential
entropy is unchanged.

These properties suggest that the differential entropy of a random variable
depends only on the “spread” of the pdf. More specifically, the differential
entropy increases with the “spread” of the pdf. This point will be further
elaborated in Section 10.6.
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10.3 Joint Differential Entropy, Conditional
(Differential) Entropy, and Mutual Information

The definition for differential entropy is readily extended to multiple contin-
uous random variables. In the rest of the chapter, we let X = [X1X2 · · ·Xn].

Definition 10.17. The joint differential entropy h(X) of a random vector X
with joint pdf f(x) is defined as

h(X) = −
∫
S
f(x) log f(x)dx = −E log f(X). (10.81)

It follows immediately from the above definition that if X1, X2, · · · , Xn are
mutually independent, then

h(X) =
n∑
i=1

h(Xi). (10.82)

The following two theorems are straightforward generalizations of Theo-
rems 10.14 and 10.15, respectively. The proofs are omitted.

Theorem 10.18 (Translation).

h(X + c) = h(X). (10.83)

Theorem 10.19 (Scaling). Let A be a nonsingular n× n matrix. Then

h(AX) = h(X) + log |det(A)|. (10.84)

Theorem 10.20 (Multivariate Gaussian Distribution). Let X ∼ N (µ,K).
Then

h(X) =
1
2

log [(2πe)n|K|] . (10.85)

Proof. Let K be diagonalizable as QΛQ>. Write X = QY as in Corollary 10.7,
where the random variables in Y are uncorrelated with varYi = λi, the ith
diagonal element of Λ. Since X is Gaussian, so is Y. Then the random variables
in Y are mutually independent because they are uncorrelated. Now consider
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h(X) = h(QY) (10.86)
a)
= h(Y) + log |det(Q)| (10.87)
b)
= h(Y) + 0 (10.88)

c)
=

n∑
i=1

h(Yi) (10.89)

d)
=

n∑
i=1

1
2

log(2πeλi) (10.90)

=
1
2

log

[
(2πe)n

n∏
i=1

λi

]
(10.91)

e)
=

1
2

log[(2πe)n|Λ|] (10.92)

f)
=

1
2

log[(2πe)n|K|] (10.93)

In the above

a) follows from Theorem 10.19;
b) follows from (10.23);
c) follows from (10.82) since Y1, Y2, · · · , Yn are mutually independent;
d) follows from Example 10.16;
e) follows because Λ is a diagonal matrix;
f) follows because

|Λ| = |Q||Λ||Q>| = |QΛQ>| = |K|. (10.94)

The theorem is proved. ut

In describing a communication system, we very often specify the relation
between two random variables X and Y through a conditional distribution
p(y|x) (if Y is discrete) or a conditional pdf f(y|x) (if Y is continuous) defined
for all x, even though certain x may not be in SX . This is made precise by
the following two definitions.

Definition 10.21. Let X and Y be two jointly distributed random variables
with Y being discrete. The random variable Y is related to the random variable
X through a conditional distribution p(y|x) defined for all x means that for
all x and y,

Pr{X ≤ x, Y = y} =
∫ x

−∞
pY |X(y|u)dFX(u). (10.95)
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Definition 10.22. Let X and Y be two jointly distributed random variables
with Y being continuous. The random variable Y is related to the random
variable X through a conditional pdf f(y|x) defined for all x means that for
all x and y,

FXY (x, y) =
∫ x

−∞
FY |X(y|u)dFX(u), (10.96)

where
FY |X(y|x) =

∫ y

−∞
fY |X(v|x)dv. (10.97)

Definition 10.23. Let X and Y be jointly distributed random variables where
Y is continuous and is related to X through a conditional pdf f(y|x) defined
for all x. The conditional differential entropy of Y given {X = x} is defined
as

h(Y |X = x) = −
∫
SY (x)

f(y|x) log f(y|x)dy (10.98)

where SY (x) = {y : f(y|x) > 0}, and the conditional differential entropy of Y
given X is defined as

h(Y |X) = −
∫
SX

h(Y |X = x)dF (x) = −E log f(Y |X). (10.99)

Definition 10.24. A pdf f(y) is bounded if there exists a positive real number
M such that f(y) < M for all y.

Definition 10.25. A conditional pdf f(y|x) defined for all x is bounded if
there exists a positive real number M such that f(y|x) < M for all x and y.

Proposition 10.26. Let X and Y be jointly distributed random variables
where Y is continuous and is related to X through a conditional pdf f(y|x)
defined for all x. If f(y|x) is bounded, then f(y) exists and is bounded, and
is given by

f(y) =
∫
f(y|x)dF (x). (10.100)

Proof. We first give an informal proof of the proposition to illustrate the idea.
From (10.96), we have

F (y) = FXY (∞, y) =
∫
F (y|x)dF (x). (10.101)

Assuming that F (y) is differentiable, the proposition can be proved by con-
sidering
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f(y) =
dF (y)
dy

(10.102)

=
d

dy

∫
F (y|x)dF (x) (10.103)

=
∫ [

d

dy
F (y|x)

]
dF (x) (10.104)

=
∫
f(y|x)dF (x), (10.105)

provided that (10.104) is justified.
We now present a formal proof. Let M be a positive real number such that

f(y|x) < M (10.106)

for all x and y. Since

f(y|x) =
d

dy
F (y|x) (10.107)

= lim
∆y→0

1
∆y

[F (y +∆y|x)− F (y|x)], (10.108)

for all ε > 0, there exists δ > 0 such that for all ∆y ∈ (−δ, δ),∣∣∣∣ 1
∆y

[F (y +∆y|x)− F (y|x)]
∣∣∣∣ < f(y|x) + ε < M + ε. (10.109)

It follows that∫ ∣∣∣∣ 1
∆y

[F (y +∆y|x)− F (y|x)]
∣∣∣∣ dF (x) <

∫
(M + ε)dF (x) (10.110)

< M + ε. (10.111)

Now consider

lim
∆y→0

1
∆y

[F (y +∆y)− F (y)]

= lim
∆y→0

1
∆y

[∫
F (y +∆y|x)dF (x)−

∫
F (y|x)dF (x)

]
(10.112)

= lim
∆y→0

∫
1
∆y

[F (y +∆y|x)− F (y|x)]dF (x) (10.113)

=
∫

lim
∆y→0

1
∆y

[F (y +∆y|x)− F (y|x)]dF (x) (10.114)

=
∫
f(y|x)dF (x) (10.115)

< M, (10.116)
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where we have invoked the dominated convergence theorem5 in light of
(10.111) to obtain (10.114), and (10.116) follows from (10.106). Therefore,

f(y) =
dF (y)
dy

(10.117)

= lim
∆y→0

1
∆y

[F (y +∆y)− F (y)] (10.118)

=
∫
f(y|x)dF (x) (10.119)

< M. (10.120)

This completes the proof. ut

The above proposition says that if Y is related to X through a bounded
conditional pdf f(y|x), then the pdf of Y exists regardless of the distribution of
X. The next proposition is a generalization to random vectors, and the proof
is left as an exercise. As we will see, the theory in the rest of this chapter and
in the next chapter will be developed around this important fact.

Proposition 10.27. Let X and Y be jointly distributed random vectors where
Y is continuous and is related to X through a conditional pdf f(y|x) defined
for all x. If f(y|x) is bounded, then f(y) exists and is bounded, and is given
by

f(y) =
∫
f(y|x)dF (x). (10.121)

Definition 10.28. Let X and Y be jointly distributed random variables where
Y is continuous and is related to X through a bounded conditional pdf f(y|x)
defined for all x. The mutual information between X and Y is defined as

I(X;Y ) =
∫
SX

∫
SY (x)

f(y|x) log
f(y|x)
f(y)

dy dF (x) (10.122)

= E log
f(Y |X)
f(Y )

, (10.123)

where f(y) exists and is given in (10.100) by Proposition 10.26. When both
X and Y are continuous,

5 The dominated convergence theorem states that

lim
k→∞

∫
S

fkdµ =

∫
S

fdµ,

where fk and f are real functions defined on S such that fk → f pointwise,
provided that |fk| < g pointwise on S and

∫
S
|g|dµ <∞. See [284] for details.
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I(X;Y ) = E log
f(Y |X)
f(Y )

= E log
f(X,Y )
f(X)f(Y )

. (10.124)

Together with our discussion on discrete random variables in Chapter 2,
the mutual information I(X;Y ) is defined when each of the random variables
involved can be either discrete or continuous. In the same way, we can define
the conditional mutual information I(X;Y |T ).

Definition 10.29. Let X, Y , and T be jointly distributed random variables
where Y is continuous and is related to (X,T ) through a bounded conditional
pdf f(y|x, t) defined for all x and t. The mutual information between X and
Y given T is defined as

I(X;Y |T ) =
∫
ST
I(X;Y |T = t)dF (t) = E log

f(Y |X,T )
f(Y |T )

, (10.125)

where

I(X;Y |T = t) =
∫
SX(t)

∫
SY (x,t)

f(y|x, t) log
f(y|x, t)
f(y|t)

dy dF (x|t). (10.126)

We now give a physical interpretation of I(X;Y ) when the joint pdf f(x, y)
exists. For simplicity, we assume that f(x, y) > 0 for all x and y. Let ∆ be a
small positive quantity. For all integer i, define the interval

Aix = [ i∆, (i+ 1)∆) (10.127)

in <, and for all integer j, define the interval

Ajy = [ j∆, (j + 1)∆). (10.128)

For all integers i and j, define the set

Ai,jxy = Aix ×Ajy, (10.129)

which corresponds to a “rectangle” in <2.
We now introduce two discrete random variables X̂∆ and Ŷ∆ defined by{

X̂∆ = i if X ∈ Aix
Ŷ∆ = j if Y ∈ Ajy.

(10.130)

The random variables X̂∆ and Ŷ∆ are quantizations of the continuous random
variables X and Y , respectively. For all i and j, let (xi, yj) ∈ Ai,jxy. Then
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I(X̂∆; Ŷ∆)

=
∑
i

∑
j

Pr{(X̂∆, Ŷ∆) = (i, j)} log
Pr{(X̂∆, Ŷ∆) = (i, j)}

Pr{X̂∆ = i}Pr{Ŷ∆ = j}
(10.131)

≈
∑
i

∑
j

f(xi, yj)∆2 log
f(xi, yj)∆2

(f(xi)∆)(f(yj)∆)
(10.132)

=
∑
i

∑
j

f(xi, yj)∆2 log
f(xi, yj)
f(xi)f(yj)

(10.133)

≈
∫ ∫

f(x, y) log
f(x, y)
f(x)f(y)

dxdy (10.134)

= I(X;Y ). (10.135)

Therefore, I(X;Y ) it can be interpreted as the limit of I(X̂∆; Ŷ∆) as ∆→ 0.
This interpretation carries over to the case when X and Y have a general joint
distribution6 (see Dobrushin [85]). As I(X̂∆; Ŷ∆) is always nonnegative, this
suggests that I(X;Y ) is also always nonnegative, which will be established in
Theorem 10.33.

Definition 10.30. Let X be a continuous random variable and Y be a discrete
random variable, where X is related to Y through a bounded conditional pdf
f(x|y). The conditional entropy of Y given X is defined as

H(Y |X) = H(Y )− I(X;Y ), (10.136)

where I(X;Y ) is defined as in Definition 10.28.

Proposition 10.31. For two random variables X and Y ,

h(Y ) = h(Y |X) + I(X;Y ) (10.137)

if Y is continuous, and

H(Y ) = H(Y |X) + I(X;Y ) (10.138)

if Y is discrete.

Proposition 10.32 (Chain Rule for Differential Entropy).

h(X1, X2, · · · , Xn) =
n∑
i=1

h(Xi|X1, · · · , Xi−1). (10.139)

6 In the general setting, the mutual information between X and Y is defined as

I(X;Y ) =

∫
SXY

(
log

dPXY
d(PX × PY )

)
dPXY ,

where PXY , PX , and PY are the probability measures of (X,Y ), X, and Y ,
respectively, and dPXY

d(PX×PY )
denotes the Radon-Nikodym derivative of PXY with

respect to the product measure PX × PY .
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The proofs of these propositions are left as an exercise.

Theorem 10.33.
I(X;Y ) ≥ 0, (10.140)

with equality if and only if X is independent of Y .

Proof. Consider

I(X;Y )

=
∫
SX

∫
SY (x)

f(y|x) log
f(y|x)
f(y)

dy dFX(x) (10.141)

≥ (log e)
∫
SX

∫
SY (x)

f(y|x)
(

1− f(y)
f(y|x)

)
dy dFX(x) (10.142)

= (log e)
∫
SX

[∫
SY (x)

f(y|x)dy −
∫
SY (x)

f(y)dy

]
dFX(x) (10.143)

≥ (log e)
∫
SX

(1− 1)dFX(x) (10.144)

= 0, (10.145)

where (10.142) results from an application of the fundamental inequality
(Corollary 2.102), and (10.144) follows from∫

SY (x)

f(y)dy ≤ 1. (10.146)

This proves (10.140).
For equality to hold in (10.140), equality must hold in (10.142) for all

x ∈ SX and all y ∈ SY (x), and equality must hold in (10.144) for all x ∈ SX .
For the former, this is the case if and only if

f(y|x) = f(y) for all x ∈ SX and y ∈ SY (x), (10.147)

which implies ∫
SY (x)

f(y)dy =
∫
SY (x)

f(y|x)dy = 1, (10.148)

i.e., equality holds in (10.144). Thus (10.147) is a necessary and sufficient
condition for equality to hold in (10.140).

It is immediate that if X and Y are independent, then (10.147) holds. It
remains to prove the converse. To this end, observe that (10.148), implied by
(10.147), is equivalent to that f(y) = 0 on SY \SY (x) a.e. (almost everywhere).
By the definition of SY , this means that SY \SY (x) ⊂ ScY , or SY = SY (x).
Since this holds for all x ∈ SX , we conclude that f(y|x) = f(y) for all (x, y) ∈
SX × SY , i.e., X and Y are independent. The theorem is proved. ut



242 10 Differential Entropy

Corollary 10.34.
I(X;Y |T ) ≥ 0, (10.149)

with equality if and only if X is independent of Y conditioning on T .

Proof. This follows directly from (10.125). ut

Corollary 10.35 (Conditioning Does Not Increase Differential En-
tropy).

h(X|Y ) ≤ h(X) (10.150)

with equality if and only if X and Y are independent.

Corollary 10.36 (Independence Bound for Differential Entropy).

h(X1, X2, · · · , Xn) ≤
n∑
i=1

h(Xi) (10.151)

with equality if and only if i = 1, 2, · · · , n are mutually independent.

10.4 The AEP for Continuous Random Variables

The Weak AEP for discrete random variables discussed in Chapter 5 states
that for n i.i.d. random variables X1, X2, · · · , Xn with generic discrete ran-
dom variable X, p(X1, X2, · · · , Xn) is close to 2−nH(X) with high probability
when n is large (Theorem 5.1, Weak AEP I). This fundamental property of
entropy leads to the definition of weak typicality, and as a consequence, the
total number of weakly typical sequences is approximately equal to 2nH(X)

(Theorem 5.3, Weak AEP II).
In the following, we develop the AEP for continuous random variables

in the same way we developed the Weak AEP for discrete random variables.
Some of the proofs are exactly the same as their discrete analogs, and they are
omitted. We note that for continuous random variables, the notion of strong
typicality does not apply because the probability that a continuous random
variable takes a particular value is equal to zero.

Theorem 10.37 (AEP I for Continuous Random Variables).

− 1
n

log f(X)→ h(X) (10.152)

in probability as n→∞, i.e., for any ε > 0, for n sufficiently large,

Pr
{∣∣∣∣− 1

n
log f(X)− h(X)

∣∣∣∣ < ε

}
> 1− ε. (10.153)
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Definition 10.38. The typical set Wn
[X]ε with respect to f(x) is the set of

sequences x = (x1, x2, · · · , xn) ∈ Xn such that∣∣∣∣− 1
n

log f(x)− h(X)
∣∣∣∣ < ε, (10.154)

or equivalently,

h(X)− ε < − 1
n

log f(x) < h(X) + ε, (10.155)

where ε is an arbitrarily small positive real number. The sequences in Wn
[X]ε

are called ε-typical sequences.

The quantity

− 1
n

log f(x) = − 1
n

n∑
k=1

log f(xk) (10.156)

is called the empirical differential entropy of the sequence x. The empirical
differential entropy of a typical sequence is close to the true differential entropy
h(X).

If the pdf f(x) is continuous, we see from (10.156) that the empirical
differential entropy is continuous in x with respect to the Euclidean distance
in <n, so that if x is ε-typical, then all the sequences in the neighborhood of x
are also ε-typical. As such, the number of ε-typical sequences is uncountably.
Therefore, it is not meaningful to discuss the cardinality of a typical set as
in the discrete case. Instead, the “size” of a typical set is measured by its
volume.

Definition 10.39. The volume of a set A in <n is defined as

Vol(A) =
∫
A

dx. (10.157)

Theorem 10.40 (AEP II for Continuous Random Variables). The fol-
lowing hold for any ε > 0:

1) If x ∈Wn
[X]ε, then

2−n(h(X)+ε) < f(x) < 2−n(h(X)−ε). (10.158)

2) For n sufficiently large,

Pr{X ∈Wn
[X]ε} > 1− ε. (10.159)

3) For n sufficiently large,

(1− ε)2n(h(X)−ε) < Vol(Wn
[X]ε) < 2n(h(X)+ε). (10.160)
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Proof. Property 1 follows immediately from the definition ofWn
[X]ε in (10.155).

Property 2 is equivalent to Theorem 10.37. To prove Property 3, we use the
lower bound in (10.158) and consider

1 ≥ Pr{Wn
[X]ε} (10.161)

=
∫
Wn

[X]ε

f(x) dx (10.162)

>

∫
Wn

[X]ε

2−n(h(X)+ε) dx (10.163)

> 2−n(h(X)+ε)

∫
Wn

[X]ε

dx (10.164)

= 2−n(h(X)+ε) Vol(Wn
[X]ε), (10.165)

which implies
Vol(Wn

[X]ε) < 2n(h(X)+ε). (10.166)

Note that this upper bound holds for any n ≥ 1. On the other hand, using
the upper bound in (10.158) and Theorem 10.37, for n sufficiently large, we
have

1− ε < Pr{Wn
[X]ε} (10.167)

=
∫
Wn

[X]ε

f(x) dx (10.168)

<

∫
Wn

[X]ε

2−n(h(X)−ε) dx (10.169)

= 2−n(h(X)−ε) Vol(Wn
[X]ε). (10.170)

Then
Vol(Wn

[X]ε) > (1− ε)2n(h(X)−ε). (10.171)

Combining (10.166) and (10.171) gives Property 3. The theorem is proved.
ut

From the AEP for continuous random variables, we see that the volume of
the typical set is approximately equal to 2nh(X) when n is large. This gives the
following physical interpretations of differential entropy. First, the fact that
h(X) can be negative does not incur any difficulty because 2nh(X) is always
positive. Second, if the differential entropy is large, then the volume of the
typical set is large; if the differential entropy is small (not in magnitude but
in value), then the volume of the typical set is small.
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10.5 Informational Divergence

We first extend the definition of informational divergence introduced in Sec-
tion 2.5 to pdf’s.

Definition 10.41. Let f and g be two pdf’s defined on <n with supports Sf
and Sg, respectively. The informational divergence between f and g is defined
as

D(f‖g) =
∫
Sf
f(x) log

f(x)
g(x)

dx = Ef log
f(X)
g(X)

, (10.172)

where Ef denotes expectation with respect to f .

Remark In the above definition, we adopt the convention c log c
0 = ∞ for

c > 0. Furthermore, if the set

Sf \ Sg = {x : f(x) > 0 and g(x) = 0} (10.173)

has zero Lebesgue measure, the integral is evaluated by excluding this set
from Sf . Therefore, if D(f‖g) <∞, then Sf \ Sg has zero Lebesgue measure,
i.e., Sf is essentially a subset of Sg.

Theorem 10.42 (Divergence Inequality). Let f and g be two pdf’s defined
on <n. Then

D(f‖g) ≥ 0, (10.174)

with equality if and only if f = g a.e.

Proof. Consider

D(f‖g) =
∫
Sf
f(x) log

f(x)
g(x)

dx (10.175)

= (log e)
∫
Sf
f(x) ln

f(x)
g(x)

dx (10.176)

≥ (log e)
∫
Sf
f(x)

(
1− g(x)

f(x)

)
dx (10.177)

= (log e)

[∫
Sf
f(x)dx−

∫
Sf
g(x)dx

]
(10.178)

≥ 0, (10.179)

where (10.177) follows from the fundamental inequality (Corollary 2.102) and
(10.179) follows from ∫

Sf
g(x)dx ≤ 1 =

∫
Sf
f(x)dx. (10.180)

Equality holds in (10.177) if and only if f(x) = g(x) on Sf a.e., which implies



246 10 Differential Entropy∫
Sf
g(x)dx =

∫
Sf
f(x)dx = 1, (10.181)

i.e., equality holds in (10.179). Then we see from (10.181) that g(x) = 0 on
Scf a.e. Hence, we conclude that equality holds in (10.174) if and only if f = g
a.e. The theorem is proved. ut

10.6 Maximum Differential Entropy Distributions

In Section 2.9, we have discussed maximum entropy distributions for a discrete
random variable. We now extend this theme to multiple continuous random
variables. Specifically, we are interested in the following problem: Maximize
h(f) over all pdf f defined on a subset S of <n, subject to∫

Sf
ri(x)f(x)dx = ai for 1 ≤ i ≤ m, (10.182)

where Sf ⊂ S and ri(x) is defined for all x ∈ S.

Theorem 10.43. Let

f∗(x) = e−λ0−
∑m

i=1
λiri(x) (10.183)

for all x ∈ S, where λ0, λ1, · · · , λm are chosen such that the constraints in
(10.182) are satisfied. Then f∗ maximizes h(f) over all pdf f defined on S,
subject to the constraints in (10.182).

Proof. The proof is analogous to that of Theorem 2.50. The details are omit-
ted. ut

Corollary 10.44. Let f∗ be a pdf defined on S with

f∗(x) = e−λ0−
∑m

i=1
λiri(x) (10.184)

for all x ∈ S. Then f∗ maximizes h(f) over all pdf f defined on S, subject to
the constraints∫

Sf
ri(x)f(x)dx =

∫
S
ri(x)f∗(x)dx for 1 ≤ i ≤ m. (10.185)

Theorem 10.45. Let X be a continuous random variable with EX2 = κ.
Then

h(X) ≤ 1
2

log(2πeκ), (10.186)

with equality if and only if X ∼ N (0, κ).
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Proof. The problem here is to maximize h(f) subject to the constraint∫
x2f(x)dx = κ. (10.187)

An application of Theorem 10.43 yields

f∗(x) = ae−bx
2

(10.188)

which is identified as a Gaussian distribution with zero mean. In order that
the constraint (10.187) is satisfied, we must have

a =
1√
2πκ

and b =
1

2κ
. (10.189)

Hence, in light of (10.64) in Example 10.13, we have proved (10.186) with
equality if and only if X ∼ N (0, κ). ut

Theorem 10.46. Let X be a continuous random variable with mean µ and
variance σ2. Then

h(X) ≤ 1
2

log(2πeσ2), (10.190)

with equality if and only if X ∼ N (µ, σ2).

Proof. Let X ′ = X − µ. Then

EX ′ = E(X − µ) = EX − µ = 0 (10.191)

and
E(X ′)2 = E(X − µ)2 = varX = σ2. (10.192)

Applying Theorem 10.14 and Theorem 10.45, we have

h(X) = h(X ′) ≤ 1
2

log(2πeσ2), (10.193)

and equality holds if and only ifX ′ ∼ N (0, σ2), orX ∼ N (µ, σ2). The theorem
is proved. ut

Remark Theorem 10.45 says that with the constraint EX2 = κ, the differ-
ential entropy is maximized by the distribution N (0, κ). If we impose the ad-
ditional constraint that EX = 0, then varX = EX2 = κ. By Theorem 10.46,
the differential entropy is still maximized by N (0, κ).

We have mentioned at the end of Section 10.2 that the differential entropy
of a random variable increases with the “spread” of the pdf. Though a sim-
ple consequence of Theorem 10.45, the above theorem makes this important
interpretation precise. By rewriting the upper bound in (10.193), we obtain
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h(X) ≤ log σ +
1
2

log(2πe). (10.194)

That is, the differential entropy is at most equal to the logarithm of the
standard deviation plus a constant. In particular, the differential entropy tends
to −∞ as the standard deviation tends to 0.

The next two theorems are the vector generalizations of Theorems 10.45
and 10.46.

Theorem 10.47. Let X be a vector of n continuous random variables with
correlation matrix K̃. Then

h(X) ≤ 1
2

log
[
(2πe)n|K̃|

]
, (10.195)

with equality if and only if X ∼ N (0, K̃).

Proof. By Theorem 10.43, the joint pdf that maximizes h(X) has the form

f∗(x) = e
−λ0−

∑
i,j
λijxixj = e−λ0−x>Lx, (10.196)

where L = [λij ]. Thus f∗ is a multivariate Gaussian distribution with zero
mean. Therefore,

cov(Xi, Xj) = EXiXj − (EXi)(EXj) = EXiXj (10.197)

for all i and j. Since f∗ is constrained by K̃, λ0 and L have the unique solution
given by

e−λ0 =
1(√

2π
)n |K̃|1/2 (10.198)

and
L =

1
2
K̃−1, (10.199)

so that
f∗(x) =

1(√
2π
)n |K̃|1/2 e− 1

2x>K̃−1x, (10.200)

the joint pdf of X ∼ N (0, K̃). Hence, by Theorem 10.20, we have proved
(10.195) with equality if and only if X ∼ N (0, K̃). ut

Theorem 10.48. Let X be a vector of n continuous random variables with
mean µ and covariance matrix K. Then

h(X) ≤ 1
2

log [(2πe)n|K|] , (10.201)

with equality if and only if X ∼ N (µ,K).

Proof. Similar to the proof of Theorem 10.46. ut
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Problems

1. Prove Propositions 10.3 and 10.8.
2. Show that the joint pdf of a multivariate Gaussian distribution integrates

to 1.
3. Show that a symmetric positive definite matrix is a covariance matrix.
4. Let

K =

 7/4
√

2/4 −3/4√
2/4 5/2 −

√
2/4

−3/4 −
√

2/4 7/4

 .
a) Find the eigenvalues and eigenvectors of K.
b) Show that K is positive definite.
c) SupposeK is the covariance matrix of a random vector X = [X1 X2 X3]>.

i) Find the coefficient of correlation between Xi and Xj for 1 ≤ i <
j ≤ 3.

ii) Find an uncorrelated random vector Y = [Y1 Y2 Y3] such that X
is a linear transformation of Y.

iii) Determine the covariance matrix of Y.
5. Prove Theorem 10.19.
6. For continuous random variables X and Y , discuss why I(X;X) is not

equal to h(X).
7. Prove Propostion 10.27.
8. Verify Corollary 10.44.
9. Each of the following continuous distributions can be obtained as the

distribution that maximizes the differential entropy subject to a suitable
set of constraints:
a) the exponential distribution,

f(x) = λe−λx

for x ≥ 0, where λ > 0;
b) the Laplace distribution,

f(x) =
1
2
λe−λ|x|

for −∞ < x <∞, where λ > 0;
c) the gamma distribution,

f(x) =
λ

Γ (α)
(λx)α−1e−λx

for x ≥ 0, where λ, α > 0 and Γ (z) =
∫∞

0
tz−1e−tdt;

d) the beta distribution,

f(x) =
Γ (p+ q)
Γ (p)Γ (q)

xp−1(1− x)q−1

for 0 ≤ x ≤ 1 , where p, q > 0;
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e) the Cauchy distribution,

f(x) =
1

π(1 + x2)

for −∞ < x <∞.
Identify the corresponding set of constraints for each of these distributions.

10. Let µ be the mean of a continuous random variable X defined on <+.
Obtain an upper bound on h(X) in terms of µ.

11. The inequality in (10.194) gives an upper bound on the differential entropy
in terms of the variance. Can you give an upper bound on the variance in
terms of the differential entropy?

12. For i = 1, 2, suppose fi maximizes h(f) over all the pdf’s defined on
Si ⊂ <n subject to the constraints in (10.182), where S1 ⊂ S2. Show that
h(f1) ≤ h(f2).

13. Hadamard’s inequality Show that for a positive semidefinite matrixK,
|K| ≤

∏n
i=1Kii, with equality if and only if K is diagonal. Hint: Consider

the differential entropy of a multivariate Gaussian distribution.
14. Let KX and K̃X be the covariance matrix and the correlation matrix

of a random vector X, respectively. Show that |KX| ≤ |K̃X|. This is a
generalization of varX ≤ EX2 for a random variable X. Hint: Consider
a multivariate Gaussian distribution with another multivariate Gaussian
distribution with zero mean and the same correlation matrix.

Historical Notes

The concept of differential entropy was introduced by Shannon [291]. Infor-
mational divergence and mutual information were subsequently defined in
Kolmogorov [184] and Pinsker [263] in the general setting of measure theory.
A measure theoretic treatment of information theory for continuous systems
can be found in the book by Ihara [161].

The treatment in this chapter and the next chapter aims to keep the
generality of the results without resorting to heavy use of measure theory.
The bounds in Section 10.6 for differential entropy subject to constraints are
developed in the spirit of maximum entropy expounded in Jayes [167].
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Continuous-Valued Channels

In Chapter 7, we have studied the discrete memoryless channel. For such a
channel, transmission is in discrete time, and the input and output are dis-
crete. In a physical communication system, the input and output of a channel
often take continuous real values. If transmission is in continuous time, the
channel is called a waveform channel.

In this chapter, we first discuss discrete-time channels with real input and
output. We will then extend our discussion to waveform channels. All the
logarithms in this chapter are in the base 2.

11.1 Discrete-Time Channels

Definition 11.1. Let f(y|x) be a conditional pdf defined for all x, where
f(y|x) is bounded (cf. Definition 10.25) and

−
∫
SY (x)

f(y|x) log f(y|x)dy (11.1)

is uniformly bounded for all x. A discrete-time continuous channel f(y|x) is
a system with input random variable X and output random variable Y such
that Y is related to X through f(y|x) (cf. Definition 10.22).

Remark The integral in (11.1) is precisely the conditional differential entropy
h(Y |X = x) defined in (10.98), which is required to be uniformly bounded in
this definition of a discrete-time continuous channel.

Definition 11.2. Let α : <×< → <, and Z be a real random variable, called
the noise variable. A discrete-time continuous channel (α,Z) is a system with
a real input and a real output. For any input random variable X, the noise
random variable Z is independent of X, and the output random variable Y is
given by

Y = α(X,Z). (11.2)
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For brevity, a discrete-time continuous channel will be referred to as a
continuous channel.

Definition 11.3. Two continuous channels f(y|x) and (α,Z) are equivalent
if for every input distribution F (x),

Pr{α(X,Z) ≤ y,X ≤ x} =
∫ x

−∞

∫ y

−∞
fY |X(v|u)dv dFX(u) (11.3)

for all x and y.

Remark In the above definitions, the input random variable X is not nec-
essarily continuous.

Definitions 11.1 and 11.2 are two definitions for a continuous channel which
are analogous to Definitions 7.1 and 7.2 for a discrete channel. While Defi-
nitions 7.1 and 7.2 are equivalent, Definition 11.2 is more general than Def-
inition 11.1. For a continuous channel defined in Definition 11.2, the noise
random variable Z may not have a pdf, and the function α(x, ·) may be many-
to-one. As a result, the corresponding conditional pdf f(y|x) as required in
Definition 11.1 may not exist. In this chapter, we confine our discussion to
continuous channels that can be defined by Definition 11.1 (and hence also by
Definition 11.2).

Definition 11.4. A continuous memoryless channel (CMC) f(y|x) is a se-
quence of replicates of a generic continuous channel f(y|x). These continuous
channels are indexed by a discrete-time index i, where i ≥ 1, with the ith chan-
nel being available for transmission at time i. Transmission through a channel
is assumed to be instantaneous. Let Xi and Yi be respectively the input and
the output of the CMC at time i, and let Ti− denote all the random variables
that are generated in the system before Xi. The Markov chain Ti− → Xi → Yi
holds, and

Pr{Yi ≤ y,Xi ≤ x} =
∫ x

−∞

∫ y

−∞
fY |X(v|u)dv dFX(u). (11.4)

Definition 11.5. A continuous memoryless channel (α,Z) is a sequence of
replicates of a generic continuous channel (α,Z). These continuous channels
are indexed by a discrete-time index i, where i ≥ 1, with the ith channel
being available for transmission at time i. Transmission through a channel
is assumed to be instantaneous. Let Xi and Yi be respectively the input and
the output of the CMC at time i, and let Ti− denote all the random variables
that are generated in the system before Xi. The noise variable Zi for the
transmission at time i is a copy of the generic noise variable Z, and it is
independent of (Xi, Ti−). The output of the CMC at time i is given by

Yi = α(Xi, Zi). (11.5)
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Definition 11.6. Let κ be a real function. An average input constraint (κ, P )
for a CMC is the requirement that for any codeword (x1, x2, · · · , xn) transmit-
ted over the channel,

1
n

n∑
i=1

κ(xi) ≤ P. (11.6)

For brevity, an average input constraint is referred to as an input constraint.

Definition 11.7. The capacity of a continuous memoryless channel f(y|x)
with input constraint (κ, P ) is defined as

C(P ) = sup
F (x):Eκ(X)≤P

I(X;Y ), (11.7)

where X and Y are respectively the input and output of the generic continuous
channel, and F (x) is the distribution of X.

Theorem 11.8. C(P ) is non-decreasing, concave, and left-continuous.

Proof. In the definition of C(P ), the supremum is taken over a larger set for
a larger P . Therefore, C(P ) is non-decreasing in P .

We now show that C(P ) is concave. Let i = 1, 2. For an input distribution
Fj(x), denote the corresponding input and output random variables by Xj

and Yj , respectively. Then for any Pj , for all ε > 0, there exists Fj(x) such
that

Eκ(Xj) ≤ Pj (11.8)

and
I(Xj ;Yj) ≥ C(Pj)− ε. (11.9)

For 0 ≤ λ ≤ 1, let λ̄ = 1− λ and define the random variable

X(λ) ∼ λF1(x) + λ̄F2(x). (11.10)

Then
Eκ(X(λ)) = λEκ(X1) + λ̄Eκ(X2) ≤ λP1 + λ̄P2, (11.11)

By the concavity of mutual information with respect to the input distribu-
tion1, we have

I(X(λ);Y (λ)) ≥ λI(X1;Y1) + λ̄I(X2;Y2) (11.12)
≥ λ(C(P1)− ε) + λ̄(C(P2)− ε) (11.13)
= λC(P1) + λ̄C(P2)− ε. (11.14)

Then
1 Specifically, we refer to the inequality (3.121) in Example 3.14 with X and Y

being real random variables related by a conditional pdf f(y|x). The proof of this
inequality is left as an exercise.
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C(λP1 + λ̄P2) ≥ I(X(λ);Y (λ)) ≥ λC(P1) + λ̄C(P2)− ε. (11.15)

Letting ε→ 0, we have

C(λP1 + λ̄P2) ≥ λC(P1) + λ̄C(P2), (11.16)

proving that C(P ) is concave.
Finally, we prove that C(P ) is left-continuous. Let P1 < P2 in (11.16).

Since C(P ) is non-decreasing, we have

C(P2) ≥ C(λP1 + λ̄P2) ≥ λC(P1) + λ̄C(P2). (11.17)

Letting λ→ 0, we have

C(P2) ≥ lim
λ→0

C(λP1 + λ̄P2) ≥ C(P2), (11.18)

which implies
lim
λ→0

C(λP1 + λ̄P2) = C(P2). (11.19)

Hence, we conclude that

lim
P↑P2

C(P ) = C(P2), (11.20)

i.e., C(P ) is left-continuous. The theorem is proved. ut

11.2 The Channel Coding Theorem

Definition 11.9. An (n,M) code for a continuous memoryless channel with
input constraint (κ, P ) is defined by an encoding function

e : {1, 2, · · · ,M} → <n (11.21)

and a decoding function

g : <n → {1, 2, · · · ,M}. (11.22)

The set {1, 2, · · · ,M}, denoted by W, is called the message set. The sequences
e(1), e(2), · · · , e(M) in Xn are called codewords, and the set of codewords is
called the codebook. Moreover,

1
n

n∑
i=1

κ(xi(w)) ≤ P for 1 ≤ w ≤M, (11.23)

where e(w) = (x1(w), x2(w), · · · , xn(w)).
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We assume that a message W is randomly chosen from the message setW
according to the uniform distribution. Therefore,

H(W ) = logM. (11.24)

With respect to a channel code for a given CMC, we let

X = (X1, X2, · · · , Xn) (11.25)

and
Y = (Y1, Y2, · · · , Yn) (11.26)

be the input sequence and the output sequence of the channel, respectively.
Evidently,

X = e(W ). (11.27)

We also let
Ŵ = g(Y) (11.28)

be the estimate on the message W by the decoder.

Definition 11.10. For all 1 ≤ w ≤M , let

λw = Pr{Ŵ 6= w|W = w} =
∑

y∈Yn:g(y)6=w

Pr{Y = y|X = e(w)} (11.29)

be the conditional probability of error given that the message is w.

We now define two performance measures for a channel code.

Definition 11.11. The maximal probability of error of an (n,M) code is de-
fined as

λmax = max
w

λw. (11.30)

Definition 11.12. The average probability of error of an (n,M) code is de-
fined as

Pe = Pr{Ŵ 6= W}. (11.31)

Evidently, Pe ≤ λmax.

Definition 11.13. A rate R is asymptotically achievable for a continuous
memoryless channel if for any ε > 0, there exists for sufficiently large n an
(n,M) code such that

1
n

logM > R− ε (11.32)

and
λmax < ε. (11.33)

For brevity, an asymptotically achievable rate will be referred to as an achiev-
able rate.

Theorem 11.14 (Channel Coding Theorem). A rate R is achievable for
a continuous memoryless channel if and only if R ≤ C, the capacity of the
channel.
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11.3 Proof of the Channel Coding Theorem

11.3.1 The Converse

We can establish the Markov chain

W → X→ Y → Ŵ (11.34)

very much like the discrete case as discussed in Section 7.3. Here, although
X is a real random vector, it takes only discrete values as it is a function of
the message W which is discrete. The only continuous random variable in the
above Markov chain is the random vector Y, which needs to be handled with
caution. The following lemma is essentially the data processing theorem we
proved in Theorem 2.42 except that Y is continuous. The reader may skip
the proof at the first reading.

Lemma 11.15.
I(W ; Ŵ ) ≤ I(X; Y). (11.35)

Proof. We first consider

I(W ; Ŵ ) ≤ I(W,X; Ŵ ) (11.36)
= I(X; Ŵ ) + I(W ; Ŵ |X) (11.37)
= I(X; Ŵ ). (11.38)

Note that all the random variables above are discrete. Continuing from the
above, we have

I(W ; Ŵ ) ≤ I(X; Ŵ ) (11.39)
≤ I(X; Ŵ ) + I(X; Y|Ŵ ) (11.40)

= E log
p(X, Ŵ )
p(X)p(Ŵ )

+ E log
f(Y|X, Ŵ )
f(Y|Ŵ )

(11.41)

= E log
p(X, Ŵ )f(Y|X, Ŵ )
p(X)[p(Ŵ )f(Y|Ŵ )]

(11.42)

= E log
f(Y)p(X, Ŵ |Y)

p(X)[f(Y)p(Ŵ |Y)]
(11.43)

= E log
p(X, Ŵ |Y)
p(X)p(Ŵ |Y)

(11.44)

= E log
p(X|Y)p(Ŵ |X,Y)
p(X)p(Ŵ |Y)

(11.45)

= E log
p(X|Y)
p(X)

+ E log
p(Ŵ |X,Y)
p(Ŵ |Y)

(11.46)



11.3 Proof of the Channel Coding Theorem 257

= E log
f(Y|X)
f(Y)

+ E log
p(X|Y, Ŵ )
p(X|Y)

(11.47)

= I(X; Y) + E log
p(X|Y)
p(X|Y)

(11.48)

= I(X; Y) + E log 1 (11.49)
= I(X; Y) + 0 (11.50)
= I(X; Y). (11.51)

The above steps are justified as follows:

• The relation

f(y|x) =
n∏
i=1

f(yi|xi) (11.52)

can be established in exactly the same way as we established (7.101) for
the discrete case (when the channel is used without feedback). By our
assumption that f(y|x) is bounded, f(y|x) is also bounded. Moreover,

f(y|x, ŵ) =
p(x)f(y|x)p(ŵ|y)

p(x, ŵ)
(11.53)

is bounded because f(y|x) is bounded. By Proposition 10.26, f(y|ŵ) ex-
ists and is bounded. Therefore, I(X; Y|Ŵ ) can be defined as in Defini-
tion 10.29. The inequality (11.40) follows from Corollary 10.34.

• In (11.43), since f(y|x) is bounded, it follows from Proposition 10.26 that
f(y) exists and is bounded.

• (11.47) follows from

p(x)f(y|x) = f(y)p(x|y) (11.54)

and
p(x|y)p(ŵ|x,y) = p(ŵ|y)p(x|y, ŵ). (11.55)

• (11.48) follows from the Markov chain X→ Y → Ŵ .

The proof is accomplished. ut

We now proceed to prove the converse. Let R be an achievable rate, i.e.,
for any ε > 0, there exists for sufficiently large n and (n,M) code such that

1
n

logM > R− ε (11.56)

and
λmax < ε. (11.57)

Consider
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logM = H(W ) (11.58)
= H(W |Ŵ ) + I(W ; Ŵ ) (11.59)
≤ H(W |Ŵ ) + I(X; Y) (11.60)
≤ H(W |Ŵ ) + h(Y)− h(Y|X) (11.61)

≤ H(W |Ŵ ) +
n∑
i=1

h(Yi)− h(Y|X) (11.62)

= H(W |Ŵ ) +
n∑
i=1

h(Yi)−
n∑
i=1

h(Yi|Xi) (11.63)

= H(W |Ŵ ) +
n∑
i=1

I(Xi;Yi). (11.64)

The above steps are justified as follows:

• (11.60) follows from Lemma 11.15.
• It follows from (11.52) that

h(Y|X) =
n∑
i=1

h(Yi|Xi). (11.65)

Then (11.1) in Definition 11.1 implies that h(Yi|Xi) is finite for all i, and
hence h(Y|X) is also finite.

• From the foregoing, f(y) exists. Therefore, h(Y) can be defined according
to Definition 10.10 (but h(Y) may be infinite), and (11.61) follows from
Proposition 10.31 because h(Y|X) is finite. Note that it is necessary to
require h(Y|X) to be finite because otherwise h(Y) is also infinite and
Proposition 10.31 cannot be applied.

• (11.62) follows from Corollary 10.36, the independence bound for differen-
tial entropy.

• (11.63) from (11.65) above.
• (11.64) follows from Proposition 10.31.

Let V be a mixing random variable distributed uniformly on {1, 2, · · · , n}
which is independent of Xi, 1 ≤ i ≤ n. Let X = XV and Y be the output of
the channel with X being the input. Then

Eκ(X) = EE[κ(X)|V ] (11.66)

=
n∑
i=1

Pr{V = i}E[κ(X)|V = i] (11.67)

=
n∑
i=1

Pr{V = i}E[κ(Xi)|V = i] (11.68)

=
n∑
i=1

1
n
Eκ(Xi) (11.69)
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= E

[
1
n

n∑
i=1

κ(Xi)

]
(11.70)

≤ P, (11.71)

where the above inequality follows from (11.23) in the definition of the code.
By the concavity of mutual information with respect to the input distribution,
we have

1
n

n∑
i=1

I(Xi;Yi) ≤ I(X;Y ) ≤ C, (11.72)

where the last inequality holds in light of the definition of C and (11.71). Then
it follows from (11.64) that

logM ≤ H(W |Ŵ ) + nC, (11.73)

which is precisely (7.126) in the proof of the converse of the channel coding
theorem for the DMC. Following exactly the same steps therein, we conclude
that

R ≤ C. (11.74)

11.3.2 Achievability

The proof of the achievability of the channel capacity, which involves the
construction of a random code, is somewhat different from the construction
for the discrete case in Section 7.4. On the one hand, we need to take into
account the input constraint. On the other hand, since the input distribution
F (x) we use for constructing the random code may not have a pdf, it is difficult
to formulate the notion of joint typicality as in the discrete case. Instead, we
will introduce a different notion of typicality based on mutual information.

Consider a bivariate information source {(Xk, Yk), k ≥ 1}, where (Xk, Yk)
are i.i.d. with (X,Y ) being the pair of generic real random variables. The
conditional pdf f(y|x) exists in the sense prescribed in Definition 10.22. By
Proposition 10.26, with the assumption that f(y|x) is bounded, f(y) exists
and is bounded, so that the mutual information I(X;Y ) can be defined as in
Definition 10.28.

Definition 11.16. The mutually typical set Un[XY ]δ with respect to F (x, y) is
the set of (x,y) ∈ Xn × Yn such that∣∣∣∣ 1n log

f(y|x)
f(y)

− I(X;Y )
∣∣∣∣ ≤ δ, (11.75)

where

f(y|x) =
n∏
i=1

f(yi|xi) (11.76)
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and

f(y) =
n∏
i=1

f(yi), (11.77)

and δ is an arbitrarily small positive number. A pair of sequences (x,y) is
called mutually δ-typical if it is in Un[XY ]δ.

Lemma 11.17. For any δ > 0, for sufficiently large n,

Pr{(X,Y) ∈ Un[XY ]δ)} ≥ 1− δ. (11.78)

Proof. By (11.76) and (11.77), we write

1
n

log
f(Y|X)
f(Y)

=
1
n

log
n∏
i=1

f(Yi|Xi)
f(Yi)

=
1
n

n∑
i=1

log
f(Yi|Xi)
f(Yi)

. (11.79)

Since (Xi, Yi) are i.i.d., so are the random variables log f(Yi|Xi)
f(Yi)

. Thus we
conclude by the weak law of large numbers that

1
n

n∑
i=1

log
f(Yi|Xi)
f(Yi)

→ E log
f(Y |X)
f(Y )

= I(X;Y ) (11.80)

in probability, i.e., (11.78) holds for sufficiently large n, proving the lemma.
ut

The following lemma is analogous to Lemma 7.17 for the discrete case.

Lemma 11.18. Let (X′,Y′) be n i.i.d. copies of a pair of generic random
variables (X ′, Y ′), where X ′ and Y ′ are independent and have the same
marginal distributions as X and Y , respectively. Then

Pr{(X′,Y′) ∈ Un[XY ]δ} ≤ 2−n(I(X;Y )−δ). (11.81)

Proof. For (x,y) ∈ Un[XY ]δ, from (11.75), we obtain

1
n

log
f(y|x)
f(y)

≥ I(X;Y )− δ, (11.82)

or
f(y|x) ≥ f(y)2n(I(X;Y )−δ) (11.83)

Then

1 ≥ Pr{(X,Y) ∈ Un[XY ]δ)} (11.84)

=
∫ ∫

Un[XY ]δ

f(y|x)dF (x) (11.85)

≥ 2n(I(X;Y )−δ)
∫ ∫

Un[XY ]δ

f(y)dF (x) (11.86)

= 2n(I(X;Y )−δ)Pr{(X′,Y′) ∈ Un[XY ]δ}, (11.87)
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where the last inequality follows from (11.83). Therefore,

Pr{(X′,Y′) ∈ Un[XY ]δ} ≤ 2−n(I(X;Y )−δ), (11.88)

proving the lemma. ut

Fix any ε > 0 and let δ be a small quantity to be specified later. Since
C(P ) is left-continuous, there exists a sufficiently small γ > 0 such that

C(P − γ) > C(P )− ε

6
. (11.89)

By the definition of C(P − γ), there exists an input random variable X such
that

Eκ(X) ≤ P − γ (11.90)

and
I(X;Y ) ≥ C(P − γ)− ε

6
. (11.91)

Then choose for a sufficiently large n an even integer M satisfying

I(X;Y )− ε

6
<

1
n

logM < I(X;Y )− ε

8
, (11.92)

from which we obtain

1
n

logM > I(X;Y )− ε

6
(11.93)

≥ C(P − γ)− ε

3
(11.94)

> C(P )− ε

2
. (11.95)

We now describe a random coding scheme:

1. Construct the codebook C of an (n,M) code randomly by generating M
codewords in <n independently and identically according to f(x)n. Denote
these codewords by X̃(1), X̃(2), · · · , X̃(M).

2. Reveal the codebook C to both the encoder and the decoder.
3. A message W is chosen from W according to the uniform distribution.
4. The sequence X = X̃(W ), namely the W th codeword in the codebook C,

is transmitted through the channel.
5. The channel outputs a sequence Y according to

Pr{Yi ≤ yi, 1 ≤ i ≤ n|X(W ) = x} =
n∏
i=1

∫ yi

−∞
f(y|xi)dy. (11.96)

This is the continuous analog of (7.101) and can be established similarly.
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6. The sequence Y is decoded to the message w if (X(w),Y) ∈ Un[XY ]δ and
there does not exist w′ 6= w such that (X(w′),Y) ∈ Un[XY ]δ. Otherwise,

Y is decoded to a constant message in W. Denote by Ŵ the message to
which Y is decoded.

We now analyze the performance of this random coding scheme. Let

X̃(w) = (X̃1(w), X̃2(w), · · · , X̃n(w)) (11.97)

and define the error event
Err = Ee ∪ Ed, (11.98)

where

Ee =

{
1
n

n∑
i=1

κ(X̃i(W )) > P

}
(11.99)

is the event that the input constraint is violated, and

Ed = {Ŵ 6= W}, (11.100)

is the event that a decoding error occurs. By symmetry in the code construc-
tion,

Pr{Err} = Pr{Err|W = 1} (11.101)
≤ Pr{Ee|W = 1}+ Pr{Ed|W = 1}. (11.102)

With Lemma 11.18 in place of Lemma 7.17, the analysis of Pr{Ed|W = 1}
is exactly the same as the analysis of the decoding error in the discrete case.
The details are omitted, and we conclude that by choosing δ to be a sufficiently
small positive quantity,

Pr{Ed|W = 1} ≤ ε

4
(11.103)

for sufficiently large n.
We now analyze Pr{Ee|W = 1}. By the weak law of large numbers,

Pr{Ee|W = 1} = Pr

{
1
n

n∑
i=1

κ(X̃i(1)) > P

∣∣∣∣∣W = 1

}
(11.104)

= Pr

{
1
n

n∑
i=1

κ(X̃i(1)) > P

}
(11.105)

= Pr

{
1
n

n∑
i=1

κ(X̃i(1)) > (P − ν) + ν

}
(11.106)

≤ Pr

{
1
n

n∑
i=1

κ(X̃i(1)) > Eκ(X) + ν

}
(11.107)

≤ ε

4
(11.108)



11.3 Proof of the Channel Coding Theorem 263

for sufficiently large n. It then follows from (11.102) and (11.103) that

Pr{Err} ≤ ε

2
(11.109)

for sufficiently large n.
It remains to show the existence of a codebook such that λmax < ε and

the input constraint (11.23) is satisfied by every codeword. Now consider

Pr{Err} =
∑
C

Pr{C}Pr{Err|C}, (11.110)

where Pr{C} is the probability of choosing a codebook C from the ensemble
of all possible codebooks in Step 1 of the random coding scheme. In light of
(11.109), there exists at least one codebook C∗ such that

Pr{Err|C∗} ≤ ε

2
. (11.111)

Furthermore,

Pr{Err|C∗} =
M∑
w=1

Pr{W = w|C∗}Pr{Err|C∗,W = w} (11.112)

=
M∑
w=1

Pr{W = w}Pr{Err|C∗,W = w} (11.113)

=
1
M

M∑
w=1

Pr{Err|C∗,W = w}. (11.114)

By discarding the worst half of the codewords in C∗, if a codeword X̃(w)
remains in C∗, then

Pr{Err|C∗,W = w} ≤ ε. (11.115)

Since Err = Ee ∪ Ed, this implies

Pr{Ee|C∗,W = w} ≤ ε (11.116)

and
Pr{Ed|C∗,W = w} ≤ ε, (11.117)

where the latter implies λmax ≤ ε for the codebook C∗. Finally, observe that
conditioning on {C∗,W = w}, the codeword X̃(w) is deterministic. Therefore,
Pr{Ee|C∗,W = w} is equal to 1 if the codeword X̃(w) violates the input
constraint (11.23), otherwise it is equal to 0. Then (11.116) implies that for
every codeword X̃(w) that remains in C∗, Pr{Ee|C∗,W = w} = 0, i.e., the
input constraint is satisfied. This completes the proof.



264 11 Continuous-Valued Channels

11.4 Memoryless Gaussian Channels

In communication engineering, the Gaussian channel is the most commonly
used model for a noisy channel with real input and output. The reasons are
two-fold. First, the Gaussian channel is highly analytically tractable. Second,
the Gaussian noise can be regarded as the worst kind of additive noise subject
to a constraint on the noise power. This will be discussed in Section 11.9.

We first give two equivalent definitions of a Gaussian channel.

Definition 11.19 (Gaussian Channel). A Gaussian channel with noise en-
ergy N is a continuous channel with the following two equivalent specifications:

1. f(y|x) = 1√
2πN

e−
(y−x)2

2N .

2. Z ∼ N (0, N) and α(X,Z) = X + Z.

Definition 11.20 (Memoryless Gaussian Channel). A memoryless Gaus-
sian channel with noise power N and input power constraint P is a memory-
less continuous channel with the generic continuous channel being the Gaus-
sian channel with noise energy N . The input power constraint P refers to the
input constraint (κ, P ) with κ(x) = x2.

Using the formula in Definition 11.7 for the capacity of a CMC, the ca-
pacity of a Gaussian channel can be evaluated.

Theorem 11.21 (Capacity of a Memoryless Gaussian Channel). The
capacity of a memoryless Gaussian channel with noise power N and input
power constraint P is

1
2

log(1 +
P

N
). (11.118)

The capacity is achieved by the input distribution N (0, P ).

We first prove the following lemma.

Lemma 11.22. Let Y = X + Z. Then h(Y |X) = h(Z|X) provided that
fZ|X(z|x) exists for all x ∈ SX .

Proof. For all x ∈ SX , since fZ|X(z|x) exists, fY |X(y|x) also exists and is
given by

fY |X(y|x) = fZ|X(y − x|x). (11.119)
Then

h(Y |X) =
∫
h(Y |X = x)dFX(x) (11.120)

=
∫
h(X + Z|X = x)dFX(x) (11.121)

=
∫
h(x+ Z|X = x)dFX(x) (11.122)

=
∫
h(Z|X = x)dFX(x) (11.123)

= h(Z|X) (11.124)
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In the above, (11.120) and (11.124) follow from (10.99), while (11.123) follows
from the translation property of differential entropy (Theorem 10.14). ut

Remark Since Y and Z uniquely determine each other given X, it is tempt-
ing to write h(Y |X) = h(Z|X) immediately. However, this interpretation is
incorrect because differential entropy is not the same as entropy.

Proof of Theorem 11.21. Let F (x) be the CDF of the input random vari-
able X such that EX2 ≤ P , where X is not necessarily continuous. Since
Z ∼ N (0, N), f(y|x), as given by (11.119), exists and is bounded. By Propo-
sition 10.26, f(y) exists and hence h(Y ) is defined. Since Z is independent of
X, by Lemma 11.22,

h(Y |X) = h(Z|X) = h(Z). (11.125)

Then

I(X;Y ) = h(Y )− h(Y |X) (11.126)
= h(Y )− h(Z), (11.127)

where (11.126) follows from Proposition 10.31 and (11.127) follows from
(11.125).

Since Y = X + Z and Z is independent of X, we have

EY 2 = E(X + Z)2 (11.128)
= EX2 + 2(EX)(EZ) + EZ2 (11.129)
= EX2 + 2(EX)(0) + EZ2 (11.130)
= EX2 + EZ2 (11.131)
≤ P +N. (11.132)

Given the above energy constraint on Y , by Theorem 10.45, we have

h(Y ) ≤ 1
2

log[2πe(P +N)], (11.133)

with equality if Y ∼ N (0, P +N).
Recall from Example 10.13 that

h(Z) =
1
2

log(2πeN). (11.134)

It then follows from (11.127), (11.133), and (11.134) that

I(X;Y ) = h(Y )− h(Z) (11.135)

≤ 1
2

log[2πe(P +N)]− 1
2

log(2πeN) (11.136)

=
1
2

log
(

1 +
P

N

)
. (11.137)
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Evidently, this upper bound is tight if X ∼ N (0, P ), because then

Y = X + Z ∼ N (0, P +N). (11.138)

Therefore,

C = sup
F (x):EX2≤P

I(X;Y ) (11.139)

= max
F (x):EX2≤P

I(X;Y ) (11.140)

=
1
2

log
(

1 +
P

N

)
. (11.141)

The theorem is proved. ut

Theorem 11.21 says that the capacity of a memoryless Gaussian channel
depends only on the ratio of the input power constraint P to the noise power
N . This important quantity is called the signal-to-noise ratio. Note that no
matter how small the signal-to-noise ratio is, the capacity is still strictly pos-
itive. That is, reliable communication can be achieved, though at a low rate,
even when the noise power is much larger than the signal power. We also see
that the capacity is infinite if there is no constraint on the input power.

11.5 Parallel Gaussian Channels

In Section 11.4, we have discussed the capacity of a memoryless Gaussian
channel. Now suppose k such channels are available for communication, where
k ≥ 1. This is illustrated in Figure 11.1, with Xi, Yi, and Zi being the input,
the output, and the noise variable of the ith channel, respectively, where
Zi ∼ N (0, Ni) and Zi, 1 ≤ i ≤ k are independent.

We are interested in the capacity of such a system of parallel Gaussian
channels, with the total input power constraint

E

k∑
i=1

X2
i ≤ P. (11.142)

Let X = [X1X2 · · · Xk], Y = [Y1 Y2 · · · Yk], and Z = [Z1 Z2 · · · Zk]. Then

fY|X(y|x) =
k∏
i=1

fYi|Xi(yi|xi) (11.143)

=
k∏
i=1

fZi|Xi(yi − xi|xi) (11.144)

=
k∏
i=1

fZi(yi − xi). (11.145)
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X1 

Z1 

Y1+ 

. . . 

X2 

Z2 

Y2+ 

Xk 

Zk 

Yk+ 
Fig. 11.1. A system of parallel Gaussian channels.

With the existence of f(y|x), by extending Definition 10.23, we have

h(Y|X) = −
∫
SX

∫
SY(x)

f(y|x) log f(y|x)dy dF (x). (11.146)

In light of (11.145), since fZi(zi) is bounded for each i, so is fY|X(y|x). Then
by Proposition 10.27, we see that f(y) exists and therefore h(Y) is defined.
By extending Definition 10.28, we have

I(X; Y) =
∫
SX

∫
SY(x)

f(y|x) log
f(y|x)
f(y)

dy dF (x). (11.147)

It then follows from Definition 11.7 that the capacity of the system is given
by

C(P ) = sup
F (x):E

∑
i
X2
i
≤P

I(X; Y), (11.148)

where F (x) is the joint CDF of the input vector X. As we will see, the supre-
mum above is indeed a maximum.

When we calculated the capacity of the memoryless Gaussian channel in
Theorem 11.21, we obtained in (11.131) that

EY 2 = EX2 + EZ2, (11.149)

i.e., the output energy is equal to the sum of the input energy and the noise
energy, provided that the noise has zero mean. By exactly the same argument,
we see that
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EY 2
i = EX2

i + EZ2
i (11.150)

for all i.
Toward calculating C(P ), consider

I(X; Y) = h(Y)− h(Y|X) (11.151)
= h(Y)− h(Z|X) (11.152)
= h(Y)− h(Z) (11.153)

= h(Y)−
k∑
i=1

h(Zi) (11.154)

= h(Y)− 1
2

k∑
i=1

log(2πeNi) (11.155)

≤
k∑
i=1

h(Yi)−
1
2

k∑
i=1

log(2πeNi) (11.156)

≤ 1
2

k∑
i=1

log[2πe(EY 2
i )]− 1

2

k∑
i=1

log(2πeNi) (11.157)

=
1
2

k∑
i=1

log(EY 2
i )− 1

2

k∑
i=1

logNi (11.158)

=
1
2

k∑
i=1

log(EX2
i + EZ2

i )− 1
2

k∑
i=1

logNi (11.159)

=
1
2

k∑
i=1

log(Pi +Ni)−
1
2

k∑
i=1

logNi (11.160)

=
1
2

k∑
i=1

log
(

1 +
Pi
Ni

)
, (11.161)

where Pi = EX2
i is the input power of the ith channel. In the above, (11.152)

is the vector generalization of Lemma 11.22, (11.154) follows because Zi are
independent, and (11.159) follows from (11.150).

Equality holds in (11.156) and (11.157) if Yi, 1 ≤ i ≤ k are independent
and Yi ∼ N (0, Pi + Ni). This happens when Xi are independent of each
other andXi ∼ N (0, Pi). Therefore, maximizing I(X; Y) becomes maximizing∑
i log(Pi+Ni) in (11.160) with the constraint

∑
i Pi ≤ P and Pi ≥ 0 for all i.

In other words, we are to find the optimal input power allocation among the
channels. Comparing (11.161) with (11.141), we see that the capacity of the
system of parallel Gaussian channels is equal to the sum of the capacities of
the individual Gaussian channels when the input power is optimally allocated.

Toward this end, we first apply the method of Lagrange multipliers by
temporarily ignoring the nonnegativity constraints on Pi. Observe that in
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order for the summation
∑
i log(Pi+Ni) in (11.160) to be maximized,

∑
i Pi =

P must hold because log (Pi +Ni) is increasing in Pi. Therefore, the inequality
constraint

∑
i Pi ≤ P can be replaced by the equality constraint

∑
i Pi = P .

Let

J =
k∑
i=1

log (Pi +Ni)− µ
k∑
i=1

Pi. (11.162)

Differentiating with respect to Pi gives

0 =
∂J

∂Pi
=

1
Pi +Ni

− µ, (11.163)

which implies

Pi =
1
µ
−Ni. (11.164)

Upon letting ν = 1
µ , we have

Pi = ν −Ni, (11.165)

where ν is chosen such that

k∑
i=1

Pi =
k∑
i=1

(ν −Ni) = P. (11.166)

However, Pi as given in (11.165) is not guaranteed to be nonnegative, so it may
not be a valid solution. Nevertheless, (11.165) suggests the general solution
to be proved in the next proposition.

Proposition 11.23. The problem

For given λi ≥ 0, maximize
∑k
i=1 log(ai + λi) subject to

∑
i ai ≤ P

and ai ≥ 0

has the solution
a∗i = (ν − λi)+, 1 ≤ i ≤ k, (11.167)

where

(x)+ =
{
x if x ≥ 0
0 if x = 0 (11.168)

and ν satisfies
k∑
i=1

(ν − λi)+ = P. (11.169)

Proof. Rewrite the maximization problem as

For given λi ≥ 0, maximize
∑
i log (ai + λi) subject to
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k∑
i=1

ai ≤ P (11.170)

−ai ≤ 0, 1 ≤ i ≤ k. (11.171)

We will prove the proposition by verifying that the proposed solution in
(11.167) satisfies the Karush-Kuhn-Tucker (KKT) condition. This is done by
finding nonnegative µ and µi satisfying the equations

1
2(a∗i + λi)

− µ+ µi = 0 (11.172)

µ

(
P −

k∑
i=1

a∗i

)
= 0 (11.173)

µia
∗
i = 0, 1 ≤ i ≤ k, (11.174)

where µ and µi are the multipliers associated with the constraints in (11.170)
and (11.171), respectively.

To avoid triviality, assume P > 0 so that ν > 0, and observe that there
exists at least one i such that a∗i > 0. For those i, (11.174) implies

µi = 0. (11.175)

On the other hand,
a∗i = (ν − λi)+ = ν − λi. (11.176)

Substituting (11.175) and (11.176) into (11.172), we obtain

µ =
1

2ν
> 0. (11.177)

For those i such that a∗i = 0, it follows from (11.167) that ν ≤ λi. From
(11.177) and (11.172), we obtain

µi =
1

2ν
− 1

2λi
≥ 0. (11.178)

Thus we have found nonnegative µ and µi that satisfy (11.172) to (11.174),
verifying the KKT condition. The proposition is proved. ut

Hence, following (11.161) and applying the above proposition with ai = Pi
and λi = Ni, we see that the capacity of the system of parallel Gaussian
channels is equal to

1
2

k∑
i=1

log
(

1 +
P ∗i
Ni

)
, (11.179)

where {P ∗i , 1 ≤ i ≤ k} is the optimal input power allocation among the
channels given by



11.6 Correlated Gaussian Channels 271

 

N1 

N2 

N2 
N4 

*
1P

*
2P  

*
3P

! 

Channel 1 Channel 2 Channel 3 Channel 4 

Po
w

er
 

Fig. 11.2. Water-filling for parallel Gaussian channels.

P ∗i = (ν −Ni)+, 1 ≤ i ≤ k (11.180)

with ν satisfying
k∑
i=1

(ν −Ni)+ = P. (11.181)

The process of obtaining {P ∗i }, called water-filling, is illustrated in Figure 11.2.
One can image that an amount P of water is poured into a reservoir with an
uneven bottom, and ν is the level the water rises to. Under this scheme, high
input power is allocated to a channel with low noise power. For a channel
with noise power higher than ν, no input power is allocated, i.e., the channel
is not used.

11.6 Correlated Gaussian Channels

In this section, we generalize the results in the last section to the case when
the noise variables Zi, 1 ≤ i ≤ k are correlated with covariance matrix KZ.
We continue to assume that Zi has zero mean for all i, i.e., Z ∼ N (0,KZ),
and the total input power constraint

E

k∑
i=1

X2
i ≤ P (11.182)

prevails.
We will derive the capacity of such a system of correlated Gaussian chan-

nels by decorrelating the noise vector Z. Let KZ be diagonalizable as QΛQ>

and consider
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Fig. 11.3. An equivalent system of parallel Gaussian channels.

Y = X + Z. (11.183)

Then
Q>Y = Q>X +Q>Z. (11.184)

Upon letting

X′ = Q>X (11.185)
Y′ = Q>Y (11.186)

and

Z′ = Q>Z, (11.187)

we obtain
Y′ = X′ + Z′. (11.188)

Note that
EZ′ = E(QZ) = Q(EZ) = Q · 0 = 0, (11.189)

and Z′ is jointly Gaussian because it is a linear transformation of Z. By
Proposition 10.5,

KZ′ = Q>KZQ = Q>(QΛQ>)Q = Λ. (11.190)

Thus the random variables in Z′ are uncorrelated. Since Z′ is jointly Gaussian,
this implies that the random variables in Z′ are mutually independent. There-
fore, we conclude that Z ′i ∼ N (0, λi), where λi is the ith diagonal element of
Λ.

We are then motivated to convert the given system of correlated Gaussian
channels into the system shown in Figure 11.3, with X′ and Y′ being the input
and output, respectively. Note that in this system, X′ and Y′ are related to
X and Y as prescribed in (11.185) and (11.186), respectively. We then see
from (11.188) that Z′ is the equivalent noise vector of the system with Z ′i
being the noise variable of the ith channel. Hence, the system in Figure 11.3
is a system of parallel Gaussian channels. By Proposition 10.9, the total input
power constraint in (11.182) for the original system translates to the total
input power constraint

E

k∑
i=1

(X ′i)
2 ≤ P (11.191)
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Fig. 11.4. A system identical to the system of correlated Gaussian channels.

for the system in Figure 11.3.
The question is whether the capacity of the system in Figure 11.3 is the

same as the capacity of the original system. Let us called these two capacities
C ′ and C, respectively. Intuitively, C ′ and C should be the same because the
matrix Q is invertible. A formal proof goes as follows. We remind the reader
that the capacity of a channel is the highest possible asymptotic rate at which
information can be transmitted reliably through the channel by means of any
encoding/decoding process. In Figure 11.3, by regarding the transformation
Q on X′ as part of the encoding process and the transformation Q> on Y
as part of the decoding process, we see that C ′ ≤ C. Now further convert
the system in Figure 11.3 into the system in Figure 11.4 with input X′′ and
output Y′′, and call the capacity of this system C ′′. By repeating the same
argument, we see that C ′′ ≤ C ′. Thus C ′′ ≤ C ′ ≤ C. However, the system in
Figure 11.4 is equivalent to the original system because Q>Q = I. Therefore,
C ′′ = C, which implies C ′ = C.

Upon converting the given system of correlated Gaussian channels into an
equivalent system of parallel Gaussian channels, we see that the capacity of
the system is equal to

1
2

k∑
i=1

log
(

1 +
a∗i
λi

)
(11.192)

where a∗i is the optimal power allocated to the ith channel in the equivalent
system, and its value can be obtained by water-filling as prescribed in Propo-
sition 11.23. The reader should compare (11.192) with the formula in (11.179)
for the capacity of parallel Gaussian channels.

Let A∗ be the k×k diagonal matrix with a∗i being the ith diagonal element.
From the discussion in the last section, the optimal distribution for the input
X′ in the equivalent system of parallel channels is N (0, A∗). Accordingly, the
distribution of X is N (0, QA∗Q>). We leave it as an exercise for the reader
to verify that this indeed gives the optimal input distribution for the original
system of correlated Gaussian channels.

11.7 The Bandlimited White Gaussian Channel

In this section, we discuss a bandlimited waveform channel with zero-mean
additive white Gaussian noise (AWGN). In the rest of this chapter, the letters
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j and f are reserved for
√
−1 and “frequency,” respectively. We begin with a

few definitions from signal analysis. All the signals are assumed to be real.

Definition 11.24. The Fourier transform of a signal g(t) is defined as

G(f) =
∫ ∞
−∞

g(t)e−j2πftdt. (11.193)

The signal g(t) can be recovered from G(f) as

g(t) =
∫ ∞
−∞

G(f)ej2πftdf, (11.194)

and g(t) is called the inverse Fourier transform of G(f). The functions g(t)
and G(f) are said to form a transform pair, denoted by

g(t) ⇀↽ G(f). (11.195)

The variables t and f are referred to as time and frequency, respectively.

In general, the Fourier transform of a signal g(t) may not exist. A sufficient
condition for the Fourier transform of g(t) to exist is that g(t) has finite energy,
i.e., ∫ ∞

−∞
|g(t)|2dt <∞. (11.196)

A signal with finite energy is called an energy signal.

Definition 11.25. Let g1(t) and g2(t) be a pair of energy signals. The cross-
correlation function for g1(t) and g2(t) is defined as

R12(τ) =
∫ ∞
−∞

g1(t)g2(t− τ)dt. (11.197)

Proposition 11.26. For a pair of energy signals g1(t) and g2(t),

R12(τ) ⇀↽ G1(f)G∗2(f), (11.198)

where G∗2(f) denotes the complex conjugate of G2(f).

Definition 11.27. For a wide-sense stationary process {X(t),−∞ < t <∞},
the autocorrelation function is defined as

RX(τ) = E[X(t+ τ)X(t)], (11.199)

which does not depend on t, and the power spectral density is defined as

SX(f) =
∫ ∞
−∞

RX(τ)e−j2πfτdτ, (11.200)

i.e.,
RX(τ) ⇀↽ SX(f). (11.201)
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Definition 11.28. Let {(X(t), Y (t)),−∞ < t <∞} be a bivariate wide-sense
stationary process. Their cross-correlation functions are defined as

RXY (τ) = E[X(t+ τ)Y (t)] (11.202)

and
RY X(τ) = E[Y (t+ τ)X(t)], (11.203)

which do not depend on t. The cross-spectral densities are defined as

SXY (f) =
∫ ∞
−∞

RXY (τ)e−j2πfτdτ (11.204)

and
SY X(f) =

∫ ∞
−∞

RY X(τ)e−j2πfτdτ, (11.205)

i.e.,
RXY (τ) ⇀↽ SXY (f) (11.206)

and
RY X(τ) ⇀↽ SY X(f). (11.207)

We now describe the simplest nontrivial model for a waveform channel. In
wired-line and wireless communication, the frequency spectrum of the medium
is often partitioned into a number of communication channels, where each
channel occupies a certain frequency band. Consider such a channel that oc-
cupies the frequency band [fl, fh] with 0 ≤ fl < fh, where

W = fh − fl (11.208)

is called the bandwidth. The input process X(t) is contaminated by a zero-
mean additive white Gaussian noise process with power N0

2 , i.e.,

SZ(f) =
N0

2
, −∞ < f <∞. (11.209)

In reality, such a noise process cannot exist because its total power is infi-
nite. For practical purposes, one can regard the power spectral density to be
constant within the range of interest of the problem.

Let h(t) be the impulse response of an ideal bandpass filter for the fre-
quency band [fl, fh], i.e.,

H(f) =
{

1 if fl ≤ |f | ≤ fh
0 otherwise. (11.210)

At the receiver for this channel, the ideal bandpass filter h(t) is applied to the
received signal in order to filter out the frequency components due to other
channels. Effectively, we can regard this filtered version of the received signal
given by
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Y (t) = [X(t) + Z(t)] ∗ h(t) = X(t) ∗ h(t) + Z(t) ∗ h(t) (11.211)

as the output of the channel, where ∗ denotes convolution in the time domain.
Letting

X ′(t) = X(t) ∗ h(t) (11.212)

and
Z ′(t) = Z(t) ∗ h(t), (11.213)

(11.211) can be written as

Y (t) = X ′(t) + Z ′(t). (11.214)

The only difference between X(t) and X ′(t) is that all the frequency com-
ponents of X ′(t) are in [fl, fh], while X(t) can have frequency components
outside this range. However, even if such frequency components exist in X(t),
they are filtered out by the ideal bandpass filter h(t) and do not appear in the
output process Y (t). Therefore, we can regard X ′(t) instead of X(t) as the
input process of the channel. By the same argument, we regard Z ′(t) instead
of Z(t) as the noise process of the channel. As for the memoryless Gaussian
channel discussed in the last section, we impose an average power constraint
P on the input process X ′(t).

For simplicity, we consider in this section the case that the channel we
have described occupies the frequency band [0,W ]. This channel, called the
bandlimited white Gaussian channel, is the special case of the general model
with fl = 0.

While a rigorous formulation of the bandlimited white Gaussian channel
involves mathematical tools beyond the scope of this book, we will never-
theless give a heuristic argument that suggests the formula for the channel
capacity. The sampling theorem in signal analysis will allow us to “convert”
this waveform channel into a memoryless Gaussian channel discussed in the
last section.

Theorem 11.29 (Sampling Theorem). Let g(t) be a signal with Fourier
transform G(f) that vanishes for f 6∈ [−W,W ]. Then

g(t) =
∞∑

i=−∞
g

(
i

2W

)
sinc(2Wt− i) (11.215)

for −∞ < t <∞, where

sinc(t) =
sin(πt)
πt

, (11.216)

called the sinc function, is defined to be 1 at t = 0 by continuity.

Letting

gi =
1√
2W

g

(
i

2W

)
(11.217)
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and
ψi(t) =

√
2W sinc(2Wt− i), (11.218)

the formula in (11.215) can be rewritten as

g(t) =
∞∑

i=−∞
giψi(t). (11.219)

Proposition 11.30. ψi(t), −∞ < i < ∞ form an orthonormal basis for
signals which are bandlimited to [0,W ].

Proof. Since

ψi(t) = ψ0

(
t− i

2W

)
, (11.220)

ψi(t) and ψ0(t) have the same energy. We first show that∫ ∞
−∞

sinc2(2Wt)dt =
1

2W
. (11.221)

This integral is difficult to evaluate directly. Instead we consider

sinc(2Wt) ⇀↽
1

2W
rect

(
f

2W

)
, (11.222)

where

rect(f) =
{

1 − 1
2 ≤ f ≤

1
2

0 otherwise. (11.223)

Then by Rayleigh’s energy theorem, we have∫ ∞
−∞

sinc2(2Wt)dt =
∫ ∞
−∞

(
1

2W

)2

rect2

(
f

2W

)
df =

1
2W

. (11.224)

It then follows that∫ ∞
−∞

ψ2
i (t)dt =

∫ ∞
−∞

ψ2
0(t)dt (11.225)

= (
√

2W )2

∫ ∞
−∞

sinc2(2Wt)dt (11.226)

= 2W
(

1
2W

)
(11.227)

= 1. (11.228)

Next, we show that ∫ ∞
−∞

sinc(2Wt− i) sinc(2Wt− i′)dt (11.229)
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vanishes whenever i 6= i′. Again, this integral is difficult to evaluate directly.
Since (11.224) implies that both sinc(2Wt− i) and sinc(2Wt− i′) have finite
energy, we can consider their cross-correlation function, denoted by Rii′(τ).
Now

sinc(2Wt− i) ⇀↽ e−j2πf(
i

2W )
(

1
2W

)
rect

(
f

2W

)
:= Gi(f) (11.230)

and

sinc(2Wt− i′) ⇀↽ e
−j2πf

(
i′

2W

) ( 1
2W

)
rect

(
f

2W

)
:= Gi′(f). (11.231)

Then we have
Rii′(τ) ⇀↽ Gi(f)G∗i′(f), (11.232)

and the integral in (11.229) is given by

Rii′(0) =
∫ ∞
−∞

Gi(f)G∗i′(f)df, (11.233)

which vanishes whenever i 6= i′. Therefore,∫ ∞
−∞

ψi(t)ψi′(t)dt = 2W
∫ ∞
−∞

sinc(2Wt− i) sinc(2Wt− i′)dt (11.234)

= 0. (11.235)

Together with (11.228), this shows that ψi(t), −∞ < i <∞ form an orthonor-
mal set. Finally, since g(t) in (11.219) is any signal bandlimited to [0,W ], we
conclude that ψi(t), −∞ < i <∞ form an orthonormal basis for such signals.
The theorem is proved. ut

Let us return to our discussion of the waveform channel. The sampling
theorem implies that the input process X ′(t), assuming the existence of the
Fourier transform, can be written as

X ′(t) =
∞∑

i=−∞
X ′iψi(t), (11.236)

where

X ′i =
1√
2W

X ′
(

i

2W

)
, (11.237)

and there is a one-to-one correspondence between X ′(t) and {X ′i,−∞ < i <
∞}. The same applies to (a realization of) the output process Y (t), which we
assume can be written as

Y (t) =
∞∑

i=−∞
Y ′i ψi(t), (11.238)
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where

Yi =
1√
2W

Y

(
i

2W

)
. (11.239)

With these assumptions on X ′(t) and Y (t), the waveform channel is equivalent
to a discrete-time channel defined at t = i

2W , with the ith input and output
of the channel being X ′i and Yi, respectively.

Toward determining the capacity of this equivalent discrete-time channel,
we prove in the following a characterization of the effect of the noise process
Z ′(t) at the sampling times.

Proposition 11.31. Z ′
(

i
2W

)
, −∞ < i <∞ are i.i.d. Gaussian random vari-

ables with zero mean and variance N0W .

Proof. First of all, Z(t) is a zero-mean Gaussian process and Z ′(t) is a filtered
version of Z(t), so Z ′(t) is also a zero-mean Gaussian process. Consequently,
Z ′
(

i
2W

)
are zero-mean Gaussian random variables. The power spectral den-

sity of Z ′(t) is given by

SZ′(f) =
{
N0
2 −W ≤ f ≤W

0 otherwise.
(11.240)

Then the autocorrelation function of Z ′(t), which is the inverse Fourier trans-
form of SZ′(f), is given by

RZ′(τ) = N0W sinc(2Wτ). (11.241)

It is seen that the value of RZ′(τ) is equal to 0 when τ = i
2W for all i 6= 0,

because the sinc function in (11.216) vanishes at all nonzero integer values
of t. This shows that Z ′

(
i

2W

)
, −∞ < i < ∞ are uncorrelated and hence

independent because they are jointly Gaussian. Finally, since Z ′
(

i
2W

)
has

zero mean, in light of (11.199), its variance is given by RZ′(0) = N0W . ut

Recall from (11.214) that

Y (t) = X ′(t) + Z ′(t). (11.242)

Then

Y

(
i

2W

)
= X ′

(
i

2W

)
+ Z ′

(
i

2W

)
. (11.243)

Upon dividing by
√

2W and letting

Z ′i =
1√
2W

Z ′
(

i

2W

)
, (11.244)

it follows from (11.237) and (11.239) that
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Yi = X ′i + Z ′i. (11.245)

Since Z ′
(

i
2W

)
, −∞ < i < ∞ are i.i.d. with distribution N (0, N0W ), Z ′i,

−∞ < i <∞ are i.i.d. with distribution N (0, N0
2 ).

Thus we have shown that the bandlimited white Gaussian channel is equiv-
alent to a memoryless Gaussian channel with noise power equal to N0

2 . As we
are converting the waveform channel into a discrete-time channel, we need to
relate the input power constraint of the waveform channel to the input power
constraint of the discrete-time channel. Let P ′ be the average energy (i.e., the
second moment) of the Xi’s. We now calculate the average power of X ′(t)
in terms of P ′. Since ψi(t) has unit energy, the average contribution to the
energy of X ′(t) by each sample is P ′. As there are 2W samples per unit time
and ψi(t), −∞ < i <∞ are orthonormal, X ′(t) accumulates energy from the
samples at a rate equal to 2WP ′. Upon considering

2WP ′ ≤ P, (11.246)

where P is the average power constraint on the input process X ′(t), we obtain

P ′ ≤ P

2W
, (11.247)

i.e., an input power constraint P for the bandlimited Gaussian channel trans-
lates to an input power constraint P

2W for the discrete-time channel. By The-
orem 11.21, the capacity of the memoryless Gaussian channel is

1
2

log
(

1 +
P/2W
N0/2

)
=

1
2

log
(

1 +
P

N0W

)
bits per sample. (11.248)

Since there are 2W samples per unit time, we conclude that the capacity of
the bandlimited Gaussian channel is

W log
(

1 +
P

N0W

)
bits per unit time. (11.249)

The argument we have given above is evidently not rigorous because if
there is no additional constraint on the Xi’s other than their average energy
not exceeding P

2W , then X ′(t) may not have finite energy. This induces a gap
in the argument because the Fourier transform of X ′(t) may not exist and
hence the sampling theorem cannot be applied.

A rigorous formulation of the bandlimited white Gaussian channel involves
the consideration of an input signal of finite duration, which is analogous to a
code for the DMC with a finite block length. Since a signal with finite duration
cannot be bandlimited, this immediate leads to a contradiction. Overcoming
this technical difficulty requires the use of prolate spheroidal wave functions
[305, 197, 198] which are bandlimited functions with most of the energy on a
finite interval. The main idea is that there are approximately 2WT orthonor-
mal basis functions for the set of signals which are bandlimited to W and have
most of the energy on [0, T ) in time. We refer the reader to Gallager[117] for
a rigorous treatment of the bandlimited white Gaussian channel.
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11.8 The Bandlimited Colored Gaussian Channel

In the last section, we have discussed the bandlimited white Gaussian channel
occupying the frequency band [0,W ]. We presented a heuristic argument that
led to the formula in (11.249) for the channel capacity. Suppose the channel
instead occupies the frequency band [fl, fh], with fl being a multiple of W =
fh − fl. Then the noise process Z ′(t) has power spectral density

SZ′(f) =
{
N0
2 if fl ≤ |f | ≤ fh

0 otherwise.
(11.250)

We refer to such a channel as the bandpass white Gaussian channel. By an
extenstion of the heuristic argument for the bandlimited white Gaussian chan-
nel, which would involve the bandpass version of the sampling theorem, the
same formula for the channel capacity can be obtained. The details are omit-
ted here.

We now consider a waveform channel occupying the frequency band [0,W ]
with input power constraint P and zero-mean additive colored Gaussian noise
Z(t). We refer to this channel as the bandlimited colored Gaussian channel. To
analyze the capacity of this channel, divide the interval [0,W ] into subintervals
[f il , f

i
h] for 1 ≤ i ≤ k, where

f il = (i− 1)∆k (11.251)
f ih = i∆k, (11.252)

and
∆k =

W

k
(11.253)

is the width of each subinterval. As an approximation, assume SZ(f) is equal
to a constant SZ,i over the subinterval [f il , f

i
h]. Then the channel consists of

k sub-channels, with the ith sub-channel being a bandpass (bandlimited if
i = 1) white Gaussian channel occupying the frequency band [f il , f

i
h]. Thus

by letting N0 = 2SZ,i in (11.250), we obtain from (11.249) that the capacity
of the ith sub-channel is equal to

∆k log
(

1 +
Pi

2SZ,i∆k

)
(11.254)

if Pi is the input power allocated to that sub-channel.
The noise process of the ith sub-channel, denoted by Z ′i(t), is obtained by

passing Z(t) through the ideal bandpass filter with frequency response

Hi(f) =
{

1 if f il ≤ |f | ≤ f ih
0 otherwise. (11.255)

It can be shown (see Problem 10) that the noise processes Zi(t), 1 ≤ i ≤ k are
independent. By converting each sub-channel into an equivalent memoryless
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Gaussian channel as discussed in the last section, we see that the k sub-
channels can be regarded as a system of parallel Gaussian channels. Thus
the channel capacity is equal to the sum of the capacities of the individual
sub-channels when the power allocation among the k sub-channels is optimal.

Let P ∗i be the optimal power allocation for the ith sub-channel. Then it
follows from (11.254) that the channel capacity is equal to

k∑
i=1

∆k log
(

1 +
P ∗i

2SZ,i∆k

)
=

k∑
i=1

∆k log

(
1 +

P∗i
2∆k

SZ,i

)
, (11.256)

where by Lemma 11.23,
P ∗i

2∆k
= (ν − SZ,i)+, (11.257)

or
P ∗i = 2∆k(ν − SZ,i)+, (11.258)

with
k∑
i=1

P ∗i = P. (11.259)

Then from (11.258) and (11.259), we obtain

k∑
i=1

(ν − SZ,i)+∆k =
P

2
. (11.260)

As k →∞, following (11.256) and (11.257),

k∑
i=1

∆k log

(
1 +

P∗i
2∆k

SZ,i

)
=

k∑
i=1

∆k log
(

1 +
(ν − SZ,i)+

SZ,i

)
(11.261)

→
∫ W

0

log
(

1 +
(ν − SZ(f))+

SZ(f)

)
df (11.262)

=
1
2

∫ W

−W
log
(

1 +
(ν − SZ(f))+

SZ(f)

)
df, (11.263)

and following (11.260),

k∑
i=1

(ν − SZ,i)+∆k →
∫ W

0

(ν − SZ(f))+df (11.264)

=
1
2

∫ W

−W
(ν − SZ(f))+df, (11.265)

where (11.263) and (11.265) are obtained by noting that

SZ′(−f) = SZ′(f) (11.266)
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Fig. 11.5. Water-filling for the bandlimited colored Gaussian channel.

for −∞ < f < ∞ (see Problem 9). Hence, we conclude that the capacity of
the bandlimited colored Gaussian channel is equal to

1
2

∫ W

−W
log
(

1 +
(ν − SZ(f))+

SZ(f)

)
df bits per unit time, (11.267)

where ν satisfies ∫ W

−W
(ν − SZ(f))+df = P (11.268)

in view of (11.260). Figure 11.5 is an illustration of the water-filling process
for determining ν, where the amount of water to be poured into the reservoir
is equal to P .

11.9 Zero-Mean Gaussian Noise is the Worst Additive
Noise

In the last section, we derived the capacity for a system of correlated Gaussian
channels, where the noise vector is a zero-mean Gaussian random vector. In
this section, we show that in terms of the capacity of the system, the zero-
mean Gaussian noise is the worst additive noise given that the noise vector
has a bounded joint pdf and a fixed correlation matrix. Note that the diagonal
elements of this correlation matrix specify the power of the individual noise
variables, while the other elements in the matrix give a characterization of the
correlation between the noise variables.

Theorem 11.32. For a fixed zero-mean Gaussian random vector X∗, let
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Y = X∗ + Z, (11.269)

where the joint pdf of Z exists and is bounded, and Z is independent of X∗.
Under the constraint that the correlation matrix of Z is equal to K, where K
is any symmetric positive definite matrix, I(X∗; Y) is minimized if and only
if Z ∼ N (0,K).

Lemma 11.33. Let X be a zero-mean random vector and

Y = X + Z, (11.270)

where Z is independent of X. Then

K̃Y = K̃X + K̃Z. (11.271)

Proof. For any i and j, consider

EYiYj = E(Xi + Zi)(Xj + Zj) (11.272)
= E(XiXj +XiZj + ZiXj + ZiZj) (11.273)
= EXiXj + EXiZj + EZiXj + EZiZj (11.274)
= EXiXj + (EXi)(EZj) + (EZi)(EXj) + EZiZj (11.275)
= EXiXj + (0)(EZj) + (EZi)(0) + EZiZj (11.276)
= EXiXj + EZiZj , (11.277)

where (11.276) follows from the assumption that Xi has zero mean for all i.
The proposition is proved. ut

Lemma 11.34. Let Y∗ ∼ N (0,K) and Y be any random vector with corre-
lation matrix K. Then∫

fY∗(y) log fY∗(y)dy =
∫
SY

fY(y) log fY∗(y)dy. (11.278)

Proof. The random vector Y∗ has joint pdf

fY∗(y) =
1(√

2π
)k |K|1/2 e− 1

2 (y>K−1y) (11.279)

for all y ∈ <k. Since EY∗ = 0, K̃Y∗ = KY∗ = K. Therefore, Y∗ and Y have
the same correlation matrix. Consider
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[ln fY∗(y)] fY∗(y)dy

=
∫ [
−1

2
(y>K−1y)− ln

[
(
√

2π)k|K|1/2
]]
fY∗(y)dy (11.280)

= −1
2

∫
(y>K−1y)fY∗(y)dy − ln

[
(
√

2π)k|K|1/2
]

(11.281)

= −1
2

∫ ∑
i,j

(K−1)ijyiyj

 fY∗(y)dy − ln
[
(
√

2π)k|K|1/2
]

(11.282)

= −1
2

∑
i,j

(K−1)ij
∫

(yiyj)fY∗(y)dy − ln
[
(
√

2π)k|K|1/2
]

(11.283)

= −1
2

∑
i,j

(K−1)ij
∫
SY

(yiyj)fY(y)dy − ln
[
(
√

2π)k|K|1/2
]

(11.284)

=
∫
SY

[
−1

2
y>K−1y − ln

[
(
√

2π)k|K|1/2
]]
fY(y)dy (11.285)

=
∫
SY

[ln fY∗(y)] fY(y)dy. (11.286)

In the above, (11.284) is justified because Y and Y∗ have the same correla-
tion matrix, and (11.285) is obtained by backtracking the manipulations from
(11.280) to (11.283) with fY(y) in place of fY∗(y). The lemma is proved upon
changing the base of the logarithm. ut

Proof of Theorem 11.32. Let Z∗ ∼ N (0,K) such that Z∗ is independent of
X∗, and let

Y∗ = X∗ + Z∗. (11.287)

Obviously, the support of Y∗ is <k because Y∗ has a multivariate Gaussian
distribution. Note that the support of Y is also <k regardless of the distri-
bution of Z because the support of X∗ is <k. We need to prove that for any
random vector Z with correlation matrix K, where Z is independent of X∗

and the joint pdf of Z exists and is bounded,

I(X∗; Y∗) ≤ I(X∗; Y). (11.288)

Since EZ∗ = 0, K̃Z∗ = KZ∗ = K. Therefore, Z∗ and Z have the same
correlation matrix. By noting that X∗ has zero mean, we apply Lemma 11.33
to see that Y∗ and Y have the same correlation matrix.

The inequality in (11.288) can be proved by considering

I(X∗; Y∗)− I(X∗; Y)
a)
= h(Y∗)− h(Z∗)− h(Y) + h(Z) (11.289)

= −
∫
fY∗(y) log fY∗(y)dy +

∫
fZ∗(z) log fZ∗(z)dz
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+
∫
fY(y) log fY(y)dy −

∫
SZ
fZ(z) log fZ(z)dz (11.290)

b)
= −

∫
fY(y) log fY∗(y)dy +

∫
SZ
fZ(z) log fZ∗(z)dz

+
∫
fY(y) log fY(y)dy −

∫
SZ
fZ(z) log fZ(z)dz (11.291)

=
∫

log
(
fY(y)
fY∗(y)

)
fY(y)dy +

∫
SZ

log
(
fZ∗(z)
fZ(z)

)
fZ(z)dz (11.292)

c)
=
∫
SZ

∫
log
(
fY(y)fZ∗(z)
fY∗(y)fZ(z)

)
fYZ(y, z)dydz (11.293)

d)

≤ log
(∫
SZ

∫
fY(y)fZ∗(z)
fY∗(y)fZ(z)

fYZ(y, z)dydz
)

(11.294)

e)
= log

(∫ [
1

fY∗(y)

∫
SZ
fX∗(y − z)fZ∗(z)dz

]
fY(y)dy

)
(11.295)

f)

≤ log
(∫

fY∗(y)
fY∗(y)

fY(y)dy
)

(11.296)

= 0. (11.297)

The above steps are explained as follows:

• We assume that the pdf of Z exists and is bounded. Therefore, h(Z) is
defined. Moreover,

fY|X∗(y|x) = fZ(y − x) (11.298)

is bounded. By Proposition 10.26, fY(y) exists and hence h(Y) is defined.
• In b), we have replaced fY∗(y) by fY(y) in the first integral and replaced

fZ∗(z) by fZ(z) in the second integral. The former is justified by an ap-
plication of Lemma 11.34 to Y∗ and Y by noting that Y∗ is a zero-mean
Gaussian random vector and Y∗ and Y have the same correlation matrix.
The latter is justified similarly.

• To justify c), we need SYZ = <k × SZ, which can be seen by noting that

fYZ(y, z) = fY|Z(y|z)fZ(z) = fX∗(y − z)fZ(z) > 0 (11.299)

for all y ∈ <k and all z ∈ SZ.
• d) follows from Jensen’s inequality and the concavity of the logarithmic

function.
• e) follows from (11.299).
• f) follows because∫

Sz
fX∗(y − z)fZ∗(z)dz =

∫
Sz
fY∗|Z∗(y|z)fZ∗(z)dz (11.300)

≤
∫
fY∗|Z∗(y|z)fZ∗(z)dz (11.301)

= fY∗(y). (11.302)
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Equality holds in (11.294) if and only if

fY(y)fZ∗(z) = fY∗(y)fZ(z) for all y ∈ <k, z ∈ SZ. (11.303)

If fZ(z) = fZ∗(z) for all z ∈ SZ, then SZ = <k and Z ∼ N (0,K). This
implies fY(y) = fY∗(y) for all y ∈ <k in view of (11.269) and (11.287), so
that (11.303) holds. Thus Z ∼ N (0,K) is a sufficient condition for equality
to hold in (11.294). Conversely, if equality holds in (11.294), we obtain from
(11.303) that

fZ∗(z)
∫
fY(y)dy = fZ(z)

∫
fY∗(y)dy. (11.304)

Since ∫
fY(y)dy =

∫
fY∗(y)dy = 1, (11.305)

we see that fZ(z) = fZ∗(z) for all z ∈ SZ, so that SZ = <k and Z ∼ N (0,K).
Hence, we conclude that Z ∼ N (0,K) is a necessary and sufficient condition
for I(X∗; Y) to be minimized. The theorem is proved. ut

Consider the system of correlated Gaussian channels discussed in the last
section. Denote the noise vector by Z∗ and its correlation matrix by K. Note
that K is also the covariance matrix of Z∗ because Z∗ has zero mean. In other
words, Z∗ ∼ N (0,K). Refer to this system as the zero-mean Gaussian system
and let C∗ be its capacity. Then consider another system with exactly the
same specification except that the noise vector, denoted by Z, may neither be
zero-mean nor Gaussian. We, however, require that the joint pdf of Z exists
and is bounded. Refer to this system as the alternative system and let C be
its capacity.

We now apply Theorem 11.32 to show that C ≥ C∗. Let X∗ be the input
random vector that achieves the capacity of the zero-mean Gaussian system.
We have mentioned at the end of Section 11.6 that X∗ is a zero-mean Gaussian
random vector. Let Y∗ and Y be defined in (11.287) and (11.269), which cor-
respond to the outputs of the zero-mean Gaussian system and the alternative
system, respectively when X∗ is the input of both systems. Then

C ≥ I(X∗; Y) ≥ I(X∗; Y∗) = C∗, (11.306)

where the second inequality follows from (11.288) in the proof of Theo-
rem 11.32. Hence, we conclude that the zero-mean Gaussian noise is indeed
the worst additive noise subject to a constraint on the correlation matrix.

Problems

In the following, X, Y, Z, etc denote vectors of random variables.
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1. Verify the two properties in Theorem 11.8 for the capacity of the memo-
ryless Gaussian channel.

2. Let X and Y be two jointly distributed random variables with Y being
continuous. The random variable Y is related to the random variable X
through a conditional pdf f(y|x) defined for all x (cf. Definition 10.22).
Prove that I(X;Y ) is concave in F (x).

3. Refer to Lemma 11.18 and prove that

Pr{(X′,Y′) ∈ Un[XY ]δ} ≥ (1− δ)2−n(I(X;Y )−δ)

for n sufficiently large.
4. Show that the capacity of a continuous memoryless channel is not changed

if (11.23) is replaced by

E

[
1
n

n∑
i=1

κ(xi(W ))

]
≤ P,

i.e., the average input constraint is satisfied on the average by a randomly
selected codeword instead of by every codeword in the codebook.

5. Show that Rii′(0) in (11.233) vanishes if and only if i 6= i′.
6. Let Y = X+Z, where Z is independent of X. Show that KY = KX +KZ.

Note that unlike Lemma 11.33, it is not necessary to assume that either
X or Z has zero mean.

7. Consider a system of Gaussian channels with noise vector Z ∼ (0,KZ) and
input power constraint equal to 3. Determine the capacity of the system
for the following two cases:
a)

KZ =

4 0 0
0 5 0
0 0 2

 ;

b)

KZ =

 7/4
√

2/4 −3/4√
2/4 5/2 −

√
2/4

−3/4 −
√

2/4 7/4

 .
For b), you may use the results in Problem 4 in Chapter 10.

8. In the system of correlated Gaussian channels, let KZ be diagonalizable as
QΛQ>. Let A∗ be the k×k diagonal matrix with a∗i being the ith diagonal
element, where a∗i is prescribed in (11.192). Show that N (0, QA∗Q>) is
the optimal input distribution.

9. Show that for a wide-sense stationary process X(t), SX(f) = SX(−f) for
all f .
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10. Consider a zero-mean white Gaussian noise process Z(t). Let h1(t) and
h2(t) be two impulse responses such that the supports of H1(f) and H2(f)
do not overlap.
a) Show that for any t 6= t′, the two random variables Z(t) ∗ h1(t) and

Z(t) ∗ h2(t) are independent.
b) Show that the two processes Z(t) ∗h1(t) and Z(t) ∗h2(t) are indepen-

dent.
c) Repeat a) and b) if Z(t) is a zero-mean colored Gaussian noise process.

Hint: Regard Z(t) as obtained by passing a zero-mean white Gaussian
noise process through a coloring filter.

11. Interpret the bandpass white Gaussian channel as a special case of the
bandlimited colored Gaussian channel in terms of the channel capacity.

12. Independent Gaussian noise is the worst Let C be the capacity of a system
of k Gaussian channels with Zi ∼ N (0, Ni). By ignoring the possible cor-
relation among the noise variables, we can use the channels in the system
independently as parallel Gaussian channels. Thus C is lower bounded by
the expression in (11.179). In this sense, a Gaussian noise vector is the
worst if its components are uncorrelated. Justify this claim analytically.
Hint: Show that I(X; Y) ≥

∑
i I(Xi;Yi) if Xi are independent.

Historical Notes

Channels with additive Gaussian noise were first analyzed by Shannon in
[291], where the formula for the capacity of the bandlimited white Gaussian
channel was given. A rigorous proof of this capacity formula was obtained
by Wyner [348]. The water-filling solution to the capacity of the bandlimited
colored Gaussian channel was developed by Shannon in [293] and was proved
rigorously by Pinsker [263]. The discussion in this chapter on the continuous
memoryless channel with an average input constraint is adapted from the
discussions in the book by Gallager [117] and the book by Ihara [161], where
in the former a comprehensive treatment of waveform channels can also be
found. The Gaussian noise being the worst additive noise was proved by Ihara
[160]. The proof presented here is based on Diggavi and Cover [84].
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Markov Structures

We have proved in Section 3.5 that if X1 → X2 → X3 → X4 forms a Markov
chain, the I-Measure µ∗ always vanishes on the five atoms

X̃1 ∩ X̃c
2 ∩ X̃3 ∩ X̃c

4

X̃1 ∩ X̃c
2 ∩ X̃3 ∩ X̃4

X̃1 ∩ X̃c
2 ∩ X̃c

3 ∩ X̃4

X̃1 ∩ X̃2 ∩ X̃c
3 ∩ X̃4

X̃c
1 ∩ X̃2 ∩ X̃c

3 ∩ X̃4.

(12.1)

Consequently, the I-Measure µ∗ is completely specified by the values of µ∗ on
the other ten nonempty atoms of F4, and the information diagram for four
random variables forming a Markov chain can be displayed in two dimensions
as in Figure 3.11.

Figure 12.1 is a graph which represents the Markov chain X1 → X2 →
X3 → X4. The observant reader would notice that µ∗ always vanishes on a

1 2 3 4 

Fig. 12.1. The graph representing the Markov chain X1 → X2 → X3 → X4.

nonempty atom A of F4 if and only if the graph in Figure 12.1 becomes discon-
nected upon removing all the vertices corresponding to the complemented set
variables in A. For example, µ∗ always vanishes on the atom X̃1∩X̃c

2∩X̃3∩X̃c
4 ,

and the graph in Figure 12.1 becomes disconnected upon removing vertices
2 and 4. On the other hand, µ∗ does not necessarily vanish on the atom
X̃c

1 ∩ X̃2 ∩ X̃3 ∩ X̃c
4 , and the graph in Figure 12.1 remains connected upon re-

moving vertices 1 and 4. This observation will be explained in a more general
setting in the subsequent sections.
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The theory of I-Measure establishes a one-to-one correspondence between
Shannon’s information measures and set theory. Based on this theory, we
develop in this chapter a set-theoretic characterization of a Markov struc-
ture called full conditional mutual independence. A Markov chain, and more
generally a Markov random field, is a collection of full conditional mutual
independencies. We will show that if a collection of random variables forms a
Markov random field, then the structure of µ∗ can be simplified. In particular,
when the random variables form a Markov chain, µ∗ exhibits a very simple
structure so that the information diagram can be displayed in two dimensions
regardless of the length of the Markov chain, and µ∗ is always nonnegative.
(See also Sections 3.5 and 3.6.)

The topics to be covered in this chapter are fundamental. Unfortunately,
the proofs of the results are very heavy. The reader may skip this chapter
without affecting further reading of the book.

12.1 Conditional Mutual Independence

In this section, we explore the effect of conditional mutual independence on
the structure of the I-Measure µ∗. We begin with a simple example.

Example 12.1. Let X, Y , and Z be mutually independent random variables.
Then

I(X;Y ) = I(X;Y ;Z) + I(X;Y |Z) = 0. (12.2)

Since I(X;Y |Z) ≥ 0, we let

I(X;Y |Z) = a ≥ 0, (12.3)

so that
I(X;Y ;Z) = −a. (12.4)

Similarly,
I(Y ;Z) = I(X;Y ;Z) + I(Y ;Z|X) = 0 (12.5)

and
I(X;Z) = I(X;Y ;Z) + I(X;Z|Y ) = 0. (12.6)

Then from (12.4), we obtain

I(Y ;Z|X) = I(X;Z|Y ) = a. (12.7)

The relations (12.3), (12.4), and (12.7) are shown in the information diagram
in Figure 12.2, which indicates that X, Y , and Z are pairwise independent.

We have proved in Theorem 2.39 that X, Y , and Z are mutually indepen-
dent if and only if

H(X,Y, Z) = H(X) +H(Y ) +H(Z). (12.8)
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a 

a 

a 
-a 

X Z 

Y 

Fig. 12.2. X, Y , and Z are pairwise independent.

By counting atoms in the information diagram, we see that

0 = H(X) +H(Y ) +H(Z)−H(X,Y, Z) (12.9)
= I(X;Y |Z) + I(Y ;Z|X) + I(X;Z|Y ) + 2I(X;Y ;Z) (12.10)
= a. (12.11)

Thus a = 0, which implies

I(X;Y |Z), I(Y ;Z|X), I(X;Z|Y ), I(X;Y ;Z) (12.12)

are all equal to 0. Equivalently, µ∗ vanishes on

X̃ ∩ Ỹ − Z̃, Ỹ ∩ Z̃ − X̃, X̃ ∩ Z̃ − Ỹ , X̃ ∩ Ỹ ∩ Z̃, (12.13)

which are precisely the atoms in the intersection of any two of the set variables
X̃, Ỹ , and Z̃.

Conversely, if µ∗ vanishes on the sets in (12.13), then we see from (12.10)
that (12.8) holds, i.e., X, Y , and Z are mutually independent. Therefore, X,
Y , and Z are mutually independent if and only if µ∗ vanishes on the sets in
(12.13). This is shown in the information diagram in Figure 12.3.

0 

0 

0 
0 

X Z 

Y 

Fig. 12.3. X, Y , and Z are mutually independent.
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The theme of this example will be extended to conditional mutual inde-
pendence among collections of random variables in Theorem 12.9, which is
the main result in this section. In the rest of the section, we will develop the
necessary tools for proving this theorem. At first reading, the reader should
try to understand the results by studying the examples without getting into
the details of the proofs.

In Theorem 2.39, we have proved that X1, X2, · · · , Xn are mutually inde-
pendent if and only if

H(X1, X2, · · · , Xn) =
n∑
i=1

H(Xi). (12.14)

By conditioning on a random variable Y , one can readily prove the following.

Theorem 12.2. X1, X2, · · · , Xn are mutually independent conditioning on Y
if and only if

H(X1, X2, · · · , Xn|Y ) =
n∑
i=1

H(Xi|Y ). (12.15)

We now prove two alternative characterizations of conditional mutual in-
dependence.

Theorem 12.3. X1, X2, · · · , Xn are mutually independent conditioning on Y
if and only if for all 1 ≤ i ≤ n,

I(Xi;Xj , j 6= i|Y ) = 0, (12.16)

i.e., Xi and (Xj , j 6= i) are independent conditioning on Y .

Remark A conditional independency is a special case of a conditional mutual
independency. However, this theorem says that a conditional mutual indepen-
dency is equivalent to a set of conditional independencies.

Proof of Theorem 12.3. It suffices to prove that (12.15) and (12.16) are equiva-
lent. Assume (12.15) is true, so that X1, X2, · · · , Xn are mutually independent
conditioning on Y . Then for all i, Xi is independent of (Xj , j 6= i) conditioning
on Y . This proves (12.16).

Now assume that (12.16) is true for all 1 ≤ i ≤ n. Consider

0 = I(Xi;Xj , j 6= i|Y ) (12.17)
= I(Xi;X1, X2, · · · , Xi−1|Y )

+I(Xi;Xi+1, · · · , Xn|Y,X1, X2, · · · , Xi−1). (12.18)

Since mutual information is always nonnegative, this implies

I(Xi;X1, · · · , Xi−1|Y ) = 0, (12.19)

or Xi and (X1, X2, · · · , Xi−1) are independent conditioning on Y . Therefore,
X1, X2, · · · , Xn are mutually independent conditioning on Y (see the proof of
Theorem 2.39), proving (12.15). Hence, the theorem is proved. ut
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Theorem 12.4. X1, X2, · · · , Xn are mutually independent conditioning on Y
if and only if

H(X1, X2, · · · , Xn|Y ) =
n∑
i=1

H(Xi|Y,Xj , j 6= i). (12.20)

Proof. It suffices to prove that (12.15) and (12.20) are equivalent. Assume
(12.15) is true, so that X1, X2, · · · , Xn are mutually independent conditioning
on Y . Since for all i, Xi is independent of Xj , j 6= i conditioning on Y ,

H(Xi|Y ) = H(Xi|Y,Xj , j 6= i) (12.21)

Therefore, (12.15) implies (12.20).
Now assume that (12.20) is true. Consider

H(X1, X2, · · · , Xn|Y )

=
n∑
i=1

H(Xi|Y,X1, · · · , Xi−1) (12.22)

=
n∑
i=1

[H(Xi|Y,Xj , j 6= i) + I(Xi;Xi+1, · · · , Xn|Y,X1, · · · , Xi−1)]

(12.23)

=
n∑
i=1

H(Xi|Y,Xj , j 6= i) +
n∑
i=1

I(Xi;Xi+1, · · · , Xn|Y,X1, · · · , Xi−1).

(12.24)

Then (12.20) implies

n∑
i=1

I(Xi;Xi+1, · · · , Xn|Y,X1, · · · , Xi−1) = 0. (12.25)

Since all the terms in the above summation are nonnegative, they must all be
equal to 0. In particular, for i = 1, we have

I(X1;X2, · · · , Xn|Y ) = 0. (12.26)

By symmetry, it can be shown that

I(Xi;Xj , j 6= i|Y ) = 0 (12.27)

for all 1 ≤ i ≤ n. Then this implies (12.15) by the last theorem, completing
the proof. ut
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Theorem 12.5. Let C and Qi be disjoint index sets and Wi be a subset of
Qi for 1 ≤ i ≤ k, where k ≥ 2. Assume that there exist at least two i such
that Wi 6= ∅. Let XQi = (Xl, l ∈ Qi), 1 ≤ i ≤ k, and XC = (Xl, l ∈ C) be
collections of random variables. If XQi , 1 ≤ i ≤ k, are mutually independent
conditioning on XC , then XWi such that Wi 6= ∅ are mutually independent
conditioning on (XC , XQi−Wi

, 1 ≤ i ≤ k).

We first give an example before we prove the theorem.

Example 12.6. Suppose X1, (X2, X3, X4), and (X5, X6) are mutually indepen-
dent conditioning onX7. By Theorem 12.5,X1,X2, and (X5, X6) are mutually
independent conditioning on (X3, X4, X7).

Proof of Theorem 12.5. Assume XQi , 1 ≤ i ≤ k, are mutually independent
conditioning on XC , i.e.,

H(XQi , 1 ≤ i ≤ k|XC) =
k∑
i=1

H(XQi |XC). (12.28)

Consider

H(XWi , 1 ≤ i ≤ k|XC , XQi−Wi , 1 ≤ i ≤ k)
= H(XQi , 1 ≤ i ≤ k|XC)−H(XQi−Wi , 1 ≤ i ≤ k|XC) (12.29)

=
k∑
i=1

H(XQi |XC)

−
k∑
i=1

H(XQi−Wi
|XC , XQj−Wj

, 1 ≤ j ≤ i− 1) (12.30)

≥
k∑
i=1

H(XQi |XC , XQj−Wj , 1 ≤ j ≤ i− 1)

−
k∑
i=1

H(XQi−Wi
|XC , XQj−Wj

, 1 ≤ j ≤ i− 1) (12.31)

=
k∑
i=1

H(XWi
|XC , XQj−Wj

, 1 ≤ j ≤ i) (12.32)

≥
k∑
i=1

H(XWi
|XC , XQj−Wj

, 1 ≤ j ≤ k). (12.33)

In the second step we have used (12.28), and the two inequalities follow be-
cause conditioning does not increase entropy. On the other hand, by the chain
rule for entropy, we have
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H(XWi
, 1 ≤ i ≤ k|XC , XQi−Wi

, 1 ≤ i ≤ k)

=
k∑
i=1

H(XWi
|XC , (XQj−Wj

, 1 ≤ j ≤ k), (XWl
, 1 ≤ l ≤ i− 1)).

(12.34)

Therefore, it follows from (12.33) that

k∑
i=1

H(XWi
|XC , XQj−Wj

, 1 ≤ j ≤ k) (12.35)

≤ H(XWi
, 1 ≤ i ≤ k|XC , XQi−Wi

, 1 ≤ i ≤ k) (12.36)

=
k∑
i=1

H(XWi
|XC , (XQj−Wj

, 1 ≤ j ≤ k), (XWl
, 1 ≤ l ≤ i− 1)).

(12.37)

However, since conditioning does not increase entropy, the ith term in the
summation in (12.35) is lower bounded by the ith term in the summation in
(12.37). Thus we conclude that the inequality in (12.36) is an equality. Hence,
the conditional entropy in (12.36) is equal to the summation in (12.35), i.e.,

H(XWi , 1 ≤ i ≤ k|XC , XQi−Wi , 1 ≤ i ≤ k) (12.38)

=
k∑
i=1

H(XWi |XC , XQj−Wj , 1 ≤ j ≤ k). (12.39)

The theorem is proved. ut

Theorem 12.5 specifies a set of conditional mutual independencies (CMI’s)
which is implied by a CMI. This theorem is crucial for understanding the effect
of a CMI on the structure of the I-Measure µ∗, which we discuss next.

Lemma 12.7. Let (Zi1, · · · , Ziti), 1 ≤ i ≤ r, be r collections of random vari-
ables, where r ≥ 2, and let Y be a random variable, such that (Zi1, · · · , Ziti),
1 ≤ i ≤ r, are mutually independent conditioning on Y . Then

µ∗

 r⋂
i=1

ti⋂
j=1

Z̃ij − Ỹ

 = 0. (12.40)

We first prove the following set identity which will be used in proving this
lemma.

Lemma 12.8. Let S and T be disjoint index sets, and Ai and B be sets. Let
µ be a set-additive function. Then
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µ

(⋂
i∈S

Ai

)
∩

⋂
j∈T

Aj

−B


=
∑
S′⊂S

∑
T ′⊂T

(−1)|S
′|+|T ′| (µ(AS′ −B) + µ(AT ′ −B)− µ(AS′∪T ′ −B)) ,

(12.41)
where AS′ denotes ∪i∈S′Ai.

Proof. The right hand side of (12.41) is equal to∑
S′⊂S

∑
T ′⊂T

(−1)|S
′|+|T ′|µ(AS′ −B) +

∑
S′⊂S

∑
T ′⊂T

(−1)|S
′|+|T ′|µ(AT ′ −B)

−
∑
S′⊂S

∑
T ′⊂T

(−1)|S
′|+|T ′|µ(AS′∪T ′ −B). (12.42)

Now∑
S′⊂S

∑
T ′⊂T

(−1)|S
′|+|T ′|µ(AS′ −B) =

∑
S′⊂S

(−1)|S
′|µ(AS′ −B)

∑
T ′⊂T

(−1)|T
′|.

(12.43)
Since ∑

T ′⊂T
(−1)|T

′| =
|T |∑
k=0

(
|T |
k

)
(−1)k = 0 (12.44)

by the binomial formula1, we conclude that∑
S′⊂S

∑
T ′⊂T

(−1)|S
′|+|T ′|µ(AS′ −B) = 0. (12.45)

Similarly, ∑
S′⊂S

∑
T ′⊂T

(−1)|S
′|+|T ′|µ(AT ′ −B) = 0. (12.46)

Therefore, (12.41) is equivalent to

µ

(⋂
i∈S

Ai

)
∩

⋂
j∈T

Aj

−B
 =

∑
S′⊂S

∑
T ′⊂T

(−1)|S
′|+|T ′|+1µ(AS′∪T ′ −B)

(12.47)
1 This can be obtained by letting a = 1 and b = −1 in the binomial formula

(a+ b)|T | =

|T |∑
k=0

(
|T |
k

)
akb|T |−k.
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which can readily be obtained from Theorem 3.142. Hence, the lemma is
proved. ut

Proof of Lemma 12.7. We first prove the lemma for r = 2. By Lemma 12.8,

µ∗

 2⋂
i=1

ti⋂
j=1

Z̃ij − Ỹ

 =

∑
S′⊂{1,···,t1}

∑
T ′⊂{1,···,t2}

(−1)|S
′|+|T ′|

µ∗
 ⋃
j∈S′

Z̃1j − Ỹ


+µ∗

( ⋃
k∈T ′

Z̃2k − Ỹ

)
− µ∗

 ⋃
j∈S′

Z̃1j

 ∪( ⋃
k∈T ′

Z̃2k

)
− Ỹ

 . (12.48)

The expression in the square bracket is equal to

H(Z1j , j ∈ S′|Y ) +H(Z2k, k ∈ T ′|Y )

−H((Z1j , j ∈ S′), (Z2k, k ∈ T ′)|Y ), (12.49)

which is equal to 0 because (Z1j , j ∈ S′) and (Z2k, k ∈ T ′) are independent
conditioning on Y . Therefore the lemma is proved for r = 2.

For r > 2, we write

µ∗

 r⋂
i=1

ti⋂
j=1

Z̃ij − Ỹ

 = µ∗

r−1⋂
i=1

ti⋂
j=1

Z̃ij

 ∩
 tr⋂
j=1

Z̃rj

− Ỹ
 . (12.50)

Since ((Zi1, · · · , Ziti), 1 ≤ i ≤ r − 1) and (Zr1, · · · , Zrtr ) are independent
conditioning on Y , upon applying the lemma for r = 2, we see that

µ∗

 r⋂
i=1

ti⋂
j=1

Z̃ij − Ỹ

 = 0. (12.51)

The lemma is proved. ut

Theorem 12.9. Let T and Qi, 1 ≤ i ≤ k, be disjoint index sets, where k ≥ 2,
and let XQi = (Xl, l ∈ Qi), 1 ≤ i ≤ k, and XT = (Xl, l ∈ T ) be collections of
random variables. Then XQi , 1 ≤ i ≤ k, are mutually independent condition-
ing on XT if and only if for any W1,W2, · · · ,Wk, where Wi ⊂ Qi, 1 ≤ i ≤ k,
if there exist at least two i such that Wi 6= ∅, then

µ∗

 k⋂
i=1

⋂
j∈Wi

X̃j

− X̃T∪(∪k
i=1(Qi−Wi))

 = 0. (12.52)
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We first give an example before proving this fundamental result. The
reader should compare this example with Example 12.6.

Example 12.10. Suppose X1, (X2, X3, X4), and (X5, X6) are mutually inde-
pendent conditioning on X7. By Theorem 12.9,

µ∗(X̃1 ∩ X̃2 ∩ X̃5 ∩ X̃6 − (X̃3 ∪ X̃4 ∪ X̃7)) = 0. (12.53)

However, the theorem does not say, for instance, that

µ∗(X̃2 ∩ X̃4 − (X̃1 ∪ X̃3 ∪ X̃5 ∪ X̃6 ∪ X̃7)) (12.54)

is equal to 0.

Proof of Theorem 12.9. We first prove the ‘if’ part. Assume that for any
W1,W2, · · · ,Wk, where Wi ⊂ Qi, 1 ≤ i ≤ k, if there exist at least two i such
that Wi 6= ∅, then (12.52) holds. Consider

H(XQi , 1 ≤ i ≤ k|XT ) = µ∗
(
X̃∪k

i=1Qi
− X̃T

)
(12.55)

=
∑
B∈S

µ∗(B), (12.56)

where S consists of sets of the form k⋂
i=1

⋂
j∈Wi

X̃j

− X̃T∪(∪k
i=1(Qi−Wi)) (12.57)

with Wi ⊂ Qi for 1 ≤ i ≤ k and there exists at least one i such that Wi 6= ∅.
By our assumption, if B ∈ S is such that there exist at least two i for which
Wi 6= ∅, then µ∗(B) = 0. Therefore, if µ∗(B) is possibly nonzero, then B must
be such that there exists a unique i for which Wi 6= ∅. Now for 1 ≤ i ≤ k, let
Sl be the set consisting of sets of the form in (12.57) with Wi ⊂ Qi, Wi 6= ∅,
and Wl = ∅ for l 6= i. In other words, Si consists of atoms of the form ⋂

j∈Wi

X̃j

− X̃T∪(∪l6=iQl)∪(Qi−Wi) (12.58)

with Wi ⊂ Qi and Wi 6= ∅. Then

∑
B∈S

µ∗(B) =
k∑
i=1

∑
B∈Si

µ∗(B). (12.59)

Now
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X̃Qi − X̃T∪(∪l 6=iQl)

=
⋃

Wi⊂Qi
Wi 6=∅

 ⋂
j∈Wi

X̃j

− X̃T∪(∪l 6=iQl)∪(Qi−Wi)

 (12.60)

=
⋃
B∈Si

B. (12.61)

Since µ∗ is set-additive, we have

µ∗
(
X̃Qi − X̃T∪(∪l 6=iQl)

)
=
∑
B∈Si

µ∗(B). (12.62)

Hence, from (12.56) and (12.59), we have

H(XQi , 1 ≤ i ≤ k|XT )

=
k∑
i=1

∑
B∈Si

µ∗(B) (12.63)

=
k∑
i=1

µ∗
(
X̃Qi − X̃T∪(∪l6=iQl)

)
(12.64)

=
k∑
i=1

H(XQi |XT , XQl , l 6= i), (12.65)

where (12.64) follows from (12.62). By Theorem 12.4, XQi , 1 ≤ i ≤ k, are
mutually independent conditioning on XT .

We now prove the ‘only if’ part. Assume XQi , 1 ≤ i ≤ k, are mutually
independent conditioning on XT . For any collection of sets W1,W2, · · · ,Wk,
where Wi ⊂ Qi, 1 ≤ i ≤ k, if there exist at least two i such that Wi 6= ∅,
by Theorem 12.5, XWi , 1 ≤ i ≤ k, are mutually independent conditioning on
(XT , XQi−Wi , 1 ≤ i ≤ k). By Lemma 12.7, we obtain (12.52). The theorem is
proved. ut

12.2 Full Conditional Mutual Independence

Definition 12.11. A conditional mutual independency on X1, X2, · · · , Xn is
full if all X1, X2, · · · , Xn are involved. Such a conditional mutual independency
is called a full conditional mutual independency (FCMI).

Example 12.12. For n = 5,

X1, X2, X4, and X5 are mutually independent conditioning on X3

is an FCMI. However,



302 12 Markov Structures

X1, X2, and X5 are mutually independent conditioning on X3

is not an FCMI because X4 is not involved.

As in the previous chapters, we let

Nn = {1, 2, · · · , n}. (12.66)

In Theorem 12.9, if

T ∪

(
k⋃
i=1

Qi

)
= Nn, (12.67)

then the tuple (T,Qi, 1 ≤ i ≤ k) defines the following FCMI on X1, X2, · · · ,
Xn:

K : XQ1 , XQ2 , · · · , XQk are mutually independent conditioning on XT .

We will denote K by (T,Qi, 1 ≤ i ≤ k).

Definition 12.13. Let K = (T,Qi, 1 ≤ i ≤ k) be an FCMI on X1, X2, · · · ,
Xn. The image of K, denoted by Im(K), is the set of all atoms of Fn which
has the form of the set in (12.57), where Wi ⊂ Qi, 1 ≤ i ≤ k, and there exist
at least two i such that Wi 6= ∅.

Proposition 12.14. Let K = (T,Q1, Q2) be an FCI (full conditional inde-
pendency) on X1, X2, · · · , Xn. Then

Im(K) = {A ∈ A : A ⊂ (X̃Q1 ∩ X̃Q2 − X̃T )}. (12.68)

Proposition 12.15. Let K = (T,Qi, 1 ≤ i ≤ k) be an FCMI on X1, X2, · · · ,
Xn. Then

Im(K) =

A ∈ A : A ⊂
⋃

1≤i<j≤k

(X̃Qi ∩ X̃Qj − X̃T )

 . (12.69)

These two propositions greatly simplify the description of Im(K). Their
proofs are elementary and they are left as exercises. We first illustrate these
two propositions in the following example.

Example 12.16. Consider n = 4 and FCMI’s K1 = ({3}, {1}, {2, 4}) and K2 =
(∅, {1}, {2, 3}, {4}). Then

Im(K1) = {A ∈ A : A ⊂ (X̃1 ∩ X̃{2,4} − X̃3)} (12.70)

and

Im(K2) = {A ∈ A : A ⊂ (X̃1 ∩ X̃{2,3})∪ (X̃{2,3} ∩ X̃4)∪ (X̃1 ∩ X̃4)}. (12.71)



12.2 Full Conditional Mutual Independence 303

Theorem 12.17. Let K be an FCMI on X1, X2, · · · , Xn. Then K holds if
and only if µ∗(A) = 0 for all A ∈ Im(K).

Proof. First, (12.67) is true if K is an FCMI. Then the set in (12.57) can be
written as  ⋂

j∈∪k
i=1Wi

X̃j

− X̃Nn−∪ki=1Wi
, (12.72)

which is seen to be an atom of Fn. The theorem can then be proved by a
direct application of Theorem 12.9 to the FCMI K. ut

Let A = ∩ni=1Ỹi be a nonempty atom of Fn. Define the set

UA = {i ∈ Nn : Ỹi = X̃c
i }. (12.73)

Note that A is uniquely specified by UA because

A =

( ⋂
i∈Nn−UA

X̃i

)
∩

( ⋂
i∈UA

X̃c
i

)
=

( ⋂
i∈Nn−UA

X̃i

)
− X̃UA . (12.74)

Define w(A) = n− |UA| as the weight of the atom A, the number of X̃i in A
which are not complemented. We now show that an FCMI K = (T,Qi, 1 ≤
i ≤ k) is uniquely specified by Im(K). First, by letting Wi = Qi for 1 ≤ i ≤ k
in Definition 12.13, we see that the atom ⋂

j∈∪k
i=1Qi

X̃j

− X̃T (12.75)

is in Im(K), and it is the unique atom in Im(K) with the largest weight.
From this atom, T can be determined. To determine Qi, 1 ≤ i ≤ k, we define
a relation q on T c = Nn\T as follows. For l, l′ ∈ T c, (l, l′) is in q if and only if

i) l = l′; or
ii) there exists an atom of the form

X̃l ∩ X̃l′ ∩
⋂

1≤j≤n
j 6=l,l′

Ỹj (12.76)

in A− Im(K), where Ỹj = X̃j or X̃c
j .

Recall that A is the set of nonempty atoms of Fn. The idea of ii) is that
(l, l′) is in q if and only if l, l′ ∈ Qi for some 1 ≤ i ≤ k. Then q is reflexive
and symmetric by construction, and is transitive by virtue of the structure of
Im(K). In other words, q is an equivalence relation which partitions T c into
{Qi, 1 ≤ i ≤ k}. Therefore, K and Im(K) uniquely specify each other.
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The image of an FCMI K completely characterizes the effect of K on the
I-Measure for X1, X2, · · · , Xn. The joint effect of more than one FCMI can
easily be described in terms of the images of the individual FCMI’s. Let

Π = {Kl, 1 ≤ l ≤ m} (12.77)

be a set of FCMI’s. By Theorem 12.9, Kl holds if and only if µ∗ vanishes on
the atoms in Im(Kl). Then Kl, 1 ≤ l ≤ m hold simultaneously if and only if
µ∗ vanishes on the atoms in ∪kl=1Im(Kl). This is summarized as follows.

Definition 12.18. The image of a set of FCMI’s Π = {Kl, 1 ≤ l ≤ m} is
defined as

Im(Π) =
k⋃
l=1

Im(Kl). (12.78)

Theorem 12.19. Let Π be a set of FCMI’s for X1, X2, · · · , Xn. Then Π holds
if and only if µ∗(A) = 0 for all A ∈ Im(Π).

In probability problems, we are often given a set of conditional indepen-
dencies and we need to see whether another given conditional independency
is logically implied. This is called the implication problem which will be dis-
cussed in detail in Section 13.5. The next theorem gives a solution to this
problem if only FCMI’s are involved.

Theorem 12.20. Let Π1 and Π2 be two sets of FCMI’s. Then Π1 implies Π2

if and only if Im(Π2) ⊂ Im(Π1).

Proof. We first prove that if Im(Π2) ⊂ Im(Π1), then Π1 implies Π2. Assume
Im(Π2) ⊂ Im(Π1) and Π1 holds. Then by Theorem 12.19, µ∗(A) = 0 for all
A ∈ Im(Π1). Since Im(Π2) ⊂ Im(Π1), this implies that µ∗(A) = 0 for all
A ∈ Im(Π2). Again by Theorem 12.19, this implies Π2 also holds. Therefore,
if Im(Π2) ⊂ Im(Π1), then Π1 implies Π2.

We now prove that if Π1 implies Π2, then Im(Π2) ⊂ Im(Π1). To prove
this, we assume that Π1 implies Π2 but Im(Π2) 6⊂ Im(Π1), and we will show
that this leads to a contradiction. Fix a nonempty atom A ∈ Im(Π2)−Im(Π1).
By Theorem 3.11, we can construct random variables X1, X2, · · · , Xn such
that µ∗ vanishes on all the atoms of Fn except for A. Then µ∗ vanishes on all
the atoms in Im(Π1) but not on all the atoms in Im(Π2). By Theorem 12.19,
this implies that for X1, X2, · · · , Xn so constructed, Π1 holds but Π2 does not
hold. Therefore, Π1 does not imply Π2, which is a contradiction. The theorem
is proved. ut

Remark In the course of proving this theorem and all its preliminaries, we
have used nothing more than the basic inequalities. Therefore, we have shown
that the basic inequalities are a sufficient set of tools to solve the implication
problem if only FCMI’s are involved.
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Corollary 12.21. Two sets of FCMI’s are equivalent if and only if their im-
ages are identical.

Proof. Two set of FCMI’s Π1 and Π2 are equivalent if and only if

Π1 ⇒ Π2 and Π2 ⇒ Π1. (12.79)

Then by the last theorem, this is equivalent to Im(Π2) ⊂ Im(Π1) and Im(Π1)
⊂ Im(Π2), i.e., Im(Π2) = Im(Π1). The corollary is proved. ut

Thus a set of FCMI’s is completely characterized by its image. A set of
FCMI’s is a set of probabilistic constraints, but the characterization by its
image is purely set-theoretic! This characterization offers an intuitive set-
theoretic interpretation of the joint effect of FCMI’s on the I-Measure for
X1, X2, · · · , Xn. For example, Im(K1) ∩ Im(K2) is interpreted as the effect
commonly due to K1 and K2, Im(K1) − Im(K2) is interpreted as the effect
due to K1 but not K2, etc. We end this section with an example.

Example 12.22. Consider n = 4. Let

K1 = (∅, {1, 2, 3}, {4}), K2 = (∅, {1, 2, 4}, {3}) (12.80)

K3 = (∅, {1, 2}, {3, 4}), K4 = (∅, {1, 3}, {2, 4}) (12.81)

and let Π1 = {K1,K2} and Π2 = {K3,K4}. Then

Im(Π1) = Im(K1) ∪ Im(K2) (12.82)

and
Im(Π2) = Im(K3) ∪ Im(K4), (12.83)

where

Im(K1) = {A ∈ A : A ⊂ (X̃{1,2,3} ∩ X̃4)} (12.84)

Im(K2) = {A ∈ A : A ⊂ (X̃{1,2,4} ∩ X̃3)} (12.85)

Im(K3) = {A ∈ A : A ⊂ (X̃{1,2} ∩ X̃{3,4})} (12.86)

Im(K4) = {A ∈ A : A ⊂ (X̃{1,3} ∩ X̃{2,4})}. (12.87)

It can readily be seen by using an information diagram that Im(Π1) ⊂
Im(Π2). Therefore, Π2 implies Π1. Note that no probabilistic argument is
involved in this proof.
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12.3 Markov Random Field

A Markov random field is a generalization of a discrete time Markov chain in
the sense that the time index for the latter, regarded as a chain, is replaced by
a general graph for the former. Historically, the study of Markov random field
stems from statistical physics. The classical Ising model, which is defined on
a rectangular lattice, was used to explain certain empirically observed facts
about ferromagnetic materials. In this section, we explore the structure of the
I-Measure for a Markov random field.

We refer the reader to textbooks on graph theory (e.g. [43]) for formal
definitions of the graph-theoretic terminologies to be used in the rest of the
chapter. Let G = (V,E) be an undirected graph, where V is the set of vertices
and E is the set of edges. We assume that there is no loop in G, i.e., there
is no edge in G which connects a vertex to itself. For any (possibly empty)
subset U of V , denote by G\U the graph obtained from G by eliminating all
the vertices in U and all the edges joining a vertex in U .

The connectivity of a graph partitions the graph into subgraphs called
components, i.e., two vertices are in the same component if and only if they are
connected. Let s(U) be the number of distinct components in G\U . Denote the
sets of vertices of these components by V1(U), V2(U), · · · , Vs(U)(U). If s(U) >
1, we say that U is a cutset in G.

Definition 12.23 (Markov random field). Let G = (V,E) be an undi-
rected graph with V = Nn = {1, 2, · · · , n}, and let Xi be a random vari-
able corresponding to vertex i. Then X1, X2, · · · , Xn form a Markov random
field represented by G if for all cutsets U in G, the sets of random variables
XV1(U), XV2(U), · · · , XVs(U)(U) are mutually independent conditioning on XU .

This definition of a Markov random field is referred to as the global Markov
property in the literature. If X1, X2, · · · , Xn form a Markov random field rep-
resented by a graph G, we also say that X1, X2, · · · , Xn form a Markov graph
G. When G is a chain, we say that X1, X2, · · · , Xn form a Markov chain.

In the definition of a Markov random field, each cutset U in G specifies an
FCMI on X1, X2, · · · , Xn, denoted by [U ]. Formally,

[U ] : XV1(U), · · · , XVs(U)(U) are mutually independent conditioning on XU .

For a collection of cutsets U1, U2, · · · , Uk in G, we introduce the notation

[U1, U2, · · · , Uk] = [U1] ∧ [U2] ∧ · · · ∧ [Uk] (12.88)

where ‘∧’ denotes ‘logical AND.’ Using this notation, X1, X2, · · · , Xn form a
Markov graph G if and only if

[U ⊂ V : U 6= V and s(U) > 1] (12.89)

holds. Therefore, a Markov random field is simply a collection of FCMI’s
induced by a graph.
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We now define two types of nonempty atoms of Fn with respect to a graph
G. Recall the definition of the set UA for a nonempty atom A of Fn in (12.73).

Definition 12.24. For a nonempty atom A of Fn, if s(UA) = 1, i.e., G\UA
is connected, then A is a Type I atom, otherwise A is a Type II atom. The sets
of all Type I and Type II atoms of Fn are denoted by T1 and T2, respectively.

Theorem 12.25. X1, X2, · · · , Xn form a Markov graph G if and only if µ∗

vanishes on all Type II atoms.

Before we prove this theorem, we first state the following proposition which
is the graph-theoretic analog of Theorem 12.5. The proof is trivial and is omit-
ted. This proposition and Theorem 12.5 together establish an analogy between
the structure of conditional mutual independence and the connectivity of a
graph. This analogy will play a key role in proving Theorem 12.25.

Proposition 12.26. Let C and Qi be disjoint subsets of the vertex set V of
a graph G and Wi be a subset of Qi for 1 ≤ i ≤ k, where k ≥ 2. Assume that
there exist at least two i such that Wi 6= ∅. If Qi, 1 ≤ i ≤ k, are disconnected in
G\C, then those Wi which are nonempty are disconnected in G\(C∪

⋃k
i=1(Qi−

Wi)).

Example 12.27. In the graph G in Figure 12.4, {1}, {2, 3, 4}, and {5, 6} are
disjoint in G\{7}. Then Proposition 12.26 says that {1}, {2}, and {5, 6} are
disjoint in G\{3, 4, 7}.

1 

2 

3 
4 

5 
7 

6 

Fig. 12.4. The graph G in Example 12.27.

Proof of Theorem 12.25. Recall the definition of the set UA for a nonempty
atom A in (12.73). We note that {UA, A ∈ A} contains precisely all the proper
subsets of Nn. Thus the set of FCMI’s specified by the graph G can be written
as

[UA : A ∈ A and s(UA) > 1] (12.90)

(cf. (12.89)). By Theorem 12.19, it suffices to prove that
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Im([UA : A ∈ A and s(UA) > 1]) = T2, (12.91)

where T2 was defined in Definition 12.24.
We first prove that

T2 ⊂ Im([UA : A ∈ A and s(UA) > 1]). (12.92)

Consider an atom A ∈ T2 so that s(UA) > 1. In Definition 12.13, let T = UA,
k = s(UA), and Qi = Vi(UA) for 1 ≤ i ≤ s(UA). By considering Wi = Vi(UA)
for 1 ≤ i ≤ s(UA), we see that A ∈ Im([UA]). Therefore,

T2 = {A ∈ A : s(UA) > 1} (12.93)

⊂
⋃

A∈A:s(UA)>1

Im([UA]) (12.94)

= Im([UA : A ∈ A and s(UA) > 1]). (12.95)

We now prove that

Im([UA : A ∈ A and s(UA) > 1]) ⊂ T2. (12.96)

Consider A ∈ Im([UA : A ∈ A and s(UA) > 1]). Then there exists A∗ ∈ A
with s(UA∗) > 1 such that A ∈ Im([UA∗ ]). From Definition 12.13,

A =

 ⋂
j∈∪s(UA∗ )

i=1 Wi

X̃j

− X̃
UA∗∪

(
∪s(UA∗ )
i=1 (Vi(UA∗ )−Wi)

), (12.97)

where Wi ⊂ Vi(UA∗), 1 ≤ i ≤ s(UA∗), and there exist at least two i such that
Wi 6= ∅. It follows from (12.97) and the definition of UA that

UA = UA∗ ∪
s(UA∗ )⋃
i=1

(Vi(UA∗)−Wi). (12.98)

With UA∗ playing the role of C and Vi(UA∗) playing the role of Qi in Propo-
sition 12.26, we see by applying the proposition that those (at least two) Wi

which are nonempty are disjoint in

G \

UA∗ ∪
s(UA∗ )⋃

i=1

(Vi(UA∗)−Wi)

 = G\UA. (12.99)

This implies s(UA) > 1, i.e., A ∈ T2. Therefore, we have proved (12.96), and
hence the theorem is proved. ut
Example 12.28. With respect to the graph G in Figure 12.5, the Type II atoms
are

X̃1 ∩ X̃2 ∩ X̃c
3 ∩ X̃4, X̃

c
1 ∩ X̃2 ∩ X̃c

3 ∩ X̃4, X̃1 ∩ X̃c
2 ∩ X̃c

3 ∩ X̃4, (12.100)

while the other twelve nonempty atoms of F4 are Type I atoms. The random
variables X1, X2, X3, and X4 form a Markov graph G if and only if µ∗(A) = 0
for all Type II atoms A.
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1 

2 

3 4 

Fig. 12.5. The graph G in Example 12.28.

12.4 Markov Chain

When the graph G representing a Markov random field is a chain, the Markov
random field becomes a Markov chain. In this section, we will show that the
information diagram for a Markov chain can be displayed in two dimensions.
We will also show that the I-Measure µ∗ for a Markov chain is always nonneg-
ative. This characteristic of µ∗ facilitates the use of the information diagram
because if B is seen to be a subset of B′ in the information diagram, then

µ∗(B′) = µ∗(B) + µ∗(B′ −B) ≥ µ∗(B). (12.101)

These two properties are not possessed by a general Markov random field.
Without loss of generality, we assume that the Markov chain is represented

by the graph G in Figure 12.6. This corresponds to the Markov chain X1 →

1 2 n -1 n ... 

Fig. 12.6. The graph G representing the Markov chain X1 → X2 → · · · → Xn.

X2 → · · · → Xn. We first prove the following characterization of a Type I
atom for a Markov chain.

Lemma 12.29. For the Markov chain represented by the graph G in Fig-
ure 12.6, a nonempty atom A of Fn is a Type I atom if and only if

Nn\UA = {l, l + 1, · · · , u}, (12.102)

where 1 ≤ l ≤ u ≤ n, i.e., the indices of the set variables in A which are not
complemented are consecutive.

Proof. It is easy to see that for a nonempty atom A, if (12.102) is satisfied,
then G\UA is connected, i.e., s(UA) = 1. Therefore, A is a Type I atom of Fn.
On the other hand, if (12.102) is not satisfied, then G\UA is not connected,
i.e., s(UA) > 1, or A is a Type II atom of Fn. The lemma is proved. ut
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We now show how the information diagram for a Markov chain with any
length n ≥ 3 can be constructed in two dimensions. Since µ∗ vanishes on
all the Type II atoms of Fn, it is not necessary to display these atoms in
the information diagram. In constructing the information diagram, the re-
gions representing the random variables X1, X2, · · · , Xn should overlap with
each other such that the regions corresponding to all the Type II atoms are
empty, while the regions corresponding to all the Type I atoms are nonempty.
Figure 12.7 shows such a construction. Note that this information diagram
includes Figures 3.7 and 3.9 as special cases, which are information diagrams
for Markov chains with lengths 3 and 4, respectively.

We have already shown that µ∗ is nonnegative for a Markov chain with
length 3 or 4. Toward proving that this is true for any length n ≥ 3, it suffices
to show that µ∗(A) ≥ 0 for all Type I atoms A of Fn because µ∗(A) = 0 for
all Type II atoms A of Fn. We have seen in Lemma 12.29 that for a Type I
atom A of Fn, UA has the form as prescribed in (12.102). Consider any such
atom A. Then an inspection of the information diagram in Figure 12.7 reveals
that

µ∗(A) = µ∗(X̃l ∩ X̃l+1 ∩ · · · ∩ X̃u − X̃UA) (12.103)
= I(Xl;Xu|XUA) (12.104)
≥ 0. (12.105)

This shows that µ∗ is always nonnegative. However, since Figure 12.7 involves
an indefinite number of random variables, we give a formal proof of this result
in the following theorem.

Theorem 12.30. For a Markov chain X1 → X2 → · · · → Xn, µ∗ is nonneg-
ative.

Proof. Since µ∗(A) = 0 for all Type II atoms A of Fn, it suffices to show
that µ∗(A) ≥ 0 for all Type I atoms A of Fn. We have seen in Lemma 12.29
that for a Type I atom A of Fn, UA has the form as prescribed in (12.102).
Consider any such atom A and define the set

W = {l + 1, · · · , u− 1}. (12.106)

... 
X 1 X 2 X n -1 X n 

Fig. 12.7. The information diagram for the Markov chain X1 → X2 → · · · → Xn.
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Then

I(Xl;Xu|XUA)
= µ∗(X̃l ∩ X̃u − X̃UA) (12.107)

= µ∗

( ⋃
S⊂W

(
X̃l ∩

(⋂
t∈S

X̃t

)
∩ X̃u − X̃UA∪(W\S)

))
(12.108)

=
∑
S⊂W

µ∗

(
X̃l ∩

(⋂
t∈S

X̃t

)
∩ X̃u − X̃UA∪(W\S)

)
. (12.109)

In the above summation, except for the atom corresponding to S = W , namely
(X̃l ∩ X̃l+1 ∩ · · · ∩ X̃u − X̃UA), all the atoms are Type II atoms. Therefore,

I(Xl;Xu|XUA) = µ∗(X̃l ∩ X̃l+1 ∩ · · · ∩ X̃u − X̃UA). (12.110)

Hence,

µ∗(A) = µ∗(X̃l ∩ X̃l+1 ∩ · · · ∩ X̃u − X̃UA) (12.111)
= I(Xl;Xu|XUA) (12.112)
≥ 0. (12.113)

The theorem is proved. ut

Problems

1. Prove Proposition 12.14 and Proposition 12.15.
2. In Example 12.22, it was shown that Π2 implies Π1. Show that Π1

does not imply Π2. Hint: Use an information diagram to determine
Im(Π2)\Im(Π1).

3. Alternative definition of the global Markov property: For any partition
{U, V1, V2} of V such that the sets of vertices V1 and V2 are disconnected
in G\U , the sets of random variables XV1 and XV2 are independent con-
ditioning on XU .
Show that this definition is equivalent to the global Markov property in
Definition 12.23.

4. The local Markov property: For 1 ≤ i ≤ n, Xi and XV−Ni−i are indepen-
dent conditioning on XNi , where Ni is the set of neighbors2 of vertex i in
G.
a) Show that the global Markov property implies the local Markov prop-

erty.

2 Vertices i and j in an undirected graph are neighbors if i and j are connected by
an edge.
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b) Show that the local Markov property does not imply the global
Markov property by giving a counterexample. Hint: Consider a joint
distribution which is not strictly positive.

5. Construct a Markov random field whose I-Measure µ∗ can take negative
values. Hint: Consider a Markov “star.”

6. a) Show that X1, X2, X3, and X4 are mutually independent if and only
if

X1 ⊥ (X2, X3, X4), X2 ⊥ (X3, X4)|X1, X3 ⊥ X4|(X1, X2).

Hint: Use an information diagram.
b) Generalize the result in a) to n random variables.

7. Determine the Markov random field with four random variables X1, X2,
X3, and X4 which is characterized by the following conditional indepen-
dencies:

(X1, X2, X5) ⊥ X4|X3

X2 ⊥ (X4, X5)|(X1, X3)
X1 ⊥ (X3, X4)|(X2, X5).

What are the other conditional independencies pertaining to this Markov
random field?

Historical Notes

A Markov random field can be regarded as a generalization of a discrete-time
Markov chain. Historically, the study of Markov random field stems from sta-
tistical physics. The classical Ising model, which is defined on a rectangular
lattice, was used to explain certain empirically observed facts about ferromag-
netic materials. The foundation of the theory of Markov random fields can be
found in Preston [267] or Spitzer [310].

The structure of the I-Measure for a Markov chain was first investigated
in the unpublished work of Kawabata [176]. Essentially the same result was
independently obtained by R. W. Yeung eleven years later in the context of
the I-Measure, and the result was eventually published in Kawabata and Ye-
ung [177]. Full conditional independencies were shown to be axiomatizable by
Malvestuto [218]. The results in this chapter are due to Yeung et al. [364],
where they obtained a set-theoretic characterization of full conditional in-
dependencies and investigated the structure of the I-Measure for a Markov
random field. In this paper, they also obtained a hypergraph characterization
of a Markov random field based on the I-Measure characterization in Theo-
rem 12.25. Ge and Ye [119] have applied these results to characterize a class
of graphical models for conditional independence of random variables.
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Information Inequalities

An information expression f refers to a linear combination1 of Shannon’s
information measures involving a finite number of random variables. For ex-
ample,

H(X,Y ) + 2I(X;Z) (13.1)

and
I(X;Y )− I(X;Y |Z) (13.2)

are information expressions. An information inequality has the form

f ≥ c, (13.3)

where the constant c is usually equal to zero. We consider non-strict inequal-
ities only because these are usually the form of inequalities in information
theory. Likewise, an information identity has the form

f = c. (13.4)

We point out that an information identity f = c is equivalent to the pair of
information inequalities f ≥ c and f ≤ c.

An information inequality or identity is said to always hold if it holds for
any joint distribution for the random variables involved. For example, we say
that the information inequality

I(X;Y ) ≥ 0 (13.5)

always holds because it holds for any joint distribution p(x, y). On the other
hand, we say that an information inequality does not always hold if there
exists a joint distribution for which the inequality does not hold. Consider the
information inequality

1 More generally, an information expression can be nonlinear, but they do not
appear to be useful in information theory.
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I(X;Y ) ≤ 0. (13.6)

Since
I(X;Y ) ≥ 0 (13.7)

always holds, (13.6) is equivalent to

I(X;Y ) = 0, (13.8)

which holds if and only if X and Y are independent. In other words, (13.6)
does not hold if X and Y are not independent. Therefore, we say that (13.6)
does not always hold.

As we have seen in the previous chapters, information inequalities are the
major tools for proving converse coding theorems. These inequalities govern
the impossibilities in information theory. More precisely, information inequal-
ities imply that certain things cannot happen. As such, they are referred to
as the laws of information theory.

The basic inequalities form the most important set of information inequal-
ities. In fact, almost all the information inequalities known to date are implied
by the basic inequalities. These are called Shannon-type inequalities. On the
other hand, if an information inequality always holds but is not implied by
the basic inequalities, then it is called a non-Shannon-type inequality. We have
not yet explained what it means by that an inequality is or is not implied by
the basic inequalities, but this will become clear later in the chapter.

Let us now rederive the inequality obtained in Example 3.15 (Imperfect
secrecy theorem) without using an information diagram. In this example, three
random variables X,Y , and Z are involved, and the setup of the problem is
equivalent to the constraint

H(X|Y,Z) = 0. (13.9)

Then

I(X;Y )
= H(X) +H(Y )−H(X,Y ) (13.10)
= H(X) +H(Y )− [H(X,Y, Z)−H(Z|X,Y )] (13.11)
≥ H(X) +H(Y )−H(X,Y, Z) (13.12)
= H(X) +H(Y )− [H(Z) +H(Y |Z) +H(X|Y, Z)] (13.13)
= H(X)−H(Z) + I(Y ;Z)−H(X|Y,Z) (13.14)
≥ H(X)−H(Z), (13.15)

where we have used
H(Z|X,Y ) ≥ 0 (13.16)

in obtaining (13.12), and
I(Y ;Z) ≥ 0 (13.17)
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and (13.9) in obtaining (13.15). This derivation is less transparent than the one
we presented in Example 3.15, but the point here is that the final inequality we
obtain in (13.15) can be proved by invoking the basic inequalities (13.16) and
(13.17). In other words, (13.15) is implied by the basic inequalities. Therefore,
it is a (constrained) Shannon-type inequality.

We are motivated to ask the following two questions:

1. How can Shannon-type inequalities be characterized? That is, given an
information inequality, how can we tell whether it is implied by the basic
inequalities?

2. Are there any non-Shannon-type information inequalities?

These are two very fundamental questions in information theory. We point out
that the first question naturally comes before the second question because if
we cannot characterize all Shannon-type inequalities, even if we are given a
non-Shannon-type inequality, we cannot tell that it actually is one.

In this chapter, we develop a geometric framework for information inequal-
ities which allows them to be studied systematically. This framework naturally
leads to an answer to the first question, which makes machine-proving of all
Shannon-type inequalities possible. This will be discussed in the next chap-
ter. The second question will be answered positively in Chapter 15. In other
words, there do exist laws in information theory beyond those laid down by
Shannon.

13.1 The Region Γ ∗
n

Let
Nn = {1, 2, · · · , n}, (13.18)

where n ≥ 2, and let
Θ = {Xi, i ∈ Nn} (13.19)

be any collection of n random variables. Associated with Θ are

k = 2n − 1 (13.20)

joint entropies. For example, for n = 3, the 7 joint entropies associated with
random variables X1, X2, and X3 are

H(X1), H(X2), H(X3), H(X1, X2),

H(X2, X3), H(X1, X3), H(X1, X2, X3). (13.21)

Let < denote the set of real numbers. For any nonempty subset α of Nn,
let

Xα = (Xi, i ∈ α) (13.22)

and
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HΘ(α) = H(Xα). (13.23)

For a fixed Θ, we can then view HΘ as a set function from 2Nn to < with
HΘ(∅) = 0, i.e., we adopt the convention that the entropy of an empty set
of random variable is equal to zero. For this reason, we call HΘ the entropy
function of Θ.

Let Hn be the k-dimensional Euclidean space with the coordinates labeled
by hα, α ∈ 2Nn\{∅}, where hα corresponds to the value of HΘ(α) for any
collection Θ of n random variables. We will refer to Hn as the entropy space
for n random variables. Then an entropy function HΘ can be represented by
a column vector in Hn. On the other hand, a column vector h ∈ Hn is called
entropic if h is equal to the entropy function HΘ of some collection Θ of n
random variables. We are motivated to define the following region in Hn:

Γ ∗n = {h ∈ Hn : h is entropic}. (13.24)

For convenience, the vectors in Γ ∗n will also be referred to as entropy functions.
As an example, for n = 3, the coordinates of H3 are labeled by

h1, h2, h3, h12, h13, h23, h123, (13.25)

where h123 denotes h{1,2,3}, etc, and Γ ∗3 is the region in H3 of all entropy
functions for 3 random variables.

While further characterizations of Γ ∗n will be given later, we first point out
a few basic properties of Γ ∗n :

1. Γ ∗n contains the origin.
2. Γ

∗
n, the closure of Γ ∗n , is convex.

3. Γ ∗n is in the nonnegative orthant of the entropy space Hn2.

The origin of the entropy space corresponds to the entropy function of n de-
generate random variables taking constant values. Hence, Property 1 follows.
Property 2 will be proved in Chapter 15. Properties 1 and 2 imply that Γ

∗
n

is a convex cone. Property 3 is true because the coordinates in the entropy
space Hn correspond to joint entropies, which are always nonnegative.

13.2 Information Expressions in Canonical Form

Any Shannon’s information measure other than a joint entropy can be ex-
pressed as a linear combination of joint entropies by application of one of the
following information identities:

H(X|Y ) = H(X,Y )−H(Y ) (13.26)
I(X;Y ) = H(X) +H(Y )−H(X,Y ) (13.27)

I(X;Y |Z) = H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z). (13.28)
2 The nonnegative orthant of Hn is the region {h ∈ Hn : hα ≥ 0 for all α ∈

2Nn\{∅}}.
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The first and the second identity are special cases of the third identity, which
has already been proved in Lemma 3.8. Thus any information expression which
involves n random variables can be expressed as a linear combination of the k
associated joint entropies. We call this the canonical form of an information
expression. When we write an information expression f as f(h), it means that
f is in canonical form. Since an information expression in canonical form is a
linear combination of the joint entropies, it has the form

b>h (13.29)

where b> denotes the transpose of a constant column vector b in <k.
The identities in (13.26) to (13.28) provide a way to express every infor-

mation expression in canonical form. However, it is not clear whether such a
canonical form is unique. To illustrate the point, we consider obtaining the
canonical form of H(X|Y ) in two ways. First,

H(X|Y ) = H(X,Y )−H(Y ). (13.30)

Second,

H(X|Y ) = H(X)− I(X;Y ) (13.31)
= H(X)− (H(Y )−H(Y |X)) (13.32)
= H(X)− (H(Y )−H(X,Y ) +H(X)) (13.33)
= H(X,Y )−H(Y ). (13.34)

Thus it turns out that we can obtain the same canonical form for H(X|Y )
via two different expansions. This is not accidental, as it is implied by the
uniqueness of the canonical form which we will prove shortly.

Recall from the proof of Theorem 3.6 that the vector h represents the
values of the I-Measure µ∗ on the unions in Fn. Moreover, h is related to the
values of µ∗ on the atoms of Fn, represented as u, by

h = Cnu (13.35)

where Cn is a unique k × k matrix (cf. (3.27)). We now state the following
lemma which is a rephrase of Theorem 3.11. This lemma is essential for proving
the next theorem which implies the uniqueness of the canonical form.

Lemma 13.1. Let
Ψ∗n = {u ∈ <k : Cnu ∈ Γ ∗n}. (13.36)

Then the nonnegative orthant of <k is a subset of Ψ∗n.

Theorem 13.2. Let f be an information expression. Then the unconstrained
information identity f = 0 always holds if and only if f is the zero function.
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Proof. Without loss of generality, assume f is in canonical form and let

f(h) = b>h. (13.37)

Assume f = 0 always holds and f is not the zero function, i.e., b 6= 0. We will
show that this leads to a contradiction. Now f = 0, or more precisely the set

{h : b>h = 0}, (13.38)

is a hyperplane3 in the entropy space which has zero Lebesgue measure4. If
f = 0 always holds, i.e., it holds for all joint distributions, then Γ ∗n must
be contained in the hyperplane f = 0, otherwise there exists an h0 ∈ Γ ∗n
which is not on f = 0, i.e., f(h0) 6= 0. Since h0 ∈ Γ ∗n , it corresponds to the
entropy function of some joint distribution. This means that there exists a
joint distribution such that f(h) = 0 does not hold, which cannot be true
because f = 0 always holds.

If Γ ∗n has positive Lebesgue measure, it cannot be contained in the hyper-
plane f = 0 which has zero Lebesgue measure. Therefore, it suffices to show
that Γ ∗n has positive Lebesgue measure. To this end, we see from Lemma 13.1
that the nonnegative orthant of Hn, which has positive Lebesgue measure,
is a subset of Ψ∗n. Thus Ψ∗n has positive Lebesgue measure. Since Γ ∗n is an
invertible transformation of Ψ∗n, its Lebesgue measure is also positive.

Therefore, Γ ∗n is not contained in the hyperplane f = 0, which implies that
there exists a joint distribution for which f = 0 does not hold. This leads to
a contradiction because we have assumed that f = 0 always holds. Hence, we
have proved that if f = 0 always holds, then f must be the zero function.

Conversely, if f is the zero function, then it is trivial that f = 0 always
holds. The theorem is proved. ut

Corollary 13.3. The canonical form of an information expression is unique.

Proof. Let f1 and f2 be canonical forms of an information expression g. Since

g = f1 (13.39)

and
g = f2 (13.40)

always hold,
f1 − f2 = 0 (13.41)

always holds. By the above theorem, f1−f2 is the zero function, which implies
that f1 and f2 are identical. The corollary is proved. ut

3 If b = 0, then {h : b>h = 0} is equal to Hn.
4 The Lebesque measure can be thought of as “volume” in the Euclidean space if

the reader is not familiar with measure theory.
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Due to the uniqueness of the canonical form of an information expression,
it is an easy matter to check whether for two information expressions f1 and
f2 the unconstrained information identity

f1 = f2 (13.42)

always holds. All we need to do is to express f1 − f2 in canonical form. If all
the coefficients are zero, then (13.42) always holds, otherwise it does not.

13.3 A Geometrical Framework

In the last section, we have seen the role of the region Γ ∗n in proving un-
constrained information identities. In this section, we explain the geometrical
meanings of unconstrained information inequalities, constrained information
inequalities, and constrained information identities in terms of Γ ∗n . Without
loss of generality, we assume that all information expressions are in canonical
form.

13.3.1 Unconstrained Inequalities

Consider an unconstrained information inequality f ≥ 0, where f(h) = b>h.
Then f ≥ 0 corresponds to the set

{h ∈ Hn : b>h ≥ 0} (13.43)

which is a half-space in the entropy space Hn containing the origin. Specif-
ically, for any h ∈ Hn, f(h) ≥ 0 if and only if h belongs to this set. For
simplicity, we will refer to this set as the half-space f ≥ 0. As an example, for
n = 2, the information inequality

I(X1;X2) = H(X1) +H(X2)−H(X1, X2) ≥ 0, (13.44)

written as
h1 + h2 − h12 ≥ 0, (13.45)

corresponds to the half-space

{h ∈ Hn : h1 + h2 − h12 ≥ 0}. (13.46)

in the entropy space H2.
Since an information inequality always holds if and only if it is satisfied

by the entropy function of any joint distribution for the random variables
involved, we have the following geometrical interpretation of an information
inequality:

f ≥ 0 always holds if and only if Γ ∗n ⊂ {h ∈ Hn : f(h) ≥ 0}.
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This gives a complete characterization of all unconstrained inequalities in
terms of Γ ∗n . If Γ ∗n is known, we in principle can determine whether any infor-
mation inequality involving n random variables always holds.

The two possible cases for f ≥ 0 are illustrated in Figure 13.1 and Fig-
ure 13.2. In Figure 13.1, Γ ∗n is completely included in the half-space f ≥ 0,

f       0 n 

Fig. 13.1. An illustration for f ≥ 0 always holds.

f       0 

. h 
n 

0 

Fig. 13.2. An illustration for f ≥ 0 not always holds.

so f ≥ 0 always holds. In Figure 13.2, there exists a vector h0 ∈ Γ ∗n such that
f(h0) < 0. Thus the inequality f ≥ 0 does not always hold.

13.3.2 Constrained Inequalities

In information theory, we very often deal with information inequalities (iden-
tities) with certain constraints on the joint distribution for the random vari-



13.3 A Geometrical Framework 321

ables involved. These are called constrained information inequalities (identi-
ties), and the constraints on the joint distribution can usually be expressed
as linear constraints on the entropies. The following are such examples:

1. X1, X2, and X3 are mutually independent if and only if H(X1, X2, X3) =
H(X1) +H(X2) +H(X3).

2. X1, X2, and X3 are pairwise independent if and only if I(X1;X2) =
I(X2;X3) = I(X1;X3) = 0.

3. X1 is a function of X2 if and only if H(X1|X2) = 0.
4. X1 → X2 → X3 → X4 forms a Markov chain if and only if I(X1;X3|X2)

= 0 and I(X1, X2;X4|X3) = 0.

Suppose there are q linear constraints on the entropies given by

Qh = 0, (13.47)

where Q is a q × k matrix. Here we do not assume that the q constraints are
linearly independent, so Q is not necessarily full rank. Let

Φ = {h ∈ Hn : Qh = 0}. (13.48)

In other words, the q constraints confine h to a linear subspace Φ in the
entropy space. Parallel to our discussion on unconstrained inequalities, we
have the following geometrical interpretation of a constrained inequality:

Under the constraint Φ, f ≥ 0 always holds if and only if (Γ ∗n ∩ Φ) ⊂
{h : f(h) ≥ 0}.

This gives a complete characterization of all constrained inequalities in terms
of Γ ∗n . Note that Φ = Hn when there is no constraint on the entropies. In this
sense, an unconstrained inequality is a special case of a constrained inequality.

The two cases of f ≥ 0 under the constraint Φ are illustrated in Figure 13.3
and Figure 13.4. Figure 13.3 shows the case when f ≥ 0 always holds under
the constraint Φ. Note that f ≥ 0 may or may not always hold when there is
no constraint. Figure 13.4 shows the case when f ≥ 0 does not always hold
under the constraint Φ. In this case, f ≥ 0 does not always hold when there
is no constraint, because

(Γ ∗n ∩ Φ) 6⊂ {h : f(h) ≥ 0} (13.49)

implies
Γ ∗n 6⊂ {h : f(h) ≥ 0}. (13.50)

13.3.3 Constrained Identities

As we have pointed out at the beginning of the chapter, an identity

f = 0 (13.51)

always holds if and only if both the inequalities f ≥ 0 and f ≤ 0 always hold.
Then following our discussion on constrained inequalities, we have
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f       0 

Fig. 13.3. An illustration for f ≥ 0 always holds under the constraint Φ.

Under the constraint Φ, f = 0 always holds if and only if (Γ ∗n ∩ Φ) ⊂
{h : f(h) ≥ 0} ∩ {h : f(h) ≤ 0},

or

Under the constraint Φ, f = 0 always holds if and only if (Γ ∗n ∩ Φ) ⊂
{h : f(h) = 0}.

This condition says that the intersection of Γ ∗n and Φ is contained in the
hyperplane f = 0.

13.4 Equivalence of Constrained Inequalities

When there is no constraint on the entropies, two information inequalities

f       0 

Fig. 13.4. An illustration for f ≥ 0 not always holds under the constraint Φ.
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b>h ≥ 0 (13.52)

and
c>h ≥ 0 (13.53)

are equivalent if and only if c = ab, where a is a positive constant. However,
this is not the case under a non-trivial constraint Φ 6= Hn. This situation is
illustrated in Figure 13.5. In this figure, although the inequalities in (13.52)

b    h      0 
c    h      0 

Fig. 13.5. Equivalence of b>h ≥ 0 and c>h ≥ 0 under the constraint Φ.

and (13.53) correspond to different half-spaces in the entropy space, they
actually impose the same constraint on h when h is confined to Φ.

In this section, we present a characterization of (13.52) and (13.53) being
equivalent under a set of linear constraint Φ. The reader may skip this section
at first reading.

Let r be the rank of Q in (13.47). Since h is in the null space of Q, we
can write

h = Q̃h′, (13.54)

where Q̃ is a k× (k− r) matrix such that the rows of Q̃> form a basis of the
orthogonal complement of the row space of Q, and h′ is a column (k − r)-
vector. Then using (13.54), (13.52) and (13.53) can be written as

b>Q̃h′ ≥ 0 (13.55)

and
c>Q̃h′ ≥ 0, (13.56)

respectively in terms of the set of basis given by the columns of Q̃. Then
(13.55) and (13.56) are equivalent if and only if

c>Q̃ = ab>Q̃, (13.57)
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where a is a positive constant, or

(c− ab)>Q̃ = 0. (13.58)

In other words, (c − ab)> is in the orthogonal complement of the row space
of Q̃>, i.e., (c − ab)> is in the row space of Q. Let Q′ be an r × k matrix
whose row space is the same as that of Q. (Q can be taken as Q′ if Q is full
rank.) Since the rank of Q is r and Q′ has r rows, the rows of Q′ form a basis
for the row space of Q, and Q′ is full rank. Then from (13.58), (13.55) and
(13.56) are equivalent under the constraint Φ if and only if

c = ab + (Q′)>e (13.59)

for some positive constant a and some column r-vector e.
Suppose for given b and c, we want to see whether (13.55) and (13.56)

are equivalent under the constraint Φ. We first consider the case when either
b> or c> is in the row space of Q. This is actually not an interesting case
because if b>, for example, is in the row space of Q, then

b>Q̃ = 0 (13.60)

in (13.55), which means that (13.55) imposes no additional constraint under
the constraint Φ.

Theorem 13.4. If either b> or c> is in the row space of Q, then b>h ≥ 0
and c>h ≥ 0 are equivalent under the constraint Φ if and only if both b> and
c> are in the row space of Q.

The proof of this theorem is left as an exercise. We now turn to the more
interesting case when neither b> nor c> is in the row space of Q. The following
theorem gives an explicit condition for (13.55) and (13.56) to be equivalent
under the constraint Φ.

Theorem 13.5. If neither b> nor c> is in the row space of Q, then b>h ≥ 0
and c>h ≥ 0 are equivalent under the constraint Φ if and only if[

(Q′)> b
] [e
a

]
= c. (13.61)

has a unique solution with a > 0, where Q′ is any matrix whose row space is
the same as that of Q.

Proof. For b> and c> not in the row space of Q, we want to see when we
can find unknowns a and e satisfying (13.59) with a > 0. To this end, we
write (13.59) in matrix form as (13.61). Since b is not in the column space of
(Q′)> and (Q′)> is full rank,

[
(Q′)> b

]
is also full rank. Then (13.61) has

either a unique solution or no solution. Therefore, the necessary and sufficient
condition for (13.55) and (13.56) to be equivalent is that (13.61) has a unique
solution and a > 0. The theorem is proved. ut
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Example 13.6. Consider three random variables X1, X2, and X3 with the
Markov constraint

I(X1;X3|X2) = 0, (13.62)

which is equivalent to

H(X1, X2) +H(X2, X3)−H(X1, X2, X3)−H(X2) = 0. (13.63)

In terms of the coordinates in the entropy space H3, this constraint is written
as

Qh = 0, (13.64)

where
Q = [ 0 −1 0 1 1 0 −1 ] (13.65)

and
h = [h1 h2 h3 h12 h23 h13 h123 ]>. (13.66)

We now show that under the constraint in (13.64), the inequalities

H(X1|X3)−H(X1|X2) ≥ 0 (13.67)

and
I(X1;X2|X3) ≥ 0 (13.68)

are in fact equivalent. Toward this end, we write (13.67) and (13.68) as b>h ≥
0 and c>h ≥ 0, respectively, where

b = [ 0 1 −1 −1 0 1 0 ]> (13.69)

and
c = [ 0 0 −1 0 1 1 −1 ]>. (13.70)

Since Q is full rank, we may take Q′ = Q. Upon solving

[
Q> b

] [e
a

]
= c, (13.71)

we obtain the unique solution a = 1 > 0 and e = 1 (e is a 1 × 1 matrix).
Therefore, (13.67) and (13.68) are equivalent under the constraint in (13.64).

Under the constraint Φ, if neither b> nor c> is in the row space of Q, it
can be shown that the identities

b>h = 0 (13.72)

and
c>h = 0 (13.73)

are equivalent if and only if (13.61) has a unique solution. We leave the proof
as an exercise.
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13.5 The Implication Problem of Conditional
Independence

We use Xα ⊥ Xβ |Xγ to denote the conditional independency (CI)

Xα and Xβ are conditionally independent given Xγ .

We have proved in Theorem 2.34 that Xα ⊥ Xβ |Xγ is equivalent to

I(Xα;Xβ |Xγ) = 0. (13.74)

When γ = ∅, Xα ⊥ Xβ |Xγ becomes an unconditional independency which we
regard as a special case of a conditional independency. When α = β, (13.74)
becomes

H(Xα|Xγ) = 0, (13.75)

which we see from Proposition 2.36 that Xα is a function of Xγ . For this
reason, we also regard functional dependency as a special case of conditional
independency.

In probability problems, we are often given a set of CI’s and we need to
determine whether another given CI is logically implied. This is called the
implication problem, which is perhaps the most basic problem in probability
theory. We have seen in Section 12.2 that the implication problem has a
solution if only full conditional mutual independencies are involved. However,
the general problem is extremely difficult, and it has recently been solved only
up to four random variables by Matúš [230].

We end this section by explaining the relation between the implication
problem and the region Γ ∗n . A CI involving random variables X1, X2, · · · , Xn

has the form
Xα ⊥ Xβ |Xγ , (13.76)

where α, β, γ ⊂ Nn. Since I(Xα;Xβ |Xγ) = 0 is equivalent to

H(Xα∪γ) +H(Xβ∪γ)−H(Xα∪β∪γ)−H(Xγ) = 0, (13.77)

Xα ⊥ Xβ |Xγ corresponds to the hyperplane

{h : hα∪γ + hβ∪γ − hα∪β∪γ − hγ = 0}. (13.78)

For a CI K, we denote the hyperplane in Hn corresponding to K by E(K).
Let Π = {Kl} be a collection of CI’s, and we want to determine whether

Π implies a given CI K. This would be the case if and only if the following is
true:

For all h ∈ Γ ∗n , if h ∈
⋂
l

E(Kl), then h ∈ E(K).

Equivalently,
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Π implies K if and only if

(⋂
l

E(Kl)

)
∩ Γ ∗n ⊂ E(K).

Therefore, the implication problem can be solved if Γ ∗n can be characterized.
Hence, the region Γ ∗n is not only of fundamental importance in information
theory, but is also of fundamental importance in probability theory.

Problems

1. Symmetrical information expressions An information expression is said
to be symmetrical if it is identical under every permutation of the
random variables involved. However, sometimes a symmetrical informa-
tion expression cannot be readily recognized symbolically. For example,
I(X1;X2)− I(X1;X2|X3) is symmetrical in X1, X2, and X3 but it is not
symmetrical symbolically. Devise a general method for recognizing sym-
metrical information expressions.

2. The canonical form of an information expression is unique when there is
no constraint on the random variables involved. Show by an example that
this does not hold when certain constraints are imposed on the random
variables involved.

3. Alternative canonical form Denote ∩i∈GX̃i by X̌G and let

C =
{
X̌G : G is a nonempty subset of Nn

}
.

a) Prove that a signed measure µ on Fn is completely specified by {µ(C),
C ∈ C}, which can be any set of real numbers.

b) Prove that an information expression involving X1, X2, · · · , Xn can be
expressed uniquely as a linear combination of µ∗(X̌G), where G are
nonempty subsets of Nn.

4. Uniqueness of the canonical form for nonlinear information expressions
Consider a function f : <k → <, where k = 2n − 1 such that {h ∈ <k :
f(h) = 0} has zero Lebesgue measure.
a) Prove that f cannot be identically zero on Γ ∗n .
b) Use the result in a) to show the uniqueness of the canonical form for

the class of information expressions of the form g(h) where g is a
polynomial.

(Yeung [360].)
5. Prove that under the constraint Qh = 0, if neither b> nor c> is in the

row space of Q, the identities b>h = 0 and c>h = 0 are equivalent if and
only if (13.61) has a unique solution.

Historical Notes

The uniqueness of the canonical form for linear information expressions was
first proved by Han [133]. The same result was independently obtained in
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the book by Csiszár and Körner [75]. The geometrical framework for infor-
mation inequalities is due to Yeung [360]. The characterization of equivalent
constrained inequalities in Section 13.4 first appeared in the book by Yeung
[361].
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Shannon-Type Inequalities

The basic inequalities form the most important set of information inequali-
ties. In fact, almost all the information inequalities known to date are implied
by the basic inequalities. These are called Shannon-type inequalities. In this
chapter, we show that verification of Shannon-type inequalities can be formu-
lated as a linear programming problem, thus enabling machine-proving of all
such inequalities.

14.1 The Elemental Inequalities

Consider the conditional mutual information

I(X,Y ;X,Z,U |Z, T ), (14.1)

in which the random variables X and Z appear more than once. It is readily
seen that I(X,Y ;X,Z,U |Z, T ) can be written as

H(X|Z, T ) + I(Y ;U |X,Z, T ), (14.2)

where in both H(X|Z, T ) and I(Y ;U |X,Z, T ), each random variable appears
only once.

A Shannon’s information measure is said to be reducible if there exists a
random variable which appears more than once in the information measure,
otherwise the information measure is said to be irreducible. Without loss of
generality, we will consider irreducible Shannon’s information measures only,
because a reducible Shannon’s information measure can always be written as
the sum of irreducible Shannon’s information measures.

The nonnegativity of all Shannon’s information measures form a set of
inequalities called the basic inequalities. The set of basic inequalities, however,
is not minimal in the sense that some basic inequalities are implied by the
others. For example,

H(X|Y ) ≥ 0 (14.3)
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and
I(X;Y ) ≥ 0, (14.4)

which are both basic inequalities involving random variables X and Y , imply

H(X) = H(X|Y ) + I(X;Y ) ≥ 0, (14.5)

which again is a basic inequality involving X and Y .
Let Nn = {1, 2, · · · , n}, where n ≥ 2. Unless otherwise specified, all infor-

mation expressions in this chapter involve some or all of the random variables
X1, X2, · · · , Xn. The value of n will be specified when necessary. Through
application of the identities

H(X) = H(X|Y ) + I(X;Y ) (14.6)
H(X,Y ) = H(X) +H(Y |X) (14.7)

I(X;Y,Z) = I(X;Y ) + I(X;Z|Y ) (14.8)
H(X|Z) = H(X|Y, Z) + I(X;Y |Z) (14.9)

H(X,Y |Z) = H(X|Z) +H(Y |X,Z) (14.10)
I(X;Y,Z|T ) = I(X;Y |T ) + I(X;Z|Y, T ), (14.11)

any Shannon’s information measure can be expressed as the sum of Shannon’s
information measures of the following two elemental forms:

i) H(Xi|XNn−{i}), i ∈ Nn
ii) I(Xi;Xj |XK), where i 6= j and K ⊂ Nn − {i, j}.

This will be illustrated in the next example. It is not difficult to check that the
total number of the two elemental forms of Shannon’s information measures
for n random variables is equal to

m = n+
(
n
2

)
2n−2. (14.12)

The proof of (14.12) is left as an exercise.

Example 14.1. We can expand H(X1, X2) into a sum of elemental forms of
Shannon’s information measures for n = 3 by applying the identities in (14.6)
to (14.11) as follows:

H(X1, X2)
= H(X1) +H(X2|X1) (14.13)
= H(X1|X2, X3) + I(X1;X2, X3) +H(X2|X1, X3)

+I(X2;X3|X1) (14.14)
= H(X1|X2, X3) + I(X1;X2) + I(X1;X3|X2)

+H(X2|X1, X3) + I(X2;X3|X1). (14.15)
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The nonnegativity of the two elemental forms of Shannon’s information
measures form a proper subset of the set of basic inequalities. We call the
m inequalities in this smaller set the elemental inequalities. They are equiv-
alent to the basic inequalities because each basic inequality which is not an
elemental inequality can be obtained as the sum of a set of elemental inequal-
ities in view of (14.6) to (14.11). This will be illustrated in the next example.
The proof for the minimality of the set of elemental inequalities is deferred to
Section 14.6.

Example 14.2. In the last example, we expressed H(X1, X2) as

H(X1|X2, X3) + I(X1;X2) + I(X1;X3|X2)
+H(X2|X1, X3) + I(X2;X3|X1). (14.16)

All the five Shannon’s information measures in the above expression are in
elemental form for n = 3. Then the basic inequality

H(X1, X2) ≥ 0 (14.17)

can be obtained as the sum of the following elemental inequalities:

H(X1|X2, X3) ≥ 0 (14.18)
I(X1;X2) ≥ 0 (14.19)

I(X1;X3|X2) ≥ 0 (14.20)
H(X2|X1, X3) ≥ 0 (14.21)
I(X2;X3|X1) ≥ 0. (14.22)

14.2 A Linear Programming Approach

Recall from Section 13.2 that any information expression can be expressed
uniquely in canonical form, i.e., a linear combination of the k = 2n − 1 joint
entropies involving some or all of the random variables X1, X2, · · · , Xn. If
the elemental inequalities are expressed in canonical form, they become linear
inequalities in the entropy spaceHn. Denote this set of inequalities by Gh ≥ 0,
where G is an m× k matrix, and define

Γn = {h : Gh ≥ 0}. (14.23)

We first show that Γn is a pyramid in the nonnegative orthant of the
entropy space Hn. Evidently, Γn contains the origin. Let ej , 1 ≤ j ≤ k, be
the column k-vector whose jth component is equal to 1 and all the other
components are equal to 0. Then the inequality

e>j h ≥ 0 (14.24)
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corresponds to the nonnegativity of a joint entropy, which is a basic inequal-
ity. Since the set of elemental inequalities is equivalent to the set of basic
inequalities, if h ∈ Γn, i.e., h satisfies all the elemental inequalities, then h
also satisfies the basic inequality in (14.24). In other words,

Γn ⊂ {h : e>j h ≥ 0} (14.25)

for all 1 ≤ j ≤ k. This implies that Γn is in the nonnegative orthant of the
entropy space. Since Γn contains the origin and the constraints Gh ≥ 0 are
linear, we conclude that Γn is a pyramid in the nonnegative orthant of Hn.

Since the elemental inequalities are satisfied by the entropy function of
any n random variables X1, X2, · · · , Xn, for any h in Γ ∗n , h is also in Γn, i.e.,

Γ ∗n ⊂ Γn. (14.26)

Therefore, for any unconstrained inequality f ≥ 0, if

Γn ⊂ {h : f(h) ≥ 0}, (14.27)

then
Γ ∗n ⊂ {h : f(h) ≥ 0}, (14.28)

i.e., f ≥ 0 always holds. In other words, (14.27) is a sufficient condition for
f ≥ 0 to always hold. Moreover, an inequality f ≥ 0 such that (14.27) is
satisfied is implied by the basic inequalities, because if h satisfies the basic
inequalities, i.e., h ∈ Γn, then h satisfies f(h) ≥ 0.

For constrained inequalities, following our discussion in Section 13.3, we
impose the constraint

Qh = 0 (14.29)

and let
Φ = {h : Qh = 0}. (14.30)

For an inequality f ≥ 0, if

(Γn ∩ Φ) ⊂ {h : f(h) ≥ 0}, (14.31)

then by (14.26),
(Γ ∗n ∩ Φ) ⊂ {h : f(h) ≥ 0}, (14.32)

i.e., f ≥ 0 always holds under the constraint Φ. In other words, (14.31) is a
sufficient condition for f ≥ 0 to always hold under the constraint Φ. Moreover,
an inequality f ≥ 0 under the constraint Φ such that (14.31) is satisfied is
implied by the basic inequalities and the constraint Φ, because if h ∈ Φ and
h satisfies the basic inequalities, i.e., h ∈ Γn ∩ Φ, then h satisfies f(h) ≥ 0.
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14.2.1 Unconstrained Inequalities

To check whether an unconstrained inequality b>h ≥ 0 is a Shannon-type
inequality, we need to check whether Γn is a subset of {h : b>h ≥ 0}. The
following theorem induces a computational procedure for this purpose.

Theorem 14.3. b>h ≥ 0 is a Shannon-type inequality if and only if the
minimum of the problem

Minimize b>h, subject to Gh ≥ 0 (14.33)

is zero. In this case, the minimum occurs at the origin.

Remark The idea of this theorem is illustrated in Figure 14.1 and Fig-
ure 14.2. In Figure 14.1, Γn is contained in {h : b>h ≥ 0}. The minimum

n b    h      0 

Fig. 14.1. Γn is contained in {h : b>h ≥ 0}.

of b>h subject to Γn occurs at the origin with the minimum equal to 0. In
Figure 14.2, Γn is not contained in {h : b>h ≥ 0}. The minimum of b>h
subject to Γn is −∞. A formal proof of the theorem is given next.

Proof of Theorem 14.3. We have to prove that Γn is a subset of {h : b>h ≥ 0}
if and only if the minimum of the problem in (14.33) is zero. First of all, since
0 ∈ Γn and b>0 = 0 for any b, the minimum of the problem in (14.33) is at
most 0. Assume Γn is a subset of {h : b>h ≥ 0} and the minimum of the
problem in (14.33) is negative. Then there exists an h ∈ Γn such that

b>h < 0, (14.34)

which implies
Γn 6⊂ {h : b>h ≥ 0}, (14.35)
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n 

b    h      0 

Fig. 14.2. Γn is not contained in {h : b>h ≥ 0}.

which is a contradiction. Therefore, if Γn is a subset of {h : b>h ≥ 0}, then
the minimum of the problem in (14.33) is zero.

To prove the converse, assume Γn is not a subset of {h : b>h ≥ 0}, i.e.
(14.35) is true. Then there exists an h ∈ Γn such that

b>h < 0. (14.36)

This implies that the minimum of the problem in (14.33) is negative, i.e., it
is not equal to zero.

Finally, if the minimum of the problem in (14.33) is zero, since the Γn
contains the origin and b>0 = 0, the minimum occurs at the origin. ut

By virtue of this theorem, to check whether b>h ≥ 0 is an unconstrained
Shannon-type inequality, all we need to do is to apply the optimality test of
the simplex method [80] to check whether the point h = 0 is optimal for the
minimization problem in (14.33). If h = 0 is optimal, then b>h ≥ 0 is an
unconstrained Shannon-type inequality, otherwise it is not.

14.2.2 Constrained Inequalities and Identities

To check whether an inequality b>h ≥ 0 under the constraint Φ is a Shannon-
type inequality, we need to check whether Γn∩Φ is a subset of {h : b>h ≥ 0}.

Theorem 14.4. b>h ≥ 0 is a Shannon-type inequality under the constraint
Φ if and only if the minimum of the problem

Minimize b>h, subject to Gh ≥ 0 and Qh = 0 (14.37)

is zero. In this case, the minimum occurs at the origin.
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The proof of this theorem is similar to that for Theorem 14.3, so it is
omitted. By taking advantage of the linear structure of the constraint Φ, we
can reformulate the minimization problem in (14.37) as follows. Let r be the
rank of Q. Since h is in the null space of Q, we can write

h = Q̃h′, (14.38)

where Q̃ is a k× (k− r) matrix such that the rows of Q̃> form a basis of the
orthogonal complement of the row space of Q, and h′ is a column (k − r)-
vector. Then the elemental inequalities can be expressed as

GQ̃h′ ≥ 0, (14.39)

and in terms of h′, Γn becomes

Γ ′n = {h′ : GQ̃h′ ≥ 0}, (14.40)

which is a pyramid in <k−r (but not necessarily in the nonnegative orthant).
Likewise, b>h can be expressed as b>Q̃h′.

With all the information expressions in terms of h′, the problem in (14.37)
becomes

Minimize b>Q̃h′, subject to GQ̃h′ ≥ 0. (14.41)

Therefore, to check whether b>h ≥ 0 is a Shannon-type inequality under the
constraint Φ, all we need to do is to apply the optimality test of the simplex
method to check whether the point h′ = 0 is optimal for the problem in
(14.41). If h′ = 0 is optimal, then b>h ≥ 0 is a Shannon-type inequality
under the constraint Φ, otherwise it is not.

By imposing the constraint Φ, the number of elemental inequalities remains
the same, while the dimension of the problem decreases from k to k − r.

Finally, to verify that b>h = 0 is a Shannon-type identity under the
constraint Φ, i.e., b>h = 0 is implied by the basic inequalities, all we need to
do is to verify that both b>h ≥ 0 and b>h ≤ 0 are Shannon-type inequalities
under the constraint Φ.

14.3 A Duality

A nonnegative linear combination is a linear combination whose coefficients
are all nonnegative. It is clear that a nonnegative linear combination of basic
inequalities is a Shannon-type inequality. However, it is not clear that all
Shannon-type inequalities are of this form. By applying the duality theorem
in linear programming [303], we will see that this is in fact the case.

The dual of the primal linear programming problem in (14.33) is

Maximize y> · 0 subject to y ≥ 0 and y>G ≤ b>, (14.42)
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where
y = [ y1 · · · ym ]>. (14.43)

By the duality theorem, if the minimum of the primal problem is zero, which
happens when b>h ≥ 0 is a Shannon-type inequality, the maximum of the
dual problem is also zero. Since the cost function in the dual problem is zero,
the maximum of the dual problem is zero if and only if the feasible region

Ψ = {y : y ≥ 0 and y>G ≤ b>} (14.44)

is nonempty.

Theorem 14.5. b>h ≥ 0 is a Shannon-type inequality if and only if b> =
x>G for some x ≥ 0, where x is a column m-vector, i.e., b> is a nonnegative
linear combination of the rows of G.

Proof. We have to prove that Ψ is nonempty if and only if b> = x>G for
some x ≥ 0. The feasible region Ψ is nonempty if and only if

b> ≥ z>G (14.45)

for some z ≥ 0, where z is a column m-vector. Consider any z which satisfies
(14.45), and let

s> = b> − z>G ≥ 0. (14.46)

Denote by ej the column k-vector whose jth component is equal to 1 and all
the other components are equal to 0, 1 ≤ j ≤ k. Then e>j h is a joint entropy.
Since every joint entropy can be expressed as the sum of elemental forms of
Shannon’s information measures, e>j can be expressed as a nonnegative linear
combination of the rows of G. Write

s = [ s1 s2 · · · sk ]>, (14.47)

where sj ≥ 0 for all 1 ≤ j ≤ k. Then

s> =
k∑
j=1

sje>j (14.48)

can also be expressed as a nonnegative linear combinations of the rows of G,
i.e.,

s> = w>G (14.49)

for some w ≥ 0. From (14.46), we see that

b> = (w> + z>)G = x>G, (14.50)

where x ≥ 0. The proof is accomplished. ut

From this theorem, we see that all Shannon-type inequalities are actually triv-
ially implied by the basic inequalities! However, the verification of a Shannon-
type inequality requires a computational procedure as described in the last
section.
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14.4 Machine Proving – ITIP

Theorems 14.3 and 14.4 transform the problem of verifying a Shannon-type
inequality into a linear programming problem. This enables machine-proving
of all Shannon-type inequalities. A software package called ITIP1, which runs
on MATLAB, has been developed for this purpose. The most updated versions
of ITIP can be downloaded from the World Wide Web [366].

Using ITIP is very simple and intuitive. The following examples illustrate
the use of ITIP:

1. >> ITIP(’H(XYZ) <= H(X) + H(Y) + H(Z)’)
True

2. >> ITIP(’I(X;Z) = 0’,’I(X;Z|Y) = 0’,’I(X;Y) = 0’)
True

3. >> ITIP(’I(Z;U) - I(Z;U|X) - I(Z;U|Y) <=
0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)
Not provable by ITIP

In the first example, we prove an unconstrained inequality. In the second
example, we prove that X and Z are independent if X → Y → Z forms a
Markov chain andX and Y are independent. The first identity is what we want
to prove, while the second and the third expressions specify the Markov chain
X → Y → Z and the independency of X and Y , respectively. In the third
example, ITIP returns the clause “Not provable by ITIP,” which means that
the inequality is not a Shannon-type inequality. This, however, does not mean
that the inequality to be proved cannot always hold. In fact, this inequality
is one of the known non-Shannon-type inequalities which will be discussed in
Chapter 15.

We note that most of the results we have previously obtained by using
information diagrams can also be proved by ITIP. However, the advantage
of using information diagrams is that one can visualize the structure of the
problem. Therefore, the use of information diagrams and ITIP very often
complement each other. In the rest of the section, we give a few examples
which demonstrate the use of ITIP. The features of ITIP are described in
details in the readme file.

Example 14.6. By Proposition 2.10, the long Markov chain X → Y → Z → T
implies the two short Markov chains X → Y → Z and Y → Z → T . We
want to see whether the two short Markov chains also imply the long Markov
chain. If so, they are equivalent to each other.

Using ITIP, we have

>> ITIP(’X/Y/Z/T’, ’X/Y/Z’, ’Y/Z/T’)
Not provable by ITIP

1 ITIP stands for Information-Theoretic Inequality Prover.
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In the above, we have used a macro in ITIP to specify the three Markov
chains. The above result from ITIP says that the long Markov chain cannot
be proved from the two short Markov chains by means of the basic inequalities.
This strongly suggests that the two short Markov chains is weaker than the
long Markov chain. However, in order to prove that this is in fact the case, we
need an explicit construction of a joint distribution for X, Y , Z, and T which
satisfies the two short Markov chains but not the long Markov chain. Toward
this end, we resort to the information diagram in Figure 14.3. The Markov

Z X 

T 

Y 

Fig. 14.3. The information diagram for X, Y , Z, and T in Example 14.6.

chain X → Y → Z is equivalent to I(X;Z|Y ) = 0, i.e.,

µ∗(X̃ ∩ Ỹ c ∩ Z̃ ∩ T̃ ) + µ∗(X̃ ∩ Ỹ c ∩ Z̃ ∩ T̃ c) = 0. (14.51)

Similarly, the Markov chain Y → Z → T is equivalent to

µ∗(X̃ ∩ Ỹ ∩ Z̃c ∩ T̃ ) + µ∗(X̃c ∩ Ỹ ∩ Z̃c ∩ T̃ ) = 0. (14.52)

The four atoms involved in the constraints (14.51) and (14.52) are marked
by a dagger in Figure 14.3. In Section 3.5, we have seen that the Markov
chain X → Y → Z → T holds if and only if µ∗ takes zero value on the
set of atoms in Figure 14.4 which are marked with an asterisk2. Comparing
Figure 14.3 and Figure 14.4, we see that the only atom marked in Figure 14.4
but not in Figure 14.3 is X̃ ∩ Ỹ c ∩ Z̃c ∩ T̃ . Thus if we can construct a µ∗ such
that it takes zero value on all atoms except for X̃ ∩ Ỹ c ∩ Z̃c ∩ T̃ , then the
corresponding joint distribution satisfies the two short Markov chains but not
the long Markov chain. This would show that the two short Markov chains
are in fact weaker than the long Markov chain. Following Theorem 3.11, such
a µ∗ can be constructed.

2 This information diagram is essentially a reproduction of Figure 3.8.
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* 

* 

* * * Z X 

T 

Y 

Fig. 14.4. The atoms of F4 on which µ∗ vanishes when X → Y → Z → T forms a
Markov chain.

In fact, the required joint distribution can be obtained by simply letting
X = T = U , where U is any random variable such that H(U) > 0, and letting
Y and Z be degenerate random variables taking constant values. Then it is
easy to see that X → Y → Z and Y → Z → T hold, while X → Y → Z → T
does not hold.

Example 14.7. The data processing theorem says that if X → Y → Z → T
forms a Markov chain, then

I(Y ;Z) ≥ I(X;T ). (14.53)

We want to see whether this inequality holds under the weaker condition that
X → Y → Z and Y → Z → T form two short Markov chains. By using ITIP,
we can show that (14.53) is not a Shannon-type inequality under the Markov
conditions

I(X;Z|Y ) = 0 (14.54)

and
I(Y ;T |Z) = 0. (14.55)

This strongly suggests that (14.53) does not always hold under the constraint
of the two short Markov chains. However, this has to be proved by an explicit
construction of a joint distribution for X, Y , Z, and T which satisfies (14.54)
and (14.55) but not (14.53). The construction at the end of the last example
serves this purpose.

Example 14.8 (Secret Sharing [40][290]). Consider the following secret shar-
ing problem. Let S be a secret to be encoded into three pieces, X, Y , and Z.
The scheme has to satisfy the following two secret sharing requirements:

1. S can be recovered from any two of the three encoded pieces.
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2. No information about S can be obtained from any one of the three encoded
pieces.

The first requirement is equivalent to the constraints

H(S|X,Y ) = H(S|Y,Z) = H(S|X,Z) = 0, (14.56)

while the second requirement is equivalent to the constraints

I(S;X) = I(S;Y ) = I(S;Z) = 0. (14.57)

Since the secret S can be recovered if all X, Y , and Z are known,

H(X) +H(Y ) +H(Z) ≥ H(S). (14.58)

We are naturally interested in the maximum constant c which satisfies

H(X) +H(Y ) +H(Z) ≥ cH(S). (14.59)

We can explore the possible values of c by ITIP. After a few trials, we
find that ITIP returns a “True” for all c ≤ 3, and returns the clause “Not
provable by ITIP” for any c slightly larger than 3, say 3.0001. This means that
the maximum value of c is lower bounded by 3. This lower bound is in fact
tight, as we can see from the following construction. Let S and N be mutually
independent ternary random variables uniformly distributed on {0, 1, 2}, and
define

X = N (14.60)
Y = S +N mod 3, (14.61)

and

Z = S + 2N mod 3. (14.62)

Then it is easy to verify that

S = Y −X mod 3 (14.63)
= 2Y − Z mod 3 (14.64)
= Z − 2X mod 3. (14.65)

Thus the requirements in (14.56) are satisfied. It is also readily verified that
the requirements in (14.57) are satisfied. Finally, all S,X, Y , and Z distribute
uniformly on {0, 1, 2}. Therefore,

H(X) +H(Y ) +H(Z) = 3H(S). (14.66)

This proves that the maximum constant c which satisfies (14.59) is 3.
Using the approach in this example, almost all information-theoretic

bounds reported in the literature for this class of problems can be obtained
when a definite number of random variables are involved.
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14.5 Tackling the Implication Problem

We have already mentioned in Section 13.5 that the implication problem of
conditional independence is extremely difficult except for the special case that
only full conditional mutual independencies are involved. In this section, we
employ the tools we have developed in this chapter to tackle this problem.

In Bayesian network (see [258]), the following four axioms are often used
for proving implications of conditional independencies:

• Symmetry:

X ⊥ Y |Z ⇔ Y ⊥ X|Z (14.67)

• Decomposition:

X ⊥ (Y, T )|Z ⇒ (X ⊥ Y |Z) & (X ⊥ T |Z) (14.68)

• Weak Union:

X ⊥ (Y, T )|Z ⇒ X ⊥ Y |Z, T (14.69)

• Contraction:

(X ⊥ Y |Z) & (X ⊥ T |Y,Z) ⇒ X ⊥ (Y, T )|Z. (14.70)

These axioms form a system called semi-graphoid and were first proposed by
Dawid [82] as heuristic properties of conditional independence.

The axiom of symmetry is trivial in the context of probability3. The other
three axioms can be summarized by

X ⊥ (Y, T )|Z ⇔ (X ⊥ Y |Z) & (X ⊥ T |Y, Z). (14.71)

This can easily be proved as follows. Consider the identity

I(X;Y, T |Z) = I(X;Y |Z) + I(X;T |Y,Z). (14.72)

Since conditional mutual informations are always nonnegative by the basic
inequalities, if I(X;Y, T |Z) vanishes, I(X;Y |Z) and I(X;T |Y,Z) also vanish,
and vice versa. This proves (14.71). In other words, (14.71) is the result of a
specific application of the basic inequalities. Therefore, any implication which
can be proved by invoking these four axioms can also be proved by ITIP.

In fact, ITIP is considerably more powerful than the above four axioms.
This will be shown in the next example in which we give an implication which
can be proved by ITIP but not by these four axioms4. We will see some
implications which cannot be proved by ITIP when we discuss non-Shannon-
type inequalities in the next chapter.
3 These four axioms can be used beyond the context of probability.
4 This example is due to Zhen Zhang, private communication.
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Example 14.9. We will show that

I(X;Y |Z) = 0
I(X;T |Z) = 0
I(X;T |Y ) = 0
I(X;Z|Y ) = 0
I(X;Z|T ) = 0

⇒ I(X;Y |T ) = 0 (14.73)

can be proved by invoking the basic inequalities. First, we write

I(X;Y |Z) = I(X;Y |Z, T ) + I(X;Y ;T |Z). (14.74)

Since I(X;Y |Z) = 0 and I(X;Y |Z, T ) ≥ 0, we let

I(X;Y |Z, T ) = a (14.75)

for some nonnegative real number a, so that

I(X;Y ;T |Z) = −a (14.76)

from (14.74). In the information diagram in Figure 14.5, we mark the atom
I(X;Y |Z, T ) by a “+” and the atom I(X;Y ;T |Z) by a “−.” Then we write

Z X 

T 

Y 

+ _ 

_ + 
+ 

_ 

Fig. 14.5. The information diagram for X, Y , Z, and T .

I(X;T |Z) = I(X;Y ;T |Z) + I(X;T |Y,Z). (14.77)

Since I(X;T |Z) = 0 and I(X;Y ;T |Z) = −a, we get

I(X;T |Y,Z) = a. (14.78)

In the information diagram, we mark the atom I(X;T |Y,Z) with a “+.”
Continue in this fashion, the five CI’s on the left hand side of (14.73) imply
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that all the atoms marked with a “+” in the information diagram take the
value a, while all the atoms marked with a “−” take the value −a. From the
information diagram, we see that

I(X;Y |T ) = I(X;Y ;Z|T ) + I(X;Y |Z, T ) = (−a) + a = 0, (14.79)

which proves our claim. Since we base our proof on the basic inequalities, this
implication can also be proved by ITIP.

Due to the form of the five given CI’s in (14.73), none of the axioms in
(14.68) to (14.70) can be applied. Thus we conclude that the implication in
(14.73) cannot be proved by the four axioms in (14.67) to (14.70).

14.6 Minimality of the Elemental Inequalities

We have already seen in Section 14.1 that the set of basic inequalities is not
minimal in the sense that in the set, some inequalities are implied by the
others. We then showed that the set of basic inequalities is equivalent to the
smaller set of elemental inequalities. Again, we can ask whether the set of
elemental inequalities is minimal.

In this section, we prove that the set of elemental inequalities is minimal.
This result is important for efficient implementation of ITIP because it says
that we cannot consider a smaller set of inequalities. The proof, however, is
rather technical. The reader may skip this proof without missing the essence
of this chapter.

The elemental inequalities in set-theoretic notations have one of the fol-
lowing two forms:

1. µ(X̃i − X̃Nn−{i}) ≥ 0,
2. µ(X̃i ∩ X̃j − X̃K) ≥ 0, i 6= j and K ⊂ Nn − {i, j},

where µ denotes a set-additive function defined on Fn. They will be referred
to as α-inequalities and β-inequalities, respectively.

We are to show that all the elemental inequalities are nonredundant, i.e.,
none of them is implied by the others. For an α-inequality

µ(X̃i − X̃Nn−{i}) ≥ 0, (14.80)

since it is the only elemental inequality which involves the atom X̃i−X̃Nn−{i},
it is clearly not implied by the other elemental inequalities. Therefore we only
need to show that all β-inequalities are nonredundant. To show that a β-
inequality is nonredundant, it suffices to show that there exists a measure µ̂ on
Fn which satisfies all other elemental inequalities except for that β-inequality.

We will show that the β-inequality

µ(X̃i ∩ X̃j − X̃K) ≥ 0 (14.81)
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is nonredundant. To facilitate our discussion, we denote Nn −K − {i, j} by
L(i, j,K), and we let Cij|K(S), S ⊂ L(i, j,K) be the atoms in X̃i ∩ X̃j − X̃K ,
where

Cij|K(S) = X̃i ∩ X̃j ∩ X̃S ∩ X̃c
K ∩ X̃c

L(i,j,K)−S . (14.82)

We first consider the case when L(i, j,K) = ∅, i.e., K = Nn − {i, j}. We
construct a measure µ̂ by

µ̂(A) =
{
−1 if A = X̃i ∩ X̃j − X̃K

1 otherwise,
(14.83)

where A ∈ A. In other words, X̃i ∩ X̃j − X̃K is the only atom with measure
−1; all other atoms have measure 1. Then µ̂(X̃i ∩ X̃j − X̃K) < 0 is trivially
true. It is also trivial to check that for any i′ ∈ Nn,

µ̂(X̃i′ − X̃Nn−{i′}) = 1 ≥ 0, (14.84)

and for any (i′, j′,K ′) 6= (i, j,K) such that i′ 6= j′ and K ′ ⊂ Nn − {i′, j′},

µ̂(X̃i′ ∩ X̃j′ − X̃K′) = 1 ≥ 0 (14.85)

if K ′ = Nn−{i′, j′}. On the other hand, if K ′ is a proper subset ofNn−{i′, j′},
then X̃i′ ∩ X̃j′ − X̃K′ contains at least two atoms, and therefore

µ̂(X̃i′ ∩ X̃j′ − X̃K′) ≥ 0. (14.86)

This completes the proof for the β-inequality in (14.81) to be nonredundant
when L(i, j,K) = φ.

We now consider the case when L(i, j,K) 6= φ, or |L(i, j,K)| ≥ 1. We
construct a measure µ̂ as follows. For the atoms in X̃i ∩ X̃j − X̃K , let

µ̂(Cij|K(S)) =
{

(−1)|S| − 1 S = L(i, j,K)
(−1)|S| S 6= L(i, j,K).

(14.87)

For Cij|K(S), if |S| is odd, it is referred to as an odd atom of X̃i ∩ X̃j − X̃K ,
and if |S| is even, it is referred to as an even atom of X̃i ∩ X̃j − X̃K . For any
atom A /∈ X̃i ∩ X̃j − X̃K , we let

µ̂(A) = 1. (14.88)

This completes the construction of µ̂.
We first prove that

µ̂(X̃i ∩ X̃j − X̃K) < 0. (14.89)

Consider



14.6 Minimality of the Elemental Inequalities 345

µ̂(X̃i ∩ X̃j − X̃K) =
∑

S⊂L(i,j,K)

µ̂(Cij|K(S))

=

|L(i,j,K)|∑
r=0

(
|L(i, j,K)|

r

)
(−1)r

− 1

= −1,

where the last equality follows from the binomial formula

n∑
r=0

(
n
r

)
(−1)r = 0 (14.90)

for n ≥ 1. This proves (14.89).
Next we prove that µ̂ satisfies all α-inequalities. We note that for any

i′ ∈ Nn, the atom X̃i′ − X̃Nn−{i′} is not in X̃i ∩ X̃j − X̃K . Thus

µ̂(X̃i′ − X̃Nn−{i}) = 1 ≥ 0. (14.91)

It remains to prove that µ̂ satisfies all β-inequalities except for (14.81),
i.e., for any (i′, j′,K ′) 6= (i, j,K) such that i′ 6= j′ and K ′ ⊂ Nn − {i′, j′},

µ̂(X̃i′ ∩ X̃j′ − X̃K′) ≥ 0. (14.92)

Consider

µ̂(X̃i′ ∩ X̃j′ − X̃K′)

= µ̂((X̃i′ ∩ X̃j′ − X̃K′) ∩ (X̃i ∩ X̃j − X̃K))

+µ̂((X̃i′ ∩ X̃j′ − X̃K′)− (X̃i ∩ X̃j − X̃K)). (14.93)

The nonnegativity of the second term above follows from (14.88). For the first
term,

(X̃i′ ∩ X̃j′ − X̃K′) ∩ (X̃i ∩ X̃j − X̃K) (14.94)

is nonempty if and only if

{i′, j′} ∩K = φ and {i, j} ∩K ′ = φ. (14.95)

If this condition is not satisfied, then the first term in (14.93) becomes µ̂(φ) =
0, and (14.92) follows immediately.

Let us assume that the condition in (14.95) is satisfied. Then by simple
counting, we see that the number atoms in

(X̃i′ ∩ X̃j′ − X̃K′) ∩ (X̃i ∩ X̃j − X̃K) (14.96)

is equal to 2ϕ, where

ϕ = n− |{i, j} ∪ {i′, j′} ∪K ∪K ′|. (14.97)
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For example, for n = 6, there are 4 = 22 atoms in

(X̃1 ∩ X̃2) ∩ (X̃1 ∩ X̃3 − X̃4), (14.98)

namely X̃1 ∩ X̃2 ∩ X̃3 ∩ X̃c
4 ∩ Y5 ∩ Y6, where Yi = X̃i or X̃c

i for i = 5, 6. We
check that

ϕ = 6− |{1, 2} ∪ {1, 3} ∪ φ ∪ {4}| = 2. (14.99)

We first consider the case when ϕ = 0, i.e.,

Nn = {i, j} ∪ {i′, j′} ∪K ∪K ′. (14.100)

Then
(X̃i′ ∩ X̃j′ − X̃K′) ∩ (X̃i ∩ X̃j − X̃K) (14.101)

contains exactly one atom. If this atom is an even atom of X̃i ∩ X̃j − X̃K ,
then the first term in (14.93) is either 0 or 1 (cf., (14.87)), and (14.92) follows
immediately. If this atom is an odd atom of X̃i∩ X̃j− X̃K , then the first term
in (14.93) is equal to −1. This happens if and only if {i, j} and {i′, j′} have
one common element, which implies that (X̃i′ ∩ X̃j′ − X̃K′)− (X̃i ∩ X̃j − X̃K)
is nonempty. Therefore the second term in (14.93) is at least 1, and hence
(14.92) follows.

Finally, we consider the case when ϕ ≥ 1. Using the binomial formula in
(14.90), we see that the number of odd atoms and even atoms of X̃i∩X̃j−X̃K

in
(X̃i′ ∩ X̃j′ − X̃K′) ∩ (X̃i ∩ X̃j − X̃K) (14.102)

are the same. Therefore the first term in (14.93) is equal to −1 if

Cij|K(L(i, j,K)) ∈ X̃i′ ∩ X̃j′ − X̃K′ , (14.103)

and is equal to 0 otherwise. The former is true if and only if K ′ ⊂ K, which
implies that (X̃i′ ∩ X̃j′ − X̃K′) − (X̃i ∩ X̃j − X̃K) is nonempty, or that the
second term is at least 1. Thus in either case (14.92) is true. This completes
the proof that (14.81) is nonredundant.

Appendix 14.A: The Basic Inequalities and the
Polymatroidal Axioms

In this appendix, we show that the basic inequalities for a collection of n ran-
dom variables Θ = {Xi, i ∈ Nn} is equivalent to the following polymatroidal
axioms: For all α, β ⊂ Nn,

P1. HΘ(∅) = 0.
P2. HΘ(α) ≤ HΘ(β) if α ⊂ β.
P3. HΘ(α) +HΘ(β) ≥ HΘ(α ∩ β) +HΘ(α ∪ β).
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We first show that the polymatroidal axioms imply the basic inequalities.
From P1 and P2, since ∅ ⊂ α for any α ⊂ Nn, we have

HΘ(α) ≥ HΘ(∅) = 0, (14.104)

or
H(Xα) ≥ 0. (14.105)

This shows that entropy is nonnegative.
In P2, letting γ = β\α, we have

HΘ(α) ≤ HΘ(α ∪ γ), (14.106)

or
H(Xγ |Xα) ≥ 0. (14.107)

Here, γ and α are disjoint subsets of Nn.
In P3, letting γ = β\α, δ = α ∩ β, and σ = α\β, we have

HΘ(σ ∪ δ) +HΘ(γ ∪ δ) ≥ HΘ(δ) +HΘ(σ ∪ δ ∪ γ), (14.108)

or
I(Xσ;Xγ |Xδ) ≥ 0. (14.109)

Again, σ, δ, and γ are disjoint subsets of Nn. When δ = ∅, from P3, we have

I(Xσ;Xγ) ≥ 0. (14.110)

Thus P1 to P3 imply that entropy is nonnegative, and that conditional
entropy, mutual information, and conditional mutual information are non-
negative provided that they are irreducible. However, it has been shown in
Section 14.1 that a reducible Shannon’s information measure can always be
written as the sum of irreducible Shannon’s information measures. There-
fore, we have shown that the polymatroidal axioms P1 to P3 imply the basic
inequalities.

The converse is trivial and the proof is omitted.

Problems

1. Prove (14.12) for the total number of elemental forms of Shannon’s infor-
mation measures for n random variables.

2. Shannon-type inequalities for n random variables X1, X2, · · · , Xn refer to
all information inequalities implied by the basic inequalities for these n
random variables. Show that no new information inequality can be gen-
erated by considering the basic inequalities for more than n random vari-
ables.
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3. Show by an example that the decomposition of an information expression
into a sum of elemental forms of Shannon’s information measures is not
unique.

4. Elemental forms of conditional independencies Consider random vari-
ables X1, X2, · · · , Xn. A conditional independency is said to be elemen-
tal if it corresponds to setting an elemental form of Shannon’s informa-
tion measure to zero. Show that any conditional independency involving
X1, X2, · · · , Xn is equivalent to a collection of elemental conditional inde-
pendencies.

5. Symmetrical information inequalities
a) Show that every symmetrical information expression (cf. Problem 1 in

Chapter 13) involving random variable X1, X2, · · · , Xn can be written
in the form

E =
n−1∑
k=0

akc
(n)
k ,

where

c
(n)
0 =

n∑
i=1

H(Xi|XN−i)

and for 1 ≤ k ≤ n− 1,

c
(n)
k =

∑
1≤i<j≤n

K⊂N−{i,j},|K|=k−1

I(Xi;Xj |XK).

Note that c(n)
0 is the sum of all Shannon’s information measures of

the first elemental form, and for 1 ≤ k ≤ n − 1, c(n)
k is the sum

of all Shannon’s information measures of the second elemental form
conditioning on k − 1 random variables.

b) Show that E ≥ 0 always holds if ak ≥ 0 for all k.
c) Show that if E ≥ 0 always holds, then ak ≥ 0 for all k. Hint: Construct

random variables X1, X2, · · · , Xn for each 0 ≤ k ≤ n − 1 such that
c
(n)
k > 0 and c

(n)
k′ = 0 for all 0 ≤ k′ ≤ n− 1 and k′ 6= k.

(Han [134].)
6. Strictly positive probability distributions It was shown in Proposition 2.12

that
X1 ⊥ X4|(X2, X3)
X1 ⊥ X3|(X2, X4)

}
⇒ X1 ⊥ (X3, X4)|X2

if p(x1, x2, x3, x4) > 0 for all x1, x2, x3, and x4. Show by using ITIP that
this implication is not implied by the basic inequalities. This strongly
suggests that this implication does not hold in general, which was shown
to be the case by the construction following Proposition 2.12.

7. a) Verify by ITIP that

I(X1, X2;Y1, Y2) ≤ I(X1;Y1) + I(X2;Y2)
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under the constraint H(Y1, Y2|X1, X2) = H(Y1|X1) +H(Y2|X2). This
constrained inequality was used in Problem 10 in Chapter 7 to obtain
the capacity of two parallel channels.

b) Verify by ITIP that

I(X1, X2;Y1, Y2) ≥ I(X1;Y1) + I(X2;Y2)

under the constraint I(X1;X2) = 0. This constrained inequality was
used in Problem 4 in Chapter 8 to obtain the rate-distortion function
for a product source.

8. Verify by ITIP the information identity in Example 3.18.
9. Repeat Problem 10 in Chapter 3 with the help of ITIP.

10. Prove the implications in Problem 14 in Chapter 3 by ITIP and show
that they cannot be deduced from the semi-graphoidal axioms. (Studený
[313].)

Historical Notes

For almost half a century, all information inequalities known in the literature
are consequences of the basic inequalities due to Shannon [291]. Fujishige [114]
showed that the entropy function is a polymatroid (see Appendix 14.6). Yeung
[360] showed that verification of all such inequalities, referred to Shannon-type
inequalities, can be formulated as a linear programming problem if the number
of random variables involved is fixed. ITIP, a software package for this purpose,
was developed by Yeung and Yan [366]. Non-Shannon-type inequalities, which
have been discovered only recently, will be discussed in the next chapter.

The recent interest in the implication problem of conditional independence
has been fueled by Bayesian networks. For a number of years, researchers in
Bayesian networks generally believed that the semi-graphoidal axioms form a
complete set of axioms for conditional independence until it was refuted by
Studený [313].
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Beyond Shannon-Type Inequalities

In Chapter 13, we introduced the regions Γ ∗n and Γn in the entropy space
Hn for n random variables. From Γ ∗n , one in principle can determine whether
any information inequality always holds. The region Γn, defined by the set
of all basic inequalities (equivalently all elemental inequalities) involving n
random variables, is an outer bound on Γ ∗n . From Γn, one can determine
whether any information inequality is implied by the basic inequalities. If so,
it is called a Shannon-type inequality. Since the basic inequalities always hold,
so do all Shannon-type inequalities. In the last chapter, we have shown how
machine-proving of all Shannon-type inequalities can be made possible by
taking advantage of the linear structure of Γn.

If the two regions Γ ∗n and Γn are identical, then all information inequalities
which always hold are Shannon-type inequalities, and hence all information
inequalities can be completely characterized. However, if Γ ∗n is a proper sub-
set of Γn, then there exist constraints on an entropy function which are not
implied by the basic inequalities. Such a constraint, if in the form of an in-
equality, is referred to a non-Shannon-type inequality.

There is a point here which needs further explanation. The fact that Γ ∗n 6=
Γn does not necessarily imply the existence of a non-Shannon-type inequality.
As an example, suppose Γn contains all but an isolated point in Γ ∗n . Then this
does not lead to the existence of a non-Shannon-type inequality for n random
variables.

In this chapter, we present characterizations of Γ ∗n which are more refined
than Γn. These characterizations lead to the existence of non-Shannon-type
inequalities for n ≥ 4.

15.1 Characterizations of Γ ∗
2, Γ

∗
3, and Γ ∗

n

Recall from the proof of Theorem 3.6 that the vector h represents the values
of the I-Measure µ∗ on the unions in Fn. Moreover, h is related to the values
of µ∗ on the atoms of Fn, represented as u, by
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h = Cnu (15.1)

where Cn is a unique k × k matrix with k = 2n − 1 (cf. (3.27)).
Let In be the k-dimensional Euclidean space with the coordinates labeled

by the components of u. Note that each coordinate in In corresponds to the
value of µ∗ on a nonempty atom of Fn. Recall from Lemma 13.1 the definition
of the region

Ψ∗n = {u ∈ In : Cnu ∈ Γ ∗n}, (15.2)

which is obtained from the region Γ ∗n via the linear transformation induced
by C−1

n . Analogously, we define the region

Ψn = {u ∈ In : Cnu ∈ Γn}. (15.3)

The region Γ ∗n , as we will see, is extremely difficult to characterize for a
general n. Therefore, we start our discussion with the simplest case, namely
n = 2.

Theorem 15.1. Γ ∗2 = Γ2.

Proof. For n = 2, the elemental inequalities are

H(X1|X2) = µ∗(X̃1 − X̃2) ≥ 0 (15.4)
H(X2|X1) = µ∗(X̃2 − X̃1) ≥ 0 (15.5)
I(X1;X2) = µ∗(X̃1 ∩ X̃2) ≥ 0. (15.6)

Note that the quantities on the left hand sides above are precisely the values
of µ∗ on the atoms of F2. Therefore,

Ψ2 = {u ∈ I2 : u ≥ 0}, (15.7)

i.e., Ψ2 is the nonnegative orthant of I2. Since Γ ∗2 ⊂ Γ2, Ψ∗2 ⊂ Ψ2. On the
other hand, Ψ2 ⊂ Ψ∗2 by Lemma 13.1. Thus Ψ∗2 = Ψ2, which implies Γ ∗2 = Γ2.
The proof is accomplished. ut

Next, we prove that Theorem 15.1 cannot even be generalized to n = 3.

Theorem 15.2. Γ ∗3 6= Γ3.

Proof. For n = 3, the elemental inequalities are

H(Xi|Xj , Xk) = µ∗(X̃i − X̃j − X̃k) ≥ 0 (15.8)

I(Xi;Xj |Xk) = µ∗(X̃i ∩ X̃j − X̃k) ≥ 0, (15.9)

and

I(Xi;Xj) = µ∗(X̃i ∩ X̃j) (15.10)

= µ∗(X̃i ∩ X̃j ∩ X̃k) + µ∗(X̃i ∩ X̃j − X̃k) (15.11)
≥ 0 (15.12)
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for 1 ≤ i < j < k ≤ 3. For u ∈ I3, let

u = (u1, u2, u3, u4, u5, u6, u7), (15.13)

where ui, 1 ≤ i ≤ 7 correspond to the values

µ∗(X̃1 − X̃2 − X̃3), µ∗(X̃2 − X̃1 − X̃3), µ∗(X̃3 − X̃1 − X̃2),
µ∗(X̃1 ∩ X̃2 − X̃3), µ∗(X̃1 ∩ X̃3 − X̃2), µ∗(X̃2 ∩ X̃3 − X̃1),
µ∗(X̃1 ∩ X̃2 ∩ X̃3),

(15.14)

respectively. These are the values of µ∗ on the nonempty atoms of F3. Then
from (15.8), (15.9), and (15.12), we see that

Ψ3 = {u ∈ I3 : ui ≥ 0, 1 ≤ i ≤ 6; uj + u7 ≥ 0, 4 ≤ j ≤ 6}. (15.15)

It is easy to check that the point (0, 0, 0, a, a, a,−a) for any a ≥ 0 is in Ψ3.
This is illustrated in Figure 15.1, and it is readily seen that the relations

a a 

a 

a 

0 0 

0 

X 1 

X 2 

X 3 

Fig. 15.1. The set-theoretic structure of the point (0, 0, 0, a, a, a,−a) in Ψ3.

H(Xi|Xj , Xk) = 0 (15.16)

and
I(Xi;Xj) = 0 (15.17)

for 1 ≤ i < j < k ≤ 3 are satisfied, i.e., each random variable is a function of
the other two, and the three random variables are pairwise independent.

Let SXi be the support of Xi, i = 1, 2, 3. For any x1 ∈ SX1 and x2 ∈ SX2 ,
since X1 and X2 are independent, we have

p(x1, x2) = p(x1)p(x2) > 0. (15.18)

Since X3 is a function of X1 and X2, there is a unique x3 ∈ SX3 such that

p(x1, x2, x3) = p(x1, x2) = p(x1)p(x2) > 0. (15.19)
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Now since X2 is a function of X1 and X3, and X1 and X3 are independent,
we can write

p(x1, x2, x3) = p(x1, x3) = p(x1)p(x3). (15.20)

Equating (15.19) and (15.20), we have

p(x2) = p(x3). (15.21)

Now consider any x′2 ∈ SX2 such that x′2 6= x2. Since X2 and X3 are indepen-
dent, we have

p(x′2, x3) = p(x′2)p(x3) > 0. (15.22)

Since X1 is a function of X2 and X3, there is a unique x′1 ∈ SX1 such that

p(x′1, x
′
2, x3) = p(x′2, x3) = p(x′2)p(x3) > 0. (15.23)

Now since X2 is a function of X1 and X3, and X1 and X3 are independent,
we can write

p(x′1, x
′
2, x3) = p(x′1, x3) = p(x′1)p(x3). (15.24)

Similarly, sinceX3 is a function ofX1 andX2, andX1 andX2 are independent,
we can write

p(x′1, x
′
2, x3) = p(x′1, x

′
2) = p(x′1)p(x′2). (15.25)

Equating (15.24) and (15.25), we have

p(x′2) = p(x3), (15.26)

and from (15.21), we have
p(x′2) = p(x2). (15.27)

Therefore X2 must have a uniform distribution on its support. The same can
be proved for X1 and X3. Now from Figure 15.1,

H(X1) = H(X1|X2, X3) + I(X1;X2|X3) + I(X1;X3|X2)
+I(X1;X2;X3) (15.28)

= 0 + a+ a+ (−a) (15.29)
= a, (15.30)

and similarly
H(X2) = H(X3) = a. (15.31)

Then the only values that a can take are logM , where M (a positive integer)
is the cardinality of the supports of X1, X2, and X3. In other words, if a is not
equal to logM for some positive integer M , then the point (0, 0, 0, a, a, a,−a)
is not in Ψ∗3 . This proves that Ψ∗3 6= Ψ3, which implies Γ ∗3 6= Γ3. The theorem
is proved. ut

The proof above has the following interpretation. For h ∈ H3, let



15.1 Characterizations of Γ ∗2, Γ ∗3, and Γ ∗n 355

h = (h1, h2, h3, h12, h13, h23, h123). (15.32)

From Figure 15.1, we see that the point (0, 0, 0, a, a, a,−a) in Ψ3 corresponds
to the point (a, a, a, 2a, 2a, 2a, 2a) in Γ3. Evidently, the point (a, a, a, 2a, 2a,
2a, 2a) in Γ3 satisfies the 6 elemental inequalities given in (15.8) and (15.12)
for 1 ≤ i < j < k ≤ 3 with equality. Since Γ3 is defined by all the elemental
inequalities, the set

{(a, a, a, 2a, 2a, 2a, 2a) ∈ Γ3 : a ≥ 0} (15.33)

is in the intersection of 6 hyperplanes in H3 (i.e., <7) defining the boundary of
Γ3, and hence it defines an extreme direction of Γ3. Then the proof says that
along this extreme direction of Γ3, only certain discrete points, namely those
points with a equals logM for some positive integer M , are entropic. This is
illustrated in Figure 15.2. As a consequence, the region Γ ∗3 is not convex.

( a , a , a , a , 2 a , 2 a , 2 a ) 
log 4 a = 0 log  2 log 3 

Fig. 15.2. The values of a for which (a, a, a, 2a, 2a, 2a, 2a) is in Γ3.

Having proved that Γ ∗3 6= Γ3, it is natural to conjecture that the gap
between Γ ∗3 and Γ3 has zero Lebesgue measure. In other words, Γ

∗
3 = Γ3,

where Γ
∗
3 is the closure of Γ3. This conjecture is indeed true and will be

proved at the end of the section.
More generally, we are interested in characterizing Γ

∗
n, the closure of Γ ∗n .

Although the region Γ
∗
n is not sufficient for characterizing all information

inequalities, it is actually sufficient for characterizing all unconstrained in-
formation inequalities. This can be seen as follows. Following the discussion
in Section 13.3.1, an unconstrained information inequality f ≥ 0 involving n
random variables always hold if and only if

Γ ∗n ⊂ {h : f(h) ≥ 0}. (15.34)

Since {h : f(h) ≥ 0} is closed, upon taking closure on both sides, we have

Γ
∗
n ⊂ {h : f(h) ≥ 0}. (15.35)

On the other hand, if f ≥ 0 satisfies (15.35), then

Γ ∗n ⊂ Γ
∗
n ⊂ {h : f(h) ≥ 0}. (15.36)

Therefore, (15.34) and (15.35) are equivalent, and hence Γ
∗
n is sufficient for

characterizing all unconstrained information inequalities.
We will prove in the next theorem an important property of the region

Γ
∗
n for all n ≥ 2. This result will be used in the proof for Γ

∗
3 = Γ3. Further,
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this result will be used in Chapter 21 when we use Γ ∗n to characterize the
achievable information rate region for multi-source networking coding. It will
also be used in Chapter 16 when we establish a fundamental relation between
information theory and group theory.

We first prove a simple lemma. In the following, we use Nn to denote the
set {1, 2, · · · , n}.

Lemma 15.3. If h and h′ are in Γ ∗n , then h + h′ is in Γ ∗n .

Proof. Consider h and h′ in Γ ∗n . Let h represents the entropy function for
random variables X1, X2, · · · , Xn, and let h′ represents the entropy function
for random variables X ′1, X

′
2, · · · , X ′n. Let (X1, X2, · · · , Xn) and (X ′1, X

′
2, · · · ,

X ′n) be independent, and define random variables Y1, Y2, · · · , Yn by

Yi = (Xi, X
′
i) (15.37)

for all i ∈ Nn. Then for any subset α of Nn,

H(Yα) = H(Xα) +H(X ′α) = hα + h′α. (15.38)

Therefore, h + h′, which represents the entropy function for Y1, Y2, · · · , Yn, is
in Γ ∗n . The lemma is proved. ut

Corollary 15.4. If h ∈ Γ ∗n , then kh ∈ Γ ∗n for any positive integer k.

Proof. It suffices to write

kh = h + h + · · ·+ h︸ ︷︷ ︸
k

(15.39)

and apply Lemma 15.3. ut

Theorem 15.5. Γ
∗
n is a convex cone.

Proof. Consider the entropy function for random variables X1, X2, · · · , Xn all
taking constant values with probability 1. Then for all subset α of Nn,

H(Xα) = 0. (15.40)

Therefore, Γ ∗n contains the origin in Hn.
Let h and h′ in Γ ∗n be the entropy functions for any two sets of random vari-

ables Y1, Y2, · · · , Yn and Z1, Z2, · · · , Zn, respectively. In view of Corollary 15.4,
in order to prove that Γ

∗
n is a convex cone, we only need to show that if h

and h′ are in Γ ∗n , then bh + b̄h′ is in Γ
∗
n for all 0 < b < 1, where b̄ = 1− b.

Let (Y1,Y2, · · · ,Yn) be k independent copies of (Y1, Y2, · · · , Yn) and (Z1,
Z2, · · · ,Zn) be k independent copies of (Z1, Z2, · · · , Zn). Let U be a ternary
random variable independent of all other random variables such that

Pr{U = 0} = 1− δ − µ, Pr{U = 1} = δ, Pr{U = 2} = µ.
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Now construct random variables X1, X2, · · · , Xn by letting

Xi =

0 if U = 0
Yi if U = 1
Zi if U = 2.

Note that H(U)→ 0 as δ, µ→ 0. Then for any nonempty subset α of Nn,

H(Xα) ≤ H(Xα, U) (15.41)
= H(U) +H(Xα|U) (15.42)
= H(U) + δkH(Yα) + µkH(Zα). (15.43)

On the other hand,

H(Xα) ≥ H(Xα|U) = δkH(Yα) + µkH(Zα). (15.44)

Combining the above, we have

0 ≤ H(Xα)− (δkH(Yα) + µkH(Zα)) ≤ H(U). (15.45)

Now take
δ =

b

k
(15.46)

and

µ =
b̄

k
(15.47)

to obtain
0 ≤ H(Xα)− (bH(Yα) + b̄H(Zα)) ≤ H(U). (15.48)

By letting k be sufficiently large, the upper bound can be made arbitrarily
small. This shows that bh + b̄h′ ∈ Γ ∗n. The theorem is proved. ut

In the next theorem, we prove that Γ ∗3 and Γ3 are almost identical. Anal-
ogous to Γ

∗
n, we will use Ψ

∗
n to denote the closure of Ψ∗n.

Theorem 15.6. Γ
∗
3 = Γ3.

Proof. We first note that Γ
∗
3 = Γ3 if and only if

Ψ
∗
3 = Ψ3. (15.49)

Since
Γ ∗3 ⊂ Γ3 (15.50)

and Γ3 is closed, by taking closure on both sides in the above, we obtain
Γ
∗
3 ⊂ Γ3. This implies that Ψ

∗
3 ⊂ Ψ3. Therefore, in order to prove the theorem,

it suffices to show that Ψ3 ⊂ Ψ
∗
3.
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We first show that the point (0, 0, 0, a, a, a,−a) is in Ψ
∗
3 for all a > 0.

Let random variables X1, X2, and X3 be defined as in Example 3.10, i.e., X1

and X2 are two independent binary random variables taking values in {0, 1}
according to the uniform distribution, and

X3 = X1 +X2 mod 2. (15.51)

Let h ∈ Γ ∗3 represents the entropy function for X1, X2, and X3, and let

u = C−1
3 h. (15.52)

As in the proof of Theorem 15.2, we let ui, 1 ≤ i ≤ 7, be the coordinates of
I3 which correspond to the values of the quantities in (15.14), respectively.
From Example 3.10, we have

ui =

0 for i = 1, 2, 3
1 for i = 4, 5, 6
−1 for i = 7.

(15.53)

Thus the point (0, 0, 0, 1, 1, 1,−1) is in Ψ∗3 , and the I-Measure µ∗ for X1, X2,
and X3 is shown in Figure 15.3. Then by Corollary 15.4, (0, 0, 0, k, k, k,−k) is

1 1 

1 

1 

0 0 

0 

X 1 

X 2 

X 3 

Fig. 15.3. The I-Measure µ∗ for X1, X2, and X3 in the proof of Theorem 15.6.

in Ψ∗3 and hence in Ψ
∗
3 for all positive integer k. Since Γ

∗
3 contains the origin,

Ψ
∗
3 also contains the origin. By Theorem 15.5, Γ

∗
3 is convex. This implies Ψ

∗
3

is also convex. Therefore, (0, 0, 0, a, a, a,−a) is in Ψ
∗
3 for all a > 0.

Consider any u ∈ Ψ3. Referring to (15.15), we have

ui ≥ 0 (15.54)

for 1 ≤ i ≤ 6. Thus u7 is the only component of u which can possibly be
negative. We first consider the case when u7 ≥ 0. Then u is in the nonnegative
orthant of I3, and by Lemma 13.1, u is in Ψ∗3 . Next, consider the case when
u7 < 0. Let

t = (0, 0, 0,−u7,−u7,−u7, u7). (15.55)
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Then
u = w + t, (15.56)

where
w = (u1, u2, u3, u4 + u7, u5 + u7, u6 + u7, 0). (15.57)

Since −u7 > 0, we see from the foregoing that t ∈ Ψ∗3. From (15.15), we have

ui + u7 ≥ 0 (15.58)

for i = 4, 5, 6. Thus w is in the nonnegative orthant in I3 and hence in Ψ∗3 by
Lemma 13.1. Now for any ε > 0, let t′ ∈ Ψ∗3 such that

‖t− t′‖ < ε, (15.59)

where ‖t− t′‖ denotes the Euclidean distance between t and t′, and let

u′ = w + t′. (15.60)

Since both w and t′ are in Ψ∗3 , by Lemma 15.3, u′ is also in Ψ∗3 , and

‖u− u′‖ = ‖t− t′‖ < ε. (15.61)

Therefore, u ∈ Ψ∗3. Hence, Ψ3 ⊂ Ψ
∗
3, and the theorem is proved. ut

Remark 1 Han [135] has found that Γ3 is the smallest cone that contains Γ ∗3 .
This result together with Theorem 15.5 implies Theorem 15.6. Theorem 15.6
was also obtained by Golić [124], and it is a consequence of the theorem in
Matúš [228].

Remark 2 We have shown that the region Γ
∗
n completely characterizes all

unconstrained information inequalities involving n random variables. Since
Γ
∗
3 = Γ3, it follows that there exists no unconstrained information inequali-

ties involving three random variables other than the Shannon-type inequali-
ties. However, whether there exist constrained non-Shannon-type inequalities
involving three random variables is still unknown.

15.2 A Non-Shannon-Type Unconstrained Inequality

We have proved in Theorem 15.6 at the end of the last section that Γ
∗
3 = Γ3.

It is natural to conjecture that this theorem can be generalized to n ≥ 4.
If this conjecture is true, then it follows that all unconstrained information
inequalities involving a finite number of random variables are Shannon-type
inequalities, and they can all be proved by ITIP running on a sufficiently
powerful computer. However, it turns out that this is not the case even for
n = 4.

We will prove in the next theorem an unconstrained information inequality
involving four random variables. Then we will show that this inequality is a
non-Shannon-type inequality, and that Γ

∗
4 6= Γ4.
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Theorem 15.7. For any four random variables X1, X2, X3, and X4,

2I(X3;X4) ≤ I(X1;X2) + I(X1;X3, X4)

+3I(X3;X4|X1) + I(X3;X4|X2). (15.62)

Toward proving this theorem, we introduce two auxiliary random variables
X̃1 and X̃2 jointly distributed with X1, X2, X3, and X4 such that X̃1 = X1

and X̃2 = X2. To simplify notation, we will use p12341̃2̃(x1, x2, x3, x4, x̃1, x̃2)
to denote pX1X2X3X4X̃1X̃2

(x1, x2, x3, x4, x̃1, x̃2), etc. The joint distribution for
the six random variables X1, X2, X3, X4, X̃1, and X̃2 is defined by

p12341̃2̃(x1, x2, x3, x4, x̃1, x̃2) ={
p1234(x1,x2,x3,x4)p1234(x̃1,x̃2,x3,x4)

p34(x3,x4) if p34(x3, x4) > 0
0 if p34(x3, x4) = 0.

(15.63)

Lemma 15.8.
(X1, X2)→ (X3, X4)→ (X̃1, X̃2) (15.64)

forms a Markov chain. Moreover, (X1, X2, X3, X4) and (X̃1, X̃2, X3, X4) have
the same marginal distribution.

Proof. The Markov chain in (15.64) is readily seen by invoking Proposi-
tion 2.5. The second part of the lemma is readily seen to be true by noting in
(15.63) that p12341̃2̃ is symmetrical in X1 and X̃1 and in X2 and X̃2. ut

From the above lemma, we see that the pair of auxiliary random vari-
ables (X̃1, X̃2) corresponds to the pair of random variables (X1, X2) in
the sense that (X̃1, X̃2, X3, X4) have the same marginal distribution as
(X1, X2, X3, X4). We need to prove two inequalities regarding these six ran-
dom variables before we prove Theorem 15.7.

Lemma 15.9. For any four random variables X1, X2, X3, and X4 and auxil-
iary random variables X̃1 and X̃2 as defined in (15.63),

I(X3;X4)− I(X3;X4|X1)− I(X3;X4|X2) ≤ I(X1; X̃2). (15.65)

Proof. Consider

I(X3;X4)− I(X3;X4|X1)− I(X3;X4|X2)
a)
= [I(X3;X4)− I(X3;X4|X1)]− I(X3;X4|X̃2) (15.66)
= I(X1;X3;X4)− I(X3;X4|X̃2) (15.67)
= [I(X1;X3;X4; X̃2) + I(X1;X3;X4|X̃2)]− I(X3;X4|X̃2) (15.68)
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= I(X1;X3;X4; X̃2)− [I(X3;X4|X̃2)− I(X1;X3;X4|X̃2)] (15.69)
= I(X1;X3;X4; X̃2)− I(X3;X4|X1, X̃2) (15.70)
= [I(X1;X4; X̃2)− I(X1;X4; X̃2|X3)]− I(X3;X4|X1, X̃2) (15.71)
= [I(X1; X̃2)− I(X1; X̃2|X4)]− [I(X1; X̃2|X3)
−I(X1; X̃2|X3, X4)]− I(X3;X4|X1, X̃2) (15.72)

b)
= I(X1; X̃2)− I(X1; X̃2|X4)− I(X1; X̃2|X3)
−I(X3;X4|X1, X̃2) (15.73)

≤ I(X1; X̃2), (15.74)

where a) follows because we see from Lemma 15.8 that (X2, X3, X4) and
(X̃2, X3, X4) have the same marginal distribution, and b) follows because

I(X1; X̃2|X3, X4) = 0 (15.75)

from the Markov chain in (15.64). The lemma is proved. ut

Lemma 15.10. For any four random variables X1, X2, X3, and X4 and aux-
iliary random variables X̃1 and X̃2 as defined in (15.63),

I(X3;X4)− 2I(X3;X4|X1) ≤ I(X1; X̃1). (15.76)

Proof. Notice that (15.76) can be obtained from (15.65) by replacing X2 by
X1 and X̃2 by X̃1 in (15.65). The inequality (15.76) can be proved by replacing
X2 by X1 and X̃2 by X̃1 in (15.66) through (15.74) in the proof of the last
lemma. The details are omitted. ut

Proof of Theorem 15.7. By adding (15.65) and (15.76), we have

2I(X3;X4)− 3I(X3;X4|X1)− I(X3;X4|X2)
≤ I(X1; X̃2) + I(X1; X̃1) (15.77)
= I(X1; X̃2) + [I(X1; X̃1|X̃2) + I(X1; X̃1; X̃2)] (15.78)
= [I(X1; X̃2) + I(X1; X̃1|X̃2)] + I(X1; X̃1; X̃2) (15.79)
= I(X1; X̃1, X̃2) + I(X1; X̃1; X̃2) (15.80)
= I(X1; X̃1, X̃2) + [I(X̃1; X̃2)− I(X̃1; X̃2|X1)] (15.81)
≤ I(X1; X̃1, X̃2) + I(X̃1; X̃2) (15.82)
a)

≤ I(X1;X3, X4) + I(X̃1; X̃2) (15.83)
b)
= I(X1;X3, X4) + I(X1;X2), (15.84)

where a) follows from the Markov chain in (15.64), and b) follows because
we see from Lemma 15.8 that (X̃1, X̃2) and (X1, X2) have the same marginal
distribution. Note that the auxiliary random variables X̃1 and X̃2 disappear
in (15.84) after the sequence of manipulations. The theorem is proved. ut
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Theorem 15.11. The inequality (15.62) is a non-Shannon-type inequality,
and Γ

∗
4 6= Γ4.

Proof. Consider for any a > 0 the point h̃(a) ∈ H4, where

h̃1(a) = h̃2(a) = h̃3(a) = h̃4(a) = 2a,
h̃12(a) = 4a, h̃13(a) = h̃14(a) = 3a,
h̃23(a) = h̃24(a) = h̃34(a) = 3a,
h̃123(a) = h̃124(a) = h̃134(a) = h̃234(a) = h̃1234(a) = 4a.

(15.85)

The set-theoretic structure of h̃(a) is illustrated by the information diagram in
Figure 15.4. The reader should check that this information diagram correctly

a 

0 

a 

a 
a 

a 
a 0 

0 

0 

0 

0 

0 

X 1 

X 2 

X 3 

X 4 

a 

a 

Fig. 15.4. The set-theoretic structure of h̃(a).

represents h̃(a) as defined. It is also easy to check from this diagram that h̃(a)
satisfies all the elemental inequalities for four random variables, and therefore
h̃(a) ∈ Γ4. However, upon substituting the corresponding values in (15.62) for
h̃(a) with the help of Figure 15.4, we have

2a ≤ 0 + a+ 0 + 0 = a, (15.86)

which is a contradiction because a > 0. In other words, h̃(a) does not satisfy
(15.62). Equivalently,

h̃(a) 6∈ {h ∈ H4 : h satisfies (15.62)}. (15.87)

Since h̃(a) ∈ Γ4, we conclude that

Γ4 6⊂ {h ∈ H4 : h satisfies (15.62)}, (15.88)

i.e., (15.62) is not implied by the basic inequalities for four random variables.
Hence, (15.62) is a non-Shannon-type inequality.
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Since (15.62) is satisfied by all entropy functions for four random variables,
we have

Γ ∗4 ⊂ {h ∈ H4 : h satisfies (15.62)}, (15.89)

and upon taking closure on both sides, we have

Γ
∗
4 ⊂ {h ∈ H4 : h satisfies (15.62)}. (15.90)

Then (15.87) implies h̃(a) 6∈ Γ ∗4. Since h̃(a) ∈ Γ4 and h̃(a) 6∈ Γ ∗4, we conclude
that Γ

∗
4 6= Γ4. The theorem is proved. ut

Remark We have shown in the proof of Theorem 15.11 that the inequality
(15.62) cannot be proved by invoking the basic inequalities for four random
variables. However, (15.62) can be proved by invoking the basic inequalities for
the six random variables X1, X2, X3, X4, X̃1, and X̃2 with the joint probability
distribution p12341̃2̃ as constructed in (15.63).

The inequality (15.62) remains valid when the indices 1, 2, 3, and 4 are
permuted. Since (15.62) is symmetrical in X3 and X4, 4!/2! = 12 distinct
versions of (15.62) can be obtained by permuting the indices, and all these
twelve inequalities are simultaneously satisfied by the entropy function of any
set of random variables X1, X2, X3, and X4. We will denote these twelve
inequalities collectively by 〈15.62〉. Now define the region

Γ̃4 = {h ∈ Γ4 : h satisfies 〈15.62〉}. (15.91)

Evidently,
Γ ∗4 ⊂ Γ̃4 ⊂ Γ4. (15.92)

Since both Γ̃4 and Γ4 are closed, upon taking closure, we also have

Γ
∗
4 ⊂ Γ̃4 ⊂ Γ4. (15.93)

Since 〈15.62〉 are non-Shannon-type inequalities as we have proved in the last
theorem, Γ̃4 is a proper subset of Γ4 and hence a tighter outer bound on Γ ∗4
and Γ

∗
4 than Γ4.

In the course of proving that (15.62) is of non-Shannon-type, it was shown
in the proof of Theorem 15.11 that there exists h̃(a) ∈ Γ4 as defined in (15.85)
which does not satisfy (15.62). By investigating the geometrical relation be-
tween h̃(a) and Γ4, we prove in the next theorem that (15.62) in fact induces
a class of 214 − 1 non-Shannon-type constrained inequalities. Applications of
some of these inequalities will be discussed in Section 15.4.

Theorem 15.12. The inequality (15.62) is a non-Shannon-type inequality
conditioning on setting any nonempty subset of the following 14 Shannon’s
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information measures to zero:

I(X1;X2), I(X1;X2|X3), I(X1;X2|X4), I(X1;X3|X4),
I(X1;X4|X3), I(X2;X3|X4), I(X2;X4|X3), I(X3;X4|X1),
I(X3;X4|X2), I(X3;X4|X1, X2), H(X1|X2, X3, X4),
H(X2|X1, X3, X4), H(X3|X1, X2, X4), H(X4|X1, X2, X3).

(15.94)

Proof. It is easy to verify from Figure 15.4 that h̃(a) lies in exactly 14 hy-
perplanes in H4 (i.e., <15) defining the boundary of Γ4 which correspond to
setting the 14 Shannon’s measures in (15.94) to zero. Therefore, h̃(a) for a ≥ 0
define an extreme direction of Γ4.

Now for any linear subspace Φ of H4 containing h̃(a), where a > 0, we
have

h̃(a) ∈ Γ4 ∩ Φ (15.95)

and h̃(a) does not satisfy (15.62). Therefore,

(Γ4 ∩ Φ) 6⊂ {h ∈ H4 : h satisfies (15.62)}. (15.96)

This means that (15.62) is a non-Shannon-type inequality under the constraint
Φ. From the above, we see that Φ can be taken to be the intersection of any
nonempty subset of the 14 hyperplanes containing h̃(a). Thus (15.62) is a
non-Shannon-type inequality conditioning on any nonempty subset of the 14
Shannon’s measures in (15.94) being equal to zero. Hence, (15.62) induces a
class of 214 − 1 non-Shannon-type constrained inequalities. The theorem is
proved. ut

Remark It is not true that the inequality (15.62) is of non-Shannon-type
under any constraint. Suppose we impose the constraint

I(X3;X4) = 0. (15.97)

Then the left hand side of (15.62) becomes zero, and the inequality is triv-
ially implied by the basic inequalities because only mutual informations with
positive coefficients appear on the right hand side. Then (15.62) becomes a
Shannon-type inequality under the constraint in (15.97).

15.3 A Non-Shannon-Type Constrained Inequality

In the last section, we proved a non-Shannon-type unconstrained inequality for
four random variables which implies Γ

∗
4 6= Γ4. This inequality induces a region

Γ̃4 which is a tighter outer bound on Γ ∗4 and Γ
∗
4 then Γ4. We further showed

that this inequality induces a class of 214 − 1 non-Shannon-type constrained
inequalities for four random variables.
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In this section, we prove a non-Shannon-type constrained inequality for
four random variables. Unlike the non-Shannon-type unconstrained inequality
we proved in the last section, this constrained inequality is not strong enough
to imply that Γ ∗4 6= Γ4. However, the latter is not implied by the former.

Lemma 15.13. Let p(x1, x2, x3, x4) be any probability distribution. Then

p̃(x1, x2, x3, x4) =

{
p(x1,x3,x4)p(x2,x3,x4)

p(x3,x4) if p(x3, x4) > 0
0 if p(x3, x4) = 0

(15.98)

is also a probability distribution. Moreover,

p̃(x1, x3, x4) = p(x1, x3, x4) (15.99)

and
p̃(x2, x3, x4) = p(x2, x3, x4) (15.100)

for all x1, x2, x3, and x4.

Proof. The proof for the first part of the lemma is straightforward (see Prob-
lem 5 in Chapter 2). The details are omitted here.

To prove the second part of the lemma, it suffices to prove (15.99) for all
x1, x3, and x4 because p̃(x1, x2, x3, x4) is symmetrical in x1 and x2. We first
consider x1, x3, and x4 such that p(x3, x4) > 0. From (15.98), we have

p̃(x1, x3, x4) =
∑
x2

p̃(x1, x2, x3, x4) (15.101)

=
∑
x2

p(x1, x3, x4)p(x2, x3, x4)
p(x3, x4)

(15.102)

=
p(x1, x3, x4)
p(x3, x4)

∑
x2

p(x2, x3, x4) (15.103)

=
[
p(x1, x3, x4)
p(x3, x4)

]
p(x3, x4) (15.104)

= p(x1, x3, x4). (15.105)

For x1, x3, and x4 such that p(x3, x4) = 0, we have

0 ≤ p(x1, x3, x4) ≤ p(x3, x4) = 0, (15.106)

which implies
p(x1, x3, x4) = 0. (15.107)

Therefore, from (15.98), we have
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p̃(x1, x3, x4) =
∑
x2

p̃(x1, x2, x3, x4) (15.108)

=
∑
x2

0 (15.109)

= 0 (15.110)
= p(x1, x3, x4). (15.111)

Thus we have proved (15.99) for all x1, x3, and x4, and the lemma is proved.
ut

Theorem 15.14. For any four random variables X1, X2, X3, and X4, if

I(X1;X2) = I(X1;X2|X3) = 0, (15.112)

then
I(X3;X4) ≤ I(X3;X4|X1) + I(X3;X4|X2). (15.113)

Proof. Consider

I(X3;X4)− I(X3;X4|X1)− I(X3;X4|X2)

=
∑

x1,x2,x3,x4:
p(x1,x2,x3,x4)>0

p(x1,x2,x3,x4) log
p(x3,x4)p(x1,x3)p(x1,x4)p(x2,x3)p(x2,x4)
p(x3)p(x4)p(x1)p(x2)p(x1,x3,x4)p(x2,x3,x4)

= Ep log
p(X3, X4)p(X1, X3)p(X1, X4)p(X2, X3)p(X2, X4)
p(X3)p(X4)p(X1)p(X2)p(X1, X3, X4)p(X2, X3, X4)

,

(15.114)

where we have used Ep to denote expectation with respect to p(x1, x2, x3, x4).
We claim that the above expectation is equal to

Ep̃ log
p(X3, X4)p(X1, X3)p(X1, X4)p(X2, X3)p(X2, X4)
p(X3)p(X4)p(X1)p(X2)p(X1, X3, X4)p(X2, X3, X4)

,

(15.115)

where p̃(x1, x2, x3, x4) is defined in (15.98).
Toward proving that the claim is correct, we note that (15.115) is the sum

of a number of expectations with respect to p̃. Let us consider one of these
expectations, say

Ep̃ log p(X1, X3) =
∑

x1,x2,x3,x4:
p̃(x1,x2,x3,x4)>0

p̃(x1, x2, x3, x4) log p(x1, x3). (15.116)

Note that in the above summation, if p̃(x1, x2, x3, x4) > 0, then from (15.98),
we see that

p(x1, x3, x4) > 0, (15.117)
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and hence
p(x1, x3) > 0. (15.118)

Therefore, the summation in (15.116) is always well-defined. Further, it can
be written as∑

x1,x3,x4

log p(x1, x3)
∑

x2:p̃(x1,x2,x3,x4)>0

p̃(x1, x2, x3, x4)

=
∑

x1,x3,x4

p̃(x1, x3, x4) log p(x1, x3). (15.119)

Thus Ep̃ log p(X1, X3) depends on p̃(x1, x2, x3, x4) only through p̃(x1, x3, x4),
which by Lemma 15.13 is equal to p(x1, x3, x4). It then follows that

Ep̃ log p(X1, X3)

=
∑

x1,x3,x4

p̃(x1, x3, x4) log p(x1, x3) (15.120)

=
∑

x1,x3,x4

p(x1, x3, x4) log p(x1, x3) (15.121)

= Ep log p(X1, X3). (15.122)

In other words, the expectation on log p(X1, X3) can be taken with respect
to either p̃(x1, x2, x3, x4) or p(x1, x2, x3, x4) without affecting its value. By
observing that all the marginals of p in the logarithm in (15.115) involve only
subsets of either {X1, X3, X4} or {X2, X3, X4}, we see that similar conclusions
can be drawn for all the other expectations in (15.115), and hence the claim
is proved.

Thus the claim implies that

I(X3;X4)− I(X3;X4|X1)− I(X3;X4|X2)

= Ep̃ log
p(X3, X4)p(X1, X3)p(X1, X4)p(X2, X3)p(X2, X4)
p(X3)p(X4)p(X1)p(X2)p(X1, X3, X4)p(X2, X3, X4)

=
∑

x1,x2,x3,x4:
p̃(x1,x2,x3,x4)>0

p̃(x1,x2,x3,x4) log
p(x3,x4)p(x1,x3)p(x1,x4)p(x2,x3)p(x2,x4)
p(x3)p(x4)p(x1)p(x2)p(x1,x3,x4)p(x2,x3,x4)

= −
∑

x1,x2,x3,x4:
p̃(x1,x2,x3,x4)>0

p̃(x1, x2, x3, x4) log
p̃(x1, x2, x3, x4)
p̂(x1, x2, x3, x4)

, (15.123)

where

p̂(x1, x2, x3, x4) ={
p(x1,x3)p(x1,x4)p(x2,x3)p(x2,x4)

p(x1)p(x2)p(x3)p(x4) if p(x1), p(x2), p(x3), p(x4) > 0
0 otherwise.

(15.124)
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The equality in (15.123) is justified by observing that if x1, x2, x3, and x4 are
such that p̃(x1, x2, x3, x4) > 0, then

p(x1, x3), p(x1, x4), p(x2, x3), p(x2, x4), p(x1), p(x2), p(x3), p(x4) (15.125)

are all strictly positive, and we see from (15.124) that p̂(x1, x2, x3, x4) > 0.
To complete the proof, we only need to show that p̂(x1, x2, x3, x4) is a

probability distribution. Once this is proven, the conclusion of the theorem
follows immediately because the summation in (15.123), which is identified as
the divergence between p̃(x1, x2, x3, x4) and p̂(x1, x2, x3, x4), is always non-
negative by the divergence inequality (Theorem 2.31). Toward this end, we
notice that for x1, x2, and x3 such that p(x3) > 0,

p(x1, x2, x3) =
p(x1, x3)p(x2, x3)

p(x3)
(15.126)

by the assumption
I(X1;X2|X3) = 0, (15.127)

and for all x1 and x2,
p(x1, x2) = p(x1)p(x2) (15.128)

by the assumption
I(X1;X2) = 0. (15.129)

Then ∑
x1,x2,x3,x4

p̂(x1, x2, x3, x4)

=
∑

x1,x2,x3,x4:
p̂(x1,x2,x3,x4)>0

p̂(x1, x2, x3, x4) (15.130)

=
∑

x1,x2,x3,x4:
p(x1),p(x2),p(x3),p(x4)>0

p(x1, x3)p(x1, x4)p(x2, x3)p(x2, x4)
p(x1)p(x2)p(x3)p(x4)

(15.131)

a)
=

∑
x1,x2,x3,x4:

p(x1),p(x2),p(x3),p(x4)>0

p(x1, x2, x3)p(x1, x4)p(x2, x4)
p(x1)p(x2)p(x4)

(15.132)

b)
=

∑
x1,x2,x3,x4:

p(x1),p(x2),p(x3),p(x4)>0

p(x1, x2, x3)p(x1, x4)p(x2, x4)
p(x1, x2)p(x4)

(15.133)

=
∑

x1,x2,x4:
p(x1),p(x2),p(x4)>0

p(x1, x4)p(x2, x4)
p(x4)

∑
x3:p(x3)>0

p(x3|x1, x2) (15.134)

=
∑

x1,x2,x4:
p(x1),p(x2),p(x4)>0

p(x1, x4)p(x2, x4)
p(x4)

(15.135)



15.3 A Non-Shannon-Type Constrained Inequality 369

=
∑
x2,x4:

p(x2),p(x4)>0

p(x2, x4)
∑

x1:p(x1)>0

p(x1|x4) (15.136)

c)
=

∑
x2,x4:

p(x2),p(x4)>0

p(x2, x4) (15.137)

d)
= 1, (15.138)

where a) and b) follows from (15.126) and (15.128), respectively. The equality
in c) is justified as follows. For x1 such that p(x1) = 0,

p(x1|x4) =
p(x1)p(x4|x1)

p(x4)
= 0. (15.139)

Therefore ∑
x1:p(x1)>0

p(x1|x4) =
∑
x1

p(x1|x4) = 1. (15.140)

Finally, the equality in d) is justified as follows. For x2 and x4 such that p(x2)
or p(x4) vanishes, p(x2, x4) must vanish because

0 ≤ p(x2, x4) ≤ p(x2) (15.141)

and
0 ≤ p(x2, x4) ≤ p(x4). (15.142)

Therefore, ∑
x2,x4:

p(x2),p(x4)>0

p(x2, x4) =
∑
x2,x4

p(x2, x4) = 1. (15.143)

The theorem is proved. ut

Theorem 15.15. The constrained inequality in Theorem 15.14 is a non-
Shannon-type inequality.

Proof. The theorem can be proved by considering the point h̃(a) ∈ H4 for
a > 0 as in the proof of Theorem 15.11. The details are left as an exercise. ut

The constrained inequality in Theorem 15.14 has the following geometrical
interpretation. The constraints in (15.112) correspond to the intersection of
two hyperplanes in H4 which define the boundary of Γ4. Then the inequality
(15.62) says that a certain region on the boundary of Γ4 is not in Γ ∗4 . It can
further be proved by computation1 that the constrained inequality in Theo-
rem 15.14 is not implied by the twelve distinct versions of the unconstrained
inequality in Theorem 15.7 (i.e., 〈15.62〉) together with the basic inequalities.

We have proved in the last section that the non-Shannon-type inequality
(15.62) implies a class of 214 − 1 constrained non-Shannon-type inequalities.
We end this section by proving a similar result for the non-Shannon-type
constrained inequality in Theorem 15.14.
1 Ying-On Yan, private communication.
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Theorem 15.16. The inequality

I(X3;X4) ≤ I(X3;X4|X1) + I(X3;X4|X2) (15.144)

is a non-Shannon-type inequality conditioning on setting both I(X1;X2) and
I(X1;X2|X3) and any subset of the following 12 Shannon’s information mea-
sures to zero:

I(X1;X2|X4), I(X1;X3|X4), I(X1;X4|X3),
I(X2;X3|X4), I(X2;X4|X3), I(X3;X4|X1),
I(X3;X4|X2), I(X3;X4|X1, X2), H(X1|X2, X3, X4),
H(X2|X1, X3, X4), H(X3|X1, X2, X4), H(X4|X1, X2, X3).

(15.145)

Proof. The proof of this theorem is very similar to the proof of Theorem 15.12.
We first note that I(X1;X2) and I(X1;X2|X3) together with the 12 Shannon’s
information measures in (15.145) are exactly the 14 Shannon’s information
measures in (15.94). We have already shown in the proof of Theorem 15.12
that h̃(a) (cf. Figure 15.4) lies in exactly 14 hyperplanes defining the boundary
of Γ4 which correspond to setting these 14 Shannon’s information measures
to zero. We also have shown that h̃(a) for a ≥ 0 define an extreme direction
of Γ4.

Denote by Φ0 the intersection of the two hyperplanes in H4 which cor-
respond to setting I(X1;X2) and I(X1;X2|X3) to zero. Since h̃(a) for any
a > 0 satisfies

I(X1;X2) = I(X1;X2|X3) = 0, (15.146)

h̃(a) is in Φ0. Now for any linear subspace Φ of H4 containing h̃(a) such that
Φ ⊂ Φ0, we have

h̃(a) ∈ Γ4 ∩ Φ. (15.147)

Upon substituting the corresponding values in (15.113) for h̃(a) with the help
of Figure 15.4, we have

a ≤ 0 + 0 = 0, (15.148)

which is a contradiction because a > 0. Therefore, h̃(a) does not satisfy
(15.113). Therefore,

(Γ4 ∩ Φ) 6⊂ {h ∈ H4 : h satisfies (15.113)}. (15.149)

This means that (15.113) is a non-Shannon-type inequality under the con-
straint Φ. From the above, we see that Φ can be taken to be the intersection
of Φ0 and any subset of the 12 hyperplanes which correspond to setting the
12 Shannon’s information measures in (15.145) to zero. Hence, (15.113) is a
non-Shannon-type inequality conditioning on I(X1;X2), I(X1;X2|X3), and
any subset of the 12 Shannon’s information measures in (15.145) being equal
to zero. In other words, the constrained inequality in Theorem 15.14 in fact
induces a class of 212 constrained non-Shannon-type inequalities. The theorem
is proved. ut
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15.4 Applications

As we have mentioned in Chapter 13, information inequalities are the laws of
information theory. In this section, we give several applications of the non-
Shannon-type inequalities we have proved in this chapter in probability theory
and information theory. An application of the unconstrained inequality proved
in Section 15.2 in group theory will be discussed in Chapter 16.

Example 15.17. For the constrained inequality in Theorem 15.14, if we further
impose the constraints

I(X3;X4|X1) = I(X3;X4|X2) = 0, (15.150)

then the right hand side of (15.113) becomes zero. This implies

I(X3;X4) = 0 (15.151)

because I(X3;X4) is nonnegative. This means that

X1 ⊥ X2

X1 ⊥ X2|X3

X3 ⊥ X4|X1

X3 ⊥ X4|X2

⇒ X3 ⊥ X4. (15.152)

We leave it as an exercise for the reader to show that this implication cannot
be deduced from the basic inequalities.

Example 15.18. If we impose the constraints

I(X1;X2) = I(X1;X3, X4) = I(X3;X4|X1) = I(X3;X4|X2) = 0, (15.153)

then the right hand side of (15.62) becomes zero, which implies

I(X3;X4) = 0. (15.154)

This means that
X1 ⊥ X2

X1 ⊥ (X3, X4)
X3 ⊥ X4|X1

X3 ⊥ X4|X2

⇒ X3 ⊥ X4. (15.155)

Note that (15.152) and (15.155) differ only in the second constraint. Again,
we leave it as an exercise for the reader to show that this implication cannot
be deduced from the basic inequalities.

Example 15.19. Consider a fault-tolerant data storage system consisting of
random variables X1, X2, X3, X4 such that any three random variables can
recover the remaining one, i.e.,
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H(Xi|Xj , j 6= i) = 0, 1 ≤ i, j ≤ 4. (15.156)

We are interested in the set of all entropy functions subject to these con-
straints, denoted by Υ , which characterizes the amount of joint information
which can possibly be stored in such a data storage system. Let

Φ = {h ∈ H4 : h satisfies (15.156)}. (15.157)

Then the set Υ is equal to the intersection between Γ ∗4 and Φ, i.e., Γ ∗4 ∩ Φ.
Since each constraint in (15.156) is one of the 14 constraints specified in

Theorem 15.12, we see that (15.62) is a non-Shannon-type inequality under
the constraints in (15.156). Then Γ̃4 ∩Φ (cf. (15.91)) is a tighter outer bound
on Υ than Γ4 ∩ Φ.

Example 15.20. Consider four random variables X1, X2, X3, and X4 such that
X3 → (X1, X2)→ X4 forms a Markov chain. This Markov condition is equiv-
alent to

I(X3;X4|X1, X2) = 0. (15.158)

It can be proved by invoking the basic inequalities (using ITIP) that

I(X3;X4) ≤ I(X3;X4|X1) + I(X3;X4|X2) + 0.5I(X1;X2)

+cI(X1;X3, X4) + (1− c)I(X2;X3, X4), (15.159)

where 0.25 ≤ c ≤ 0.75, and this is the best possible.
Now observe that the Markov condition (15.158) is one of the 14 con-

straints specified in Theorem 15.12. Therefore, (15.62) is a non-Shannon-type
inequality under this Markov condition. By replacing X1 and X2 by each other
in (15.62), we obtain

2I(X3;X4) ≤ I(X1;X2) + I(X2;X3, X4)

+3I(X3;X4|X2) + I(X3;X4|X1). (15.160)

Upon adding (15.62) and (15.160) and dividing by 4, we obtain

I(X3;X4) ≤ I(X3;X4|X1) + I(X3;X4|X2) + 0.5I(X1;X2)

+0.25I(X1;X3, X4) + 0.25I(X2;X3, X4). (15.161)

Comparing the last two terms in (15.159) and the last two terms in (15.161),
we see that (15.161) is a sharper upper bound than (15.159).

The Markov chain X3 → (X1, X2) → X4 arises in many communication
situations. As an example, consider a person listening to an audio source. Then
the situation can be modeled by this Markov chain with X3 being the sound
wave generated at the source, X1 and X2 being the sound waves received at
the two ear drums, and X4 being the nerve impulses which eventually arrive at
the brain. The inequality (15.161) gives an upper bound on I(X3;X4) which
is tighter than what can be implied by the basic inequalities.

There is some resemblance between the constrained inequality (15.161)
and the data processing theorem, but there does not seem to be any direct
relation between them.
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Problems

1. Verify by ITIP that the unconstrained information inequality in Theo-
rem 15.7 is of non-Shannon-type.

2. Verify by ITIP and prove analytically that the constrained information
inequality in Theorem 15.14 is of non-Shannon-type.

3. Use ITIP to verify the unconstrained information inequality in Theo-
rem 15.7. Hint: Create two auxiliary random variables as in the proof
of Theorem 15.7 and impose appropriate constraints on the random vari-
ables.

4. Verify by ITIP that the implications in Examples 15.17 and 15.18 cannot
be deduced from the basic inequalities.

5. Can you show that the sets of constraints in Examples 15.17 and 15.18
are in fact different?

6. Let Nn = {1, 2, · · · , n}. Consider an information inequality involving ran-
dom variables X1, X2, · · · , Xn, which can be written as∑

α∈2Nn\{∅}

cαH(Xα) ≥ 0.

For i ∈ Nn, let
ri =

∑
α∈2Nn\{∅}

cα1α(i),

where 1α(i) is equal to 1 if i ∈ α and is equal to 0 otherwise.
a) Show that ri is the coefficient associated with H(Xi|XNn−{i}) in the

information inequality.
b) Show that if the information inequality always holds, then ri ≥ 0 for

all i ∈ Nn.
(Chan [58].)

7. Let Xi, i = 1, 2, · · · , n, Z, and T be discrete random variables.
a) Prove that

nI(Z;T )−
n∑
j=1

I(Z;T |Xj)− nI(Z;T |Xi)

≤ I(Xi;Z, T ) +
n∑
j=1

H(Xj)−H(X1, X2, · · · , Xn).

Hint: When n = 2, this inequality reduces to the unconstrained non-
Shannon-type inequality in Theorem 15.7.

b) Prove that

nI(Z;T )− 2
n∑
j=1

I(Z;T |Xj)

≤ 1
n

n∑
i=1

I(Xi;Z, T ) +
n∑
j=1

H(Xj)−H(X1, X2, · · · , Xn).
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( Zhang and Yeung [373].)
8. Let p(x1, x2, x3, x4) be the joint distribution for random variables X1, X2,
X3, and X4 such that I(X1;X2|X3) = I(X2;X4|X3) = 0, and let p̃ be
defined in (15.98).
a) Show that

p̌(x1, x2, x3, x4)

=

{
c · p(x1,x2,x3)p(x1,x4)p(x2,x4)

p(x1,x2)p(x4) if p(x1, x2), p(x4) > 0
0 otherwise

defines a probability distribution for an appropriate c ≥ 1.
b) Prove that p̃(x1, x2, x3) = p(x1, x2, x3) for all x1, x2, and x3.
c) By considering D(p̃‖p̌) ≥ 0, prove that

H(X13) +H(X14) +H(X23) +H(X24) +H(X34)
≥ H(X3) +H(X4) +H(X12) +H(X134) +H(X234),

where H(X134) denotes H(X1, X3, X4), etc.
d) Prove that under the constraints in (15.112), the inequality in (15.113)

is equivalent to the inequality in c).
The inequality in c) is referred to as the Ingleton inequality for entropy in
the literature. For the origin of the Ingleton inequality, see Problem 9 in
Chapter 16. (Matúš [230].)

Historical Notes

In 1986, Pippenger [265] asked whether there exist constraints on the entropy
function other than the polymatroidal axioms, which are equivalent to the
basic inequalities. He called the constraints on the entropy function the laws
of information theory. The problem had been open since then until Zhang and
Yeung discovered for four random variables first a constrained non-Shannon-
type inequality [372] and then an unconstrained non-Shannon-type inequal-
ity [373]. The inequality reported in [373] has been further generalized by
Makarychev et al. [217] and Zhang [370]. The existence of these inequalities
implies that there are laws in information theory beyond those laid down by
Shannon [291].

The non-Shannon-type inequalities that have been discovered induce outer
bounds on the region Γ ∗4 which are tighter than Γ4. Matúš and Studený [235]
showed that an entropy function in Γ4 is entropic if it satisfies the Ingleton
inequality (see Problem 9 in Chapter 16). This gives an inner bound on Γ

∗
4.

A more explicit proof of this inner bound can be found in [373], where the
bound was shown not to be tight. Matúš [233] has obtained asymptotically
tight inner bounds on Γ

∗
n by constructing entropy functions from matroids.
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Dougherty et al. [87] discovered a host of unconstrained non-Shannon-type
inequalities by means of a computer search based on ITIP and the Markov
chain construction in [373] (see Problem 3). Recently, Matúš [234] proved an
infinite class of unconstrained non-Shannon-type inequalities, implying that
Γ
∗
n is not polyhedral.

Chan [58] proved a characterization for an inequality for differential en-
tropy in terms of its discrete version. Lněnička [212] proved that the tightness
of the continuous version of the inequality reported in [373] can be achieved
by a multivariate Gaussian distribution.

In the 1990’s, Matúš and Studený [228][235][229] studied the structure
of conditional independence (which subsumes the implication problem) of
random variables. Matúš [230] finally settled the problem for four random
variables by means of a constrained non-Shannon-type inequality which is a
variation of the inequality reported in [372].

The von Neumann entropy is an extension of classical entropy (as discussed
in this book) to the field of quantum mechanics. The strong subadditivity of
the von Neumann entropy proved by Lieb and Ruskai [208] plays the same role
as the basic inequalities for classical entropy. Pippenger [266] proved that for
a three-party system, there exists no inequality for the von Neumann entropy
beyond strong subadditivity. Subsequently, Linden and Winter [210] discov-
ered for a four-party system a constrained inequality for the von Neumann
entropy which is independent of strong subadditivity. We refer the reader to
the book by Nielsen and Chuang [247] for quantum information theory.

Along a related direction, Hammer et al. [131] have shown that all linear
inequalities which always hold for Kolmogorov complexity also always hold
for entropy, and vice versa.





16

Entropy and Groups

The group is the first major mathematical structure in abstract algebra, while
entropy is the most basic measure of information. Group theory and infor-
mation theory are two seemingly unrelated subjects which turn out to be
intimately related to each other. This chapter explains this intriguing relation
between these two fundamental subjects. Those readers who have no knowl-
edge in group theory may skip this introduction and go directly to the next
section.

Let X1 and X2 be any two random variables. Then

H(X1) +H(X2) ≥ H(X1, X2), (16.1)

which is equivalent to the basic inequality

I(X1;X2) ≥ 0. (16.2)

Let G be any finite group and G1 and G2 be subgroups of G. We will show
in Section 16.4 that

|G||G1 ∩G2| ≥ |G1||G2|, (16.3)

where |G| denotes the order of G and G1 ∩ G2 denotes the intersection of
G1 and G2 (G1 ∩ G2 is also a subgroup of G, see Proposition 16.13). By
rearranging the terms, the above inequality can be written as

log
|G|
|G1|

+ log
|G|
|G2|

≥ log
|G|

|G1 ∩G2|
. (16.4)

By comparing (16.1) and (16.4), one can easily identify the one-to-one corre-
spondence between these two inequalities, namely that Xi corresponds to Gi,
i = 1, 2, and (X1, X2) corresponds to G1 ∩ G2. While (16.1) is true for any
pair of random variables X1 and X2, (16.4) is true for any finite group G and
subgroups G1 and G2.

Recall from Chapter 13 that the region Γ ∗n characterizes all information
inequalities (involving n random variables). In particular, we have shown in
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Section 15.1 that the region Γ
∗
n is sufficient for characterizing all unconstrained

information inequalities, i.e., by knowing Γ
∗
n, one can determine whether any

unconstrained information inequality always holds. The main purpose of this
chapter is to obtain a characterization of Γ

∗
n in terms of finite groups. An

important consequence of this result is a one-to-one correspondence between
unconstrained information inequalities and group inequalities. Specifically, for
every unconstrained information inequality, there is a corresponding group
inequality, and vice versa. A special case of this correspondence has been
given in (16.1) and (16.4).

By means of this result, unconstrained information inequalities can be
proved by techniques in group theory, and a certain form of inequalities in
group theory can be proved by techniques in information theory. In particular,
the unconstrained non-Shannon-type inequality in Theorem 15.7 corresponds
to the group inequality

|G1 ∩G3|3|G1 ∩G4|3|G3 ∩G4|3|G2 ∩G3||G2 ∩G4|

≤ |G1||G1 ∩G2||G3|2|G4|2|G1 ∩G3 ∩G4|4|G2 ∩G3 ∩G4|, (16.5)

where Gi are subgroups of a finite group G, i = 1, 2, 3, 4. The meaning of this
inequality and its implications in group theory are yet to be understood.

16.1 Group Preliminaries

In this section, we present the definition and some basic properties of a group
which are essential for subsequent discussions.

Definition 16.1. A group is a set of objects G together with a binary oper-
ation on the elements of G, denoted by “◦” unless otherwise specified, which
satisfy the following four axioms:

1. Closure For every a, b in G, a ◦ b is also in G.
2. Associativity For every a, b, c in G, a ◦ (b ◦ c) = (a ◦ b) ◦ c.
3. Existence of Identity There exists an element e in G such that a◦e = e◦a

= a for every a in G.
4. Existence of Inverse For every a in G, there exists an element b in G such

that a ◦ b = b ◦ a = e.

Proposition 16.2. For any group G, the identity element is unique.

Proof. Let e and e′ be both identity elements in a group G. Since e is an
identity element,

e′ ◦ e = e, (16.6)

and since e′ is also an identity element,

e′ ◦ e = e′. (16.7)

It follows by equating the right hand sides of (16.6) and (16.7) that e = e′,
which implies the uniqueness of the identity element of a group. ut
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Proposition 16.3. For every element a in a group G, its inverse is unique.

Proof. Let b and b′ be inverses of an element a, so that

a ◦ b = b ◦ a = e (16.8)

and
a ◦ b′ = b′ ◦ a = e. (16.9)

Then

b = b ◦ e (16.10)
= b ◦ (a ◦ b′) (16.11)
= (b ◦ a) ◦ b′ (16.12)
= e ◦ b′ (16.13)
= b′, (16.14)

where (16.11) and (16.13) follow from (16.9) and (16.8), respectively, and
(16.12) is by associativity. Therefore, the inverse of a is unique. ut

Thus the inverse of a group element a is a function of a, and it will be
denoted by a−1.

Definition 16.4. The number of elements of a group G is called the order of
G, denoted by |G|. If |G| <∞, G is called a finite group, otherwise it is called
an infinite group.

There is an unlimited supply of examples of groups. Some familiar ex-
amples are: the integers under addition, the rationals excluding zero under
multiplication, and the set of real-valued 2×2 matrices under addition, where
addition and multiplication refer to the usual addition and multiplication for
real numbers and matrices. In each of these examples, the operation (addition
or multiplication) plays the role of the binary operation “◦” in Definition 16.2.

All the above are examples of infinite groups. In this chapter, however, we
are concerned with finite groups. In the following, we discuss two examples of
finite groups in details.

Example 16.5 (Modulo 2 Addition). The trivial group consists of only the iden-
tity element. The simplest nontrivial group is the group of modulo 2 addition.
The order of this group is 2, and the elements are {0, 1}. The binary operation,
denoted by “+”, is defined by following table:

+ 0 1
0 0 1
1 1 0
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The four axioms of a group simply say that certain constraints must hold
in the above table. We now check that all these axioms are satisfied. First,
the closure axiom requires that all the entries in the table are elements in
the group, which is easily seen to be the case. Second, it is required that
associativity holds. To this end, it can be checked in the above table that for
all a, b, and c,

a+ (b+ c) = (a+ b) + c. (16.15)

For example,
0 + (1 + 1) = 0 + 0 = 0, (16.16)

while
(0 + 1) + 1 = 1 + 1 = 0, (16.17)

which is the same as 0 + (1 + 1). Third, the element 0 is readily identified as
the unique identity. Fourth, it is readily seen that an inverse exists for each
element in the group. For example, the inverse of 1 is 1, because

1 + 1 = 0. (16.18)

Thus the above table defines a group of order 2. It happens in this example
that the inverse of each element is the element itself, which is not true for a
group in general.

We remark that in the context of a group, the elements in the group should
be regarded strictly as symbols only. In particular, one should not associate
group elements with magnitudes as we do for real numbers. For instance, in the
above example, one should not think of 0 as being less than 1. The element 0,
however, is a special symbol which plays the role of the identity of the group.

We also notice that for the group in the above example, a+ b is equal to
b + a for all group elements a and b. A group with this property is called a
commutative group or an Abelian group1.

Example 16.6 (Symmetric Group). Consider a permutation of the components
of a vector

x = (x1, x2, · · · , xr) (16.19)

given by
σ[x] = (xσ(1), xσ(2), · · · , xσ(r)), (16.20)

where
σ : {1, 2, · · · , r} → {1, 2, · · · , r} (16.21)

is a one-to-one mapping. The one-to-one mapping σ is called a permutation
on {1, 2, · · · , r}, which is represented by

σ = (σ(1), σ(2), · · · , σ(r)). (16.22)
1 The Abelian group is named after the Norwegian mathematician Niels Henrik

Abel (1802-1829).
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For two permutations σ1 and σ2, define σ1 ◦ σ2 as the composite function of
σ1 and σ2. For example, for r = 4, suppose

σ1 = (2, 1, 4, 3) (16.23)

and
σ2 = (1, 4, 2, 3). (16.24)

Then σ1 ◦ σ2 is given by

σ1 ◦ σ2(1) = σ1(σ2(1)) = σ1(1) = 2
σ1 ◦ σ2(2) = σ1(σ2(2)) = σ1(4) = 3
σ1 ◦ σ2(3) = σ1(σ2(3)) = σ1(2) = 1
σ1 ◦ σ2(4) = σ1(σ2(4)) = σ1(3) = 4,

(16.25)

or
σ1 ◦ σ2 = (2, 3, 1, 4). (16.26)

The reader can easily check that

σ2 ◦ σ1 = (4, 1, 2, 3), (16.27)

which is different from σ1 ◦ σ2. Therefore, the operation “◦” is not commuta-
tive.

We now show that the set of all permutations on {1, 2, · · · , r} and the
operation “◦” form a group, called the symmetric group on {1, 2, · · · , r}. First,
for two permutations σ1 and σ2, since both σ1 and σ2 are one-to-one mappings,
so is σ1◦σ2. Therefore, the closure axiom is satisfied. Second, for permutations
σ1, σ2, and σ3,

σ1 ◦ (σ2 ◦ σ3)(i) = σ1(σ2 ◦ σ3(i)) (16.28)
= σ1(σ2(σ3(i))) (16.29)
= σ1 ◦ σ2(σ3(i)) (16.30)
= (σ1 ◦ σ2) ◦ σ3(i) (16.31)

for 1 ≤ i ≤ r. Therefore, associativity is satisfied. Third, it is clear that the
identity map is the identity element. Fourth, for a permutation σ, it is clear
that its inverse is σ−1, the inverse mapping of σ which is defined because σ
is one-to-one. Therefore, the set of all permutations on {1, 2, · · · , r} and the
operation “◦” form a group. The order of this group is evidently equal to (r!).

Definition 16.7. Let G be a group with operation “◦”, and S be a subset of
G. If S is a group with respect to the operation “◦”, then S is called a subgroup
of G.

Definition 16.8. Let S be a subgroup of a group G and a be an element of G.
The left coset of S with respect to a is the set a◦S = {a◦s : s ∈ S}. Similarly,
the right coset of S with respect to a is the set S ◦ a = {s ◦ a : s ∈ S}.
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In the sequel, only the left coset will be used. However, any result which
applies to the left coset also applies to the right coset, and vice versa. For
simplicity, a ◦ S will be denoted by aS.

Proposition 16.9. For a1 and a2 in G, a1S and a2S are either identical or
disjoint. Further, a1S and a2S are identical if and only if a1 and a2 belong to
the same left coset of S.

Proof. Suppose a1S and a2S are not disjoint. Then there exists an element b
in a1S ∩ a2S such that

b = a1 ◦ s1 = a2 ◦ s2, (16.32)

for some si in S, i = 1, 2. Then

a1 = (a2 ◦ s2) ◦ s−1
1 = a2 ◦ (s2 ◦ s−1

1 ) = a2 ◦ t, (16.33)

where t = s2 ◦s−1
1 is in S. We now show that a1S ⊂ a2S. For an element a1 ◦s

in a1S, where s ∈ S,

a1 ◦ s = (a2 ◦ t) ◦ s = a2 ◦ (t ◦ s) = a2 ◦ u, (16.34)

where u = t◦s is in S. This implies that a1 ◦s is in a2S. Thus, a1S ⊂ a2S. By
symmetry, a2S ⊂ a1S. Therefore, a1S = a2S. Hence, if a1S and a2S are not
disjoint, then they are identical. Equivalently, a1S and a2S are either identical
or disjoint. This proves the first part of the proposition.

We now prove the second part of the proposition. Since S is a group, it
contains e, the identity element. Then for any group element a, a = a ◦ e is
in aS because e is in S. If a1S and a2S are identical, then a1 ∈ a1S and
a2 ∈ a2S = a1S. Therefore, a1 and a2 belong to the same left coset of S.

To prove the converse, assume a1 and a2 belong to the same left coset of
S. From the first part of the proposition, we see that a group element belongs
to one and only one left coset of S. Since a1 is in a1S and a2 is in a2S, and
a1 and a2 belong to the same left coset of S, we see that a1S and a2S are
identical. The proposition is proved. ut

Proposition 16.10. Let S be a subgroup of a group G and a be an element
of G. Then |aS| = |S|, i.e., the numbers of elements in all the left cosets of S
are the same, and they are equal to the order of S.

Proof. Consider two elements a ◦ s1 and a ◦ s2 in a ◦ S, where s1 and s2 are
in S such that

a ◦ s1 = a ◦ s2. (16.35)

Then

a−1 ◦ (a ◦ s1) = a−1 ◦ (a ◦ s2) (16.36)
(a−1 ◦ a) ◦ s1 = (a−1 ◦ a) ◦ s2 (16.37)

e ◦ s1 = e ◦ s2 (16.38)
s1 = s2. (16.39)
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Thus each element in S corresponds to a unique element in aS. Therefore,
|aS| = |S| for all a ∈ G. ut

We are just one step away from obtaining the celebrated Lagrange’s theo-
rem stated below.

Theorem 16.11 (Lagrange’s Theorem). If S is a subgroup of G, then |S|
divides |G|.

Proof. Since a ∈ aS for every a ∈ G, every element of G belongs to a left
coset of S. Then from Proposition 16.9, we see that the distinct left cosets of
S partition G. Therefore |G|, the total number of elements in G, is equal to
the number of distinct cosets of S multiplied by the number of elements in
each left coset, which is equal to |S| by Proposition 16.10. This implies that
|S| divides |G|, proving the theorem. ut

The following corollary is immediate from the proof of Lagrange’s Theo-
rem.

Corollary 16.12. Let S be a subgroup of a group G. The number of distinct
left cosets of S is equal to |G||S| .

16.2 Group-Characterizable Entropy Functions

Recall from Chapter 13 that the region Γ ∗n consists of all the entropy func-
tions in the entropy space Hn for n random variables. As a first step toward
establishing the relation between entropy and groups, we discuss in this sec-
tion entropy functions in Γ ∗n which can be described by a finite group G
and subgroups G1, G2, · · · , Gn. Such entropy functions are said to be group-
characterizable. The significance of this class of entropy functions will become
clear in the next section.

In the sequel, we will make use of the intersections of subgroups extensively.
We first prove that the intersection of two subgroups is also a subgroup.

Proposition 16.13. Let G1 and G2 be subgroups of a group G. Then G1∩G2

is also a subgroup of G.

Proof. It suffices to show that G1∩G2 together with the operation “◦” satisfy
all the axioms of a group. First, consider two elements a and b of G in G1∩G2.
Since both a and b are in G1, (a ◦ b) is in G1. Likewise, (a ◦ b) is in G2.
Therefore, a ◦ b is in G1 ∩ G2. Thus the closure axiom holds for G1 ∩ G2.
Second, associativity for G1 ∩ G2 inherits from G. Third, G1 and G2 both
contain the identity element because they are groups. Therefore, the identity
element is in G1 ∩G2. Fourth, for an element a ∈ Gi, since Gi is a group, a−1

is in Gi, i = 1, 2. Thus for an element a ∈ G1 ∩ G2, a−1 is also in G1 ∩ G2.
Therefore, G1 ∩G2 is a group and hence a subgroup of G. ut
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Corollary 16.14. Let G1, G2, · · · , Gn be subgroups of a group G. Then ∩ni=1Gi
is also a subgroup of G.

In the rest of the chapter, we let Nn = {1, 2, · · · , n} and denote ∩i∈αGi by
Gα, where α is a nonempty subset of Nn.

Lemma 16.15. Let Gi be subgroups of a group G and ai be elements of G,
i ∈ α. Then

|∩i∈αaiGi| =
{
|Gα| if

⋂
i∈α aiGi 6= ∅

0 otherwise. (16.40)

Proof. For the special case when α is a singleton, i.e., α = {i} for some i ∈ Nn,
(16.40) reduces to

|aiGi| = |Gi|, (16.41)

which has already been proved in Proposition 16.10.
Let α be any nonempty subset of Nn. If

⋂
i∈α aiGi = ∅, then (16.40) is

obviously true. If
⋂
i∈α aiGi 6= ∅, then there exists x ∈

⋂
i∈α aiGi such that

for all i ∈ α,
x = ai ◦ si, (16.42)

where si ∈ Gi. For any i ∈ α and for any y ∈ Gα, consider

x ◦ y = (ai ◦ si) ◦ y = ai ◦ (si ◦ y). (16.43)

Since both si and y are in Gi, si ◦y is in Gi. Thus x◦y is in aiGi for all i ∈ α,
or x ◦ y is in

⋂
i∈α aiGi. Moreover, for y, y′ ∈ Gα, if x ◦ y = x ◦ y′, then y = y′.

Therefore, each element in Gα corresponds to a unique element in
⋂
i∈α aiGi.

Hence,
|∩i∈αaiGi| = |Gα|, (16.44)

proving the lemma. ut

The relation between a finite group G and subgroups G1 and G2 is illus-
trated by the membership table in Figure 16.1. In this table, an element of G
is represented by a dot. The first column represents the subgroup G1, with
the dots in the first column being the elements in G1. The other columns
represent the left cosets of G1. By Proposition 16.10, all the columns have the
same number of dots. Similarly, the first row represents the subgroup G2 and
the other rows represent the left cosets of G2. Again, all the rows have the
same number of dots.

The upper left entry in the table represents the subgroup G1 ∩G2. There
are |G1 ∩ G2| dots in this entry, with one of them representing the identity
element. Any other entry represents the intersection between a left coset of
G1 and a left coset of G2, and by Lemma 16.15, the number of dots in each
of these entries is either equal to |G1 ∩G2| or zero.
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G 2 

G 1,2 

G 1 

Fig. 16.1. The membership table for a finite group G and subgroups G1 and G2.

Since all the column have the same numbers of dots and all the rows
have the same number of dots, we say that the table in Figure 16.1 exhibits a
quasi-uniform structure. We have already seen a similar structure in Figure 6.1
for the two-dimensional strong joint typicality array, which we reproduce in
Figure 16.2. In this array, when n is large, all the columns have approximately
the same number of dots and all the rows have approximately the same number
of dots. For this reason, we say that the two-dimensional strong typicality
array exhibits an asymptotic quasi-uniform structure. In a strong typicality
array, however, each entry can contain only one dot, while in a membership
table, each entry can contain multiple dots.

2 nH ( Y ) 

2 nH ( X,Y ) 2 nH ( X ) 

y S [ Y ] 
n 

x S [ X ] 
n 

( x , y ) T [ XY ] 
n 

. 

. 

. . 
. 
. 

. . . 
. 

. . . . 

. 

Fig. 16.2. A two-dimensional strong typicality array.

One can make a similar comparison between a strong joint typicality array
for any n ≥ 2 random variables and the membership table for a finite group
with n subgroups. The details are omitted here.

Theorem 16.16. Let Gi, i ∈ Nn be subgroups of a group G. Then h ∈ Hn
defined by

hα = log
|G|
|Gα|

(16.45)
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for all nonempty subset α of Nn is entropic, i.e., h ∈ Γ ∗n .

Proof. It suffices to show that there exists a collection of random variables
X1, X2, · · · , Xn such that

H(Xα) = log
|G|
|Gα|

(16.46)

for all nonempty subset α of Nn. We first introduce a uniform random variable
Λ defined on the sample space G with probability mass function

Pr{Λ = a} =
1
|G|

(16.47)

for all a ∈ G. For any i ∈ Nn, let random variable Xi be a function of Λ such
that Xi = aGi if Λ = a.

Let α be a nonempty subset of Nn. Since Xi = aiGi for all i ∈ α if and
only if Λ is equal to some b ∈ ∩i∈αaiGi,

Pr{Xi = aiGi : i ∈ α} =
|
⋂
i∈α aiGi|
|G|

(16.48)

=

{
|Gα|
|G| if

⋂
i∈α aiGi 6= ∅

0 otherwise
(16.49)

by Lemma 16.15. In other words, (Xi, i ∈ α) distributes uniformly on its
support whose cardinality is |G|

|Gα| . Then (16.46) follows and the theorem is
proved. ut

Definition 16.17. Let G be a finite group and G1, G2, · · · , Gn be subgroups
of G. Let h be a vector in Hn. If hα = log |G||Gα| for all nonempty subsets α of
Nn, then (G,G1, · · · , Gn) is a group characterization of h.

Theorem 16.16 asserts that certain entropy functions in Γ ∗n have a group
characterization. These are called group-characterizable entropy functions,
which will be used in the next section to obtain a group characterization of
the region Γ

∗
n. We end this section by giving a few examples of such entropy

functions.

Example 16.18. Fix any subset β of N3 = {1, 2, 3} and define a vector h ∈ H3

by

hα =
{

log 2 if α ∩ β 6= ∅
0 otherwise. (16.50)

We now show that h has a group characterization. Let G = {0, 1} be the
group of modulo 2 addition in Example 16.5, and for i = 1, 2, 3, let
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Gi =
{
{0} if i ∈ β
G otherwise. (16.51)

Then for a nonempty subset α of N3, if α∩ β 6= ∅, there exists an i in α such
that i is also in β, and hence by definition Gi = {0}. Thus,

Gα =
⋂
i∈α

Gi = {0}. (16.52)

Therefore,

log
|G|
|Gα|

= log
|G|
|{0}|

= log
2
1

= log 2. (16.53)

If α ∩ β = ∅, then Gi = G for all i ∈ α, and

Gα =
⋂
i∈α

Gi = G. (16.54)

Therefore,

log
|G|
|Gα|

= log
|G|
|G|

= log 1 = 0. (16.55)

Then we see from (16.50), (16.53), and (16.55) that

hα = log
|G|
|Gα|

(16.56)

for all nonempty subset α of N3. Hence, (G,G1, G2, G3) is a group character-
ization of h.

Example 16.19. This is a generalization of the last example. Fix any non-
empty subset β of Nn and define a vector h ∈ Hn by

hα =
{

log 2 if α ∩ β 6= ∅
0 otherwise. (16.57)

Then (G,G1, G2, · · · , Gn) is a group characterization of h, where G is the
group of modulo 2 addition, and

Gi =
{
{0} if i ∈ β
G otherwise. (16.58)

By letting β = ∅, h = 0. Thus we see that (G,G1, G2, · · · , Gn) is a group
characterization of the origin of Hn, with G = G1 = G2 = · · · = Gn.

Example 16.20. Define a vector h ∈ H3 as follows:

hα = min(|α|, 2). (16.59)

Let F be the group of modulo 2 addition, G = F × F , and

G1 = {(0, 0), (1, 0)} (16.60)
G2 = {(0, 0), (0, 1)} (16.61)
G3 = {(0, 0), (1, 1)}. (16.62)

Then (G,G1, G2, G3) is a group characterization of h.
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16.3 A Group Characterization of Γ ∗
n

We have introduced in the last section the class of entropy functions in Γ ∗n
which have a group characterization. However, an entropy function h ∈ Γ ∗n
may not have a group characterization due to the following observation. Sup-
pose h ∈ Γ ∗n . Then there exists a collection of random variables X1, X2, · · · ,
Xn such that

hα = H(Xα) (16.63)

for all nonempty subset α of Nn. If (G,G1, · · · , Gn) is a group characterization
of h, then

H(Xα) = log
|G|
|Gα|

(16.64)

for all nonempty subset of Nn. Since both |G| and |Gα| are integers, H(Xα)
must be the logarithm of a rational number. However, the joint entropy of a
set of random variables in general is not necessarily the logarithm of a rational
number (see Corollary 2.44). Therefore, it is possible to construct an entropy
function h ∈ Γ ∗n which has no group characterization.

Although h ∈ Γ ∗n does not imply h has a group characterization, it turns
out that the set of all h ∈ Γ ∗n which have a group characterization is almost
good enough to characterize the region Γ ∗n , as we will see next.

Definition 16.21. Define the following region in Hn:

Υn = {h ∈ Hn : h has a group characterization}. (16.65)

By Theorem 16.16, if h ∈ Hn has a group characterization, then h ∈ Γ ∗n .
Therefore, Υn ⊂ Γ ∗n . We will prove as a corollary of the next theorem that
con(Υn), the convex closure of Υn, is in fact equal to Γ

∗
n, the closure of Γ ∗n .

Theorem 16.22. For any h ∈ Γ ∗n , there exists a sequence {f (r)} in Υn such
that limr→∞

1
r f

(r) = h.

We need the following lemma to prove this theorem. The proof of this
lemma resembles the proof of Theorem 6.10. Nevertheless, we give a sketch of
the proof for the sake of completeness.

Lemma 16.23. Let X be a random variable such that |X | <∞ and the distri-
bution {p(x)} is rational, i.e., p(x) is a rational number for all x ∈ X . Without
loss of generality, assume p(x) is a rational number with denominator q for
all x ∈ X . Then for r = q, 2q, 3q, · · ·,

lim
r→∞

1
r

log
r!∏

x(rp(x))!
= H(X). (16.66)
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Proof. Applying Lemma 6.11, we can obtain

1
r

ln
r!∏

x(rp(x))!

≤ −
∑
x

p(x) ln p(x) +
r + 1
r

ln(r + 1)− ln r (16.67)

= He(X) +
1
r

ln r +
(

1 +
1
r

)
ln
(

1 +
1
r

)
. (16.68)

This upper bound tends to He(X) as r → ∞. On the other hand, we can
obtain

1
r

ln
r!∏

x(rp(x))!

≥ −
∑
x

(
p(x) +

1
r

)
ln
(
p(x) +

1
r

)
− ln r

r
. (16.69)

This lower bound also tends to He(X) as r →∞. Then the proof is completed
by changing the base of the logarithm if necessary. ut

Proof of Theorem 16.22. For any h ∈ Γ ∗n , there exists a collection of random
variables X1, X2, · · · , Xn such that

hα = H(Xα) (16.70)

for all nonempty subset α of Nn. We first consider the special case that
|Xi| < ∞ for all i ∈ Nn and the joint distribution of X1, X2, · · · , Xn is ra-
tional. We want to show that there exists a sequence {f (r)} in Υn such that
limr→∞

1
r f

(r) = h.
Denote

∏
i∈α Xi by Xα. For any nonempty subset α of Nn, let Qα be the

marginal distribution of Xα. Assume without loss of generality that for any
nonempty subset α of Nn and for all a ∈ Xα, Qα(a) is a rational number with
denominator q.

For each r = q, 2q, 3q, · · ·, fix a sequence

xNn = (xNn,1, xNn,2, · · ·xNn,r)

where for all j = 1, 2, · · · , r, xNn,j = (xi,j : i ∈ Nn) ∈ XNn , such that
N(a|xNn), the number of occurrences of a in sequence xNn , is equal to
rQNn(a) for all a ∈ XNn . The existence of such a sequence is guaranteed
by that all the values of the joint distribution of XNn are rational num-
bers with denominator q. Also, we denote the sequence of r elements of Xα,
(xα,1, xα,2, · · ·xα,r), where xα,j = (xi,j : i ∈ α), by xα. Let a ∈ Xα. It is easy
to check that N(a|xα), the number of occurrences of a in the sequence xα, is
equal to rQα(a) for all a ∈ Xα.
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Let G be the group of all permutations on {1, 2, · · · , r}, i.e., the symmetric
group on {1, 2, · · · , r} (cf. Example 16.6). The group G depends on r, but for
simplicity, we do not state this dependency explicitly. For any i ∈ Nn, define

Gi = {σ ∈ G : σ[xi] = xi},

where
σ[xi] = (xi,σ(1), xi,σ(2), · · · , xi,σ(r)). (16.71)

It is easy to check that Gi is a subgroup of G.
Let α be a nonempty subset of Nn. Then

Gα =
⋂
i∈α

Gi (16.72)

=
⋂
i∈α
{σ ∈ G : σ[xi] = xi} (16.73)

= {σ ∈ G : σ[xi] = xi for all i ∈ α} (16.74)
= {σ ∈ G : σ[xα] = xα}, (16.75)

where
σ[xα] = (xα,σ(1), xα,σ(2), · · · , xα,σ(r)). (16.76)

For any a ∈ Xα, define the set

Lxα(a) = {j ∈ {1, 2, · · · , r} : xα,j = a}. (16.77)

Lxα(a) contains the “locations” of a in xα. Then σ[xα] = xα if and only if for
all a ∈ Xα, j ∈ Lxα(a) implies σ(j) ∈ Lxα(a). Since

|Lxα(a)| = N(a|xα) = rQα(a), (16.78)

|Gα| =
∏
a∈Xα

(rQα(a))! (16.79)

and therefore
|G|
|Gα|

=
r!∏

a∈Xα(rQα(a))!
. (16.80)

By Lemma 16.23,

lim
r→∞

1
r

log
|G|
|Gα|

= H(Xα) = hα. (16.81)

Recall that G and hence all its subgroups depend on r. Define f (r) by

f (r)
α = log

|G|
|Gα|

(16.82)

for all nonempty subset α of Nn. Then f (r) ∈ Υn and
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lim
r→∞

1
r
f (r) = h. (16.83)

We have already proved the theorem for the special case that h is the
entropy function of a collection of random variables X1, X2, · · · , Xn with finite
alphabets and a rational joint distribution. To complete the proof, we only
have to note that for any h ∈ Γ ∗n , it is always possible to construct a sequence
{h(k)} in Γ ∗n such that limk→∞ h(k) = h, where h(k) is the entropy function of
a collection of random variables X(k)

1 , X
(k)
2 , · · · , X(k)

n with finite alphabets and
a rational joint distribution. This can be proved by techniques similar to those
used in Appendix 2.10 together with the continuity of the entropy function
with respect to the variational distance for a fixed finite support (Section 2.3).
The details are omitted here. ut

Corollary 16.24. con(Υn) = Γ
∗
n.

Proof. First of all, Υn ⊂ Γ ∗n . By taking convex closure, we have con(Υn) ⊂
con(Γ ∗n). By Theorem 15.5, Γ

∗
n is convex. Therefore, con(Γ ∗n) = Γ

∗
n, and we

have con(Υn) ⊂ Γ
∗
n. On the other hand, we have shown in Example 16.19

that the origin of Hn has a group characterization and therefore is in Υn. It
then follows from Theorem 16.22 that Γ

∗
n ⊂ con(Υn). Hence, we conclude that

Γ
∗
n = con(Υn), completing the proof. ut

16.4 Information Inequalities and Group Inequalities

We have proved in Section 15.1 that an unconstrained information inequality

b>h ≥ 0 (16.84)

always holds if and only if

Γ
∗
n ⊂ {h ∈ Hn : b>h ≥ 0}. (16.85)

In other words, all unconstrained information inequalities are fully charac-
terized by Γ

∗
n. We also have proved at the end of the last section that

con(Υn) = Γ
∗
n. Since Υn ⊂ Γ ∗n ⊂ Γ

∗
n, if (16.85) holds, then

Υn ⊂ {h ∈ Hn : b>h ≥ 0}. (16.86)

On the other hand, if (16.86) holds, since {h ∈ Hn : b>h ≥ 0} is closed and
convex, by taking convex closure in (16.86), we obtain

Γ
∗
n = con(Υn) ⊂ {h ∈ Hn : b>h ≥ 0}. (16.87)

Therefore, (16.85) and (16.86) are equivalent.
Now (16.86) is equivalent to
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b>h ≥ 0 for all h ∈ Υn. (16.88)

Since h ∈ Υn if and only if

hα = log
|G|
|Gα|

(16.89)

for all nonempty subset α of Nn for some finite group G and subgroups G1,
G2, · · · , Gn, we see that the inequality (16.84) holds for all random variables
X1,X2,· · · ,Xn if and only if the inequality obtained from (16.84) by replacing
hα by log |G||Gα| for all nonempty subset α of Nn holds for all finite group G and
subgroups G1, G2,· · · , Gn. In other words, for every unconstrained information
inequality, there is a corresponding group inequality, and vice versa. Therefore,
inequalities in information theory can be proved by methods in group theory,
and inequalities in group theory can be proved by methods in information
theory.

In the rest of the section, we explore this one-to-one correspondence be-
tween information theory and group theory. We first give a group-theoretic
proof of the basic inequalities in information theory. At the end of the section,
we will give an information-theoretic proof for the group inequality in (16.5).

Definition 16.25. Let G1 and G2 be subgroups of a finite group G. Define

G1 ◦G2 = {a ◦ b : a ∈ G1 and b ∈ G2}. (16.90)

G1 ◦G2 is in general not a subgroup of G. However, it can be shown that
G1 ◦G2 is a subgroup of G if G is Abelian (see Problem 1).

Proposition 16.26. Let G1 and G2 be subgroups of a finite group G. Then

|G1 ◦G2| =
|G1||G2|
|G1 ∩G2|

. (16.91)

Proof. Fix (a1, a2) ∈ G1 × G2, Then a1 ◦ a2 is in G1 ◦ G2. Consider any
(b1, b2) ∈ G1 ×G2 such that

b1 ◦ b2 = a1 ◦ a2. (16.92)

We will determine the number of (b1, b2) in G1 ×G2 which satisfies this rela-
tion. From (16.92), we have

b−1
1 ◦ (b1 ◦ b2) = b−1

1 ◦ (a1 ◦ a2) (16.93)
(b−1

1 ◦ b1) ◦ b2 = b−1
1 ◦ a1 ◦ a2 (16.94)

b2 = b−1
1 ◦ a1 ◦ a2. (16.95)

Then
b2 ◦ a−1

2 = b−1
1 ◦ a1 ◦ (a2 ◦ a−1

2 ) = b−1
1 ◦ a1. (16.96)
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Let k be this common element in G, i.e.,

k = b2 ◦ a−1
2 = b−1

1 ◦ a1. (16.97)

Since b−1
1 ◦ a1 ∈ G1 and b2 ◦ a−1

2 ∈ G2, k is in G1 ∩ G2. In other words, for
given (a1, a2) ∈ G1 × G2, if (b1, b2) ∈ G1 × G2 satisfies (16.92), then (b1, b2)
satisfies (16.97) for some k ∈ G1∩G2. On the other hand, if (b1, b2) ∈ G1×G2

satisfies (16.97) for some k ∈ G1 ∩G2, then (16.96) is satisfied, which implies
(16.92). Therefore, for given (a1, a2) ∈ G1 × G2, (b1, b2) ∈ G1 × G2 satisfies
(16.92) if and only if (b1, b2) satisfies (16.97) for some k ∈ G1 ∩G2.

Now from (16.97), we obtain

b1(k) = (k ◦ a−1
1 )−1 (16.98)

and

b2(k) = k ◦ a2, (16.99)

where we have written b1 and b2 as b1(k) and b2(k) to emphasize their depen-
dence on k. Now consider k, k′ ∈ G1 ∩G2 such that

(b1(k), b2(k)) = (b1(k′), b2(k′)). (16.100)

Since b1(k) = b1(k′), from (16.98), we have

(k ◦ a−1
1 )−1 = (k′ ◦ a−1

1 )−1, (16.101)

which implies
k = k′. (16.102)

Therefore, each k ∈ G1 ∩G2 corresponds to a unique pair (b1, b2) ∈ G1 ×G2

which satisfies (16.92). Therefore, we see that the number of distinct elements
in G1 ◦G2 is given by

|G1 ◦G2| =
|G1 ×G2|
|G1 ∩G2|

=
|G1||G2|
|G1 ∩G2|

, (16.103)

completing the proof. ut

Theorem 16.27. Let G1, G2, and G3 be subgroups of a finite group G. Then

|G3||G123| ≥ |G13||G23|. (16.104)

Proof. First of all,

G13 ∩G23 = (G1 ∩G3) ∩ (G2 ∩G3) = G1 ∩G2 ∩G3 = G123. (16.105)

By Proposition 16.26, we have
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|G13 ◦G23| =
|G13||G23|
|G123|

. (16.106)

It is readily seen that G13 ◦G23 is a subset of G3, Therefore,

|G13 ◦G23| =
|G13||G23|
|G123|

≤ |G3|. (16.107)

The theorem is proved. ut

Corollary 16.28. For random variables X1, X2, and X3,

I(X1;X2|X3) ≥ 0. (16.108)

Proof. Let G1, G2, and G3 be subgroups of a finite group G. Then

|G3||G123| ≥ |G13||G23| (16.109)

by Theorem 16.27, or

|G|2

|G13||G23|
≥ |G|2

|G3||G123|
. (16.110)

This is equivalent to

log
|G|
|G13|

+ log
|G|
|G23|

≥ log
|G|
|G3|

+ log
|G|
|G123|

. (16.111)

This group inequality corresponds to the information inequality

H(X1, X3) +H(X2, X3) ≥ H(X3) +H(X1, X2, X3), (16.112)

which is equivalent to
I(X1;X2|X3) ≥ 0. (16.113)

ut

The above corollary shows that all the basic inequalities in information
theory has a group-theoretic proof. Of course, Theorem 16.27 is also implied
by the basic inequalities. As a remark, the inequality in (16.3) is seen to be a
special case of Theorem 16.27 by letting G3 = G.

We are now ready to prove the group inequality in (16.5). The non-
Shannon-type inequality we have proved in Theorem 15.7 can be expressed in
canonical form as

H(X1) +H(X1, X2) + 2H(X3) + 2H(X4)
+4H(X1, X3, X4) +H(X2, X3, X4)
≤ 3H(X1, X3) + 3H(X1, X4) + 3H(X3, X4)

+H(X2, X3) +H(X2, X4), (16.114)
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which corresponds to the group inequality

log
|G|
|G1|

+ log
|G|
|G12|

+ 2 log
|G|
|G3|

+ 2 log
|G|
|G4|

+4 log
|G|
|G134|

+ log
|G|
|G234|

≤ 3 log
|G|
|G13|

+ 3 log
|G|
|G14|

+ 3 log
|G|
|G34|

+ log
|G|
|G23|

+ log
|G|
|G24|

. (16.115)

Upon rearranging the terms, we obtain

|G1 ∩G3|3|G1 ∩G4|3|G3 ∩G4|3|G2 ∩G3||G2 ∩G4|

≤ |G1||G1 ∩G2||G3|2|G4|2|G1 ∩G3 ∩G4|4|G2 ∩G3 ∩G4|, (16.116)

which is the group inequality in (16.5). The meaning of this inequality and its
implications in group theory are yet to be understood.

Problems

1. Let G1 and G2 be subgroups of a finite group G. Show that G1 ◦G2 is a
subgroup if G is Abelian.

2. Let g1 and g2 be group characterizable entropy functions.
a) Prove that m1g1 +m2g2 is group characterizable, where m1 and m2

are any positive integers.
b) For any positive real numbers a1 and a2, construct a sequence of group

characterizable entropy functions f (k) for k = 1, 2, · · · , such that

lim
k→∞

f (k)

||f (k)||
=

h
||h||

,

where h = a1g1 + a2g2.
3. Let (G,G1, G2, · · · , Gn) be a group characterization of g ∈ Γ ∗n , where

g is the entropy function for random variables X1, X2, · · · , Xn. Fix any
nonempty subset α of Nn, and define h by

hβ = gα∪β − gα

for all nonempty subsets β of Nn. It can easily be checked that hβ =
H(Xβ |Xα). Show that (K,K1,K2, · · · ,Kn) is a group characterization of
h, where K = Gα and Ki = Gi ∩Gα.

4. Let (G,G1, G2, · · · , Gn) be a group characterization of g ∈ Γ ∗n , where g
is the entropy function for random variables X1, X2, · · · , Xn. Show that if
Xi is a function of (Xj : j ∈ α), then Gα is a subgroup of Gi.
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5. Let G1, G2, G3 be subgroups of a finite group G. Prove that

|G||G1 ∩G2 ∩G3|2 ≥ |G1 ∩G2||G2 ∩G3||G1 ∩G3|.

Hint: Use the information-theoretic approach.
6. Let h ∈ Γ ∗2 be the entropy function for random variables X1 and X2 such

that h1 + h2 = h12, i.e. X1 and X2 are independent. Let (G,G1, G2) be a
group characterization of h, and define a mapping L : G1 ×G2 → G by

L(a, b) = a ◦ b.

a) Prove that the mapping L is onto, i.e., for any element c ∈ G, there
exists (a, b) ∈ G1 ×G2 such that a ◦ b = c.

b) Prove that G1 ◦G2 is a group.
7. Denote an entropy function h ∈ Γ ∗2 by (h1, h2, h12). Construct a group

characterization for each of the following entropy functions:
a) h1 = (log 2, 0, log 2)
b) h2 = (0, log 2, log 2)
c) h3 = (log 2, log 2, log 2).

Verify that Γ2 is the minimal convex set containing the above three en-
tropy functions.

8. Denote an entropy function h ∈ Γ ∗3 by (h1, h2, h3, h12, h23, h13, h123). Con-
struct a group characterization for each of the following entropy functions:
a) h1 = (log 2, 0, 0, log 2, 0, log 2, log 2)
b) h2 = (log 2, log 2, 0, log 2, log 2, log 2, log 2)
c) h3 = (log 2, log 2, log 2, log 2, log 2, log 2, log 2)
d) h4 = (log 2, log 2, log 2, log 4, log 4, log 4, log 4).

9. Ingleton inequality Let G be a finite Abelian group and G1, G2, G3, and
G4 be subgroups of G. Let (G,G1, G2, G3, G4) be a group characterization
of g, where g is the entropy function for random variables X1, X2, X3, and
X4. Prove the following statements:
a)

|(G1 ∩G3) ◦ (G1 ∩G4)| ≤ |G1 ∩ (G3 ◦G4)|

Hint: Show that (G1 ∩G3) ◦ (G1 ∩G4) ⊂ G1 ∩ (G3 ◦G4).
b)

|G1 ◦G3 ◦G4| ≤
|G1||G3 ◦G4||G1 ∩G3 ∩G4|
|G1 ∩G3||G1 ∩G4|

.

c)

|G1 ◦G2 ◦G3 ◦G4| ≤
|G1 ◦G3 ◦G4||G2 ◦G3 ◦G4|

|G3 ◦G4|
.
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d)

|G1 ◦G2 ◦G3 ◦G4|

≤ |G1||G2||G3||G4||G1 ∩G3 ∩G4||G2 ∩G3 ∩G4|
|G1 ∩G3||G1 ∩G4||G2 ∩G3||G2 ∩G4||G3 ∩G4|

.

e)

|G1 ∩G3||G1 ∩G4||G2 ∩G3||G2 ∩G4||G3 ∩G4|
≤ |G3||G4||G1 ∩G2||G1 ∩G3 ∩G4||G2 ∩G3 ∩G4|.

f)

H(X13) +H(X14) +H(X23) +H(X24) +H(X34)
≥ H(X3) +H(X4) +H(X12) +H(X134) +H(X234),

where H(X134) denotes H(X1, X3, X4), etc.
g) Is the inequality in f) implied by the basic inequalities? And does it

always hold? Explain.
The Ingleton inequality [162] (see also [255]) was originally obtained as a
constraint on the rank functions of vector spaces. The inequality in e) was
obtained in the same spirit by Chan [55] for subgroups of a finite group.
The inequality in f) is referred to as the Ingleton inequality for entropy
in the literature. (See also Problem 8 in Chapter 15.)

Historical Notes

The results in this chapter are due to Chan and Yeung [60], whose work was
inspired by a one-to-one correspondence between entropy and quasi-uniform
arrays previously established by Chan [55] (also Chan [56]). Romashchenko et
al. [282] have developed an interpretation of Kolmogorov complexity similar
to the combinatorial interpretation of entropy in Chan [55].
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Introduction

For a point-to-point communication system, we see from Section 7.7 and Prob-
lem 6 in Chapter 8 that asymptotic optimality can be achieved by separating
source coding and channel coding. Recall from Section 5.3 that the goal of
source coding is to represent the information source in (almost) fair bits1.
Then the role of channel coding is to enable the transmission of fair bits
through the channel essentially free of error with no reference to the meaning
of these fair bits. Thus a theme in classical information theory for point-to-
point communication is that fair bits can be drawn equivalence to a commod-
ity.

It is intuitively appealing that this theme in classical information theory
would continue to hold in network communication where the network consists
of noiseless point-to-point communication channels. If so, in order to multi-
cast2 information from a source node to possibly more than one sink node, we
only need to compress the information at the source node into fair bits, orga-
nize them into data packets, and route the packets to the sink node through
the intermediate nodes in the network. In the case when there are more than
one sink node, the information needs to be replicated at certain intermediate
nodes so that every sink node can receive a copy of the information. This
method of transmitting information in a network is generally referred to as
store-and-forward—bb or routing. As a matter of fact, almost all computer
networks built in the last few decades are based on this paradigm, where
routers are deployed at the intermediate nodes to switch a data packet from
an input channel to an output channel without processing the data content.
The delivery of data packets in a computer network resembles mail delivery
in a postal system. We refer the readers to textbooks on data communication
[195] and switching theory [157][203].

1 Fair bits refer to i.i.d. bits, each being distributed uniformly on {0, 1}. See Sec-
tion 5.3.

2 Multicast means to transmit information from a source node to a specified set of
sink nodes.
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However, we will see very shortly that in network communication, it does
not suffice to simply route and/or replicate information within the network.
Specifically, coding generally needs to be employed at the intermediate nodes
in order to achieve bandwidth optimality. This notion, called network coding,
is the subject of discussion in the second part of this book.

17.1 The Butterfly Network

In this section, the advantage of network coding over routing is explained by
means of a few simple examples. The application of network coding in wireless
and satellite communication will be discussed in the next section.

We will use a finite directed graph to represent a point-to-point communi-
cation network. A node in the network corresponds to a vertex in the graph,
while a communication channel in the network corresponds to an edge in the
graph. We will not distinguish a node from a vertex, nor will we distinguish a
channel from an edge. In the graph, a node is represented by a circle, with the
exception that the unique source node, denoted by s (if exists), is represented
by a square. Each edge is labeled by a positive integer called the capacity3 or
the rate constraint, which gives the maximum number of information symbols
taken from some finite alphabet that can be transmitted over the channel per
unit time. In this section, we assume that the information symbol is binary.
When there is only one edge from node a to node b, we denote the edge by
(a, b).

Example 17.1 (Butterfly Network I). Consider the network in Figure 17.1(a).
In this network, two bits b1 and b2 are generated at source node s, and they
are to be multicast to two sink nodes t1 and t2. In Figure 17.1(b), we try to
devise a routing scheme for this purpose. By symmetry, we send the two bits
on different output channels at node s. Without loss of generality, b1 is sent on
channel (s, 1) and b2 is sent on channel (s, 2). At nodes 1 and 2, the received
bit is replicated and the copies are sent on the two output channels. At node
3, since both b1 and b2 are received but there is only one output channel, we
have to choose one of the two bits to be sent on the output channel (3, 4).
Suppose we send b1 as in Figure 17.1(b). Then the bit is replicated at node 4
and the two copies are sent to nodes t1 and t2, respectively. At node t2, both
b1 and b2 are received. However, at node t1, two copies of b1 are received and
b2 cannot be recovered. Thus this routing scheme does not work. Similarly, if
b2 instead of b1 is sent on channel (3, 4), b1 cannot be recovered at node t2.

However, if network coding is allowed, it is actually possible to achieve our
goal. Figure 17.1(c) shows a scheme which multicasts both b1 and b2 to nodes
t1 and t2, where ‘+’ denotes modulo 2 addition. At node t1, b1 is received, and
b2 can be recovered by adding b1 and b1 + b2, because

3 Here the term “capacity” is used in the sense of graph theory.
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Fig. 17.1. Butterfly Network I.

b1 + (b1 + b2) = (b1 + b1) + b2 = 0 + b2 = b2. (17.1)

Similarly, b2 is received at node t2, and b1 can be recovered by adding b2 and
b1 + b2.

In this scheme, b1 and b2 are encoded into the bit b1 + b2 which is then
sent on channel (3, 4). If network coding is not allowed, in order to multicast
both b1 and b2 to nodes t1 and t2, at least one more bit has to be sent.
Figure 17.1(d) shows such a scheme. In this scheme, however, the capacity of
channel (3, 4) is exceeded by 1 bit. If the capacity of channel (3, 4) cannot be
exceeded and network coding is not allowed, it can be shown that at most 1.5
bits can be multicast per unit time on the average (see Problem 3).
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The above example shows the advantage of network coding over routing
for a single multicast in a network. The next example shows the advantage of
network coding over routing for multiple unicasts4 in a network.

Example 17.2 (Butterfly Network II). In Figure 17.1, instead of both being
generated at node s, suppose bit b1 is generated at node 1 and bit b2 is
generated at node 2. Then we can remove node s and obtain the network in
Figure 17.2(a). We again want to multicast b1 and b2 to both nodes t1 and t2.
Since this network is essentially the same as the previous one, Figure 17.2(b)
shows the obvious network coding solution.
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Fig. 17.2. Butterfly Network II.

There are two multicasts in this network. However, if we merge node 1 and
node t1 into a new node t′1 and merge node 2 and node t2 into a new node t′2,
then we obtain the network and the corresponding network coding solution
in Figure 17.2(c). In this new network, bits b1 and b2 are generated at nodes
t′1 and t′2, respectively, and the communication goal is to exchange the two

4 Unicast is the special case of multicast with one sink node.
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bits through the network. In other words, the two multicasts in Figure 17.2(a)
become two unicasts in Figure 17.2(c).

If network coding is not allowed, we need to route b1 from node t′1 to
node t′2 and to route b2 from node t′2 to node t′1. Since each of these routes
has to go through node 3 and node 4, if b1 and b2 are routed simultaneously,
the capacity of channel (3, 4) is exceeded. Therefore, we see the advantage of
network coding over routing when there are multiple unicasts in the network.

For the network in Figure 17.2(b), the two sink nodes are required to re-
cover both of the information sources, namely the bits b1 and b2. Even though
they are generated at two different source nodes 1 and 2, they can be regarded
as being generated at a super source node s connecting to nodes t1 and t2 as in
Figure 17.1(c). Precisely, the network (network code) in Figure 17.2(b) is ob-
tained from the network (network code) in Figure 17.1(c) by removing node s
and all its output channels. A further elaboration on this theme will be given
in Example 19.26 in Chapter 19 when we discuss single-source linear network
coding.

17.2 Wireless and Satellite Communications

In wireless communication, when a node broadcasts, different noisy versions
of the signal is received by the neighboring nodes. Under certain conditions,
with suitable channel coding, we can assume the existence of an error-free
channel between the broadcast node and the neighboring nodes such that
each of the latter receives exactly the same information. Such an abstraction,
though generally suboptimal, provides very useful tools for communication
systems design.

Our model for network communication can be used for modeling the above
broadcast scenario by imposing the following constraints on the broadcast
node:

1. all the output channels have the same capacity;
2. the same symbol is sent on each of the output channels.

We will refer to these constraints as the broadcast constraint. Figure 17.3(a)
is an illustration of a broadcast node b with two neighboring nodes n1 and
n2, where the two output channels of node b have the same capacity.

In order to express the broadcast constraint in the usual graph-theoretic
terminology, we need to establish the following simple fact about network
coding.

Proposition 17.3. Network coding is not necessary at a node which has only
one input channel and the capacity of each output channel is the same as that
of the input channel.
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Fig. 17.3. A broadcast node b with two neighboring nodes n1 and n2.

Proof. Consider a node in the network as prescribed and denote the symbol(s)
received on the input channel by x. (There is more than one symbol in x if
the input channel has capacity larger than 1.) Let a coding scheme be given,
and denote the symbol sent on the ith output channel by gi(x).

We now show that one may assume without loss of generality that x is
sent on all the output channels. If x instead of gi(x) is sent on the ith out-
put channel, then the receiving node can mimic the effect of receiving gi(x)
by applying the function gi on x upon receiving it. In other words, any cod-
ing scheme that does not send x on all the output channels can readily be
converted into one that does. This proves the proposition. ut

We now show that the broadcast constraint depicted in Figure 17.3(a)
is logically equivalent to the usual graph representation in Figure 17.3(b). In
this figure, the unlabeled node is a dummy node associated with the broadcast
node which is inserted for the purpose of modeling the broadcast constraint,
where the input channel and all the output channels of the dummy node
have the same capacity as an output channel of the broadcast node b in
Figure 17.3(a). Although no broadcast constraint is imposed on the dummy
node in Figure 17.3(b), by Proposition 17.3, we may assume without loss of
generality that the dummy node simply sends the symbol received on the
input channel on each of the output channels. Then Figures 17.3(a) and (b)
are logically equivalent to each other because a coding scheme for the former
corresponds to a coding scheme for the latter, and vice versa.

Example 17.4 (A Wireless/Satellite System). Consider a communication sys-
tem with two wireless nodes t′1 and t′2 that generate two bits b1 and b2, re-
spectively, and the two bits are to be exchanged through a relay node. Such a
system can also be the model of a satellite communication system, where the
relay node corresponds to a satellite, and the two nodes t′1 and t′2 correspond
to ground stations that communicate with each other through the satellite.

We make the usual assumption that a wireless node cannot simultaneously



17.3 Source Separation 407
 

b1 

b2 

b1 

b2 

(a) 

t 1’ t 2’ t 1’ t 2’ 

b1 

b2 

b1 + b2 

(b) 

b1 + b2 

t = 1 

t = 2 

t = 3 

t = 4 

Fig. 17.4. A network coding application in wireless communication.

1. transmit and receive;
2. receive the transmission from more than one neighboring node.

A straightforward routing scheme which takes a total of 4 time units to com-
plete is shown in Figure 17.4(a), with t being the time index.

By taking into account the broadcast nature of the relay node, the system
can be modeled by the network in Figure 17.2(c), where node 3 corresponds to
the relay node and node 4 corresponds to the associated dummy node. Then
the network coding solution is shown in Figure 17.4(b), which takes a total of
3 time units to complete. In other words, a very simple coding scheme at the
relay node can save 50 percent of the downlink bandwidth.

17.3 Source Separation

In an error-free point-to-point communication system, suppose we want to
transmit two information sources X and Y . If we compress the two sources
separately, we need to transmit approximately H(X) +H(Y ) bits. If we com-
press the two sources jointly, we need to transmit approximately H(X,Y )
bits. If X and Y are independent, we have

H(X,Y ) = H(X) +H(Y ). (17.2)

In other words, if the information sources are independent, asymptotically
there is no difference between coding them separately or jointly.

We will refer to coding independent information sources separately as
source separation. Example 17.2 reveals the important fact that source sepa-
ration is not necessary optimal in network communication, which is explained
as follows. Let B1 and B2 be random bits generated at nodes t′1 and t′2, re-
spectively, where B1 and B2 are independent and each of them are distributed
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uniformly on {0, 1}. With B2 as side-information which is independent of B1,
node t′2 has to receive at least 1 bit in order to decode B1. Since node t′2 can re-
ceive information only from node 4 which in turn can receive information only
from node 3, any coding scheme that transmits B1 from node t′1 to node t′2
must send at least 1 bit on channel (3, 4). Similarly, any coding scheme that
transmits B2 from node t′2 to node t′1 must send at least 1 bit on channel
(3, 4). Therefore, any source separation solution must send at least 2 bits on
channel (3, 4). Since the network coding solution in Figure 17.2(c) sends only
1 bit on channel (3, 4), we see that source separation is not optimal.

For a network coding problem with multiple information sources, since
source separation does not guarantee optimality, the problem cannot always
be decomposed into a number single-source problems. We will see that while
single-source network coding has a relatively simple characterization, the char-
acterization of multi-source network coding is much more involved.

Problems

In the following problems, the rate constraint for an edge is in bits per unit
time.

1. Consider the following network.

 
 

 

2 

1 

3 

t2 

t1 

t3 

s 

We want to multicast information to the sink nodes at the maximum rate
without using network coding. Let B = {b1, b2, · · · , bκ} be the set of bits
to be multicast. Let Bi be the set of bits sent in edge (s, i), where |Bi| = 2,
i = 1, 2, 3. At node i, the received bits are duplicated and sent in the two
out-going edges. Thus two bits are sent in each edge in the network.
a) Show that B = Bi ∪Bj for any 1 ≤ i < j ≤ 3.
b) Show that B3 ∪ (B1 ∩B2) = B.
c) Show that |B3 ∪ (B1 ∩B2)| ≤ |B3|+ |B1|+ |B2| − |B1 ∪B2|.
d) Determine the maximum value of κ and devise a network code which

achieves this maximum value.
e) What is the percentage of improvement if network coding is used?
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(Ahlswede et al. [7].)
2. Consider the following butterfly network.

 
 

 

3 4 

1 

2 6 

5 

s 

Devise a network coding scheme which multicasts two bits b1 and b2 from
node s to all the other nodes such that nodes 3, 5, and 6 receive b1 and
b2 after 1 unit time and nodes 1, 2, and 4 receive b1 and b2 after 2 units
of time. In other words, node i receives information at a rate equal to
maxflow(s, i) for all i 6= s.

3. Determine the maximum rate at which information can be multicast to
nodes 5 and 6 only in the network in Problem 2 if network coding is not
used. Devise a network coding scheme which achieves this maximum rate.

4. Convolutional network code In the following network, maxflow(s, tl) = 3
for l = 1, 2, 3. The max-flow bound asserts that 3 bits can be multicast to
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all the three sink nodes per unit time. We now describe a network coding
scheme which achieve this. Let 3 bits b0(k), b1(k), b2(k) be generated at
node s at time k = 1, 2, · · ·, where we assume without loss of generality
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that bl(k) is an element of the finite field GF (2). We adopt the convention
that bl(k) = 0 for k ≤ 0. At time k ≥ 1, information transactions T1 to
T11 occur in the following order:

T1. s sends bl(k) to vl, l = 0, 1, 2
T2. vl sends bl(k) to ul, tl⊕1, and tl⊕2, l = 0, 1, 2
T3. u0 sends b0(k) + b1(k − 1) + b2(k − 1) to u1

T4. u1 sends b0(k) + b1(k − 1) + b2(k − 1) to t2
T5. u1 sends b0(k) + b1(k) + b2(k − 1) to u2

T6. u2 sends b0(k) + b1(k) + b2(k − 1) to t0
T7. u2 sends b0(k) + b1(k) + b2(k) to u0

T8. u0 sends b0(k) + b1(k) + b2(k) to t1
T9. t2 decodes b2(k − 1)
T10. t0 decodes b0(k)
T11. t1 decodes b1(k)

where “⊕” denotes modulo 3 addition and “+” denotes modulo 2 addition.
a) Show that the information transactions T1 to T11 can be performed

at time k = 1.
b) Show that T1 to T11 can be performed at any time k ≥ 1 by induction

on k.
c) Verify that at time k, nodes t0 and t1 can recover b0(k′), b1(k′), and

b2(k′) for all k′ ≤ k.
d) Verify that at time k, node t2 can recover b0(k′) and b1(k′) for all

k′ ≤ k, and b2(k′) for all k′ ≤ k − 1. Note the unit time delay for t2
to recover b2(k).

(Ahlswede et al. [7].)

Historical Notes

The concept of network coding was first introduced for satellite communication
networks in Yeung and Zhang [368] and then fully developed in Ahlswede et al.
[7], where in the latter the term “network coding” was coined. In this work, the
advantage of network coding over store-and-forward was first demonstrated by
the butterfly network, thus refuting the folklore that information transmission
in a point-to-point network is equivalent to a commodity flow.

Prior to [368] and [7], network coding problems for special networks had
been studied in the context of distributed source coding. The suboptimality
of source separation was first demonstrated by Yeung [359]. Source separation
was proved to be optimal for special networks by Hau [143], Roche et al. [279],
and Yeung and Zhang [367]. Some other special cases of single-source network
coding had been studied by Roche et al. [278], Rabin [268], Ayanoglu et al.
[21], and Roche [277].

For a tutorial on the theory, we refer the reader to the unifying work by
Yeung et al. [365]. Tutorials on the subject have also been written by Fragouli
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and Soljanin [111] and Chou and Wu [64] from the algorithm and application
perspectives. We also refer the reader to the book by Ho and Lun [147]. For an
update of the literature, the reader may visit the Network Coding Homepage
[246].
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The Max-Flow Bound

In this chapter, we discuss an important bound for single-source network cod-
ing which has a strong connection with graph theory. This bound, called the
max-flow min-cut bound, or simply the max-flow bound, gives a fundamental
limit on the amount of information that can be multicast in the network.

The max-flow bound is established in a general setting where information
can be transmitted within the network in some arbitrary manner. Toward this
end, we first formally define a point-to-point network and a class of codes on
such a network. In Chapters 19 and 20, we will prove the achievability of the
max-flow bound by linear network coding1.

18.1 Point-to-Point Communication Networks

A point-to-point communication network is represented by a directed graph
G = (V, E), where V is the set of nodes in the network and E is the set of edges
in G which represent the point-to-point channels. Parallel edges between a
pair of nodes is allowed2. We assume that G is finite, i.e., |E| < ∞ (and
hence |V| <∞). The unique source node in the network, where information is
generated, is denoted by s. All the other nodes are referred to as non-source
nodes. The sets of input channels and output channels of a node i are denoted
by In(i) and Out(i), respectively.

For a channel e, let Re be the rate constraint, i.e., the maximum num-
ber of information symbols taken from a finite alphabet that can be sent on
the channel per unit time. As before, we also refer to Re as the capacity of
channel e in the sense of graph theory. Let

R = [Re : e ∈ E ] (18.1)

1 A more specific form of the max-flow bound will be proved in Theorem 19.10 for
linear network coding.

2 Such a graph is sometimes called a multigraph.
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be the rate constraints for the graph G. To simplify our discussion, we assume
that Re are positive integers for all e ∈ E .

In the following, we introduce some notions in graph theory which will
facilitate the characterization of a point-to-point network. Temporarily regard
an edge in the graph G as a water pipe and G as a network of water pipes. Fix a
node t 6= s and call it the sink node. Suppose water is generated at a constant
rate at node s. We assume that the rate of water flow in each pipe does not
exceed its capacity. We also assume that there is no leakage in the network,
so that water is conserved at every node other than s and t in the sense that
the total rate of water flowing into the node is equal to the total rate of water
flowing out of the node. The water generated at node s is eventually drained
at node t.

A flow
F = [Fe : e ∈ E ] (18.2)

in G from node s to node t with respect to rate constraints R is a valid
assignment of a nonnegative integer Fe to every edge e ∈ E such that Fe is
equal to the rate of water flow in edge e under all the assumptions in the
last paragraph. The integer Fe is referred to as the value of F on edge e.
Specifically, F is a flow in G from node s to node t if for all e ∈ E ,

0 ≤ Fe ≤ Re, (18.3)

and for all i ∈ V except for s and t,

F+(i) = F−(i), (18.4)

where
F+(i) =

∑
e∈In(i)

Fe (18.5)

and
F−(i) =

∑
e∈Out(i)

Fe. (18.6)

In the above, F+(i) is the total flow into node i and F−(i) is the total flow
out of node i, and (18.4) is called the conservation conditions.

Since the conservation conditions require that the resultant flow out of any
node other than s and t is zero, it is intuitively clear and not difficult to show
that the resultant flow out of node s is equal to the resultant flow into node t.
This common value is called the value of F. F is a max-flow from node s to
node t in G with respect to rate constraints R if F is a flow from node s to
node t whose value is greater than or equal to the value of any other flow from
node s to node t.

A cut between node s and node t is a subset U of V such that s ∈ U and
t 6∈ U . Let

EU = {e ∈ E : e ∈ Out(i) ∩ In(j) for some i ∈ U and j 6∈ U} (18.7)
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Fig. 18.1. Illustrations of the max-flow and the min-cut from the source node to
(a) a collection of non-source node T and (b) a collection of edges ξ.

be the set of edges across the cut U . The capacity of the cut U with respect
to rate constraints R is defined as the sum of the capacities of all the edges
across the cut, i.e., ∑

e∈EU

Re. (18.8)

A cut U is a min-cut between node s and node t if it is a cut between node s
and node t whose capacity is less than or equal to the capacity of any other
cut between s and t.

A min-cut between node s and node t can be thought of as a bottleneck
between node s and node t. Therefore, it is intuitively clear that the value of
a max-flow from node s to node t cannot exceed the capacity of a min-cut
between the two nodes. The following theorem, known as the max-flow min-
cut theorem, states that the capacity of a min-cut is always achievable. This
theorem will play a key role in the subsequent discussions.

Theorem 18.1 (Max-Flow Min-Cut Theorem [104]). Let G be a graph
with source node s, sink node t, and rate constraints R. Then the value of a
max-flow from node s to node t is equal to the capacity of a min-cut between
the two nodes.

The notions of max-flow and min-cut can be generalized to a collection of
non-source nodes T . To define the max-flow and the min-cut from s to T , we
expand the graph G = (V, E) into G′ = (V ′, E ′) by installing a new node τ
which is connected from every node in T by an edge. The capacity of an edge
(t, τ), t ∈ T , is set to infinity. Intuitively, node τ acts as a single sink node that
collects all the flows into T . Then the max-flow and the min-cut from node s
to T in graph G are defined as the max-flow and the min-cut from node s to
node τ in graph G′, respectively. This is illustrated in Figure 18.1(a).

The notions of max-flow and min-cut can be further generalized to a col-
lection of edges ξ. For an edge e ∈ ξ, let the edge be from node ve to node we.
We modify the graph G = (V, E) to obtain the graph G̃ = (Ṽ, Ẽ) by installing a
new node te for each edge e ∈ ξ and replacing edge e by two new edges e′ and
e′′, where e′ is from node ve to node te and e′′ is from node te to node we. Let
Tξ be the set of nodes te, e ∈ ξ. Then the max-flow and the min-cut between
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Fig. 18.2. A one-sink network.

node s and the collection of edges ξ in graph G are defined as the max-flow
and the min-cut between node s and the collection of nodes Tξ in graph G̃,
respectively. This is illustrated in Figure 18.1(b).

18.2 Examples Achieving the Max-Flow Bound

Let ω be the rate at which information is multicast from source node s to sink
nodes t1, t2, · · · , tL in a network G with rate constraints R. We are naturally
interested in the maximum possible value of ω. With a slight abuse of notation,
we denote the value of a max-flow from source node s to a sink node tl by
maxflow(tl). It is intuitive that

ω ≤ maxflow(tl) (18.9)

for all l = 1, 2, · · · , L, i.e.,

ω ≤ min
l

maxflow(tl). (18.10)

This is called the max-flow bound, which will be formally established in the
next two sections. In this section, we first show by a few examples that the
max-flow bound can be achieved. In these examples, the unit of information
is the bit.

First, we consider the network in Figure 18.2 which has one sink node.
Figure 18.2(a) shows the capacity of each edge. By identifying the min-cut to
be {s, 1, 2} and applying the max-flow min-cut theorem, we see that

maxflow(t1) = 3. (18.11)

Therefore the flow in Figure 18.2(b) is a max-flow. In Figure 18.2(c), we show
how we can send three bits b1, b2, and b3 from node s to node t1 based on the
max-flow in Figure 18.2(b). Evidently, the max-flow bound is achieved.

In fact, we can easily see that the max-flow bound can always be achieved
when there is only one sink node in the network. In this case, we only need to
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Fig. 18.3. A two-sink network without coding.

treat the information bits constituting the message as a commodity and route
them through the network according to any fixed routing scheme. Eventually,
all the bits will arrive at the sink node. Since the routing scheme is fixed, the
sink node knows which bit is coming in from which edge, and the message can
be recovered accordingly.

Next, we consider the network in Figure 18.3 which has two sink nodes.
Figure 18.3(a) shows the capacity of each edge. It is easy to see that

maxflow(t1) = 5 (18.12)

and
maxflow(t2) = 6. (18.13)

So the max-flow bound asserts that we cannot send more than 5 bits to both
t1 and t2. Figure 18.3(b) shows a scheme which sends 5 bits b1, b2, b3, b4, and
b5 to t1 and t2 simultaneously. Therefore, the max-flow bound is achieved. In
this scheme, b1 and b2 are replicated at node 3, b3 is replicated at node s, while
b4 and b5 are replicated at node 1. Note that each bit is replicated exactly
once in the network because two copies of each bit are needed to be sent to
the two sink nodes.

We now revisit the butterfly network reproduced in Figure 18.4(a), which
again has two sink nodes. It is easy to see that

maxflow(tl) = 2 (18.14)

for l = 1, 2. So the max-flow bound asserts that we cannot send more than 2
bits to both sink nodes t1 and t2. We have already seen the network coding
scheme in Figure 18.4(b) that achieves the max-flow bound. In this scheme,
coding is required at node 3.

Finally, we consider the network in Figure 18.5 which has three sink nodes.
Figure 18.5(a) shows the capacity of each edge. It is easy to see that

maxflow(tl) = 2 (18.15)
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Fig. 18.4. Butterfly network I.

for all l. In Figure 18.5(b), we show how to multicast 2 bits b1 and b2 to all the
sink nodes. Therefore, the max-flow bound is achieved. Again, it is necessary
to code at the nodes in order to multicast the maximum number of bits to all
the sink nodes.

The network in Figure 18.5 is of special interest in practice because it is
a special case of the diversity coding scheme used in commercial disk arrays,
which are a kind of fault-tolerant data storage system. For simplicity, assume
the disk array has three disks which are represented by nodes 1, 2, and 3 in
the network, and the information to be stored are the bits b1 and b2. The
information is encoded into three pieces, namely b1, b2, and b1 + b2, which
are stored on the disks represented by nodes 1, 2, and 3, respectively. In the
system, there are three decoders, represented by sink nodes t1, t2, and t3, such
that each of them has access to a distinct set of two disks. The idea is that
when any one disk is out of order, the information can still be recovered from
the remaining two disks. For example, if the disk represented by node 1 is out
of order, then the information can be recovered by the decoder represented by
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Fig. 18.5. A diversity coding scheme.
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sink node t3 which has access to the disks represented by node 2 and node 3.
When all the three disks are functioning, the information can be recovered by
any decoder.

18.3 A Class of Network Codes

In this section, we introduce a general class of codes for the point-to-point
network defined in Section 18.1. In the next section, the max-flow bound will
be proved for this class of network codes.

Since the max-flow bound concerns only the values of max-flows from
source node s to the sink nodes, we assume without loss of generality that
there is no loop in the graph G, i.e., In(i) ∩Out(i) = ∅ for all i ∈ V, because
such edges do not increase the value of a max-flow from node s to a sink node.
For the same reason, we assume that there is no input edge at node s, i.e.,
In(s) = ∅.

We consider a block code of length n. Let X denote the information source
and assume that x, the outcome of X, is obtained by selecting an index from
a set X according to the uniform distribution. The elements in X are called
messages. The information sent on an output channel of a node can depend
only on the information previously received by that node. This constraint
specifies the causality of any coding scheme on the network.

An (n, (ηe : e ∈ E), τ) network code on the graph G that multicasts infor-
mation from source node s to sink nodes t1, t2, · · · , tL, where n is the block
length, is defined by the components listed below; the construction of the code
from these components will be described after their definitions are given.

1) A positive integer K.
2) Mappings

u : {1, 2, · · · ,K} → V, (18.16)
v : {1, 2, · · · ,K} → V, (18.17)

and
ê : {1, 2, · · · ,K} → E , (18.18)

such that ê(k) ∈ Out(u(k)) and ê(k) ∈ In(v(k)).
3) Index sets Ak = {1, 2, · · · , |Ak|}, 1 ≤ k ≤ K, such that∏

k∈Te

|Ak| = ηe, (18.19)

where
Te = {1 ≤ k ≤ K : ê(k) = e}. (18.20)
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4) (Encoding functions). If u(k) = s, then

fk : X → Ak, (18.21)

where
X = {1, 2, · · · , d2nτe}. (18.22)

If u(k) 6= s, if
Qk = {1 ≤ k′ < k : v(k′) = u(k)} (18.23)

is nonempty, then
fk :

∏
k′∈Qk

Ak′ → Ak; (18.24)

otherwise, let fk be an arbitrary constant taken from Ak.
5) (Decoding functions). Mappings

gl :
∏
k′∈Wl

Ak′ → X (18.25)

for l = 1, 2, · · · , L, where

Wl = {1 ≤ k ≤ K : v(k) = tl} (18.26)

such that for all l = 1, 2, · · · , L,

g̃l(x) = x (18.27)

for all x ∈ X , where g̃l is the function from X to X induced inductively by
fk, 1 ≤ k ≤ K and gl, such that g̃l(x) denotes the value of gl as a function
of x.

The quantity τ is the rate of the information source X, which is also the rate
at which information is multicast from the source node to all the sink nodes.
The (n, (ηe : e ∈ E), τ) code is constructed from the above components as
follows. At the beginning of a coding session, the value of X is available to
node s. During the coding session, there are K transactions which take place
in chronological order, where each transaction refers to a node sending infor-
mation to another node. In the kth transaction, node u(k) encodes according
to encoding function fk and sends an index in Ak to node v(k). The domain
of fk is the set of all possible information that can be received by node u(k)
just before the kth transaction, and we distinguish two cases. If u(k) = s, the
domain of fk is X . If u(k) 6= s, Qk gives the time indices of all the previous
transactions for which information was sent to node u(k), so the domain of
fk is

∏
k′∈Qk Ak′ . The set Te gives the time indices of all the transactions

for which information is sent on channel e, so ηe is the number of possible
index tuples that can be sent on channel e during the coding session. Finally,
Wl gives the indices of all the transactions for which information is sent to
node tl, and gl is the decoding function at node tl which recovers x with zero
error.
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18.4 Proof of the Max-Flow Bound

In this section, we state and prove the max-flow bound for the class of network
codes defined in the last section.

Definition 18.2. For a graph G with rate constraints R, an information rate
ω ≥ 0 is asymptotically achievable if for any ε > 0, there exists for sufficiently
large n an (n, (ηe : e ∈ E), τ) network code on G such that

n−1 log2 ηe ≤ Re + ε (18.28)

for all e ∈ E, where n−1 log2 ηe is the average bit rate of the code on channel e,
and

τ ≥ ω − ε. (18.29)

For brevity, an asymptotically achievable information rate will be referred to
as an achievable information rate.

Remark It follows from the above definition that if ω ≥ 0 is achievable,
then ω′ is also achievable for all 0 ≤ ω′ ≤ ω. Also, if ω(k) is achievable for
all k ≥ 1, then it can be shown that ω = limk→∞ ω(k), if exists, is also
achievable. Therefore, the set of all achievable information rates is closed and
fully characterized by the maximum value in the set.

Theorem 18.3 (Max-Flow Bound). For a graph G with rate constraints
R, if ω is achievable, then

ω ≤ min
l

maxflow(tl). (18.30)

Proof. It suffices to prove that for a graph G with rate constraints R, if for
any ε > 0 there exists for sufficiently large n an (n, (ηe : e ∈ E), τ) code on G
such that

n−1 log2 ηe ≤ Re + ε (18.31)

for all e ∈ E and
τ ≥ ω − ε, (18.32)

then ω satisfies (18.30).
Consider such a code for a fixed ε and a sufficiently large n, and consider

any l = 1, 2, · · · , L and any cut U between node s and node tl. Let

wj(x) = (f̃k(x) : k ∈ ∪e∈In(j)Te), (18.33)

where x ∈ X and f̃k is the function from X to Ak induced inductively by
fk′ , 1 ≤ k′ ≤ k, such that f̃k(x) denotes the value of fk as a function of x. The
tuple wj(x) is all the information known by node j during the whole coding
session when the message is x. Since f̃k(x) is a function of the information
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previously received by node u(k), it can be shown by induction (see Problem 3)
that wtl(x) is a function of f̃k(x), k ∈ ∪e∈EUTe, where EU is the set of edges
across the cut U as previously defined in (18.7). Since x can be determined at
node tl, we have

H(X) ≤ H(X,wtl(X)) (18.34)
= H(wtl(X)) (18.35)
a)

≤ H

(
f̃k(X), k ∈

⋃
e∈EU

Te

)
(18.36)

b)

≤
∑
e∈EU

∑
k∈Te

H(f̃k(X)) (18.37)

c)

≤
∑
e∈EU

∑
k∈Te

log2 |Ak| (18.38)

=
∑
e∈EU

log2

(∏
k∈Te

|Ak|

)
(18.39)

d)

≤
∑
e∈EU

log2 ηe, (18.40)

where

• a) follows because wtl(x) is a function of f̃k(x), k ∈ ∪e∈EUTe;
• b) follows from the independence bound for entropy (Theorem 2.39);
• c) follows from (18.21) and Theorem 2.43;
• d) follows from (18.19).

Thus

ω − ε ≤ τ (18.41)
≤ n−1 log2d2nτe (18.42)
= n−1 log2 |X | (18.43)
= n−1H(X) (18.44)

≤
∑
e∈EU

n−1 log2 ηe (18.45)

≤
∑
e∈EU

(Re + ε) (18.46)

≤
∑
e∈EU

Re + |E|ε, (18.47)

where (18.45) follows from (18.40). Minimizing the right hand side over all U ,
we have
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ω − ε ≤ min
U

∑
e∈EU

Re + |E|ε. (18.48)

The first term on the right hand side is the capacity of a min-cut between
node s and node tl. By the max-flow min-cut theorem, it is equal to the value
of a max-flow from node s to node tl, i.e., maxflow(tl). Letting ε → 0, we
obtain

ω ≤ maxflow(tl). (18.49)

Since this upper bound on ω holds for all l = 1, 2, · · · , L,

ω ≤ min
l

maxflow(tl). (18.50)

The theorem is proved. ut

Remark 1 In proving the max-flow bound, the time evolution and the
causality of the network code have been taken into account.

Remark 2 Even if we allow an arbitrarily small probability of decoding error
in the usual Shannon sense, by modifying our proof by means of a standard
application of Fano’s inequality, it can be shown that it is still necessary for
ω to satisfy (18.50). The details are omitted here.

Problems

1. In a network, for a flow F from a source node s to a sink node t, show
that F+(s) = F−(t) provided that the conservation conditions in (18.4)
hold.

2. For the class of codes defined in Section 18.3, show that
a) If the rates ω(k) are achievable for all k ≥ 1, then ω = limk→∞ ω(k),

if exists, is also achievable.
b) The tuple wtl(x) is a function of f̃k(x), k ∈ ∪e∈EUTe, where U is any

cut between source node s and sink node tl.
3. Prove the claim in the proof of Theorem 18.3 that for any cut U between

node s and node tl, wtl(x) is a function of f̃k(x), k ∈ ∪e∈EUTe. Hint: Define

wj,κ(x) = (f̃k(x) : k ∈ ∪e∈In(j)Te and k ≤ κ)

and prove by induction on κ that for all 1 ≤ κ ≤ K, (wj,κ(x) : j 6∈ U) is
a function of (f̃k(x) : k ∈ ∪e∈EUTe and k ≤ κ).

4. Probabilistic network code For a network code defined in Section 18.3, the
kth transaction of the coding process is specified by a mapping fk. Suppose
instead of a mapping fk, the kth transaction is specified by a transition
probability matrix from the domain of fk to the range of fk. Also, instead
of a mapping gl, decoding at sink node tl is specified by a transition
probability matrix from the domain of gl to the range of gl, 1 ≤ l ≤ L.
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Conditioning on the indices received by node u(k) during 1 ≤ k′ < k,
the index sent from node u(k) to node v(k) in the kth transaction is
independent of all the previously generated random variables. Similarly,
conditioning on all the indices received by sink node tl during the whole
coding session, the decoding at tl is independent of all the previously
generated random variables.
We refer to such a code as a probabilistic network code. Since a deter-
ministic network code is a special case of a probabilistic network code,
the latter can potentially multicast at a higher rate compared with the
former. Prove that this is not possible.

5. Consider a probabilistic network code on the network below.

 
 

 

s 1 t 

Let X = (X1, X2) be uniformly distributed on GF (2)2, and Z be inde-
pendent of X and uniformly distributed on GF (2). We use F̃k to de-
note the index transmitted in the kth transaction and Wtl to denote
(F̃k, k ∈ ∪e∈In(tl)Te). The probabilistic network code is specified by the
following 5 transactions:

u(1) = s, v(1) = 1, F̃1 = X1,

u(2) = 1, v(2) = t, F̃2 = X1 + Z,

u(3) = t, v(3) = s, F̃3 = X1 + Z,

u(4) = s, v(4) = 1, F̃4 = (X1, X2 + Z),

u(5) = 1, v(5) = t, F̃5 = (X1, X2 + Z).

Note that the 4th transaction is possible because upon knowing X1 and
X1 + Z, Z can be determined.
a) Determine Wt.
b) Verify that X can be recovered from Wt.
c) Show that X → (F̃1, F̃4)→Wt does not form a Markov chain.

Here, F̃1 and F̃4 are all the random variables sent on edge (s, 1) during
the coding session. Although node t receives all the information through
the edge (s, 1), the Markov chain in c) does not hold.
(Ahlswede et al. [7].)
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Historical Notes

The max-flow bound presented in this chapter was proved by Ahlswede et al.
[7], where the point-to-point channels in the network are noiseless.

The max-flow bound can be established when the point-to-point chan-
nels in the network are discrete memoryless channels. Borade [44] proved the
bound with the assumptions that the channels are independent of each other
and that the transmissions in the channels are synchronous. Song et al. [309]
proved the bound without the latter assumption. These results are network
generalizations of the result by Shannon [295] asserting that the capacity of
a discrete memoryless channel is not increased by feedback (see Section 7.6),
and they imply the asymptotic optimality of separating network coding and
channel coding under the corresponding assumptions.





19

Single-Source Linear Network Coding: Acyclic
Networks

In the last chapter, we have established the max-flow bound as the funda-
mental bound for multicasting a single information source in a point-to-point
communication network. In the next two chapters, we will construct linear
network codes that achieve the max-flow bound at various levels of generality.

A finite field is a system of symbols on which one can perform operations
corresponding to the four operations in arithmetic for real numbers, namely
addition, subtraction, multiplication, and division. The set of real numbers
together with the associated operations are referred to as the field of real
numbers, or simply the real field. Unlike the real field that has an infinite
number of elements, a finite field has only a finite number of elements. For
finite field theory, we refer the reader to [238]. For our discussions here, since
we will not make use of the detailed structural properties of a finite field, the
reader may by and large regard the algebra on a finite field and the algebra
on the real field as the same.

In a linear network code, all the information symbols are regarded as
elements of a finite field F called the base field. These include the symbols
that comprise the information source as well as the symbols transmitted on
the channels. For example, F is taken to be the binary field GF (2) when the
information unit is the bit. Furthermore, encoding and decoding are based
on linear algebra defined on the based field, so that efficient algorithms for
encoding and decoding as well as for code construction can be obtained.

In this chapter, we consider acyclic networks, i.e., networks with no di-
rected cycle. We study the network coding problem in which a message con-
sisting of a finite block of symbols is multicast. We make the ideal assumption
that the propagation delay in the network, which includes the processing de-
lay at the nodes and the transmission delay over the channels, is zero. In a
general setting, a pipeline of messages may be multicast, and the propagation
delay may be non-negligible. If the network is acyclic, then the operations in
the network can be so synchronized that sequential messages are processed
independent of each other. In this way, the network coding problem is inde-



428 19 Single-Source Linear Network Coding: Acyclic Networks

pendent of the propagation delay. Therefore, it suffices to study the network
coding problem as described.

On the other hand, when a network contains directed cycles, the processing
and transmission of sequential messages can convolve with together. Then the
amount of delay incurred becomes part of the consideration in network coding.
This will be discussed in the next chapter.

19.1 Acyclic Networks

Denote a directed network by G = (V, E), where V and E are the sets of
nodes and channels, respectively. A pair of channels (d, e) ∈ E ×E is called an
adjacent pair if there exists a node t ∈ V such that d ∈ In(t) and e ∈ Out(t).
A directed path in G is a sequence of channels

e1, e2, · · · , em (19.1)

such that (ei, ei+1) is an adjacent pair for all 1 ≤ i < m. Let e1 ∈ Out(t)
and em ∈ In(t′). The sequence in (19.1) is called a directed path from e1 to
em, or equivalently, a directed path from node t to node t′. If t = t′, then
the directed path is called a directed cycle. A directed network G is cyclic if
it contains a directed cycle, otherwise G is acyclic.

Acyclic networks are easier to handle because the nodes in the network
can be ordered in a way which allows encoding at the nodes to be carried out
in a sequential and consistent manner. The following proposition and its proof
describe such an order.

Proposition 19.1. If G is a finite directed acyclic graph, then it is possible
to order the nodes of G in a sequence such that if there is an edge from node i
to node j, then node i appears before node j in the sequence.

Proof. We partition the set V into subsets V1,V2, · · ·, such that node i is in Vk
if and only if the length of a longest directed path ending at node i is equal
to k. We first prove that if node i is in Vk′ and node j is in Vk such that there
exists a directed path from node i to node j, then k′ < k. Since the length
of a longest directed path ending at node i is equal to k′ and there exists a
directed path from node i to node j (with length at least equal to 1), there
exists a directed path ending at node j with length equal to k′+ 1. As node j
is in Vk, we have

k′ + 1 ≤ k, (19.2)

so that
k′ < k. (19.3)

Hence, by listing the nodes of G in a sequence such that the nodes in Vk′
appear before the nodes in Vk if k′ < k, where the order of the nodes within
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each Vk is arbitrary, we obtain an order of the nodes of G with the desired
property. ut

Following the direction of the edges, we will refer to an order prescribed
by Proposition 19.1 as an upstream-to-downstream order1. For a given acyclic
network, such an order (not unique) is implicitly assumed. The nodes in the
network encodes according to this order, referred to as the encoding order.
Then whenever a node encodes, all the information needed would have already
been received on the input channels of that node.

Example 19.2. Consider ordering the nodes in the butterfly network in Fig-
ure 17.1 by the sequence

s, 2, 1, 3, 4, t2, t1. (19.4)

It is easy to check that in this sequence, if there is a directed path from node i
to node j, then node i appears before node j.

19.2 Linear Network Codes

In this section, we formulate a linear network code on an acyclic network G.
By allowing parallel channels between a pair of nodes, we assume without loss
of generality that all the channels in the network have unit capacity, i.e., one
symbol in the base field F can be transmitted on each channel. There exists
a unique node s in G, called the source node, where a message consisting of
ω symbols taken from the base field F is generated. To avoid trivially, we
assume that every non-source node has at least one input channel.

As in Section 18.3, we assume that there is no loop in G, and there is no
input channel at node s. To facilitate our discussion, however, we let In(s) be
a set of ω imaginary channels that terminate at node s but have no originating
nodes. The reader may think of the ω symbols forming the message as being
received by source node s on these ω imaginary channels. We emphasize that
these imaginary channels are not part of the network, and the number of these
channels is context dependent. Figure 19.1(a) illustrates the butterfly network
with ω = 2 imaginary channels appended at source node s.

Two directed paths P1 and P2 in G are edge-disjoint if the two paths do
not share a common channel. It is not difficult to see from the conservation
conditions in (18.4) that for a non-source node t, the maximum number of
edge-disjoint paths from node s to node t is equal to maxflow(t).

The message generated at source node s, consisting of ω symbols in the
base field F , is represented by a row ω-vector x ∈ Fω. Based on the value of
x, source node s transmits a symbol over each output channel. Encoding at
the nodes in the network is carried out according to a certain upstream-to-
downstream order. At a node in the network, the ensemble of received symbols
1 Also called an ancestral order in graph theory.
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Fig. 19.1. (a) Two imaginary channels are appended to the source node of the
butterfly network. (b) A 2-dimensional network code for the butterfly network.

is mapped to a symbol in F specific to each output channel, and the symbol
is sent on that channel. The following definition of a network code formally
describes this mechanism. Since the code so defined is not necessarily linear,
the base field F can be regarded in this context as any finite alphabet.

Definition 19.3 (Local Description of a Network Code). An ω-dimensional
network code on an acyclic network over a base field F consists of a local en-
coding mapping

k̃e : F |In(t)| → F (19.5)

for every channel e in the network, where e ∈ Out(t).

With the encoding mechanism as described, the local encoding mappings
derive recursively the symbols transmitted over all channels e, denoted by
f̃e(x). The above definition of a network code does not explicitly give the
values of f̃e(x), whose mathematical properties are at the focus of the present
discussion. Therefore, we also present an equivalent definition below, which
describes a network code in terms of both the local encoding mechanisms as
well as the recursively derived values f̃e(x).

Definition 19.4 (Global Description of a Network Code). An ω-
dimensional network code on an acyclic network over a base field F consists
of a local encoding mapping

k̃e : F |In(t)| → F (19.6)

and a global encoding mapping
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f̃e : Fω → F (19.7)

for each channel e in the network, where e ∈ Out(t), such that:

(19.8) For every node t and every channel e ∈ Out(t), f̃e(x) is uniquely de-
termined by (f̃d(x), d ∈ In(t)) via the local encoding mapping k̃e.

(19.9) For the ω imaginary channels e, the mappings f̃e form the standard
basis of the vector space Fω.

Example 19.5. Let x = [ b1 b2 ] denote a generic row vector in GF (2)2. Fig-
ure 19.1(b) shows a 2-dimensional binary network code for the butterfly net-
work with the following global encoding mappings:

f̃e(x) = b1 for e = (o, s), (s, t), (t, w), (t, y) (19.10)
f̃e(x) = b2 for e = (o, s)′, (s, u), (u,w), (u, z) (19.11)

f̃e(x) = b1 + b2 for e = (w, x), (x, y), (x, z), (19.12)

where (o, s) and (o, s)′ denote the two imaginary channels at node s. The
corresponding local encoding mappings are

k̃(s,t)(b1, b2) = b1, k̃(s,u)(b1, b2) = b2, (19.13)

k̃(t,w)(b1) = k̃(t,y)(b1) = b1, (19.14)

k̃(u,w)(b2) = k̃(u,z)(b2) = b2, k̃(w,x)(b1, b2) = b1 + b2, (19.15)

etc.

When a global encoding mapping f̃e is linear, it corresponds to a column
ω-vector fe such that f̃e(x) is the product x · fe, where the row ω-vector x is
the message generated at node s. Similarly, when a local encoding mapping
k̃e, where e ∈ Out(t), is linear, it corresponds to a column |In(t)|-vector ke
such that k̃e(y) = y · ke, where y ∈ F |In(t)| is the row vector representing
the symbols received at node t. In an ω-dimensional network code on an
acyclic network, if all the local encoding mappings are linear, then so are the
global encoding mappings since they are functional compositions of the local
encoding mappings. The converse is also true: If the global encoding mappings
are all linear, then so are the local encoding mappings. We leave the proof as
an exercise.

In the following, we formulate a linear network code as a network code
whose local and global encoding mappings are all linear. Again, both the
local and global descriptions are presented even though they are equivalent.
The global description of a linear network code will be very useful when we
construct such codes in Section 19.4.

Definition 19.6 (Local Description of a Linear Network Code). An
ω-dimensional linear network code on an acyclic network over a base field F
consists of a scalar kd,e, called the local encoding kernel, for every adjacent
pair of channels (d, e) in the network. The |In(t)| × |Out(t)| matrix
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Kt = [kd,e]d∈In(t),e∈Out(t) (19.16)

is called the local encoding kernel at node t.

Note that the matrix structure of Kt implicitly assumes an ordering among
the channels.

Definition 19.7 (Global Description of a Linear Network Code). An
ω-dimensional linear network code on an acyclic network over a base field F
consists of a scalar kd,e for every adjacent pair of channels (d, e) in the network
as well as a column ω-vector fe for every channel e such that:

(19.17) fe =
∑
d∈In(t) kd,e fd, where e ∈ Out(t).

(19.18) The vectors fe for the ω imaginary channels e ∈ In(s) form the stan-
dard basis of the vector space Fω.

The vector fe is called the global encoding kernel for channel e.

We now explain how the global description above specifies the linear net-
work code. Initially, source node s generates a message x as a row ω-vector.
In view of (19.18), the symbols in x are regarded as being received by source
node s on the imaginary channels as x·fd, d ∈ In(s). Starting at source node s,
any node t in the network receives the symbols x · fd, d ∈ In(t), from which
it calculates the symbol x · fe for sending on each channel e ∈ Out(t) via the
linear formula

x · fe = x
∑

d∈In(t)

kd,e fd =
∑

d∈In(t)

kd,e(x · fd), (19.19)

where the first equality follows from (19.17). In this way, the symbol x · fe is
transmitted on any channel e (which may be an imaginary channel) in the
network.

Given the local encoding kernels for all the channels in an acyclic network,
the global encoding kernels can be calculated recursively in any upstream-to-
downstream order by (19.17), while (19.18) provides the boundary conditions.

Remark A partial analogy can be drawn between the global encoding kernels
for the channels in a linear network code and the columns of a generator matrix
of a linear block code in algebraic coding theory [209][37][341]. The former are
indexed by the channels in the network, while the latter are indexed by “time.”
However, the global encoding kernels in a linear network code are constrained
by the network topology via (19.17), while the columns in the generator matrix
of a linear block code in general are not subject to any such constraint.

The following two examples illustrate the relation between the local en-
coding kernels and the global encoding kernels of a linear network code. The
reader should understand these two examples thoroughly before proceeding
to the next section.



19.2 Linear Network Codes 433

 

Kt = ! "11  

Kx = ! "11  

s

t u 

w

 y  z 

x
#
$

%
&
'

(
1
1

#
$

%
&
'

(
1
1

 

f(o,s)) = 
#
$

%
&
'

(
1
0

 f(o,s) = 
#
$

%
&
'

(
0
1

 

Ks =
 

#
$

%
&
'

(
10
01  

Ku= ! "11  

Kw = #
$

%
&
'

(
1
1   

#
$

%
&
'

(
1
1

#
$

%
&
'

(
1
0

#
$

%
&
'

(
1
0

#
$

%
&
'

(
1
0

#
$

%
&
'

(
0
1

#
$

%
&
'

(
0
1

#
$

%
&
'

(
0
1

Fig. 19.2. The global and local encoding kernels for the 2-dimensional linear net-
work code in Example 19.8.

Example 19.8. The network code in Figure 19.1(b) is in fact linear. Assume
the alphabetical order among the channels (o, s), (o, s)′, (s, t), · · ·, (x, z). Then
the local encoding kernels at nodes are:

Ks =
[

1 0
0 1

]
, Kt = Ku = Kx =

[
1 1
]
, Kw =

[
1
1

]
. (19.20)

The corresponding global encoding kernels are:

fe =



[
1
0

]
for e = (o, s), (s, t), (t, w), and (t, y)

[
0
1

]
for e = (o, s)′, (s, u), (u,w), and (u, z)

[
1
1

]
for e = (w, x), (x, y), and (x, z).

(19.21)

The local/global encoding kernels are summarized in Figure 19.2. In fact, they
describe a 2-dimensional linear network code regardless of the choice of the
base field.

Example 19.9. For a general 2-dimensional linear network code on the network
in Figure 19.2, the local encoding kernels at the nodes can be expressed as

Ks =
[
a c
b d

]
, Kt =

[
e f
]
, Ku =

[
g h
]
, (19.22)

Kw =
[
i
j

]
, Kx =

[
k l
]
, (19.23)
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where a, b, c, · · · , l, the entries of the matrices, are indeterminates in the base
field F . Starting with

f(o,s) =
[

1
0

]
and f(o,s)′ =

[
0
1

]
, (19.24)

we can obtain all the global encoding kernels below by applying (19.17) re-
cursively:

f(s,t) =
[
a
b

]
, f(s,u) =

[
c
d

]
, f(t,w) =

[
ae
be

]
, f(t,y) =

[
af
bf

]
, (19.25)

f(u,w) =
[
cg
dg

]
, f(u,z) =

[
ch
dh

]
, f(w,x) =

[
aei+ cgj
bei+ dgj

]
, (19.26)

f(x,y) =
[
aeik + cgjk
beik + dgjk

]
, f(x,z) =

[
aeil + cgjl
beil + dgjl

]
. (19.27)

For example, f(w,x) is obtained from f(t,w) and f(u,w) by

f(w,x) = k(t,w),(w,x)f(t,w) + k(u,w),(w,x)f(u,w) (19.28)

= i

[
ae
be

]
+ j

[
cg
dg

]
(19.29)

=
[
aei+ cgj
bei+ dgj

]
. (19.30)

The local/global encoding kernels of the general linear network code are sum-
marized in Figure 19.3.

19.3 Desirable Properties of a Linear Network Code

We have proved in Section 18.4 that in a communication network represented
by a graph G, the rate at which information is transmitted from source node s
to any node t cannot exceed maxflow(t), the value of a max-flow from node s
to node t. For a collection of non-source nodes T , denote by maxflow(T ) the
value of a max-flow from node s to T . Then it is readily seen that the rate
at which information is transmitted from source node s to the collection of
nodes T cannot exceed maxflow(T ).

In the sequel, we adopt the conventional notation 〈·〉 for the linear span
of a set of vectors. For a node t, let

Vt = 〈{fe : e ∈ In(t)}〉 (19.31)

and for a collection T of nodes, let

VT = 〈∪t∈T Vt〉. (19.32)
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Fig. 19.3. Local/global encoding kernels of a general 2-dimensional linear network
code.

For a collection ξ of channels, let

Vξ = 〈{fe : e ∈ ξ}〉, (19.33)

with the convention V∅ = {0}, where 0 denotes the zero column ω-vector.
In the next theorem, we first establish a specific form of the max-flow

bound which applies to linear network coding.

Theorem 19.10 (Max-Flow Bound for Linear Network Coding). For
an ω-dimensional linear network code on an acyclic network, for any collection
T of non-source nodes,

dim(VT ) ≤ min{ω,maxflow(T )}. (19.34)

Proof. Let the acyclic network be G = (V, E). Consider a cut U between source
node s and a collection T of non-source nodes, and let EU be the set of edges
across the cut U as in (18.7). Then VT is a linear transformation of VEU , where

dim(VT ) ≤ dim(VEU ) ≤ |EU | (19.35)

Minimizing over all the cuts between s and T and invoking the max-flow
min-cut theorem, we have

dim(VT ) ≤ maxflow(T ). (19.36)

On the other hand, VT is a linear transformation of the standard basis of Fω

whose dimension is equal to ω. Therefore,
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dim(VT ) ≤ ω. (19.37)

Then the proof is completed by combining (19.36) and (19.37). ut

For a collection of channels ξ ⊂ E (i.e., not including the imaginary chan-
nels), we denote by maxflow(ξ) the value of a max-flow from source node s to
ξ. Theorem 19.10 has the following straightforward corollary.

Corollary 19.11. For an ω-dimensional linear network code on an acyclic
network, for any collection of channels ξ ⊂ E,

dim(Vξ) ≤ min{ω,maxflow(ξ)}. (19.38)

Whether the max-flow bound in Theorem 19.10 or Corollary 19.11 is
achievable depends on the network topology, the dimension ω, and the coding
scheme. Three special classes of linear network codes are defined below by the
achievement of this bound to three different extents.

Definition 19.12. An ω-dimensional linear network code on an acyclic net-
work qualifies as a linear multicast, a linear broadcast, or a linear dispersion,
respectively, if the following hold:

(19.39) dim(Vt) = ω for every non-source node t with maxflow(t) ≥ ω.
(19.40) dim(Vt) = min{ω,maxflow(t)} for every non-source node t.
(19.41) dim (VT ) = min{ω,maxflow(T )} for every collection T of non-source

nodes.

For a set ξ of channels, including possibly the imaginary channels, let

Fξ =
[
fe
]
e∈ξ (19.42)

be the ω × |ξ| matrix obtained by putting fe, e ∈ ξ in juxtaposition. For
a node t, the symbols x · fe, e ∈ In(t) are received on the input channels.
Equivalently, the row |In(t)|-vector

x · FIn(t) (19.43)

is received. Obviously, the message x, consisting of ω information units, can
be uniquely determined at the node if and only if the rank of FIn(t) is equal
to ω, i.e.,

dim(Vt) = ω. (19.44)

The same applies to a collection T of non-source nodes.
For a linear multicast, a node t can decode the message x if and only if

maxflow(t) ≥ ω. For a node t with maxflow(t) < ω, nothing is guaranteed.
An application of an ω-dimensional linear multicast is for multicasting infor-
mation at rate ω to all (or some of) those non-source nodes with max-flow at
least equal to ω.
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For a linear broadcast, like a linear multicast, a node t can decode the
message x if and only if maxflow(t) ≥ ω. For a node t with maxflow(t) < ω,
the set of all received vectors, namely

{x · FIn(t) : x ∈ Fω}, (19.45)

form a vector subspace of Fω with dimension equal to maxflow(t), but there
is no guarantee on which such subspace is actually received2. An application
of linear broadcast is for multicasting information on a network at a variable
rate (see Problem 13). A random version of linear broadcast (to be discussed
in Section 19.4) is also useful for identifying the max-flow of a non-source in
an unknown network topology [320].

For a linear dispersion, a collection T of non-source nodes can decode the
message x if and only if maxflow(T ) ≥ ω. If maxflow(T ) < ω, the collection T
receives a vector subspace with dimension equal to maxflow(T ). Again, there
is no guarantee on which such subspace is actually received. An application
of linear dispersion is in a two-tier network system consisting of the backbone
network and a number of local area networks (LANs), where each LAN is
connected to one or more nodes on the backbone network. An information
source with rate ω, generated at a node s in the backbone network, is to be
transmitted to every user on the LANs. With a linear dispersion on the back-
bone network, every user on a LAN can receive the information source as long
as the LAN acquires through the backbone network an aggregated max-flow
from node s at least equal to ω. Moreover, new LANs can be established under
the same criterion without modifying the linear dispersion on the backbone
network.

Note that for all the three classes of linear network codes in Defini-
tion 19.12, a sink node is not explicitly identified. Also, it is immediate from
the definition that every linear dispersion is a linear broadcast, and every
linear broadcast is a linear multicast. The example below shows that a lin-
ear broadcast is not necessarily a linear dispersion, a linear multicast is not
necessarily a linear broadcast, and a linear network code is not necessarily a
linear multicast.

Example 19.13. Figure 19.4(a) shows a 2-dimensional linear dispersion on an
acyclic network with the global encoding kernels as prescribed. Figure 19.4(b)
shows a 2-dimensional linear broadcast on the same network that is not a
linear dispersion because

maxflow({t, u}) = 2 = ω, (19.46)

while the global encoding kernels of the channels in In(t)∪In(u) span only a 1-
dimensional subspace. Figure 19.4(c) shows a 2-dimensional linear multicast
that is not a linear broadcast since node u receives no information at all.
Finally, the 2-dimensional linear network code in Figure 19.4(d) is not a linear
multicast.
2 Here Fω refers to the row vector space.
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Fig. 19.4. (a) A 2-dimensional linear dispersion over an acyclic network. (b) A
2-dimensional linear broadcast that is not a linear dispersion. (c) A 2-dimensional
linear multicast that is not a linear broadcast. (d) A 2-dimensional linear network
code that is not a linear multicast.

Example 19.14. The linear network code in Example 19.8 meets all the criteria
(19.39) through (19.41) in Definition 19.12. Thus it is a 2-dimensional linear
dispersion, and hence also a linear broadcast and linear multicast, regardless
of the choice of the base field. The same applies to the linear network code in
Figure 19.4(a).

Example 19.15. The general linear network code in Example 19.9 meets the
criterion (19.39) for a linear multicast when

• f(t,w) and f(u,w) are linearly independent;
• f(t,y) and f(x,y) are linearly independent;
• f(u,z) and f(x,z) are linearly independent.

Equivalently, the criterion says that e, f, g, h, k, l, ad− bc, abei+adgj− baei−
bcgj, and daei + dcgj − cbei − cdgj are all nonzero. Example 19.8 has been
the special case with

a = d = e = f = g = h = i = j = k = l = 1 (19.47)

and
b = c = 0. (19.48)
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Transformation of a Linear Network Code

Consider an ω-dimensional linear network code C on an acyclic network. Sup-
pose source node s, instead of encoding the message x, encodes

x′ = xA, (19.49)

where A is an invertible ω×ω matrix. Then the symbol sent on a channel e ∈ E
is given by

x′ · fe = (xA) · fe = x · (A fe). (19.50)

This gives a new linear network code C′ with respect to the message x with
global encoding kernels

f ′e =
{
A fe if e ∈ E
fe if e ∈ In(s). (19.51)

Recall the definition of the matrix Fξ in (19.42) for a set of channels ξ. Then
(19.17) can be written in matrix form as

FOut(t) = FIn(t)Kt (19.52)

for all nodes t, where Kt is the local encoding kernel at node t. Similarly,
letting

F ′ξ =
[
f ′e
]
e∈ξ , (19.53)

we obtain from (19.51) that

F ′Out(t) = AFOut(t) (19.54)

for all nodes t,
F ′In(t) = AFIn(t) (19.55)

for all nodes t 6= s, and
F ′In(s) = FIn(s). (19.56)

For a node t 6= s, from (19.54), (19.52), and (19.55),

F ′Out(t) = AFOut(t) (19.57)
= A(FIn(t)Kt) (19.58)
= (AFIn(t))Kt (19.59)
= F ′In(t)Kt. (19.60)

Since fe, e ∈ In(s) form the standard basis of Fω,

FIn(s) = F ′In(s) = I, (19.61)

the ω × ω identity matrix. It then follows from (19.54), (19.52), and (19.61)
that
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F ′Out(s) = AFOut(s) (19.62)
= A(FIn(s)Ks) (19.63)
= AKs (19.64)
= F ′In(s)(AKs). (19.65)

Comparing (19.60) and (19.65) with (19.52), we see that the local encoding
kernels of C′ are given by

K ′t =
{
Kt if t 6= s
AKs if t = s. (19.66)

The network code C′ is called the transformation of the network code C
by the (invertible) matrix A. In view of Definition 19.12, the requirements
of a linear multicast, a linear broadcast, and a linear dispersion are all in
terms of the linear independence among the global encoding kernels. We leave
it as an exercise for the reader to show that if a network code is a linear
multicast, broadcast, or dispersion, then any transformation of it is also a
linear multicast, broadcast, or dispersion, respectively.

Suppose C is an ω-dimensional linear multicast and let C′ be a transfor-
mation of C. When the network code C′ is employed, the message x can be
decoded by any node t with maxflow(t) ≥ ω, because from the foregoing C′ is
also a linear multicast. For the purpose of multicasting, there is no difference
between C and C′, and they can be regarded as equivalent.

If C is an ω-dimensional linear broadcast and C′ is a transformation of
C, then C′ is also an ω-dimensional linear broadcast. However, C as a linear
broadcast may deliver to a particular node t with maxflow(t) < ω a certain
subset of symbols in the message x, while C′ may not be able to achieve the
same. Then whether C and C′ can be regarded as equivalent depends on the
specific requirements of the application. As an example, the linear network
code in Figure 19.1(b) delivers b1 to node t. However, taking a transformation
of the network code with matrix

A =
[

1 0
1 1

]
, (19.67)

the resulting network code can no longer deliver b1 to node t, although
nodes w, v, and z can continue to decode both b1 and b2.

Implementation of a Linear Network Code

In implementation of a linear network code, be it a linear multicast, a linear
broadcast, a linear dispersion, or any linear network code, in order that the
code can be used as intended, the global encoding kernels fe, e ∈ In(t) must be
known by each node t if node t is to recover any useful information from the
symbols received on the input channels. These global encoding kernels can be
made available ahead of time if the code is already decided. Alternatively, they
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can be delivered through the input channels if multiple usage of the network
is allowed.

One possible way to deliver the global encoding kernels to node t in a
coding session of length n, where n > ω, is as follows. At time k = 1, 2, · · · , ω,
the source node transmits the dummy message mk, a row ω-vector with all
the components equal to 0 except that the kth component is equal to 1. Note
that 

m1

m2

...
mω

 = Iω, (19.68)

the ω × ω identity matrix. At time k = ω + i, where i = 1, 2, · · · , n − ω, the
source node transmits the message xi. Then throughout the coding session,
node t receives

m1

m2

...
mω

x1

x2

...
xn−ω


FIn(t) =


Iω
x1

x2

...
xn−ω

FIn(t) =


FIn(t)

x1 · FIn(t)

x2 · FIn(t)

...
xn−ω · FIn(t)

 (19.69)

on the input channels. In other words, the global encoding kernels of the input
channels at node t are received at the beginning of the coding session. This
applies to all the sink nodes in the network simultaneously because the ω
dummy messages do not depend on the particular node t. If FIn(t) has full
rank, then node t can start to decode x1 upon receiving x1 · FIn(t).

Since n− ω messages are transmitted in a coding session of length n, the
utilization of the network is equal to (n− ω)/n, which tends to 1 as n→∞.
That is, the overhead for delivering the global encoding kernels through the
network is asymptotically negligible.

19.4 Existence and Construction

For a given acyclic network, the following three factors dictate the existence
of an ω-dimensional linear network code with desirable properties:

• the value of ω,
• the network topology,
• the choice of the base field F .

We begin with an example illustrating the third factor.
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Example 19.16. On the network in Figure 19.5, a 2-dimensional ternary linear
multicast can be constructed by the following local encoding kernels at the
nodes:

Ks =
[

0 1 1 1
1 0 1 2

]
and Kui =

[
1 1 1

]
(19.70)

for 1 ≤ i ≤ 4. On the other hand, we can prove the nonexistence of a 2-
dimensional binary linear multicast on this network as follows. Assuming the
contrary that a 2-dimensional binary linear multicast exists, we will derive a
contradiction. Let the global encoding kernel f(s,ui) = [ yi zi ]> for 1 ≤ i ≤ 4.
Since maxflow(tk) = 2 for all 1 ≤ k ≤ 6, the global encoding kernels for the two
input channels to each node tk must be linearly independent. Thus, if node tk is
at the downstream of both nodes ui and uj , then the two vectors [ yi zi ]> and
[ yi zi ]> must be linearly independent. As each node tk is at the downstream
of a different pair of nodes among u1, u2, u3, and u4, the four vectors [ yi zi ]>,
1 ≤ i ≤ 4, are pairwise linearly independent, and consequently, must be four
distinct vectors in GF (2)2. Then one of them must be [ 0 0 ]> since there are
only four vectors in GF (2)2. This contradicts the pairwise linear independence
among the four vectors.
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Fig. 19.5. A network with a 2-dimensional ternary linear multicast but without a
2-dimensional binary linear multicast.

In order for the linear network code to qualify as a linear multicast, a
linear broadcast, or a linear dispersion, it is required that certain collections
of global encoding kernels span the maximum possible dimensions. This is
equivalent to certain polynomial functions taking nonzero values, where the
indeterminates of these polynomials are the local encoding kernels. To fix
ideas, take ω = 3, consider a node t with two input channels, and put the
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global encoding kernels of these two channels in juxtaposition to form a 3× 2
matrix. Then, this matrix attains the maximum possible rank of 2 if and only
if there exists a 2× 2 submatrix with nonzero determinant.

According to the local description, a linear network code is specified by
the local encoding kernels, and the global encoding kernels can be derived re-
cursively in an upstream-to-downstream order. From Example 19.14, it is not
hard to see that every component in a global encoding kernel is a polynomial
function whose indeterminates are the local encoding kernels.

When a nonzero value of a polynomial function is required, it does not
merely mean that at least one coefficient in the polynomial is nonzero. Rather,
it means a way to choose scalar values for the indeterminates so that the
polynomial function is evaluated to a nonzero scalar value.

When the base field is small, certain polynomial equations may be un-
avoidable. For instance, for any prime number p, the polynomial equation
zp − z = 0 is satisfied for any z ∈ GF (p). The nonexistence of a binary lin-
ear multicast in Example 19.16 can also trace its root to a set of polynomial
equations that cannot be avoided simultaneously over GF (2).

However, when the base field is sufficiently large, every nonzero polynomial
function can indeed be evaluated to a nonzero value with a proper choice of
the values taken by the set of indeterminates involved. This is formally stated
in the following elementary lemma, which will be instrumental in the proof
of Theorem 19.20 asserting the existence of a linear multicast on an acyclic
network when the base field is sufficiently large.

Lemma 19.17. Let g(z1, z2, · · · , zn) be a nonzero polynomial with coefficients
in a field F . If |F | is greater than the degree of g in every zj for 1 ≤ j ≤ n,
then there exist a1, a2, · · · , an ∈ F such that

g(a1, a2, · · · , an) 6= 0. (19.71)

Proof. The proof is by induction on n. For n = 0, g is a nonzero constant
in F , and the lemma is obviously true. Assume that the lemma is true for
n − 1 for some n ≥ 1. Express g(z1, z2, · · · , zn) as a polynomial in zn with
coefficients in the polynomial ring F [z1, z2, · · · , zn−1], i.e.,

g(z1, z2, · · · , zn) = h(z1, z2, · · · , zn−1)znk + · · · , (19.72)

where k is the degree of g in zn and the leading coefficient h(z1, z2, · · · , zn−1)
is a nonzero polynomial in F [z1, z2, · · · , zn−1]. By the induction hypothe-
sis, there exist a1, a2, · · · , an−1 ∈ F such that h(a1, a2, · · · , an−1) 6= 0. Thus
g(a1, a2, · · · , an−1, z) is a nonzero polynomial in z with degree k < |F |. Since
this polynomial cannot have more than k roots in F and |F | > k, there exists
an ∈ F such that

g(a1, a2, · · · , an−1, an) 6= 0. (19.73)

Corollary 19.18. Let g(z1, z2, · · · , zn) be a nonzero polynomial with coeffi-
cients in a field F with |F | > m, where m is the highest degree of g in zj for
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1 ≤ j ≤ n. Let a1, a2, · · · , an be chosen independently according to the uniform
distribution on F . Then

Pr{g(a1, a2, · · · , an) 6= 0} ≥
(

1− m

|F |

)n
. (19.74)

In particular,
Pr{g(a1, a2, · · · , an) 6= 0} → 1 (19.75)

as |F | → ∞.

Proof. The first part of the corollary is proved by induction on n. For n = 0,
g is a nonzero constant in F , and the proposition is obviously true. Assume
that the proposition is true for n − 1 for some n ≥ 1. From (19.72) and the
induction hypothesis, we see that

Pr{g(z1, z2, · · · , zn) 6= 0} (19.76)
= Pr{h(z1, z2, · · · , zn−1) 6= 0}Pr{g(z1, z2, · · · , zn) 6= 0| (19.77)
h(z1, z2, · · · , zn−1) 6= 0} (19.78)

≥
(

1− m

|F |

)n−1

Pr{g(z1, z2, · · · , zn) 6= 0| (19.79)

h(z1, z2, · · · , zn−1) 6= 0} (19.80)

≥
(

1− m

|F |

)n−1(
1− m

|F |

)
(19.81)

=
(

1− m

|F |

)n
. (19.82)

This proves the first part of the corollary. As n is fixed, the lower bound above
tends to 1 as |F | → ∞. This completes the proof. ut

Example 19.19. Recall the 2-dimensional linear network code in Example 19.9
that is expressed in the 12 indeterminates a, b, c, · · · , l. Place the vectors f(t,w)

and f(u,w) in juxtaposition into the 2× 2 matrix

Lw =
[
ae cg
be dg

]
, (19.83)

the vectors f(t,y) and f(x,y) into the 2× 2 matrix

Ly =
[
af aeik + cgjk
bf beik + dgjk

]
, (19.84)

and the vectors f(u,z) and f(x,z) into the 2× 2 matrix

LZ =
[
aeil + cgjl ch
beil + dgjl dh

]
. (19.85)
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Clearly,
det(Lw) · det(Ly) · det(Lz) 6= 0 ∈ F [a, b, c, · · · , l]. (19.86)

Applying Lemma 19.17 to the polynomial on the left hand side above, we can
set scalar values for the 12 indeterminates so that it is evaluated to a nonzero
value in F when F is sufficiently large. This implies that the determinants
on the left hand side of (19.86) are evaluated to nonzero values in F simul-
taneously. Thus these scalar values yield a 2-dimensional linear multicast. In
fact,

det(Lw) · det(Ly) · det(Lz) = 1 (19.87)

when
b = c = 0 (19.88)

and
a = d = e = f = · · · = l = 1. (19.89)

Therefore, the 2-dimensional linear network code depicted in Figure 19.2 is a
linear multicast, and this fact is regardless of the choice of the base field F .

Theorem 19.20. There exists an ω-dimensional linear multicast on an acyclic
network for sufficiently large base field F .

Proof. For a directed path P = e1, e2, · · · , em, define

KP =
∏

1≤j<m

kej ,ej+1 . (19.90)

Calculating by (19.17) recursively from the upstream channels to the down-
stream channels, it is not hard to find that

fe =
∑

d∈In(s)

(
ΣP : a path from d to e KP

)
fd (19.91)

for every channel e (see Example 19.23 below). Denote by F [∗] the polynomial
ring over the field F with all the kd,e as indeterminates, where the total number
of such indeterminates is equal to

∑
t |In(t)| · |Out(t)|. Thus, every component

of every global encoding kernel belongs to F [∗]. The subsequent arguments
in this proof actually depend on this fact alone but not on the exact form of
(19.91).

Let t be a non-source node with maxflow(t) ≥ ω. Then there exist ω edge-
disjoint paths from the ω imaginary channels to ω distinct channels in In(t).
Put the global encoding kernels of these ω channels in juxtaposition to form
an ω×ω matrix Lt. We will prove that

det(Lt) = 1 (19.92)

for properly set scalar values of the indeterminates.
Toward proving this claim, we set
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kd,e = 1 (19.93)

for all adjacent pairs of channels (d, e) along any one of the ω edge-disjoint
paths, and set

kd,e = 0 (19.94)

otherwise. With such local encoding kernels, the symbols sent on the ω imag-
inary channels at source node s are routed to node t via the ω edge-disjoint
paths. Thus the columns in Lt are simply the global encoding kernels of the
imaginary channels, which form the standard basis of the space Fω. Then
(19.92) follows, and the claim is proved.

Consequently,
det(Lt) 6= 0 ∈ F [∗], (19.95)

i.e., det(Lt) is a nonzero polynomial in the indeterminates kd,e. Since this
conclusion applies to every non-source node t with maxflow(t) ≥ ω,∏

t:maxflow(t)≥ω

det(Lt) 6= 0 ∈ F [∗]. (19.96)

Applying Lemma 19.17 to the above polynomial when the field F is sufficiently
large, we can set scalar values in F for the indeterminates so that∏

t:maxflow(t)≥ω

det(Lt) 6= 0 ∈ F, (19.97)

which in turns implies that

det(Lt) 6= 0 ∈ F (19.98)

for all t such that maxflow(t) ≥ ω. These scalar values then yield a linear
network code that meets the requirement (19.39) for a linear multicast. ut

Corollary 19.21. There exists an ω-dimensional linear broadcast on an acyclic
network for sufficiently large base field F .

Proof. For every non-source node t in the given acyclic network, install a
new node t′ and ω input channels to this new node, with min{ω,maxflow(t)}
of them from node t and the remaining ω −min{ω,maxflow(t)} from source
node s. This constructs a new acyclic network. Now consider an ω-dimensional
linear multicast on the new network whose existence follows from Theo-
rem 19.20. For every node t′ as described above, dim(Vt′) = ω because
maxflow(t′) = ω. Moreover, since |In(t′)| = ω, the global encoding kernels
fe, e ∈ In(t′) are linearly independent. Therefore,

dim(〈{fe : e ∈ In(t′) ∩Out(t)}〉) = |In(t′) ∩Out(t)| (19.99)
= min{ω,maxflow(t)}. (19.100)

By (19.17),
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〈{fe : e ∈ In(t′) ∩Out(t)}〉 ⊂ Vt. (19.101)

Therefore,

dim(Vt) ≥ dim(〈{fe : e ∈ In(t′) ∩Out(t)}〉) (19.102)
= min{ω,maxflow(t)}. (19.103)

Then by invoking Theorem 19.10, we conclude that

dim(Vt) = min{ω,maxflow(t)}. (19.104)

In other words, an ω-dimensional linear multicast on the new network incor-
porates an ω-dimensional linear broadcast on the original network. ut

Corollary 19.22. There exists an ω-dimensional linear dispersion on an
acyclic network for sufficiently large base field F .

Proof. For every nonempty collection T of non-source nodes in the given
acyclic network, install a new node uT and maxflow(t) channels from every
node t ∈ T to this new node. This constructs a new acyclic network with

maxflow(uT ) = maxflow(T ) (19.105)

for every T . Now consider an ω-dimensional linear broadcast on the new
network whose existence follows from Corollary 19.21. By (19.17),

VuT ⊂ VT . (19.106)

Then

dim(VT ) ≥ dim(VuT ) (19.107)
= min{ω,maxflow(uT )} (19.108)
= min{ω,maxflow(T )}. (19.109)

By invoking Theorem 19.10, we conclude that

dim(VT ) = min{ω,maxflow(T )}. (19.110)

In other words, an ω-dimensional linear broadcast on the new network incor-
porates an ω-dimensional linear dispersion on the original network. ut

Example 19.23. We now illustrate the formula (19.91) in the proof of Theo-
rem 19.20 with the 2-dimensional linear network code in Example 19.9 which
is expressed in the 12 indeterminates a, b, c, · · · , l. The local encoding kernels
at the nodes are

Ks =
[
a c
b d

]
, Kt =

[
e f
]
, Ku =

[
g h
]
, (19.111)
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Kw =
[
i
j

]
, Kx =

[
k l
]
. (19.112)

Starting with f(o,s) = [ 1 0 ]> and f(o,s)′ = [ 0 1 ]>, we can calculate the global
encoding kernels by the formula (19.91). Take f(x,y) as the example. There are
two paths from (o, s) to (x, y) and two from (o, s)′ to (x, y). For these paths,

KP =


aeik
beik
cgjk
dgjk

for P = (o, s), (s, t), (t, w), (w, x), (x, y)
for P = (o, s)′, (s, t), (t, w), (w, x), (x, y)
for P = (o, s), (s, u), (u,w), (w, x), (x, y)
for P = (o, s)′, (s, u), (u,w), (w, x), (x, y).

(19.113)

Thus

f(x,y) = (aeik)f(o,s) + (beik)f(o,s)′ + (cgjk)f(o,s) + (dgjk)f(o,s)′ (19.114)

=
[
aeik + cgjk
beik + dgjk

]
, (19.115)

which is consistent with Example 19.9.

The proof of Theorem 19.20 provides an algorithm for constructing a lin-
ear multicast that uses Lemma 19.17 as a subroutine to search for scalars
a1, a2, · · · , an ∈ F such that g(a1, a2, · · · , an) 6= 0 whenever g(z1, z2, · · · , zn)
is a nonzero polynomial over a sufficiently large field F . The straightforward
implementation of this subroutine is exhaustive search, which is generally
computationally inefficient. Nevertheless, the proof of Theorem 19.20 renders
a simple method to construct a linear multicast randomly.

Corollary 19.24. Consider an ω-dimensional linear network code on an
acyclic network. By choosing the local encoding kernels kd,e for all adjacent
pairs of channels (d, e) independently according to the uniform distribution on
the base field F , a linear multicast can be constructed with probability tends
to 1 as |F | → ∞.

Proof. This follows directly from Corollary 19.18 and the proof of Theo-
rem 19.20. ut

The technique described in the above theorem for constructing a linear
network code is called random network coding. Random network coding has
the advantage that the code construction can be done independent of the net-
work topology, making it very useful when the network topology is unknown.
A case study for an application of random network coding will be presented
in Section 19.7.

While random network coding offers a simple construction and more flex-
ibility, a much larger base field is usually required. In some applications, it is
necessary to verify that the code randomly constructed indeed possesses the
desired properties. Such a task can be computationally non-trivial.
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The next algorithm constructs a linear multicast deterministically in poly-
nomial time. Unlike the algorithm given in the proof of Theorem 19.20 that
assigns values to the local encoding kernels, this algorithm assigns values to
the global encoding kernels.

Algorithm 19.25 (Jaggi-Sanders Algorithm). This algorithm constructs
an ω-dimensional linear multicast over a finite field F on an acyclic net-
work when |F | > η, the number of non-source nodes t in the network with
maxflow(t) ≥ ω. Denote these η non-source nodes by t1, t2, · · · , tη.

A sequence of channels e1, e2, · · · , el is called a path leading to a node tq if
e1 ∈ In(s), el ∈ In(tq), and (ej , ej+1) is an adjacent pair for all 1 ≤ j ≤ l− 1.
For each q, 1 ≤ q ≤ η, there exist ω edge-disjoint paths Pq,1, Pq,2, · · · , Pq,ω
leading to tq. All together there are ηω such paths. The following procedure
assigns a global encoding kernel fe for every channel e in the network in an
upstream-to-downstream order such that dim(Vtq ) = ω for 1 ≤ q ≤ η.

{
// By definition, the global encoding kernels of the ω
// imaginary channels form the standard basis of Fω.

for (q = 1; q ≤ η; q + +)
for (i = 1; i ≤ ω; i+ +)

eq,i = the imaginary channel initiating path Pq,i;
// This initializes eq,i. Subsequently, eq,i will be
// dynamically updated by moving down path Pq,i
// until it finally becomes a channel in In(tq).

for (every node t, in any upstream-to-downstream order)
{

for (every channel e ∈ Out(t))
{

// With respect to this channel e, define a “pair” as a
// pair (q, i) of indices such that channel e is on the
// path Pq,i. Note that for each q, there exists at most
// one pair (q, i). Thus the number of pairs is at least 0
// and at most η. Since the nodes t are chosen in
// an upstream-to-downstream order, if (q, i) is a pair,
// then eq,i ∈ In(t) by induction, so that feq,i ∈ Vt. For
// reasons to be explained in the algorithm verification
// below, feq,i 6∈ 〈{feq,j : j 6= i}〉, and therefore
// feq,i ∈ Vt\〈{feq,j : j 6= i}〉.

Choose a vector w in Vt such that w /∈ 〈{feq,j : j 6= i}〉 for
every pair (q, i);

// To see the existence of such a vector w, let
// dim(Vt) = ν. Then, dim(Vt ∩ 〈{feq,j : j 6= i}〉) ≤
// ν − 1 for every pair (q, i) since
// feq,i ∈ Vt\〈{feq,j : j 6= i}〉. Thus
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// |Vt ∩ (∪(q,i): a pair〈{feq,j : j 6= i}〉)|
// ≤ η|F |ν−1 < |F |ν = |Vt|.

fe = w;
// This is equivalent to choosing scalar values for local
// encoding kernels kd,e for all d ∈ In(t) such that
//
∑
d∈In(t) kd,efd /∈ 〈{feq,j : j 6= i}〉 for every pair (q, i).

for (every pair (q, i))
eq,i =e;

}
}

}

Algorithm Verification. For 1 ≤ q ≤ η and 1 ≤ i ≤ ω, the channel eq,i is on
the path Pq,i. Initially eq,i is an imaginary channel at source node s. Through
dynamic updating, it moves downstream along the path until finally reaching
a channel in In(tq).

Fix an index q, where 1 ≤ q ≤ η. Initially, the vectors feq,1 , feq,2 , · · · , feq,ω
are linearly independent because they form the standard basis of Fω. At the
end, they need to span the vector space Fω. Therefore, in order for the eventu-
ally constructed linear network code to qualify as a linear multicast, it suffices
to show the preservation of the linear independence among feq,1 , feq,2 , · · · , feq,ω
throughout the algorithm.

We need to show the preservation in the generic step inside the “for loop”
for each channel e in the algorithm. The algorithm defines a “pair” as a pair
(q, i) of indices such that channel e is on path Pq,i. When no (q, i) is a pair
for 1 ≤ i ≤ ω, the channels eq,1, eq,2, · · · , eq,ω are not changed in the generic
step; neither are the vectors feq,1 , feq,2 , · · · , feq,ω . So we only need to consider
the scenario that a pair (q, i) exists for some i. The only change among the
channels eq,1, eq,2, · · · , eq,ω is that eq,i becomes e. Meanwhile, the only change
among the vectors feq,1 , feq,2 , · · · , feq,ω is that feq,i becomes a vector

w /∈ 〈{feq,j : j 6= i}〉. (19.116)

This preserves the linear independence among feq,1 , feq,2 , · · · , feq,ω as desired.

Complexity Analysis. There are a total of |E| channels in the network. In the
algorithm, the generic step in the “for loop” for each channel e processes
at most η pairs. Throughout the algorithm, at most |E|η such collections of
channels are processed. From this, it is not hard to implement the algorithm
within a polynomial time in |E| for a fixed ω. The computational details can
be found in [165].

Remark 1 In the Jaggi-Sanders algorithm, all nodes t in the network with
maxflow(t) ≥ ω serve as a sink node that receives the message x. The algo-
rithm can easily be modified accordingly if only a subset of such nodes need
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to serve as a sink node. In that case, the field size requirement is |F | > η′,
where η′ is the total number of sink nodes.

Remark 2 It is not difficult to see from the lower bound on the required field
size in the Jaggi-Sanders algorithm that if a field much larger than sufficient
is used, then a linear multicast can be constructed with high probability by
randomly choosing the global encoding kernels.

Example 19.26 (Multi-Source Multicast). Consider a network coding problem
on an acyclic network G with a set S of source nodes. At node s ∈ S, a
message xs in the form of a row vector in Fωs is generated. Let

ω =
∑
s∈S

ωs (19.117)

be the total dimension of all the messages, and let

x = (xs : s ∈ S) (19.118)

be referred to as the message. Here, we do not impose the constraint that a
node s ∈ S has no input channels.

Expand the network G into a network G′ by installing a new node 0, and
ωs channels from node 0 to node s for each s ∈ S. Denote the value of a
max-flow from node 0 to node t in G′ by maxflowG′(t).

Suppose there exists a coding scheme on G such that a node t can decode
the message x. Such a coding scheme induces a coding scheme on G′ for which

1. the message x is generated at node 0;
2. for all s ∈ S, the message xs is sent uncoded from node 0 to node s

through the ωs channels from node 0 to node s.

Applying the max-flow bound to node t with respect to this coding scheme
on G′, we obtain

maxflowG′(t) ≥ ω. (19.119)

Thus we have shown that if a node t in G can decode the message x, then
(19.119) has to be satisfied.

We now show that for a sufficiently large base field F , there exists a coding
scheme on G such that a node t satisfying (19.119) can decode the message x.
Let η be the number of nodes in G that satisfies (19.119). To avoid trivial-
ity, assume η ≥ 1. By Theorem 19.20, there exists an ω-dimensional linear
multicast C on G′ when the base field is sufficiently large. From the proof of
Theorem 19.10, we see that for this linear multicast, the ω×ω matrix FOut(0)

must be invertible, otherwise a node t satisfying (19.119) cannot possibly de-
code the message x. Transforming C by the matrix [FOut(0)]−1, we obtain from
(19.54) a linear multicast C′ with

F ′Out(0) =
[
FOut(0)

]−1
FOut(0) = Iω. (19.120)
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Accordingly, for this linear multicast, the message xs is sent uncoded from
node 0 to node s for all s ∈ S. Thus a coding scheme on G with the message xs
being generated at node s for all s ∈ S instead of being received from node 0
is naturally induced, and this coding scheme inherits from the linear multicast
C′ that a node t satisfying (19.119) can decode the message x.

Therefore, instead of tackling the multi-source multicast problem on G, we
can tackle the single-source multicast problem on G′. This has already seen
illustrated in Examples 17.1 and 17.2 for the butterfly network.

19.5 Generic Network Codes

In the last section, we have seen how to construct a linear multicast by the
Jaggi-Sanders algorithm. In light of Corollaries 19.21 and 19.22, the same al-
gorithm can be used for constructing a linear broadcast or a linear dispersion.

It is not difficult to see that if the Jaggi-Sanders algorithm is used for
constructing a linear broadcast, then the computational complexity of the
algorithm remains polynomial in |E|, the total number of channels in the net-
work. However, if the algorithm is used for constructing a linear dispersion,
the computational complexity becomes exponential because the number of
channels that need to be installed in constructing the new network in Corol-
lary 19.22 grows exponentially with the number of channels in the original
network.

In this section, we introduce a class of linear network codes called generic
network codes. As we will see, if a linear network code is generic, then it is
a linear dispersion, and hence also a linear broadcast and a linear multicast.
Toward the end of the section, we will present a polynomial time algorithm
that constructs a generic network code.

Imagine that in an ω-dimensional linear network code, the base field F
is replaced by the real field R. Then arbitrary infinitesimal perturbation of
the local encoding kernels would place the global encoding kernels at general
positions with respect to one another in the space Rω. General positions of the
global encoding kernels maximize the dimensions of various linear spans by
avoiding linear dependence in every conceivable way. The concepts of general
positions and infinitesimal perturbation do not apply to the vector space Fω

when F is a finite field. However, they can be emulated when F is sufficiently
large with the effect of avoiding unnecessary linear dependence.

The following definitions of a generic network code captures the notion
of placing the global encoding kernels in general positions. In the sequel, for
a channel ej ∈ E , let ej ∈ Out(tj), and for a collection of channels ξ =
{e1, e2, · · · , e|ξ|} ⊂ E , let ξk̄ = ξ\{ek}.

Definition 19.27 (Generic Network Code I). An ω-dimensional linear
network code on an acyclic network is generic if for any m ≥ 1 and any
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collection of channels ξ = {e1, e2, · · · , em} ⊂ E, if there exists 1 ≤ k ≤ m such
that

a) there is no directed path from tk to tj for j 6= k,
b) Vtk 6⊂ Vξk̄ ,

then fek 6∈ Vξk̄ .

Definition 19.28 (Generic Network Code II). An ω-dimensional linear
network code on an acyclic network is generic if for any m ≥ 1 and any
collection of channels ξ = {e1, e2, · · · , em} ⊂ E, if there exists 1 ≤ k ≤ m such
that

a) there is no directed path from tk to tj for j 6= k,
b) Vtk 6⊂ Vξk̄ ,
c) fe, e ∈ ξk̄ are linearly independent3,

then fek 6∈ Vξk̄ .

In Definitions 19.27 and 19.28, if a) does not hold, then fek 6∈ Vξk̄ may not
be possible at all as we now explain. Let ξ = {e1, e2} and k = 1. Suppose
In(t2) = {e1} so that a) is violated. Since node t2 has only e1 as the input
channel, fe1 cannot possibly be linear independent of fe2 .

The only difference between Definitions 19.27 and 19.28 is the additional
requirement c) in the latter. The equivalence between these two definitions of
a generic network code can be seen as follows. It is obvious that if a linear
network code satisfies Definition 19.27, then it also satisfies Definition 19.28.
Conversely, suppose a linear network code satisfies Definition 19.28. Consider
any collection of channels ξ = {e1, e2, · · · , em} ⊂ E such that there exists
1 ≤ k ≤ m satisfying a) and b) in Definition 19.27 but not necessarily c)
in Definition 19.28. Then we can always find a subset ξ′

k̄
of ξk̄ such that

fe, e ∈ ξ′k̄ are linearly independent and Vξ′
k̄

= Vξk̄ . Upon letting ξ′ = {ek} ∪ ξ′k̄
and applying Definition 19.28 with ξ′ in place of ξ, we have

fek 6∈ Vξ′
k̄

= Vξk̄ , (19.121)

so the network code also satisfies Definition 19.27. This shows that the two def-
initions of a generic network code are equivalent. Note that in Definition 19.28,
if ξ satisfies all the prescribed conditions, then m ≤ ω because c) and fek 6∈ Vξk̄
together imply that fe, e ∈ ξ are linearly independent. Definition 19.28, which
has a slightly more complicated form compared with Definition 19.27, will be
instrumental in the proof of Theorem 19.32 that establishes different charac-
terizations of a generic network code.

3 We adopt the convention that an empty collection of vectors is linearly indepen-
dent.
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Proposition 19.29. For a generic network code, for any collection of m out-
put channels at a node t, where 1 ≤ m ≤ dim(Vt), the corresponding global
encoding kernels are linearly independent.

Proof. Since the proposition becomes degenerate if dim(Vt) = 0, we assume
dim(Vt) > 0. In Definition 19.27, let all the nodes tj be equal to node t and
let 1 ≤ m ≤ dim(Vt). First note that there is no directed path from node t
to itself because the network is acyclic. For m = 1, ξ1̄ = ∅ and Vξ1̄ = V∅ = ∅.
Since dim(Vt) > 0, we have Vt 6⊂ Vξ1̄ . Then fe1 6∈ Vξ1̄ , which implies fe1 6= 0.
This proves the proposition for m = 1.

Assume that the proposition is true for m− 1 some 2 ≤ m ≤ dim(Vt). We
now prove that the proposition is true for m. By the induction hypothesis,
fe1 , fe2 , · · · , fem−1 are linearly independent. Since

dim(〈{fe1 , fe2 , · · · , fem−1}〉) = m− 1 < dim(Vt), (19.122)

we have
Vt 6⊂ 〈{fe1 , fe2 , · · · , fem−1}〉. (19.123)

Then by Definition 19.27,

fem 6∈ 〈{fe1 , fe2 , · · · , fem−1}〉. (19.124)

Hence, fe1 , fe2 , · · · , fem are linearly independent. The proposition is proved.
ut

Corollary 19.30. For a generic network code, if |Out(t)| ≤ dim(Vt) for a
node t, then the global encoding kernels of all the output channels of t are
linearly independent.

A linear dispersion on an acyclic network is not necessarily a generic net-
work code. The following is a counterexample.

Example 19.31. The 2-dimensional linear dispersion on the network in Fig-
ure 19.6 is not generic because the global encoding kernels of two of the
output channels from source node s are equal to [ 1 1 ]>, a contradiction to
Proposition 19.29. It can be shown, however, that a generic network code on
an acyclic network G can be constructed through a linear dispersion on an
expanded network G′. See Problem 12 for details.

Together with Example 19.13, the example above shows that the four
classes of linear network codes we have discussed, namely linear multicast,
linear broadcast, linear dispersion, and generic network code, achieve the max-
flow bound to strictly increasing extents.

In the following theorem, we prove two characterizations of a generic net-
work code, each can be regarded as an alternative definition of a generic
network code. The reader should understand this theorem before proceeding
further but may skip the proof at the first reading.
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Fig. 19.6. A 2-dimensional linear dispersion that is not a generic network code.

Theorem 19.32. For an ω-dimensional linear network code on an acyclic
network, the following conditions are equivalent:

1) The network code is generic.
2) For any m ≥ 1 and any collection of channels ξ = {e1, e2, · · · , em} ⊂ E,
if Vtj 6⊂ Vξj̄ for all 1 ≤ j ≤ m, then fe, e ∈ ξ are linearly independent.

3) For any nonempty collection of channels ξ ⊂ E, if

|ξ| = min{ω,maxflow(ξ)}, (19.125)

then fe, e ∈ ξ are linearly independent.

Proof. Throughout this proof, we use Definition 19.28 as the definition of a
generic network code. We will prove the theorem by showing that 1) ⇒ 2) ⇒
3) ⇒ 1).

We first show that 1) ⇒ 2). Assume 1) holds. Consider any m ≥ 1 and
any collection of channels ξ = {e1, e2, · · · , em} ⊂ E , and assume Vtj 6⊂ Vξj̄ for
all 1 ≤ j ≤ m. We will show by induction on m that fe, e ∈ ξ are linearly
independent. The claim is trivially true for m = 1. Assume the claim is true
for m− 1 for some 2 ≤ m ≤ ω, and we will show that it is true for m.

Consider ξ = {e1, e2, · · · , em} and assume Vtj 6⊂ Vξj̄ for all 1 ≤ j ≤ m. We
first prove by contradiction that there exists at least one k such that there is
no directed path from tk to tj for all j 6= k, where 1 ≤ j, k ≤ m. Assume that
for all k, there is at least one directed path from node tk to node tj for some
j 6= k. Starting at any node tk, by traversing such directed paths, we see that
there exists a directed cycle in the network because the set {tk : 1 ≤ k ≤ m}
is finite. This leads to a contradiction because the network is acyclic, proving
the existence of k as prescribed. Then apply Definition 19.28 to see that

fek 6∈ Vξk̄ = 〈{fe : e ∈ ξk̄}〉. (19.126)
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Now for any j 6= k, since Vtj 6⊂ Vξj̄ and Vξk̄\{ej} = Vξj̄\{ek} ⊂ Vξj̄ , we have

Vtj 6⊂ Vξk̄\{ej}. (19.127)

Then apply the induction hypothesis to ξk̄ to see that fe, e ∈ ξk̄ are linearly
independent. It then follows from (19.126) that fe, e ∈ ξ are linearly indepen-
dent. Thus 1) ⇒ 2).

We now show that 2) ⇒ 3). Assume 2) holds and consider any collection
of channel ξ = {e1, e2, · · · , em} ⊂ E satisfying (19.125), where m ≥ 1. Then

m = |ξ| = min{ω,maxflow(ξ)}, (19.128)

which implies
maxflow(ξ) ≥ m. (19.129)

Therefore, there exist m edge-disjoint paths P1, P2, · · · , Pm from source node s
to the channels in ξ, where the last channel on path Pj is ej .

Denote the length of Pj by lj and let

L =
m∑
j=1

lj (19.130)

be the total length of all the paths. We will prove the claim that fe1 , fe2 , · · · , fem
are linearly independent by induction on L. For the base case L = m, since
m ≤ ω by (19.128), the claim is true by Proposition 19.29 with t = s. As-
sume that the claim is true for L − 1 for some L ≥ m + 1, and we will
prove that it is true for L. Let A = {j : lj > 1} and for j ∈ A, let
ξ′j = {e1, e2, · · · , ej−1, e

′
j , ej+1, · · · , em}, where e′j is the channel preceding ej

on Pj . Then by the induction hypothesis, fe, e ∈ ξ′j are linearly independent,
which implies that

Vtj 6⊂ Vξj̄ . (19.131)

For j 6∈ A, lj = 1, i.e., tj = s. It follows from (19.128) that m ≤ ω. Then

Vtj = Vs 6⊂ Vξj̄ (19.132)

because dim(Vξj̄ ) ≤ |ξj̄ | = m − 1 < m ≤ ω. Therefore, (19.131) holds for all
j, and hence by 2), fe, e ∈ ξ are linearly independent. Thus 2) ⇒ 3).

Finally, we show that 3)⇒ 1). Assume 3) holds and consider any collection
of channels ξ = {e1, e2, · · · , em} ⊂ E , where 1 ≤ m ≤ ω, such that a) to c)
in Definition 19.28 hold for some 1 ≤ k ≤ m. Then either tj = s for all
1 ≤ j ≤ m, or tk 6= s, because otherwise a) in Definition 19.28 is violated.

If tj = s for all 1 ≤ j ≤ m, then

m = |ξ| = maxflow(ξ). (19.133)

Since m ≤ ω, we have



19.5 Generic Network Codes 457

|ξ| = min{ω,maxflow(ξ)}. (19.134)

Then fe, e ∈ ξ are linearly independently by 3), proving that fek 6∈ Vξk̄ .
Otherwise, tk 6= s. Following b) in Definition 19.28, there exists e′k ∈

In(tk) ⊂ E such that fe′
k

and fe, e ∈ ξk̄ are linearly independent. Let ξ′k =
{e1, e2, · · · , ek−1, e

′
k, ek+1, · · · , em}. By Corollary 19.11,

maxflow(ξ′k) ≥ dim(Vξ′
k
) = m, (19.135)

so e1, e2, · · · , ek−1, e
′
k, ek+1, em can be traced back to source node s via some

edge-disjoint paths P1, P2, · · · , Pk−1, P
′
k, Pk+1, · · · , Pm, respectively. Let Pk be

obtained by appending ek to P ′k. Since there is no directed path from tk to tj
and ek 6= ej for all j 6= k, P1, P2, · · · , Pk−1, Pk, Pk+1, · · · , Pm are edge-disjoint.
Therefore,

maxflow(ξ) ≥ m. (19.136)

On the other hand,
maxflow(ξ) ≤ |ξ| = m. (19.137)

Therefore,
m = |ξ| = maxflow(ξ), (19.138)

i.e., (19.133). As before, we can further obtain (19.134). Then by 3), fe, e ∈ ξ,
are linearly independent, and therefore fek 6∈ Vξk̄ . Thus 3) ⇒ 1).

Hence, the theorem is proved. ut

Corollary 19.33. An ω-dimensional generic network code on an acyclic net-
work is an ω-dimensional linear dispersion on the same network.

Proof. Consider an ω-dimensional generic network code on an acyclic network
and let T be any collection of non-source nodes. Let

m = min{ω,maxflow(T )}. (19.139)

Since maxflow(T ) ≥ m, there exists m edge-disjoint paths P1, P2, · · · , Pm from
source node s to T . Let ei be the last channel on path Pi, and let

ξ = {e1, e2, · · · , em}. (19.140)

Evidently,
maxflow(ξ) = m. (19.141)

It follows from (19.139) that m ≤ ω. Therefore,

|ξ| = m = maxflow(ξ) = min{ω,maxflow(ξ)}. (19.142)

By Theorem 19.32, fe, e ∈ ξ are linearly independent. Then

dim(VT ) ≥ dim(Vξ) = m = min{ω,maxflow(T )}. (19.143)
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By Theorem 19.10, we conclude that

dim(VT ) = min{ω,maxflow(T )}. (19.144)

Hence, we have shown that a generic network code is a linear dispersion. ut

Theorem 19.32 renders the following important interpretation of a generic
network code. Consider any linear network code and any collection of channels
ξ ⊂ E . If fe, e ∈ ξ are linearly independent, then

|ξ| = dim(Vξ). (19.145)

By Corollary 19.11,

dim(Vξ) ≤ min{ω,maxflow(ξ)}. (19.146)

Therefore,
|ξ| ≤ min{ω,maxflow(ξ)}. (19.147)

On the other hand,
maxflow(ξ) ≤ |ξ|, (19.148)

which implies
min{ω,maxflow(ξ)} ≤ |ξ|. (19.149)

Combining (19.147) and (19.149), we see that

|ξ| = min{ω,maxflow(ξ)} (19.150)

is a necessary condition for fe, e ∈ ξ to be linearly independent. For a generic
network code, this is also a sufficient condition for fe, e ∈ ξ to be linearly
independent. Thus for a generic network code, if a set of global encoding
kernels can possibly be linearly independent, then it is linear independent. In
this sense, a generic network code captures the notion of placing the global
encoding kernels in general positions.

The condition 2) in Theorem 19.32 is the original definition of a generic
network code given in [205]. Unlike 1) and 3), this condition is purely algebraic
and does not depend upon the network topology. However, it does not suggest
an algorithm for constructing such a code.

Motivated by Definition 19.28, we now present an algorithm for construct-
ing a generic network code. The computational complexity of this algorithm
is polynomial in |E|, the total number of channels in the network.

Algorithm 19.34 (Construction of a Generic Network Code). This al-
gorithm constructs an ω-dimensional generic network code over a finite field F
with |F | >

∑ω
m=1

(|E|−1
m−1

)
by prescribing global encoding kernels that constitute

a generic network code.
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{
for (every node t, following an upstream-to-downstream order)
{

for (every channel e ∈ Out(t))
{

Choose a vector w in Vt such that w /∈ Vζ , where ζ is any
collection of m− 1 already processed channels, where 1 ≤ m ≤ ω,
such that fe, e ∈ ζ are linearly independent and Vt 6⊂ Vζ ;

// To see the existence of such a vector w, denote dim(Vt)
// by ν. If ζ is any collection of m− 1 channels with Vt 6⊂ Vζ ,
// then dim(Vt ∩ Vζ) ≤ ν − 1. There are at most

∑ω
m=1

(|E|−1
m−1

)
// such collections ζ. Thus
// |Vt ∩ (∪ζVζ)| ≤

∑ω
m=1

(|E|−1
m−1

)
|F |ν−1 < |F |ν = |Vt|.

fe = w;
// This is equivalent to choosing scalar values for the local
// encoding kernels kd,e for all d such that

∑
d∈In(t) kd,efd

// /∈ Vζ for every collection ζ of channels as prescribed.
}

}
}

Algorithm Verification. We will verify that the code constructed is indeed
generic by way of Condition 3) in Theorem 19.32. Consider any collection
of channels ξ = {e1, e2, · · · , em} ⊂ E satisfying (19.125), where 1 ≤ m ≤ ω.
Then there exist m edge-disjoint paths P1, P2, · · · , Pm from source node s to
the channels in ξ, where the last channel on path Pj is ej . Denote the length
of Pj by lj and let

L =
m∑
j=1

lj (19.151)

be the total length of all the paths. We will prove the claim that fe, e ∈ ξ are
linearly independent by induction on L.

It is easy to verify that for any set of m channels in Out(s), the global
encoding kernels assigned are linearly independent, so the base case L = m
is verified. Assume the claim is true for L − 1 for some L ≥ m + 1, and we
will prove that it is true for L. Let ek be the channel whose global encoding
kernel is last assigned among all the channels in ξ. Note that Pk ≥ 2 since
L ≥ m + 1 and the global encoding kernels are assigned by the algorithm in
an upstream-to-downstream order. Then let e′k be the channel preceding ek
on Pk, and let

ξ′ = {e1, e2, · · · , ek−1, e
′
k, ek+1, · · · , em}. (19.152)

By the induction hypothesis, fe, e ∈ ξ′ are linearly independent. Since fe′
k

is
linearly independent of fe for e ∈ ξ′\{e′k} = ξk̄, Vtk 6⊂ Vξk̄ . It then follows
from the construction that fek 6∈ Vξk̄ because ξk̄ is one of the collections ζ
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considered when fek is assigned. Hence, fe, e ∈ ξ are linearly independent,
verifying that the network code constructed is generic.

Complexity Analysis. In the algorithm, the “for loop” for each channel e pro-
cesses at most

∑ω
m=1

(|E|−1
m−1

)
collections of m − 1 channels. The processing

includes the detection of those collections ζ as well as the computation of the
set Vt\(∪ζVζ). This can be done, for instance, by Gauss elimination. Through-
out the algorithm, the total number of collections of channels processed is at
most |E|

∑ω
m=1

(|E|−1
m−1

)
, a polynomial in |E| of degree ω. Thus for a fixed ω,

it is not hard to implement the algorithm within a polynomial time in |E|.
This is similar to the polynomial-time implementation of the Jaggi-Sanders
algorithm for constructing a linear multicast.

Algorithm 19.34 constitutes a constructive proof for the next theorem.

Theorem 19.35. There exists an ω-dimensional generic network code on an
acyclic network for sufficiently large base field F .

By noting the lower bound on the required field size in Algorithm 19.34, a
generic network code can be constructed with high probability by randomly
choosing the global encoding kernels provided that the base field is much
larger than sufficient.

19.6 Static Network Codes

In the discussion so far, a linear network code has been defined on a network
with a fixed topology, where all the channels are assumed to be available
at all times. In a real network, however, a channel may fail due to various
reasons, for example, hardware failure, cable cut, or natural disasters. With
the failure of some subset of channels, the communication capacity of the
resulting network is generally reduced.

Consider the use of, for instance, an ω-dimensional multicast on an acyclic
network for multicasting a sequence of messages generated at the source node.
When no channel failure occurs, a non-source node with the value of a max-
flow at least equal to ω would be able to receive the sequence of messages.
In case of channel failures, if the value of a max-flow of that node in the
resulting network is at least ω, the sequence of messages in principle can still
be received at that node. However, this would involve the deployment of a
network code for the new network topology, which not only is cumbersome
but also may cause a significant loss of data during the switchover.

In this section, we discuss a class of linear network codes called static
network codes that can provide the network with maximum robustness in
case of channel failures. To fix ideas, we first introduce some terminology.
The status of the network is specified by a mapping λ : E → {0, 1} called a
configuration. A channel being in the set
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λ−1(0) = {e ∈ E : λ(e) = 0} (19.153)

indicates the failure of that channel, and the subnetwork resulting from the
deletion of all the channels in λ−1(0) is called the λ-subnetwork. For the λ-
subnetwork, the value of a max-flow from source node s to a non-source node t
is denoted by maxflowλ(t). Likewise, the value of a max-flow from source
node s to a collection T of non-source nodes is denoted by maxflowλ(T ). It
is easy to see that the total number of configurations is equal to 2|E|.

Definition 19.36. Let λ be a configuration of the network. For an ω-dimensional
linear network code on the network, the λ-global encoding kernel of channel e,
denoted by fe,λ, is the column ω-vector calculated recursively in an upstream-
to-downstream order by:

(19.154) fe,λ = λ(e)
∑
d∈In(t) kd,e fd,λ for e ∈ Out(t).

(19.155) The λ-global encoding kernels of the ω imaginary channels are inde-
pendent of λ and form the standard basis of the space Fω.

Note that in the above definition, the local encoding kernels kd,e are
not changed with the configuration λ. Given the local encoding kernels, the
λ-global encoding kernels can be calculated recursively by (19.154), while
(19.155) serves as the boundary conditions. For a channel e ∈ Out(t) with
λ(e) = 0, we see from (19.154) that

fe,λ = 0. (19.156)

Equivalently, we can think of the local encoding kernels for all the adjacent
pairs of channels (d, e), d ∈ In(t) as being set to 0. This can be seen by
rewriting the formula in (19.154) as

fe,λ =
∑

d∈In(t)

(λ(e)kd,e) fd,λ. (19.157)

As before, the message generated at source node s is denoted by a row ω-
vector x. When the prevailing configuration is λ, a node t receives the symbols
x · fd,λ, d ∈ In(t), from which it calculates the symbol x · fe,λ to be sent on
each channel e ∈ Out(t) via

x · fe,λ = x

λ(e)
∑

d∈In(t)

kd,e fd,λ

 (19.158)

= λ(e)
∑

d∈In(t)

kd,e(x · fd,λ). (19.159)

In particular, if λ(e) = 0, the zero symbol is sent on channel e regardless of
the symbols received at node t.
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In a real network, the zero symbol is not sent on a failed channel. Rather,
whenever a symbol is not received on an input channel, the symbol is regarded
by the receiving node as being the zero symbol.

For a configuration λ of the network, we let

Vt,λ = 〈{fe,λ : e ∈ In(t)}〉 (19.160)

for a node t,
VT ,λ = 〈∪t∈T Vt,λ〉. (19.161)

for a collection T of nodes, and

Vξ,λ = 〈{fe,λ : e ∈ ξ}〉, (19.162)

for a collection ξ of channels.

Definition 19.37. An ω-dimensional linear network code on an acyclic net-
work qualifies as a static linear multicast, a static linear broadcast, a static
linear dispersion, or a static generic network code, respectively, if the following
hold:

(19.163) dim(Vt,λ) = ω for every configuration λ and every non-source node t
with maxflowλ(t) ≥ ω.

(19.164) dim(Vt,λ) = min{ω,maxflowλ(t)} for every configuration λ and every
non-source node t.

(19.165) dim(VT ,λ) = min{ω,maxflowλ(T )} for every configuration λ and ev-
ery collection T of non-source nodes.

(19.166) For any configuration λ and any nonempty collection of channels ξ ⊂
E, if ξ = min{ω,maxflowλ(ξ)}, then fe,λ, e ∈ ξ are linearly independent.

Here we have adopted Condition 3) in Theorem 19.32 for the purpose
of defining a static generic network code. The qualifier “static” in the terms
above stresses the fact that, while the configuration λ varies, the local encoding
kernels remain unchanged. The advantage of using a static linear multicast,
broadcast, or dispersion is that in case of channel failures, the local operation
at every node in the network is affected only at the minimum level. Each
receiving node in the network, however, needs to know the configuration λ
before decoding can be done correctly. In implementation, this information
can be provided by a separate signaling network.

For each class of static network codes in Definition 19.37, the requirement
for its non-static version is applied to the λ-subnetwork for every configura-
tion λ. Accordingly, a static linear multicast, a static linear broadcast, a static
linear dispersion, and a static generic network code are increasingly stronger
linear network codes as for the non-static versions.

Example 19.38. A 2-dimensional linear network code over GF (5) on the net-
work in Figure 19.7 is prescribed by the local encoding kernels
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Fig. 19.7. A 2-dimensional GF (5)-valued static generic network code.

Ks =
[

1 0 1
0 1 1

]
(19.167)

and

Kx =

1 3
3 2
1 1

 . (19.168)

We claim that this is a static generic network code. Denote the three channels
in In(x) by c, d, and e and the two channels in Out(x) by g and h. The vectors
fg,λ and fh,λ for all possible configurations λ are tabulated in Table 19.1, from
which it is straightforward to verify the condition (19.166).

The following is an example of a generic network code that does not qualify
even as a static linear multicast.

Example 19.39. On the network in Figure 19.7, a 2-dimensional generic net-
work code over GF (5) is prescribed by the local encoding kernels

Ks =
[

1 0 1
0 1 1

]
(19.169)

λ(c) 0 0 0 1 1 1 1

λ(d) 0 1 1 0 0 1 1

λ(e) 1 0 1 0 1 0 1

fg,λ λ(g)

[
1
1

]
λ(g)

[
0
3

]
λ(g)

[
1
4

]
λ(g)

[
1
0

]
λ(g)

[
2
1

]
λ(g)

[
1
3

]
λ(g)

[
2
4

]
fh,λ λ(h)

[
1
1

]
λ(h)

[
0
2

]
λ(h)

[
1
3

]
λ(h)

[
3
0

]
λ(h)

[
4
1

]
λ(h)

[
3
2

]
λ(h)

[
4
3

]
Table 19.1. The vectors fg,λ and fh,λ for all possible configurations λ in Exam-
ple 19.38.
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and

Kx =

2 1
1 2
0 0

 . (19.170)

For a configuration λ such that

λ(c) = 0 (19.171)

and
λ(d) = λ(e) = 1, (19.172)

we have the λ-global encoding kernels

fg,λ =
[

0
1

]
(19.173)

and

fh,λ =
[

0
2

]
, (19.174)

and therefore dim(Vy,λ) = 1. On the other hand, maxflowλ(y) = 2. Hence,
this generic network code is not a static linear multicast.

Recall that in Algorithm 19.34 for constructing a generic network code,
the key step chooses for a channel e ∈ Out(t) a vector in Vt to be the global
encoding kernel fe such that

fe /∈ Vζ , (19.175)

where ζ is any collection of m − 1 channels as prescribed with 1 ≤ m ≤ ω.
This is equivalent to choosing scalar values for the local encoding kernels kd,e
for all d ∈ In(t) such that ∑

d∈In(t)

kd,e fd /∈ Vζ . (19.176)

Algorithm 19.34 is adapted below for the construction of a static generic
network code.

Algorithm 19.40 (Construction of a Static Generic Network Code).
This algorithm constructs an ω-dimensional static generic network code over
a finite field F on an acyclic network with |F | > 2|E|

∑ω
m=1

(|E|−1
m−1

)
.

{
for (every node t, following an upstream-to-downstream order)
{

for (every channel e ∈ Out(t))
{

Choose scalar values for kd,e for all d ∈ In(t) such that for
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any configuration λ,
∑
d∈In(t) kd,efd /∈ Vζ,λ, where ζ is any

collection of m− 1 already processed channels such that
fe,λ, e ∈ ζ are linearly independent and Vt,λ 6⊂ Vζ,λ;

// To see the existence of such values kd,e, denote
// dim(Vt,λ) by ν. For any collection ζ of channels
// with Vt,λ 6⊂ Vζ,λ, dim(Vt,λ ∩ Vζ,λ) < ν. Consider
// the linear mapping [kd,e]d∈In(t) 7→

∑
d∈In(t) kd,e fd,λ

// from F |In(t)| to Fω. The nullity of this linear
// mapping is |In(t)| − ν, so the pre-image of
// the space (Vt,λ ∩ Vζ,λ) has dimension less than
// |In(t)|. Thus the pre-image of ∪λ,ζ(Vt,λ ∩ Vζ,λ)
// contains at most 2|E|

∑ω
m=1

(|E|−1
m−1

)
|F ||In(t)|−1

// elements, which are fewer than |F ||In(t)| if
// |F | > 2|E|

∑ω
m=1

(|E|−1
m−1

)
.

for (every configuration λ)
fe,λ = λ(e)

∑
d∈In(t) kd,e fd,λ;

}
}

}

Algorithm Verification. The explanation for the code constructed by Algo-
rithm 19.40 being a static generic network code is exactly the same as that
given for Algorithm 19.34. The details are omitted.

Algorithm 19.40 constitutes a constructive proof for the next theorem. By
noting the lower bound on the required field size in the algorithm, we see that
a generic network code can be constructed with high probability by randomly
choosing the local encoding kernels provided that the base field is much larger
than sufficient.

Theorem 19.41. There exist an ω-dimensional static linear multicast, a
static linear broadcast, a static linear dispersion, and a static generic network
code on an acyclic network for sufficiently large base field F .

The requirements (19.163) through (19.166) in Definition 19.37 refer to
all the 2|E| possible configurations. Conceivably, a practical application may
only need to deal with a certain collection {λ1, λ2, · · · , λκ} of configurations,
where κ � 2|E|. Thus we may define, for instance, an {λ1, λ2, · · · , λκ}-static
linear multicast and an {λ1, λ2, · · · , λκ}-static linear broadcast by replacing
the conditions (19.19) and (19.20), respectively by

(19.177) dim(Vt,λ) = ω for every configuration λ ∈ {λ1, λ2, · · · , λκ} and every
non-source node t with maxflowλ(t) ≥ ω.

(19.178) dim(Vt,λ) = min{ω,maxflowλ(t)} for every configuration λ ∈ {λ1, λ2,
· · · , λκ} and every non-source node t.
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Recall that Algorithm 19.34 is converted into Algorithm 19.40 by modify-
ing the key step in the former. In a similar fashion, Algorithm 19.25 can be
adapted for the construction of an {λ1, λ2, · · · , λκ}-static linear multicast or
broadcast. This will lower the threshold on the sufficient size of the base field
as well as the computational complexity. The details are left as an exercise.

19.7 Random Network Coding: A Case Study

We have seen in Corollary 19.24 that if the local encoding kernels of a linear
network code are randomly chosen, a linear multicast can be obtained with
high probability provided that the base field is sufficiently large. Since the
code construction is independent of the network topology, the network code
so constructed can be used when the network topology is unknown. In this
section, we study an application of random network coding in peer-to-peer
(P2P) networks. The system we will analyze is based on a prototype for large
scale content distribution on such networks proposed in [121].

19.7.1 How the System Works

A file originally residing on a single server is to be distributed to a large
number of users through a network. The server divides the file into k data
blocks, B1, B2, · · · , Bk, and uploads coded versions of these blocks to different
users according to some protocol. These users again help distributing the file
by uploading blocks to other users in the network. By means of such repeated
operations, a logical network called an overlay network is formed by the users
as the process evolves. On this logical network, henceforth referred to as the
network, information can be dispersed very rapidly, and the file is eventually
delivered to every user in the network. Note that the topology of the network
is not known ahead of time.

In the system, new users can join the network as a node at any time
as long as the distribution process is active. Upon arrival, a new user will
contact a designated node called the tracker that provides a subset of the
other users already in the system, forming the set of neighboring nodes of the
new user. Subsequent information flow in the network is possible only between
neighboring nodes.

For the purpose of coding, the data blocks B1, B2, · · · , Bk are represented
as symbols in a large finite field F referred to as the base field4. At the begin-
ning of the distribution process, a Client A contacts the server and receives a
number of encoded blocks. For example, the server uploads two encoded blocks
E1 and E2 to Client A, where for i = 1, 2,

Ei = ci1B1 + ci2B2 + · · ·+ cikBk, (19.179)

4 In the system proposed in [121], the size of the base field is of the order 216.
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with cij , 1 ≤ j ≤ k being chosen randomly from the base field F . Note that
each E1 and E2 is some random linear combination of B1, B2, · · · , Bk.

In general, whenever a node needs to upload an encoded block to a neigh-
boring node, the block is formed by taking a random linear combination of all
the blocks possessed by that node. Continuing with the above example, when
Client A needs to upload an encoded block E3 to a neighboring Client B, we
have

E3 = c31E1 + c32E2, (19.180)

where c31 and c32 are randomly chosen from F . Substituting (19.179) into
(19.180), we obtain

E3 =
k∑
j=1

(c31c
1
j + c32c

2
j )Bj . (19.181)

Thus E3 and in general every encoded block subsequently uploaded by a
node in the network is some random linear combination of the data blocks
B1, B2, · · · , Bk.

The exact strategy for downloading encoded blocks from the neighboring
nodes so as to avoid receiving redundant information depends on the imple-
mentation. The main idea is that downloading from a neighboring node is
necessary only if the neighboring node has at least one block not in the lin-
ear span of all the blocks possessed by that particular node. Upon receiving
enough linearly independent encoded blocks, a node is able to decode the
whole file.

Compared with store-and-forward, the application of network coding as
described in the above system can reduce the file download time because an
encoded block uploaded by a node contains information about every block
possessed by that node. Moreover, in case some nodes leave the system before
the end of the distribution process, it is more likely that the remaining nodes
have the necessary information to recover the whole file if network coding
is used. In the following, we will give a quantitative analysis to substantiate
these claimed advantages of network coding.

19.7.2 Model and Analysis

Let V be the set of all the nodes in the system. In implementation, blocks of
data are transmitted between neighboring nodes in an asynchronous manner,
and possibly at different speeds. To simplify the analysis, we assume that
every transmission from one node to a neighboring node is completed in an
integral number of time units. Then we can unfold the network of nodes in
discrete time into a graph G∗ = (V∗, E∗) with the node set

V∗ = {it : i ∈ V and t ≥ 0}, (19.182)

where node it ∈ V∗ corresponds to node i ∈ V at time t. The edge set E∗
specified below is determined by the strategy adopted for the server as well
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Fig. 19.8. A illustration of the graph G∗.

as for all the other nodes in V to request uploading of data blocks from the
neighboring nodes. Specifically, there are two types of edges in E∗:

1. There is an edge with capacity m from node it to node jt′ , where t < t′,
if m blocks are transmitted from node i to node j, starting at time t and
ending at time t′.

2. For each i ∈ V and t ≥ 0, there is an edge with infinite capacity from
node it to node it+1.

An edge of the second type models the assumption that the blocks, once
possessed by a node, are retained in that node indefinitely over time. Without
loss of generality, we may assume that all the blocks possessed by nodes il, l ≤ t
are transmitted uncoded on the edge from node it to node it+1.

An illustration of the graph G∗ up to t = 3 with V consisting of the server S
and three clients A, B, and C is given in Figure 19.8, where the edges with
infinite capacities are lightened for clarity. Note that the graph G∗ is acyclic
because each edge is pointed in the positive time direction and hence a cycle
cannot be formed.

Denote the server S by node s ∈ V and regard node s0 in G∗ as the source
node generating the whole file consisting of k data blocks and multicasting it
to all the other nodes in G∗ via random linear network coding, with the coef-
ficients in the random linear combinations forming the encoded blocks being
the local encoding kernels of the network code. Note that random network
coding is applied on G∗, not the logical network formed by the user nodes.

Also note that in order to simplify our description of the system, we have
omitted the necessity of delivering the global encoding kernels to the nodes
for the purpose of decoding. We refer the reader to the discussion toward the
end of Section 19.3 for this implementation detail.

We are now ready to determine the time it takes for a particular node i ∈ V
to receive the whole file. Denote the value of a max-flow from node s0 to a
node v ∈ G∗ other than s0 by maxflow(v). When the base field is sufficiently
large, by Corollary 19.24, with probability close to 1, the network code gen-
erated randomly during the process is a linear multicast, so that those nodes
it with
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maxflow(it) ≥ k (19.183)

can receive the whole file. In other words, with high probability, the time it
takes a node i ∈ V to receive the whole file is equal to t∗, the minimum t
that satisfies (19.183). Obviously, this is a lower bound on the time it takes a
node i ∈ V to receive the whole file, and it is achievable with high probability
by the system under investigation. In the rare event that node i cannot de-
code at time t∗, it can eventually decode upon downloading some additional
encoded blocks from the neighboring nodes.

When some nodes leave the system before the end of the distribution pro-
cess, an important question is whether the remaining nodes have the necessary
information to recover the whole file. To be specific, assume that a subset of
users Uc ⊂ V leave the system after time t, and we want to know whether
the users in U = V\Uc have sufficient information to recover the whole file.
If they do, by further exchanging information among themselves, every user
in U can eventually receive the whole file (provided that no more nodes leave
the system). Toward this end, again consider the graph G∗. Let

Ut = {ut : u ∈ U} (19.184)

and denote the value of a max-flow from node s0 to the set of nodes Ut by
maxflow(Ut). If

maxflow(Ut) ≥ k, (19.185)

then the users in U with high probability would have the necessary information
to recover the whole file. This is almost the best possible performance one can
expect from such a system, because if

maxflow(Ut) < k, (19.186)

it is simply impossible for the users in U to recover the whole file even if they
are allowed to exchange information among themselves.

Thus we see that random network coding provides the system with both
maximum bandwidth efficiency and maximum robustness. However, addi-
tional computational resource is required compared with store-and-forward.
These are engineering tradeoffs in the design of such systems.

We conclude this section by an example demonstrating the advantage of
random network coding when it is applied to packet networks with packet
loss.

Example 19.42. The random network coding scheme discussed in this section
can be applied to packet networks with packet loss. Consider the network
depicted in Figure 19.9 consisting of three nodes, s, t, and u. Data packets are
sent from node s to node u via node t. Let the packet loss rates of channels (s, t)
and (t, u) be γ, i.e., a fraction γ of packets are lost during their transmission
through the channel. Then the fraction of packets sent by node s that are
eventually received at node u is (1− γ)2.
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Fig. 19.9. A simple packet network.

To fix idea, assume the packet size is sufficiently large and one packet is
sent on each channel per unit time. To remedy the problem of packet loss, a
fountain code [49] can be employed at node s. This would allow data packets
to be sent from node s to node u reliably at an effective rate equal to (1−γ)2.
On the other hand, by using the random network coding scheme we have
discussed, data packets can be sent from node s to node u reliably at an
effective rate equal to 1 − γ, which is strictly higher than (1 − γ)2 whenever
γ > 0. This can be proved by means of the analysis presented in this section.
The details are left as an exercise.

While a fountain code can remedy the problem of packet loss between the
source node and the sink node, it cannot prevent the packet loss rate from
accumulating when packets are routed through the network. On the other
hand, the use of random network coding allows information to be transmitted
from the source node to the sink node at the maximum possible rate, namely
the min-cut between the source node and the sink node after the packet loss
in the channels has been taken into account.

Problems

In the following, let G = (V, E) be the underlying directed acyclic network on
which the linear network code is defined, and let s be the unique source node
in the network.

1. Show that in a network with the capacities of all the edges equal to 1, the
number of edge-disjoint paths from source node s to a non-source node t
is equal to maxflow(t).

2. For the network code in Definitions 19.4 and 19.6, show that if the global
encoding mappings are linear, then so are the local encoding mappings.
(Yeung et al. [365].)

3. Network transfer matrix Consider an ω-dimensional linear network code.
a) Prove (19.91).
b) Fix an upstream-to-downstream order for the channels in the network

and let K be the |E| × |E| matrix with the (d, e)th element equal to
kd,e if (d, e) is an adjacent pair of channels and equal to 0 otherwise.
Let A be the ω × |E| matrix obtaining by appending |E| − |Out(s)|
columns of zeroes to Ks, and Be be the |E|-column vector with all the
components equal to 0 except that the eth component is equal to 1.
Show that
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fe = A(I −K)−1Be

for all e ∈ E . The matrix M = (I−K)−1 is called the network transfer
matrix.

(Koetter and Médard [182].)
4. Apply Lemma 19.17 to obtain a lower bound on the field size for the

existence of a 2-dimensional linear multicast on the butterfly network.
5. Show that

∑ω
m=1

(|E|−1
m−1

)
is a polynomial in |E| of degree ω. This is the

lower bound on the required field size in Algorithm 19.34.
6. Verify that the network code in Example 19.38 is a generic network code.
7. Simplified characterization of a generic network code Consider an ω-

dimensional generic network code on a network for which |Out(s)| ≥ ω.
a) Show that Condition 3) in Theorem 19.32 can be modified to restrict-

ing the cardinality of ξ to ω. Hint: If |ξ| < ω, expand ξ by including a
certain subset of the channels in Out(s).

b) Simplify Algorithm 19.34 and tighten the lower bound on the required
field size accordingly.

(Tan et al. [315].)
8. For the network below, prove the non-existence of a two-dimensional bi-

nary generic network code.
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9. Modify the Jaggi-Sanders algorithm for the construction of a static linear
multicast.

10. Obtain a lower bound on the required field size and determine the compu-
tational complexity when Algorithm 19.40 is adapted for the construction
of an {λ1, λ2, · · · , λκ}-static generic network code.

11. Show that a transformation of a static generic network code is also a static
generic network code.

12. A generic network code as a linear dispersion Expand the network G into
a network G′ = (V ′, E ′) as follows. For an edge e ∈ E , let the edge be from
node ve to node we. Install a new node te and replace edge e by two new
edges e′ and e′′, where e′ is from node ve to node te and e′′ is from node te
to node we. Show that a linear dispersion on G′ is equivalent to a generic
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network code on G. Hint: Use Theorem 19.32. (Kwok and Yeung [196],
Tan et al. [315].)

13. Multi-rate linear broadcast Consider a network on which an ω-dimensional
linear network code over a base field F is defined. For all e ∈ E , let

f ′e = [ I b ] fe,

where I is the (ω−1)× (ω−1) identity matrix and b is an (ω−1)-column
vector.
a) Show that f ′e, e ∈ E constitute the global encoding kernels of an (ω−1)-

dimensional linear network code on the same network.
b) Show that the (ω − 1)-dimensional linear network code in a) and the

original ω-dimensional linear network code have the same local encod-
ing kernels for all the non-source nodes.

It was shown in Fong and Yeung [103] that an (ω − 1)-dimensional linear
broadcast can be constructed from any ω-dimensional linear broadcast by
choosing a suitable vector b, provided |F | ≥ |V|. As such, multi-rate linear
multicast/broadcast can be supported on a network without changing the
local encoding kernels of the non-source nodes.

14. Let a message x ∈ Fω be generated at source node s in a network for which
maxflow(t) ≥ ω for all non-source nodes t. Show that x can be multicast
to all the non-source nodes by store-and-forward. In other words, for this
special case, network coding has no advantage over store-and-forward if
complete information on the network topology is known ahead of time.
This result is implied by a theorem on directed spanning tree packing by
Edmonds [90] (see also Wu et al. [347]).

15. Let L be the length of the message x generated at source node s, where L is
divisible by maxflow(t) for all non-source nodes t. Allowing multiple usage
of the network, devise a linear network coding scheme such that each non-
source node t can receive x in L/maxflow(t) units of time. Such a scheme
enables each non-source node in the network to receive the message within
the shortest possible time.

16. Consider distributing a message of 5 data blocks in a P2P network with
4 nodes, Server S and Clients A, B, and C, by the system discussed in
Section 19.7. Assume each data block is sufficiently large. The following
transmissions take place during the process.

From To Start Time End Time # Blocks
S A 0 1 2
S B 0 1 3
S C 0 1 2
B A 1 2 1
C B 1 3 2
S B 2 3 1
B C 2 3 2

a) Which client is the first to receive the whole message?
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b) If Client B leaves the system after t = 3, do Clients A and C have
sufficient information to reconstruct the whole message?

c) Suppose the hard disk of Client B crashes at t = 1.5 and loses 2 blocks
of data. Repeat b) by making the assumption that the transmissions
by Client B starting at t ≤ 1 are not affected by the disk failure.

17. Prove the claim in Example 19.42 that by using random network coding,
data packets can be sent from node s to node u at an effective rate equal
to 1− γ.

Historical Notes

The achievability of the max-flow bound by linear network codes was proved
by Li et al. [205] using a vector space approach and then by Koetter and
Médard [182] using a matrix approach. These two approaches correspond re-
spectively to the notions of global encoding kernel and local encoding kernel
discussed here. Neither the construction in [205] for a generic network code
nor the construction in [182] for a linear multicast are polynomial-time algo-
rithms. Jaggi and Sanders et al. [165] obtained a polynomial-time algorithm
for constructing a linear multicast by modifying the construction of a generic
network code in [205]. A polynomial-time algorithm for constructing a generic
network code was subsequently obtained in Yeung et al. [365].

In [182], static network code was introduced and its existence was proved.
An explicit construction of such codes was given in [365].

The optimality of random network coding was proved in Ahlswede et al.
[7]. Ho et al. [145] proved the optimality of random linear network coding
and proposed the use of such codes on an unknown network topology. A tight
upper bound on the probability of decoding error for random linear network
coding has recently been obtained by Balli et al. [22].

Implementation issues of network coding were discussed in Chou et al. [65].
The application of random network coding in peer-to-peer networks discussed
in Section 19.7 is due to Gkantsidis and Rodriguez [121].

Cai and Yeung have generalized single-source network coding on acyclic
networks to network error correction [51][363][52] and secure network coding
[50]. Network error correction subsumes classical algebraic coding, while secure
network coding subsumes secret sharing in cryptography.

The presentation in this chapter is largely based on the tutorial paper by
Yeung et al. [365]. The various characterizations of a generic network code is
due to Tan et al. [315].
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Single-Source Linear Network Coding: Cyclic
Networks

A directed network is cyclic if it contains at least one directed cycle. In Chap-
ter 19, we have discussed network coding over an acyclic network, in which
there exists an upstream-to-downstream order on the nodes. Following such
an order, whenever a node encodes, all the information needed would have al-
ready been received on the input channels of that node. For a cyclic network,
such an order of the nodes does not exists. This makes network coding over a
cyclic network substantially different from that over an acyclic network.

20.1 Delay-Free Cyclic Networks

When we discussed network coding over an acyclic network in Chapter 19,
we assume that there is no propagation delay in the network. Based on this
assumption, a linear network code can be specified by either the local de-
scription in Definition 19.6 or the global description in Definition 19.7. The
local and global descriptions of a linear network code are equivalent over an
acyclic network because given the local encoding kernels, the global encoding
kernels can be calculated recursively in any upstream-to-downstream order.
In other words, the equation (19.17) has a unique solution for the global en-
coding kernels in terms of the local encoding kernels, while (19.18) serves as
the boundary conditions.

If these descriptions are applied to a cyclic network, it is not clear whether
for given local encoding kernels, there exists a unique solution for the global
encoding kernels. In the following, we give one example with a unique solution,
one with no solution, and one with multiple solutions.

Example 20.1. Consider the cyclic network in Figure 20.1. Let (s, t) precede
(v, t) in the ordering among the channels. Similarly, let (s, t′) precede (v, t′).
Given the local encoding kernels

Ks =
[

1 0
0 1

]
, Kt = Kt′ =

[
1
0

]
, Ku =

[
1
1

]
, Kv =

[
1 1
]
, (20.1)
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Fig. 20.1. A 2-dimensional linear broadcast on a cyclic network.

the equation (19.17) yields the following unique solution for the global encod-
ing kernels:

f(s,t) = f(t,u) =
[

1
0

]
, f(s,t′) = f(t′,u) =

[
0
1

]
(20.2)

f(u,v) = f(v,t) = f(v,t′) =
[

1
1

]
. (20.3)

These global encoding kernels are shown in Figure 20.1, and they in fact define
a 2-dimensional linear broadcast regardless of the choice of the base field. Note
that

k(v,t),(t,u) = 0 (20.4)

and
k(v,t′),(t′,u) = 0 (20.5)

in the prescribed local encoding kernels prevent information from looping in
the directed cycles

(t, u), (u, v), (v, t) (20.6)

and
(t′, u), (u, v), (v, t′), (20.7)

respectively.

Example 20.2. An arbitrarily prescribed set of local encoding kernels on a
cyclic network is unlikely to be compatible with any global encoding kernels.
In Figure 20.2(a), a local encoding kernel is prescribed at each node in a
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cyclic network. Had a global encoding kernel fe existed for each channel e, the
requirement (19.17) would imply the equations

f(x,y) =
[

1
0

]
+ f(w,x) (20.8)

f(y,w) =
[

0
1

]
+ f(x,y) (20.9)

f(w,x) = f(y,w), (20.10)

which sum up to [
1
0

]
=
[

0
1

]
, (20.11)

a contradiction.
The nonexistence of compatible global encoding kernels can also be in-

terpreted in terms of message transmission. Let the message x = [ a b ] be a
generic vector in F 2, where F denotes the base field. The symbol transmitted
on channel e, given by x · fe, are shown in Figure 20.2(b). In particular, the
symbols transmitted on channels (x, y), (y, w), and (w, x), namely p, q, and r,
are related through

p = a+ r (20.12)
q = b+ p (20.13)
r = q. (20.14)

These equalities imply that
a+ b = 0, (20.15)

a contradiction to the independence between the two components a and b of
a generic message.

Example 20.3. Let F be an extension field of GF (2)1. Consider the same pre-
scription of the local encoding kernels at the nodes as in Example 20.2 except
that

KS =
[

1 1
0 0

]
. (20.16)

The following three sets of global encoding kernels meet the requirement
(19.17) in the definition of a linear network code:

f(s,x) = f(s,y) =
[

1
0

]
, f(x,y) =

[
0
0

]
, f(y,w) = f(w,x) =

[
1
0

]
; (20.17)

f(s,x) = f(s,y) =
[

1
0

]
, f(x,y) =

[
1
0

]
, f(y,w) = f(w,x) =

[
0
0

]
; (20.18)

f(s,x) = f(s,y) =
[

1
0

]
, f(x,y) =

[
0
1

]
, f(y,w) = f(w,x) =

[
1
1

]
. (20.19)

1 In an extension field of GF (2), the arithmetic on the symbols 0 and 1 are modulo
2 arithmetic.
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Fig. 20.2. An example of a cyclic network and local encoding kernels that do not
render a solution for the global encoding kernels.

20.2 Convolutional Network Codes

In a real network, the propagation delay, which includes the processing delay
at the nodes and the transmission delay over the channels, cannot be zero.
For a cyclic network, this renders the implementation non-physical because
the transmission on an output channel of a node can only depend on the
information received on the input channels of that node. Besides, technical
difficulties as described in the last section arise even with the ideal assumption
that there is no propagation delay.

In this section, we introduce the unit-delay network as a model for net-
work coding on a cyclic network G = (V, E), where V and E are the sets of
nodes and channels of the network, respectively. In this model, a symbol is
transmitted on every channel in the network at every discrete time index,
with the transmission delay equal to exactly one time unit. Intuitively, this
assumption on the transmission delay over a channel ensures no information
looping in the network even in the presence of a directed cycle. The results
to be developed in this chapter, although discussed in the context of cyclic
networks, apply equally well to acyclic networks.

As a time-multiplexed network in the combined space-time domain, a unit-
delay network can be unfolded with respect to the time dimension into an
indefinitely long network called a trellis network . Corresponding to a physical
node t is a sequence of nodes t0, t1, t2, · · · in the trellis network, with the
subscripts being the time indices. A channel ej in the trellis network represents
the transmission on the physical channel e between times j and j + 1. When
the physical channel e is from node t to node u, the channel ej in the trellis
network is from node tj to node uj+1. Note that the trellis network is acyclic
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Fig. 20.3. The trellis network depicting a convolutional network code defined on
the physical network in Figure 20.2.

regardless of the topology of the physical network, because all the channels
are pointing in the forward time directions so that a directed cycle cannot be
formed.

Example 20.4. Regard the network in Figure 20.2 as a unit-delay network. For
each channel e in the network, the scalar values in the base field F transmitted
on the channels ej , j ≥ 0 in the corresponding trellis network are determined
by the local encoding kernels. This is illustrated in Figure 20.3. For instance,
the channels (x, y)j , j ≥ 0 carry the scalar values

0, 0, a0, a1, a2 + b0, a0 + a3 + b1, a1 + a4 + b2, · · · , (20.20)

respectively. This constitutes an example of a convolutional network code to
be formally defined in Definition 20.6.

Let cj be the scalar value in F transmitted on a particular channel in the
network at time j. A succinct mathematical expression for the sequence of
scalars c0, c1, c2, · · · is the z-transform

∞∑
j=0

cjz
j = c0 + c1z + c2z

2 + · · · , (20.21)

where the power j of the dummy variable z represents discrete time. The
pipelining of scalars transmitted over a time-multiplexed channel can thus be
regarded as the transmission of a power series over the channel. For example,
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the transmission of a scalar value on the channel (x, y)j for each j ≥ 0 in the
trellis network in Figure 20.3 translates into the transmission of the power
series

a0z
2 + a1z

3 + (a2 + b0)z4 + (a0 + a3 + b1)z5 + (a1 + a4 + b2)z6 + · · ·
(20.22)

over the channel (x, y) in the network in Figure 20.2.
The z-transform in (20.21) is a power series in the dummy variable z,

which is regarded as either a real or a complex number in the context of signal
analysis. However, in the context of convolutional coding, the reader should
not regard the z-transform in (20.21) as anything more than a representation
of the sequence of scalars c0, c1, c2, · · ·. Specifically, the dummy variable z is
not associated with any value, and there is no notion of convergence. Such
power series are called formal power series.

Given a field F , consider rational functions of a dummy variable z of the
form

p(z)
1 + zq(z)

, (20.23)

where p(z) and q(z) are polynomials. The following properties of such a func-
tion are relevant to our subsequent discussion:

1. The denominator has a constant term, so the function can be expanded
into a power series by long division (see Example 20.5).

2. If p(z) is not the zero polynomial, the inverse function, namely

1 + zq(z)
p(z)

, (20.24)

exists.

Note that the rational function in (20.24) does not represent a power series if
p(z) contains the factor z, or equivalently, does not contain a constant term.

The ring of power series over F is conventionally denoted by F [[z]]. Ra-
tional functions of the form (20.23) will be called rational power series which
constitute a ring denoted by F 〈z〉 [365]. It follows directly from the definitions
that F 〈z〉 is a subring of F [[z]]. We refer the reader to [112] for a comprehen-
sive treatment of abstract algebra.

In the following, we illustrate the concepts of rational power series through
a few simple examples.

Example 20.5. If z is a complex number, then we can write

1
1− z

= 1 + z + z2 + z3 + · · · (20.25)

provided that |z| < 1, where we have interpreted the coefficients in the power
series on the right hand side as real (or complex) numbers. If |z| > 1, the
above expression is not meaningful because the power series diverges.
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However, if we do not associate z with a value but regard the coefficients
in the power series as elements in a commutative ring, we can always write

(1− z)(1 + z + z2 + z3 + · · ·)
= (1 + z + z2 + z3 + · · ·)− (z + z2 + z3 + · · ·) (20.26)
= 1. (20.27)

In this sense, we say that 1 − z is the reciprocal of the power series 1 + z +
z2 + z3 + · · · and write

1
1− z

= 1 + z + z2 + z3 + · · · . (20.28)

We also say that 1 + z + z2 + z3 + · · · is the power series expansion of 1
1−z .

In fact, the power series on the right hand side can be readily obtained by
dividing 1 by 1− z using long division.

Alternatively, we can seek the inverse of 1− z by considering the identity

(1− z)(a0 + a1z + a2z
2 + · · ·) = 1. (20.29)

By equating the powers of z on both sides, we have

a0 = 1 (20.30)
−a0 + a1 = 0 (20.31)
−a1 + a2 = 0 (20.32)

... (20.33)

Then by forward substitution, we immediately obtain

1 = a0 = a1 = a2 = · · · , (20.34)

which gives exactly the power series obtained by long division. The reader can
easily verify that long division indeed mimics the process of forward substitu-
tion.

For polynomials p(z) and q(z) where q(z) is not the zero polynomial, we
can always expand the rational function p(z)

q(z) into a series. However, such a
series is not always a power series. For example,

1
z − z2

=
1
z

[
1

1− z

]
(20.35)

=
1
z

(1 + z + z2 + · · ·) (20.36)

= z−1 + 1 + z + z2 + · · · . (20.37)

The above is not a power series because of the term involving a negative power
of z. In fact, the identity
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(z − z2)(a0 + a1z + a2z
2 + · · ·) = 1 (20.38)

has no solution for a0, a1, a2, · · · since there is no constant term on the left
hand side. Therefore, 1

z−z2 indeed does not have a power series expansion.

From the above example, we see that p(z)
q(z) represents a rational power

series if and only if q(z) has a nonzero constant term, or equivalently, does
not contain the factor z.

Definition 20.6 (Convolutional Network Code). An ω-dimensional con-
volutional network code on a unit-delay network over a base field F consists
of an element kd,e(z) ∈ F 〈z〉 for every adjacent pair of channels (d, e) in the
network as well as a column ω-vector fe(z) over F 〈z〉 for every channel e such
that:

(20.39) fe(z) = z
∑
d∈In(t) kd,e(z)fd(z) for e ∈ Out(t).

(20.40) The vectors fe(z) for the imaginary channels e ∈ In(s) consist of scalar
components that form the standard basis of the vector space Fω.

The vector fe(z) is called the global encoding kernel for channel e, and kd,e(z)
is called the local encoding kernel for the adjacent pair of channels (d, e). The
|In(t)| × |Out(t)| matrix

Kt(z) = [kd,e(z)]d∈In(t),e∈Out(t) (20.41)

is called the local encoding kernel at node t.

The constraint (20.39) is the time-multiplexed version of (19.17), with
the factor z in the equation indicating a unit-time delay that represents the
transmission delay over a channel. In the language of electronic circuit theory,
for an adjacent pair of channels (d, e), the “gain” from channel d to channel e
is given by zkd,e(z).

A convolutional network code over a unit-delay network can be viewed as a
discrete-time linear time-invariant (LTI) system defined by the local encoding
kernels, where the local encoding kernel kd,e(z) specifies the impulse response
of an LTI filter from channel d to channel e. The requirement that kd,e(z) is
a power series corresponds to the causality of the filter. The additional re-
quirement that kd,e(z) is rational ensures that the filter is implementable by a
finite circuitry of shift registers. Intuitively, once the local encoding kernels are
given, the global encoding kernels are uniquely determined. This is explained
as follows. Write

fe(z) =
∞∑
j=0

fe,jzj = fe,0 + fe,1z + fe,2z2 + · · · (20.42)

and
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kd,e(z) =
∞∑
j=0

kd,e,jz
j = kd,e,0 + kd,e,1z + kd,e,2z

2 + · · · , (20.43)

where fe,j is a column ω-vector in Fω and kd,e,j is a scalar in F . Then the
equation in (20.39) can be written in time domain as the convolutional equa-
tion

fe,j =
∑

d∈In(t)

(
j−1∑
u=0

kd,e,u fd,j−1−u

)
(20.44)

for j ≥ 0, with the boundary conditions provided by (20.40):

• The vectors fe,0, e ∈ In(t) form the standard basis of the vector space Fω.
• The vectors fe,j , e ∈ In(t) are the zero vector for all j ≥ 1.

For j = 0, the summation in (20.44) is empty, so that fe,0 vanishes. For
j ≥ 0, the right hand side of (20.44) involves the vectors fd,i for only 0 ≤ i ≤
j − 1. Thus the vectors fe,j , j ≥ 1 can be calculated recursively via (20.44)
with the boundary condition

fd,0 = 0 for all d ∈ E . (20.45)

Together with fe,0 = 0, the global encoding kernel fe(z) is determined (cf.
(20.42)). In other words, in a convolutional network code over a unit-delay
network, the global encoding kernels are determined once the local encoding
kernels are given. From (20.42), we see that the components of fe(z) are power
series in z, so fe(z) is a column ω-vector over F [[z]]. In Theorem 20.9, we will
further establish that the components of the global encoding kernels are in
fact rational functions in z, proving that fe(z) is indeed a column ω-vector
over f〈z〉 as required in Definition 20.6 for a convolutional network code.

Example 20.7. In Figure 20.2, denote the two imaginary channels by (o, s) and
(o, s)′. A convolutional network code is specified by the prescription of a local
encoding kernel at every node as shown in the figure:

Ks(z) =
[

1 0
0 1

]
, Kx(z) = Ky(z) =

[
1
1

]
, Kw(z) =

[
1
]
, (20.46)

and a global encoding kernel for every channel:

f(o,s)(z) =
[

1
0

]
, f(o,s)′(z) =

[
0
1

]
(20.47)

f(s,x)(z) = z

[
1 0
0 1

] [
1
0

]
=
[
z
0

]
(20.48)

f(s,y)(z) = z

[
1 0
0 1

] [
0
1

]
=
[

0
z

]
(20.49)
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f(x,y)(z) =
[
z2/(1− z3)
z4/(1− z3)

]
(20.50)

f(y,w)(z) =
[
z3/(1− z3)
z2/(1− z3)

]
(20.51)

f(w,x)(z) =
[
z4/(1− z3)
z3/(1− z3)

]
, (20.52)

where the last three global encoding kernels have been solved from the fol-
lowing equations:

f(x,y)(z) = z
[
f(s,x)(z) f(w,x)(z)

] [1
1

]
= z2

[
1
0

]
+ z f(w,x)(z) (20.53)

f(y,w)(z) = z
[
f(s,y)(z) f(x,y)(z)

] [ 1
1

]
= z2

[
0
1

]
+ z f(x,y)(z) (20.54)

f(w,x)(z) = z(f(y,w)(z))
[

1
]

= z f(y,w)(z). (20.55)

These local and global encoding kernels of a 2-dimensional convolutional net-
work code are summarized in Figure 20.4.
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Fig. 20.4. The local and global encoding kernels of the convolutional network code
in Example 20.7.
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Represent the message generated at source node s at time j, where j ≥ 0,
by a row ω-vector xj ∈ Fω. Equivalently, source node s generates the message
pipeline represented by the z-transform

x(z) =
∞∑
j=0

xjzj , (20.56)

which is a row ω-vector over F [[z]], the ring of power series over F . Here, x(z)
is not necessarily rational.

Through a convolutional network code, each channel e carries the power
series x(z) fe(z). Write

x(z) fe(z) =
∞∑
j=0

me,jz
j , (20.57)

where

me,j =
j∑

u=0

xu fe,j−u. (20.58)

For e ∈ Out(t), from the equation in (20.39), we obtain

x(z) fe(z) = x(z)

z ∑
d∈In(t)

kd,e(z) fd(z)

 (20.59)

= z
∑

d∈In(t)

kd,e(z) [ x(z) fd(z) ] , (20.60)

or equivalently in time domain,

me,j =
∑

d∈In(t)

(
j−1∑
u=0

kd,e,umd,j−1−u

)
. (20.61)

The reader should compare (20.61) with (20.44). Note that the scalar val-
ues me,j , j ≥ 1 can be calculated recursively via (20.61) with the boundary
condition

md,0 = 0 for all d ∈ E . (20.62)

Thus a node t calculates the scalar value me,j for transmitting on each
output channel e at time j from the cumulative information it has received
on all the input channels up to time j−1. The convolutional equation (20.61)
can be implemented by a finite circuit of shift-registers in a causal manner
because the local encoding kernels belong to F 〈z〉, the ring of rational power
series over F (cf. Definition 20.6).
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Example 20.8. Consider the convolutional network code in Example 20.7. Let
source node s pipelines the message

x(z) =

 ∞∑
j=0

ajz
j
∞∑
j=0

bjz
j

 . (20.63)

Then the five channels (s, x), (s, y), (x, y), (y, w), and (w, x) carry the following
power series, respectively:

x(z) f(s,x)(z) =
∞∑
j=0

ajz
j+1 (20.64)

x(z) f(s,y)(z) =
∞∑
j=0

bjz
j+1 (20.65)

x(z) f(x,y)(z) =

 ∞∑
j=0

ajz
j+2 +

∞∑
j=0

bjz
j+4

 /(1− z3) (20.66)

=

 ∞∑
j=0

ajz
j+2 +

∞∑
j=0

bjz
j+4

 ∞∑
j=0

z3j (20.67)

= a0z
2 + a1z

3 + (a2 + b0)z4

+(a0 + a3 + b1)z5 + · · · (20.68)

x(z) f(y,w)(z) =

 ∞∑
j=0

ajz
j+3 +

∞∑
j=0

bjz
j+2

 /(1− z3) (20.69)

x(z) f(w,x)(z) =

 ∞∑
j=0

ajz
j+4 +

∞∑
j=0

bjz
j+3

 /(1− z3). (20.70)

At each time j ≥ 0, the source generates a message xj = [ aj bj ]. Thus chan-
nel (s, x) carries the scalar 0 at time 0 and the scalar aj−1 at time j ≥ 1.
Similarly, channel (s, y) carries the scalar 0 at time 0 and the scalar bj−1 at
time j ≥ 1. For every channel e, write

x(z) fe(z) =
∞∑
j=0

me,jz
j (20.71)

as in (20.57). The actual encoding process at node x is as follows. At time j,
node x has received the sequence md,0,md,1, · · · ,md,j−1 for d = (s, x) and
(w, x). Accordingly, at time j ≥ 1, channel (x, y) transmits the scalar value

m(x,y),j =
j−1∑
u=0

k(s,x),(x,y),um(s,x),j−1−u
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+
j−1∑
u=0

k(w,x),(x,y),um(w,x),j−1−u (20.72)

= m(s,x),j−1 +m(w,x),j−1. (20.73)

Similarly, channels (y, w) and (w, x) transmit the scalar values

m(y,w),j = m(s,y),j−1 +m(x,y),j−1 (20.74)

and
m(w,x),j = m(y,w),j−1, (20.75)

respectively. The values m(x,y),j , m(y,w),j , and m(w,x),j for j ≥ 1 can be cal-
culated recursively by the above formulas with the boundary condition

me,0 = 0 for all e ∈ E , (20.76)

and they are shown in the trellis network in Figure 20.3 for small values of j.
For instance, the channel (x, y) carries the scalar values

m(x,y),0 = 0, m(x,y),1 = 0, m(x,y),2 = a0, m(x,y),3 = a1,

m(x,y),4 = a2 + b0, m(x,y),5 = a0 + a3 + b1, · · · . (20.77)

The z-transform of this sequence is

x(z) f(x,y)(z) =

 ∞∑
j=0

ajz
j+2 +

∞∑
j=0

bjz
j+4

 /(1− z3), (20.78)

as calculated in (20.68).

In the discussion following Definition 20.6, we have shown that once the
local encoding kernels of a convolutional network code over a unit-delay net-
work are given, the global encoding kernels are determined. The proof of the
next theorem further provides a simple closed-form expression for the global
encoding kernels fe(z), from which it follows that the entries in fe(z) indeed
belong to F 〈z〉 as required in Definition 20.6.

Theorem 20.9. Let F be the base field and kd,e(z) ∈ F 〈z〉 be given for every
adjacent pair of channels (d, e) on a unit-delay network. Then there exists a
unique ω-dimensional convolutional network code over F with kd,e(z) as the
local encoding kernel for every (d, e).

Proof. Let the unit-delay network be represented by a directed graph G =
(V, E). Let [kd,e(z)] be the |E|×|E| matrix in which both the rows and columns
are indexed by E , with the (d, e)th entry equal to the given kd,e(z) if (d, e) is
an adjacent pair of channels, and equal to zero otherwise. Denote the global
encoding kernel of channel e by fe(z) if exists. Let [fe(z)] be the ω×|E| matrix
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obtained by putting the global encoding kernels fe(z), e ∈ E in juxtaposition,
Let Hs(z) be the ω×|E| matrix obtained by appending |E|−|Out(s)| columns
of zeroes to the local encoding kernel Ks(z). The requirements (20.39) and
(20.40) in Definition 20.6 can be written as

[fe(z)] = z[fe(z)] [kd,e(z)] + zIHs(z), (20.79)

where I in the above denotes the ω×ω identity matrix representing the global
encoding kernels fe(z), e ∈ In(s) in juxtaposition. Rearranging the terms in
(20.79), we obtain

[fe(z)](I − z[kd,e(z)]) = zHs(z). (20.80)

In the matrix z[kd,e(z)], the diagonal elements are equal to zero because (e, e)
does not form an adjacent pair of channels for all e ∈ E , while the non-zero
off-diagonal elements all contain the factor z. Therefore, det(I − z[kd,e(z)])
has the form

1 + zq(z), (20.81)

where q(z) ∈ F 〈z〉, so that it is invertible inside F 〈z〉 because

[det(I − z[kd,e(z)])]−1 =
1

1 + zq(z)
(20.82)

is a rational power series. It follows that

(I − z[kd,e(z)])−1 (20.83)

exists and is a matrix over F 〈z〉. Then the unique solution for [fe(z)] in (20.80)
is given by

[fe(z)] = zHs(z)(I − z[kd,e(z)])−1. (20.84)

With the two matrices [kd,e(z)] and Hs(z) representing the given local en-
coding kernels and the matrix [fe(z)] representing the global encoding kernels,
(20.84) is a closed-form expression for the global encoding kernels in terms
of the local encoding kernels. In particular, [fe(z)] is a matrix over F 〈z〉 be-
cause all the matrices on the right hand side of (20.84) are over F 〈z〉. Thus
we conclude that all the components of the global encoding kernels are in
F 〈z〉. Hence, the given local encoding kernels kd,e(z) for all adjacent pairs
(d, e) together with the associated global encoding kernels fe(z), e ∈ In(s)∪ E
constitute a unique convolutional network code over the unit-delay network
G. ut

In view of Definition 19.7 for the global description of a linear network
code over an acyclic network, Definition 20.6 can be regarded as the global
description of a convolutional network code over a unit-delay network, while
Theorem 20.9 renders a local description by specifying the local encoding
kernels only.
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20.3 Decoding of Convolutional Network Codes

For a node t, let
Ft(z) = [fe(z)]e∈In(t) (20.85)

be the ω × |In(t)| matrix obtained by putting the global encoding kernels
fe(z), e ∈ In(t) in juxtaposition. In the following, we define a convolutional
multicast, the counterpart of a linear multicast defined in Chapter 19, for a
unit-delay cyclic network. The existence of a convolutional multicast will also
be established.

Definition 20.10 (Convolutional Multicast). An ω-dimensional convo-
lutional network code on a unit-delay network qualifies as an ω-dimensional
convolutional multicast if for every non-source node t with maxflow(t) ≥ ω,
there exists an |In(t)| × ω matrix Dt(z) over F 〈z〉 and a positive integer τ
such that

Ft(z)Dt(z) = zτI, (20.86)

where τ > 0 depends on node t and I is the ω × ω identity matrix. The
matrix Dt(z) are called the decoding kernel and the decoding delay at node t,
respectively.

Source node s generates the message pipeline

x(z) =
∞∑
j=0

xjzj , (20.87)

where xj is a row ω-vector in Fω and x(z) is a row ω-vector over F [[z]].
Through the convolutional network code, a channel e carries the power series
x(z) fe(z). The power series x(z) fe(z) received by a node t from the input
channels e ∈ In(t) form the row |In(t)|-vector x(z)Ft(z) over F [[z]]. If the
convolutional network code is a convolutional multicast, node t can use the
decoding kernel Dt(z) to calculate

(x(z)Ft(z))Dt(z) = x(z)(Ft(z)Dt(z)) (20.88)
= x(z)(zτI) (20.89)
= zτx(z). (20.90)

The row ω-vector zτx(z) of power series represents the message pipeline gen-
erated by source node s delayed by τ time units. Note that τ > 0 because the
message pipeline x(z) is delayed by one time unit at node s.

Example 20.11. Consider the network in Figure 20.4. Again let source node s
pipelines the message

x(z) =

 ∞∑
j=0

ajz
j
∞∑
j=0

bjz
j

 . (20.91)
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For node x, we have

Fx(z) =
[
z z4/(1− z3)
0 z3/(1− z3)

]
. (20.92)

Let

Dx(z) =
[
z2 −z3

0 1− z3

]
. (20.93)

Then
Fx(z)Dt(z) = z3I2 (20.94)

(I2 is the 2 × 2 identity matrix). From channels (s, x) and (w, x), node x
receives the row vector

x(z)Fx(z) =

 ∞∑
j=0

ajz
j+1

∞∑
j=0

ajz
j+4 + bjz

j+3

1− z3

 (20.95)

and decodes the message pipeline as

z3 x(z) =

 ∞∑
j=0

ajz
j+1

∞∑
j=0

ajz
j+4 + bjz

j+3

1− z3

[ z2 −z3

0 1− z3

]
. (20.96)

Decoding at node y is similar. Thus the 2-dimensional convolutional network
code is a convolutional multicast.

Toward proving the existence of a convolutional multicast, we first observe
that Lemma 19.17 can be strengthened as follows with essentially no change
in the proof.

Lemma 20.12. Let g(y1, y2, · · · , ym) be a nonzero polynomial with coefficients
in a field F̃ . For any subset Ẽ of F̃ , if |Ẽ| is greater than the degree of g in
every yj, then there exist a1, a2, · · · , am ∈ Ẽ such that

g(a1, a2, · · · , am) 6= 0. (20.97)

In the above lemma, the values a1, a2, · · · , am can be found by exhaustive
search in Ẽ provided that Ẽ is finite. If Ẽ is infinite, simply replace Ẽ by a
sufficiently large finite subset of Ẽ.

Theorem 20.13. There exists an ω-dimensional convolutional multicast over
any base field F . Furthermore, the local encoding kernels of the convolutional
multicast can be chosen in any sufficiently large subset Φ of F 〈z〉.

Proof. Recall the equation (20.84) in the proof of Theorem 20.10:

[fe(z)] = zHs(z)(I − z[kd,e(z)])−1. (20.98)

In this equation, the ω × |E| matrix [fe(z)] on the left hand side represents
the global encoding kernels, while the ω × |E| matrix Hs(z) and the |E| × |E|
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matrix [kd,e(z)] on the right hand side represent the local encoding kernels.
Analogous to the proof of Theorem 19.20, denote by (F 〈z〉)[∗] the polynomial
ring over F 〈z〉 with all the kd,e(z) as indeterminates.

Let t be a non-source node with maxflow(t) ≥ ω. Then there exist ω edge-
disjoint paths from the ω imaginary channels to ω distinct channels in In(t).
Put the global encoding kernels of these ω channels in juxtaposition to form
the ω × ω matrix Lt(z) over (F 〈z〉)[∗]. We will show that

det(Lt(z)) 6= 0 ∈ (F 〈z〉)[∗]. (20.99)

Toward proving (20.99), it suffices to show that

det(Lt(z)) 6= 0 ∈ F 〈z〉 (20.100)

when the determinant is evaluated at some particular values for the indeter-
minates kd,e(z). Analogous to the proof of Theorem 19.20, we set

kd,e(z) = 1 (20.101)

for all adjacent pairs of channels (d, e) along any one of the ω edge-disjoint
paths, and set

kd,e(z) = 0 (20.102)

otherwise. Then with a suitable indexing of the columns, the matrix Lt(z)
becomes diagonal with all the diagonal entries being powers of z. Hence,
det(Lt(z)) is equal to some positive power of z, proving (20.100) for this par-
ticular choice of the indeterminates kd,e(x) and hence proving (20.99). As the
conclusion (20.99) applies to every non-source node t with maxflow(t) ≥ ω, it
follows that ∏

t:maxflow(t)≥ω

det(Lt(z)) 6= 0 ∈ (F 〈z〉)[∗]. (20.103)

Let F (z) be the conventional notation for the field of rational functions in
z over the given base field F . The ring F 〈z〉 of rational power series is a subset
of F (z). Then any subset Φ of F 〈z〉 is also a subset of F (z). Note that the
ring F 〈z〉 is infinite. Then for any sufficiently large subset Φ of F 〈z〉, we can
apply Lemma 20.12 to the polynomial in (20.103) with F̃ = F (z) and Ẽ = Φ
to see that we can choose a value ad,e(z) ∈ F 〈z〉 for each of the indeterminates
kd,e(z) so that ∏

t:maxflow(t)≥ω

det(Lt(z)) 6= 0 ∈ F 〈z〉. (20.104)

when evaluated at kd,e(z) = ad,e(z) for all (d, e), which in turn implies that

det(Lt(z)) 6= 0 ∈ F 〈z〉 (20.105)

for all nodes t such that maxflow(t) ≥ ω.
Henceforth, the local encoding kernel kd,e(z) will be fixed at the appro-

priately chosen value ad,e(z) for all (d, e) as prescribed above. Without loss
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of generality, we assume that Lt(z) consists of the first ω columns of Ft(z).
From (20.105), we can write

det(Lt(z)) = zτ
[

1 + zq(z)
p(z)

]
, (20.106)

where p(z) and q(z) are polynomials over F and p(z) is not the zero poly-
nomial. Note that the right hand side of (20.106) is the general form for a
nonzero rational function in z. In this particular context, since the columns
of Lt(z) are global encoding kernels as prescribed by (20.84), each containing
the factor z in the numerator, we see that τ > 0.

Denote by Jt(z) the adjoint matrix2 of Lt(z). Take the ω × ω matrix[
p(z)

1 + zq(z)

]
Jt(z) (20.107)

and append to it |In(t)|−ω rows of zeroes to form an |In(t)|×ω matrix Dt(z).
Then

Ft(z)Dt(z) =
[
Lt(z) 0

] [ [ p(z)
1+zq(z)

]
Jt(z)

0

]
(20.108)

=
[

p(z)
1 + zq(z)

]
Lt(z)Jt(z) (20.109)

=
[

p(z)
1 + zq(z)

]
det(Lt(z))I (20.110)

= zτI, (20.111)

where the last equality follows from (20.106). Hence, the matrix Dt(z) qualifies
as a decoding kernel at node t in Definition 20.10. This proves the existence
of the convolutional multicast as required. ut

The proof of Theorem 20.13 constitutes an algorithm for constructing
a convolutional multicast. By noting the lower bound on the size of Ẽ in
Lemma 20.12, a convolutional multicast can be constructed with high proba-
bility by randomly choosing the local encoding kernels in the subset Φ of F 〈z〉
provided that Φ is much larger than sufficient.

Example 20.14. When the base field F is sufficiently large, Theorem 20.13 can
be applied with Φ = F so that the local encoding kernels of the convolutional
multicast can be chosen to be scalars. This special case is the convolutional
counterpart of Theorem 19.20 for the existence of a linear multicast over
an acyclic network. In this case, the local encoding kernels can be found by
exhaustive search over F .
2 For a matrix B whose entries are elements in a ring, denote by Adj(B) the adjoint

matrix of B. Then Adj(B)B = BAdj(B) = det(A)I.
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More generally, by virtue of Lemma 20.12, the same exhaustive search
applies to any large enough subset Φ of F 〈z〉. For example, F can be GF (2)
and Φ can be the set of all binary polynomials up to a sufficiently large degree.

Problems

1. Show that the right hand side of (20.106) is the general form for a nonzero
rational function in z.

2. A formal Laurent series over a field F has the form

a−mz
−m + a−(m−1)z

−(m−1) + · · ·+ a−1z
−1 + a0 + a1z + a2z

2 + · · · ,

where m is a nonnegative integer. Show that for any formal Laurent series
f(z) over F , there exists a unique formal Laurent series g(z) over F such
that f(z)g(z) = 1.

3. Verify the following series expansion:

1
1− z

= −z−1 − z−2 − z−3 − · · · .

Can you obtain this series by long division?
4. Construct a finite circuit of shift-registers that implements a discrete-time

LTI system with transfer function

a0 + a1z + · · ·+ anz
n

b0 + b1z + · · ·+ bnzn
,

where ai and bi are elements in a finite field and b0 6= 0.
5. Consider the convolutional network code in Figure 20.4.

a) Is it a convolutional multicast?
b) If your answer in a) is positive, give the decoding kernel at node y

with minimum decoding delay.

c) Change Ks to
[

1 1
0 1

]
and determine the corresponding global encoding

kernels.
d) Instead of a convolutional multicast, can you construct a linear mul-

ticast on the network?

Historical Notes

The asymptotic achievability of the max-flow bound for cyclic networks was
proved by Ahlswede et al. [7], where an example of a convolutional network
code achieving this bound was given. Li et al. [205] conjectured the existence
of a convolutional multicast, which was subsequently proved by Koetter and



494 20 Single-Source Linear Network Coding: Cyclic Networks

Médard [182]. Construction and decoding of convolutional multicast have been
studied by Erez and Feder [93][94], Fragouli and Soljanin [110], and Barbero
and Ytrehus [23]. The formulation and treatment of convolutional codes here
is based on Li and Yeung [204] (see also Yeung et al. [365]).
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Multi-Source Network Coding

In Chapters 19 and 20, we have discussed single-source network coding in
which an information source is multicast in a point-to-point communication
network. The maximum rate at which information can be multicast has a sim-
ple characterization in terms of the maximum flows in the graph represent-
ing the network. In this chapter, we consider the more general multi-source
network coding problem in which more than one mutually independent in-
formation sources are generated at possibly different nodes, and each of the
information sources is multicast to a specific set of nodes.

The achievable information rate region of a multi-source network coding
problem, which will be formally defined in Section 21.4, refers to the set
of all possible rates at which multiple information sources can be multicast
simultaneously on a network. In a single-source network coding problem, we
are interested in characterizing the maximum rate at which information can
be multicast from the source node to all the sink nodes. In a multi-source
network coding problem, we are interested in characterizing the achievable
information rate region.

As discussed in Section 17.3, source separation is not necessarily optimal
for multi-source network coding. It is therefore not a simple extension of single-
source network coding. Unlike the single-source network coding problem which
has an explicit solution, the multi-source network coding problem has not
been completely solved. In this chapter, by making use of the tools we have
developed for information inequalities in Chapter 13 to Chapter 15, we will
develop an implicit characterization of the achievable information rate region
for multi-source network coding on acyclic networks.

21.1 The Max-Flow Bounds

The max-flow bound, which fully characterizes the maximum rate of an in-
formation source that can be multicast in a network, plays a central role in
single-source network coding. We now revisit this bound in the context of
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Fig. 21.1. A network which achieves the max-flow bound.

multi-source network coding. In the following discussion, the unit of informa-
tion is the bit.

Consider the graph in Figure 21.1(a). The capacity of each edge is equal
to 1. Two independent information sources X1 and X2 with rates ω1 and
ω2, respectively are generated at node 1. Suppose we want to multicast X1 to
nodes 2 and 4 and multicast X2 to nodes 3 and 4. In the figure, an information
source in square brackets is one which is to be received at that node.

It is easy to see that the values of a max-flow from node 1 to node 2, from
node 1 to node 3, and from node 1 to node 4 are respectively 1, 1, and 2. At
node 2 and node 3, information is received at rates ω1 and ω2, respectively.
At node 4, information is received at rate ω1 + ω2 because X1 and X2 are
independent. Applying the max-flow bound at nodes 2, 3, and 4, we have

ω1 ≤ 1 (21.1)
ω2 ≤ 1 (21.2)

and
ω1 + ω2 ≤ 2, (21.3)

respectively. We refer to (21.1) to (21.3) as the max-flow bounds. Figure 21.2
is an illustration of all (ω1, ω2) which satisfy these bounds, where ω1 and ω2

are obviously nonnegative.
We now show that the rate pair (1, 1) is achievable. Let b1 be a bit gener-

ated by X1 and b2 be a bit generated by X2. In the scheme in Figure 21.1(b),
b1 is received at node 2, b2 is received at node 3, and both b1 and b2 are
received at node 4. Thus the multicast requirements are satisfied, and the
information rate pair (1, 1) is achievable. This implies that all (ω1, ω2) which
satisfy the max-flow bounds are achievable because they are all inferior to
(1, 1) (see Figure. 21.2). In this sense, we say that the max-flow bounds are
achievable.
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Fig. 21.2. The max-flow bounds for the network in Figure 21.1.

Suppose we now want to multicast X1 to nodes 2, 3, and 4 and multicast
X2 to node 4 as illustrated in Figure 21.3. Applying the max-flow bound at
either node 2 or node 3 gives

ω1 ≤ 1, (21.4)

and applying the max-flow bound at node 4 gives

ω1 + ω2 ≤ 2. (21.5)

Figure 21.4 is an illustration of all (ω1, ω2) which satisfy these bounds.
We now show that the information rate pair (1, 1) is not achievable. Sup-

pose we need to send a bit b1 generated by X1 to nodes 2, 3, and 4 and send
a bit b2 generated by X2 to node 4. Since b1 has to be recovered at node 2,
the bit sent to node 2 must be an invertible transformation of b1. This implies
that the bit sent to node 2 cannot not depend on b2. Similarly, the bit sent
to node 3 also cannot depend on b2. Therefore, it is impossible for node 4 to
recover b2 because both the bits received at nodes 2 and 3 do not depend on

2 3 

1 

4 

[ X 1 ] [ X 1 ] 

[ X 1 X 2 ] 

X 1 X 2 

Fig. 21.3. A network which does not achieve the max-flow bounds.
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Fig. 21.4. The max-flow bounds for the network in Figure 21.3.

b2. Thus the information rate pair (1, 1) is not achievable, which implies that
the max-flow bounds (21.4) and (21.5) are not achievable.

From this example, we see that the max-flow bounds do not always fully
characterize the achievable information rate region. We leave it as an exercise
for the reader to show that for this example, source separation is in fact
optimal.

21.2 Examples of Application

Multi-source network coding is a very rich model which encompasses many
communication situations arising from fault-tolerant network communication,
disk array, satellite communication, etc. In this section, we discuss some ap-
plications of the model.

21.2.1 Multilevel Diversity Coding

Let X1, X2, · · · , XK be K information sources in decreasing order of impor-
tance. These information sources are encoded into pieces of information. There
are a number of users, each of them having access to a certain subset of the
information pieces. Each user belongs to a level between 1 and K, where a
Level k user can decode X1, X2, · · · , Xk. This model, called multilevel diver-
sity coding, finds applications in fault-tolerant network communication, disk
array, and distributed data retrieval.

Figure 21.5 shows a graph which represents a 3-level diversity coding sys-
tem. The graph consists of three layers of nodes. The top layer consists of
a node at which information sources X1, X2, and X3 are generated. These
information sources are encoded into three pieces, each of which is stored in
a distinct node in the middle layer. A dummy node is associated with such a
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Fig. 21.5. A 3-level diversity coding system.

node to model the effect that the same information is retrieved every time the
node is accessed (see the discussion in Section 17.2). The nodes in the bottom
layer represent the users, each of them belonging to one of the three levels.
Each of the three Level 1 users has access to a distinct node in the second
layer (through the associated dummy node) and decodes X1. Similarly, each
of the three Level 2 users has access to a distinct set of two nodes in the
second layer and decodes X1 and X2. There is only one Level 3 user, who has
access to all the three nodes in the second layer and decodes X1, X2, and X3.

The model represented by the graph in Figure 21.5 is called symmetrical
3-level diversity coding because the model is unchanged by permuting the
nodes in the middle layer. By degenerating information sources X1 and X3,
the model is reduced to the diversity coding model discussed in Section 18.2.

In the following, we describe two applications of symmetrical multilevel
diversity coding:
Fault-Tolerant Network Communication In a computer network, a data
packet can be lost due to buffer overflow, false routing, breakdown of commu-
nication links, etc. Suppose the packet carries K messages, X1, X2, · · · , XK , in
decreasing order of importance. For improved reliability, the packet is encoded
into K sub-packets, each of which is sent over a different channel. If any k
sub-packets are received, then the messages X1, X2, · · · , Xk can be recovered.
Disk Array Consider a disk array which consists of K disks. The data to
be stored in the disk array are segmented into K pieces, X1, X2, · · · , XK , in
decreasing order of importance. Then X1, X2, · · · , XK are encoded into K
pieces, each of which is stored on a separate disk. When any k out of the K
disks are functioning, the data X1, X2, · · · , Xk can be recovered.
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Transmitter 

Receiver 

Fig. 21.6. A satellite communication network.

21.2.2 Satellite Communication Network

In a satellite communication network, a user is at any time covered by one
or more satellites. A user can be a transmitter, a receiver, or both. Through
the satellite network, each information source generated at a transmitter is
multicast to a certain set of receivers. A transmitter can transmit to all the
satellites within the line of sight, while a receiver can receive from all the
satellites within the line of sight. Neighboring satellites may also communicate
with each other. Figure 21.6 is an illustration of a satellite communication
network.

The satellite communication network in Figure 21.6 can be represented by
the graph in Figure 21.7 which consists of three layers of nodes. The top layer
represents the transmitters, the middle layer consists of nodes representing
the satellites as well as the associated dummy nodes modeling the broadcast
nature of the satellites, and the bottom layer represents the receivers. If a
satellite is within the line-of-sight of a transmitter, then the corresponding
pair of nodes are connected by a directed edge. Likewise, if a receiver is within
the line-of-sight of a satellite, then the corresponding pair nodes are connected
by a directed edge. An edges between two nodes in the middle layer represent
the communication links between two neighboring satellites. Each information
source is multicast to a specified set of receiving nodes as shown.

21.3 A Network Code for Acyclic Networks

Let G = (V, E) denote an acyclic point-to-point communication network,
where V and E are the set of nodes and the set of channels, respectively.
We assume that each channel e ∈ E is error-free with rate constraint Re.
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Fig. 21.7. A graph representing a satellite communication network.

As in our previous discussions, we let In(t) and Out(t) be the set of input
channels and the set of output channels of node t, respectively.

Let S ⊂ V be the set of source nodes and T ⊂ V be the set of sink nodes.
Without loss of generality, we assume G has the structure that a source node
has no input channel and a sink node has no output channel. Accordingly, S
and T are disjoint subsets of V.

An information source represented by a random variable Xs is generated
at a source node s ∈ S, where Xs takes values in

Xs = {1, 2, · · · , d2nτse} (21.6)

according to the uniform distribution, where τs is the rate of the informa-
tion source. The information sources Xs, s ∈ S are assumed to be mutually
independent.

To simplify the notation, we will denote (Xs : s ∈ A) by XA,
∏
s∈A Xs by

XA, etc. At a sink node t ∈ T , the set of information sources Xβ(t), where
β(t) ⊂ S, is received. We assume that each information source is received at
at least one sink node, i.e., for every s ∈ S, s ∈ β(t) for some t ∈ T . In the
case when β(t) = S for all t ∈ T , the problem is reduced to the single-source
network coding problem.

Definition 21.1. An (n, (ηe : e ∈ E), (τs : s ∈ S)) block code of length n on a
given communication network is defined by

1) for all source node s ∈ S and all channels e ∈ Out(s), a local encoding
function

ke : Xs → {0, 1, · · · , ηe}; (21.7)

2) for all node i ∈ V \ (S ∪ T ) and all channels e ∈ Out(i), a local encoding
function
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ke :
∏

d∈In(i)

{0, 1, · · · , ηd} → {0, 1, · · · , ηe}; (21.8)

3) for all sink node t ∈ T , a decoding function

gt :
∏

d∈In(t)

{0, 1, · · · , ηd} → Xβ(t). (21.9)

The nodes in V are assumed to be ordered in an upstream-to-downstream
manner as prescribed in Proposition 19.1. This defines a coding order among
the nodes such that whenever a node encodes, all the information needed
would have already been received on the input channels of that node.

For all sink node t ∈ T , define

∆t = Pr
{
g̃t(XS) 6= Xβ(t)

}
, (21.10)

where g̃t(XS) denotes the value of gt as a function of XS . ∆t is the probability
that the set of information sources Xβ(t) is decoded correctly at sink node t.

Throughout this chapter, all the logarithms are in the base 2.

Definition 21.2. An information rate tuple ω = (ωs : s ∈ S), where ω ≥ 0
(componentwise) is asymptotically achievable if for any ε > 0, there exists for
sufficient large n an (n, (ηe : e ∈ E), (τs : s ∈ S)) code such that

n−1 log ηe ≤ Re + ε, e ∈ E (21.11)
τs ≥ ωs − ε, s ∈ S (21.12)
∆t ≤ ε, t ∈ T . (21.13)

For brevity, an asymptotically achievable information rate tuple will be referred
to as an achievable information rate tuple.

21.4 The Achievable Information Rate Region

In this section, we define the achievable information rate region and give a
characterization of this region.

Definition 21.3. The achievable information rate region, denoted by R, is
the set of all achievable information rate tuple ω.

Remark It follows from the definition of the achievability of an information
rate vector that if ω is achievable, then ω′ is achievable for all 0 ≤ ω′ ≤ ω.
Also, if ω(k), k ≥ 1 are achievable, then it can be proved by techniques similar
to those in the proof of Theorem 8.12 that

ω = lim
k→∞

ω(k) (21.14)
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is also achievable, i.e., R is closed. The details are omitted here.

Consider the set of all information rate tuples ω such that there exist
auxiliary random variables {Ys, s ∈ S} and {Ue, e ∈ E} which satisfy the
following conditions:

H(Ys) ≥ ωs, s ∈ S (21.15)

H(YS) =
∑
s∈S

H(Ys) (21.16)

H(UOut(s)|Ys) = 0, s ∈ S (21.17)
H(UOut(i)|UIn(i)) = 0, i ∈ V \ (S ∪ T ) (21.18)

H(Ue) ≤ Re, e ∈ E (21.19)
H(Yβ(t)|UIn(t)) = 0, t ∈ T , (21.20)

where YS denotes (Ys : s ∈ S), UOut(s) denotes (Ue : e ∈ Out(s)), etc. Here,
Ys is an auxiliary random variable associated with the information source Xs,
and Ue is an auxiliary random variable associated with the codeword sent
on channel e. The interpretations of (21.15) to (21.20) are as follows. The
inequality in (21.15) says that the entropy of Ys is greater than or equal to
ωs, the rate of the information source Xs. The equality in (21.16) says that
Ys, s ∈ S are mutually independent, which corresponds to the assumption that
the information sources Xs, s ∈ S are mutually independent. The equality in
(21.17) says that UOut(s) is a function of Ys for s ∈ S, and the equality
in (21.18) says that UOut(i) is a function of UIn(i) for i ∈ V \ (S ∪ T ). These
correspond to the requirement that the codewords sent out by a source node s
are functions of the information source Xs, and that the codewords sent out
by a non-source node i are functions of the codewords received by node i. The
inequality in (21.19) says that the entropy of Ue is less than or equal to Re,
the rate constraint for channel e. The equality in (21.20) says that Yβ(t) is a
function of UIn(t) for t ∈ T , which corresponds to the requirement that the
information sources to be received at a sink node t can be decoded from the
codewords received at node t.

For a given multi-source network coding problem, let

N = {Ys : s ∈ S;Ue : e ∈ E} (21.21)

be a collection of discrete random variables whose joint distribution is unspec-
ified, and let

QN = 2N \ {φ} (21.22)

with cardinality 2|N | − 1. Let HN be the |QN |-dimensional Euclidean space
with the coordinates labeled by hA, A ∈ QN . A vector

h = (hA : A ∈ QN ) (21.23)

in HN is said to be finitely entropic if there exists a joint distribution for all
X ∈ N , where |X | <∞ for all X ∈ N and
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hA = H(X : X ∈ A) (21.24)

for all A ∈ QN . Note that h ∈ HN is entropic if it is finitely entropic, but not
vice versa. We then define the region

Γ ∗∗N = {h ∈ HN : h is finitely entropic}. (21.25)

To simplify notation, for any nonempty A,A′ ∈ QN , define

hA|A′ = hAA′ − hA′ , (21.26)

where we have used juxtaposition to denote the union of two sets. In using
the above notation, we do not distinguish elements and singletons of N , i.e.,
for a random variable Z ∈ N , hZ is the same as h{Z}. We now define the
following regions in HN :

C1 =

{
h ∈ HN : hYS =

∑
s∈S

hYs

}
(21.27)

C2 =
{

h ∈ HN : hUOut(s)|Ys = 0, s ∈ S
}

(21.28)

C3 =
{

h ∈ HN : hUOut(i)|UIn(i)
= 0, i ∈ V \ (S ∪ T )

}
(21.29)

C4 = {h ∈ HN : hUe ≤ Re, e ∈ E } (21.30)

C5 =
{

h ∈ HN : hYβ(t)|UIn(t)
= 0, t ∈ T

}
. (21.31)

Evidently, (21.27) to (21.31) are the regions in HN corresponding to (21.16)
to (21.20), respectively. We further denote

⋂
i∈α Ci by Cα for α ⊂ {1, 2, 3, 4, 5}.

We now introduce a few notations. For a vector h ∈ HN , let hYS = (hYs :
s ∈ S). For a subset B of HN , let

1. projYS (B) = {hYS : h ∈ B} be the projection of the set B on the coordi-
nates hYs , s ∈ S;

2. Λ(B) = {h ∈ HN : 0 ≤ h ≤ h′ for some h′ ∈ B};
3. con(B) be the convex hull of B;
4. B be the closure of B.

Note that a vector h ≥ 0 is in Λ(B) if and only if it is inferior to some vector
h′ in B. The following theorem gives a characterization of the achievable
information rate region R in terms of the region Γ ∗∗N .

Definition 21.4. Define the region

R′ = Λ
(

projYS
(

con(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5
))

. (21.32)

Theorem 21.5. R = R′.

This theorem, which characterizes the achievable information rate region
R, will be proved in Sections 21.6 and 21.7. In the next section, we first discuss
how more explicit inner and outer bounds on R can be obtained.
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21.5 Explicit Inner and Outer Bounds

Theorem 21.5 gives a characterization of the achievable information rate re-
gion R in terms of the region Γ ∗∗N . However, so far there exists no complete
characterization of Γ ∗∗N . Therefore, the region R cannot be evaluated explic-
itly.

In the definition of R′ in (21.32), if Γ ∗∗N is replaced by an inner bound
(outer bound) on Γ ∗∗N , then an inner bound (outer bound) on R is obtained.
The results in [235] and [233] which are beyond the scope of our discussion
here, provide explicit constructions of inner bounds on Γ ∗∗N .

We now discuss how an explicit outer bound on R can be obtained. To
facilitate our discussion, we further define

iA;A′ = hA − hA|A′ (21.33)

and
iA;A′|A′′ = hA|A′′ − hA|A′A′′ (21.34)

for A,A′, A′′ ∈ QN . Let ΓN be the set of h ∈ HN such that h satisfies all the
basic inequalities involving some or all of the random variables in N , i.e., for
all A,A′, A′′ ∈ QN ,

hA ≥ 0 (21.35)
hA|A′ ≥ 0 (21.36)
iA;A′ ≥ 0 (21.37)

iA;A′|A′′ ≥ 0. (21.38)

We know from Section 14.2 that Γ
∗∗
N ⊂ ΓN . Then upon replacing Γ

∗∗
N by ΓN

in (21.32), we obtain an outer bound on Rout. This outer bound, called the
LP bound (LP for linear programming), is given by

RLP = Λ
(

projYS
(

con(ΓN ∩ C123) ∩ C4 ∩ C5
))

. (21.39)

Since RLP involves only a finite number of linear constraints, RLP can be
evaluated explicitly.

Using the technique in [368], it can be proved that RLP is tight for most
special cases of multi-source network coding on an acyclic network for which
the achievable information region is known. In addition to single-source net-
work coding, these include the models described in [143] [359] [279] [367] [368]
[308]. Since RLP encompasses all Shannon-type information inequalities and
the converse proofs of the achievable information rate region for all these spe-
cial cases do not involve non-Shannon-type inequalities, the tightness of RLP
for all these cases is expected.

However, there exist multi-source network coding problems that requires
non-Shannon-type inequalities for the characterization of the achievable in-
formation rate region [88] [59]. As new non-Shannon-type inequalities are
discovered from time to time, improved outer bounds on R can be obtained
by incorporating these inequalities.



506 21 Multi-Source Network Coding

21.6 The Converse

In this section, we establish the converse part of Theorem 21.5, namely

R ⊂ Λ
(

projYS
(

con(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5
))

= R′. (21.40)

Let εk be a sequence such that 0 < εk < 1 for all k and εk monotonically
decreases to 0 as k → ∞. Consider an achievable information rate tuple
ω ∈ R. Then for all k, for all sufficiently large n, there exists an(

n, (η(k)
e : e ∈ E), (τ (k)

s : s ∈ S)
)

(21.41)

code satisfying

n−1 log η(k)
e ≤ Re + εk, e ∈ E (21.42)
τ (k)
s ≥ ωs − εk, s ∈ S (21.43)

∆
(k)
t ≤ εk, t ∈ T , (21.44)

where ∆(k)
t denotes the decoding error probability at sink node t (cf. (21.10)).

We now fix k to be any positive integer and temporarily suppress all the
superscripts involving k. For all e ∈ E , let Ue be the codeword sent on channel e
and denote the alphabet of Ue by Ue. The following lemma, whose proof will
be deferred to the end of the section, is a consequence of Fano’s inequality.

Lemma 21.6. For all n and k, for all t ∈ T ,

H(Xβ(t)|UIn(t)) ≤ nφt(n, εk), (21.45)

where

1. φt(n, εk) is bounded;
2. φt(n, εk)→ 0 as n, k →∞;
3. φt(n, εk) is monotonically decreasing in both n and k.

Since the information source Xs, s ∈ S are mutually independent,

H(XS) =
∑
s∈S

H(Xs). (21.46)

For any s ∈ S, since UOut(s) is a function of Xs,

H(UOut(s)|Xs) = 0. (21.47)

Similarly, for all i ∈ V \ (S ∪ T ),

H(UOut(i)|XIn(i)) = 0. (21.48)
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For all e ∈ E ,

H(Ue) ≤ log |Ue| (21.49)
= log(ηe + 1) (21.50)
≤ n(Re + 2εk) (21.51)

where (21.51) follows from (21.42) assuming that n is sufficiently large. For
all t ∈ T , from Lemma 21.6, we have

H(Xβ(t)|UIn(t)) ≤ nφt(n, εk). (21.52)

For all s ∈ S, from (21.43),

H(Xs) = log |Xs| = logd2nτse ≥ nτs ≥ n(ωs − εk). (21.53)

By letting Ys = Xs for all s ∈ S, we then obtain from (21.46) to (21.48) and
(21.51) to (21.53) that

H(YS) =
∑
s∈S

H(Ys) (21.54)

H(UOut(s)|Ys) = 0, s ∈ S (21.55)
H(UOut(i)|UIn(i)) = 0, i ∈ V \ (S ∪ T ) (21.56)

H(Ue) ≤ n(Re + 2εk), e ∈ E (21.57)
H(Yβ(t)|UIn(t)) ≤ nφt(n, εk), t ∈ T (21.58)

H(Ys) ≥ n(ωs − εk), s ∈ S. (21.59)

Now define the following two regions in HN :

Cn4,εk = {h ∈ HN : hUe ≤ n(Re + 2εk), e ∈ E} (21.60)
Cn5,εk = {h ∈ HN : hYβ(t)|UIn(t)

≤ nφt(n, εk), t ∈ T }. (21.61)

Note that all the auxiliary random variables Ys, s ∈ S and Ue, e ∈ E have
finite alphabets, because

|Ys| = |Xs| = d2nτse <∞ (21.62)

and
log |Ue| ≤ n(Re + 2εk) <∞ (21.63)

(cf. (21.49) through (21.51)). Then we see from (21.54) to (21.59) that there
exists

h(k) ∈ Γ ∗∗N (21.64)

such that
h(k) ∈ C123 ∩ Cn4,εk ∩ C

n
5,εk

(21.65)

and
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h
(k)
Ys
≥ n(ωs − εk) (21.66)

for all s ∈ S. From (21.64) and (21.65), we obtain

h(k) ∈ Γ ∗∗N ∩ C123 ∩ Cn4,εk ∩ C
n
5,εk

. (21.67)

Upon dividing by n, (21.66) becomes

n−1h
(k)
Ys
≥ ωs − εk. (21.68)

Since Γ ∗∗N ∩ C123 contains the origin in HN , we see that

n−1h(k) ∈ con(Γ ∗∗N ∩ C123) ∩ C4,εk ∩ C5,εk , (21.69)

where

C4,εk = {h ∈ HN : hUe ≤ Re + 2εk, e ∈ E} (21.70)
C5,εk = {h ∈ HN : hYβ(t)|UIn(t)

≤ φt(n, εk), t ∈ T }. (21.71)

Note that the region C5,εk depends on n though it is not indicated explicitly.
For all n and k, define the set

B(n,k) = {h ∈ con(Γ ∗∗N ∩ C123) ∩ C4,εk ∩ C5,εk :
hYs ≥ ωs − εk for all s ∈ S}. (21.72)

Lemma 21.7. For all n and k, the set B(n,k) is compact1.

Again, the proof of this lemma is deferred to the end of the section. Now
from Lemma 21.6, φt(n, εk) is monotonically decreasing in both n and k, so
for all n and k,

B(n+1,k) ⊂ B(n,k) (21.73)

and
B(n,k+1) ⊂ B(n,k). (21.74)

For any fixed k and all sufficiently large n, we see from (21.68) and (21.69)
that B(n,k) is nonempty. Since B(n,k) is compact by Lemma 21.7,

lim
n→∞

B(n,k) =
∞⋂
n=1

B(n,k) (21.75)

is both compact and nonempty. By the same argument, we conclude that

lim
k→∞

lim
n→∞

B(n,k) =
∞⋂
k=1

∞⋂
n=1

B(n,k) (21.76)

is also nonempty. Now the set
1 A subset of the Euclidean space is compact if and only if it is closed and bounded.
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lim
k→∞

lim
n→∞

B(n,k) (21.77)

is equal to{
h ∈ con(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5 : hYs ≥ ωs for all s ∈ S

}
. (21.78)

Hence, there exists h′ satisfying

h′ ∈ con(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5 (21.79)

and
h′Ys ≥ ωs, s ∈ S. (21.80)

Let r = projYS (h′). Then we have

r ∈ projYS
(

con(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5
)

(21.81)

and
r ≥ ω (21.82)

componentwise. By (21.81) and (21.82), we finally conclude that

ω ∈ Λ
(

projYS
(

con(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5
))

. (21.83)

This completes the proof of the converse part of Theorem 21.5.

Proof of Lemma 21.6. For any t ∈ T , by Fano’s inequality, we have

H(Xβ(t)|UIn(t)) ≤ 1 +∆t log |Xβ(t)| (21.84)
= 1 +∆tH(Xβ(t)) (21.85)
≤ 1 + εkH(Xβ(t)), (21.86)

where (21.85) follows because Xs distributes uniformly on Xs and Xs, s ∈ S
are mutually independent, and (21.86) follows from (21.44). Then

H(Xβ(t)) = I(Xβ(t);UIn(t)) +H(Xβ(t)|UIn(t)) (21.87)
a)

≤ I(Xβ(t);UIn(t)) + 1 + εkH(Xβ(t)) (21.88)
≤ H(UIn(t)) + 1 + εkH(Xβ(t)) (21.89)

b)

≤

 ∑
e∈In(t)

log ηe

+ 1 + εkH(Xβ(t)) (21.90)

c)

≤

 ∑
e∈In(t)

n(Re + εk)

+ 1 + εkH(Xβ(t)), (21.91)

where
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a) follows from (21.86);
b) follows from Theorem 2.43;
c) follows from (21.42).

Rearranging the terms in (21.91), we obtain

H(Xβ(t)) ≤
n

1− εk

 ∑
e∈In(t)

(Re + εk) +
1
n

 . (21.92)

Substituting (21.92) into (21.86), we have

H(Xβ(t)|UIn(t)) < n

 1
n

+
εk

1− εk

 ∑
e∈In(t)

(Re + εk) +
1
n

 (21.93)

= nφt(n, εk), (21.94)

where

φt(n, εk) =
1
n

+
εk

1− εk

 ∑
e∈In(t)

(Re + εk) +
1
n

 . (21.95)

Invoking the assumption that 0 < εk < 1 for all k and εk monotonically
decreases to 0 as k →∞, it is evident that

1. φt(n, εk) is bounded for all n and k;
2. φt(n, εk)→ 0 as n, k →∞;
3. φt(n, εk) is monotonically nonincreasing in both n and k.

The lemma is proved. ut

Proof of Lemma 21.7. We need to show that the set B(n,k) is both closed
and bounded. The closedness of B(n,k) is immediate from its definition. To
establish the boundedness of B(n,k), we need to show that for any h ∈ B(n,k),
all the components of h are bounded. Consider any h ∈ B(n,k). Since

B(n,k) ⊂ C4,εk , (21.96)

we see from (21.70) that hUe are bounded for all e ∈ E . Since

B(n,k) ⊂ C5,εk , (21.97)

we see from (21.71) that for every t ∈ T ,

hYβ(t) ≤ hYβ(t)UIn(t) (21.98)
= hYβ(t)|UIn(t)

+ hUIn(t) (21.99)
≤ φt(n, εk) + hUIn(t) (21.100)

≤ φt(n, εk) +
∑

e∈In(t)

hUe (21.101)
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where (21.99) and the boundedness of φt(n, εk) follow from Lemma 21.6. This
shows that hYβ(t) is bounded for all t ∈ T .

In our model, for every s ∈ S, there exists at least one t ∈ T such that
s ∈ β(t). Then the boundedness of hYβ(t) for all t ∈ T implies the boundedness
of hYs for all s ∈ S. Finally, the boundedness of all the other components of
h is established by invoking the independence bound for entropy. The lemma
is proved. ut

21.7 Achievability

In this section, we establish the direct part of Theorem 21.5, namely,

R′ = Λ
(

projYS
(

con(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5
))
⊂ R. (21.102)

Before we proceed, we first prove an alternative form of R′ that will be used
in constructing the random code. For a subset B of HN , let

D(B) = {αh : h ∈ HN and 0 ≤ α ≤ 1}. (21.103)

Define the two subsets
A1 = con(Γ ∗∗N ∩ C123) (21.104)

and
A2 = D(Γ ∗∗N ∩ C123) (21.105)

of HN .

Lemma 21.8. A1 = A2.

Proof. Since the origin of HN is in Γ ∗∗N , it is also in Γ ∗∗N ∩ C123 because C123

is a linear subspace of HN . Upon observing that for 0 ≤ α ≤ 1,

αh = (1− α)0 + αh (21.106)

is a convex combination of 0 and h, we obtain

D(Γ ∗∗N ∩ C123) ⊂ con(Γ ∗∗N ∩ C123). (21.107)

It follows that A2 ⊂ A1.
To prove that A1 ⊂ A2, it suffices to show that A2 is convex because

1. (Γ ∗∗N ∩ C123) ⊂ A2, where A2 is closed;
2. A1 is the smallest closed convex set containing Γ ∗∗N ∩ C123.

Toward this end, consider any h1,h2 ∈ A2 and any 0 ≤ λ ≤ 1. We will show
that

h = λh1 + (1− λ)h2 ∈ A2. (21.108)
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Here, we can assume without loss of generality that h1,h2 6= 0, because
otherwise (21.108) holds by the definition of A2. Since h1,h2 ∈ A2, there
exist hk1 ,h

k
2 ∈ D(Γ ∗∗N ∩C123) such that hk1 → h1 and hk2 → h2. Since hk1 ,h

k
2 ∈

D(Γ ∗∗N ∩ C123),
hk1 = αk1 ĥk1 (21.109)

and
hk2 = αk2 ĥk2 , (21.110)

where ĥk1 , ĥ
k
2 ∈ Γ ∗∗N ∩ C123 and 0 < αk1 , α

k
2 ≤ 1. Note that αk1 and αk2 are

strictly positive because h1,h2 6= 0. Now let nk1 and nk2 be integer sequences
such that

nk1α
k
1

nk2α
k
2

→ λ

1− λ
, (21.111)

and let
ĥk = nk1hk1 + nk2hk2 . (21.112)

By Lemma 15.3 (also Corollary 15.4),

ĥk ∈ Γ ∗∗N . (21.113)

Furthermore, since hk1 ,h
k
2 ∈ C123 and C123 is a linear subspace, ĥk ∈ C123.

Therefore,
ĥk ∈ Γ ∗∗N ∩ C123. (21.114)

Let

hk =
ĥk

nk1α
k
1 + nk2α

k
2

. (21.115)

Then
hk ∈ D(Γ ∗∗N ∩ C123) ⊂ D(Γ ∗∗N ∩ C123) = A2. (21.116)

Substituting (21.112), (21.109), and (21.110) into (21.115), we obtain

hk =
nk1α

k
1

nk1α
k
1 + nk2α

k
2

hk1 +
nk2α

k
2

nk1α
k
1 + nk2α

k
2

hk2 . (21.117)

It can readily be seen from (21.111) that

nk1α
k
1

nk1α
k
1 + nk2α

k
2

→ λ (21.118)

and
nk2α

k
2

nk1α
k
1 + nk2α

k
2

→ 1− λ. (21.119)

Since hk1 → h1 and hk2 → h2, we see from (21.108) that hk → h. Finally, since
hk ∈ A2 and A2 is closed, we conclude that h ∈ A2. Therefore, A2 is convex,
and hence A1 ⊂ A2. The lemma is proved. ut
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By virtue of this lemma, we can write

R′ = Λ
(

projYS
(
D(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5

))
, (21.120)

and we will establish R′ ⊂ R by proving that

Λ
(

projYS
(
D(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5

))
⊂ R. (21.121)

By the remark following Definition 21.3, we only need to show the achiev-
ability of the region

projYS
(
D(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5

)
. (21.122)

Consider any ω in this region. Then there exists

h ∈ D(Γ ∗∗N ∩ C123) ∩ C4 ∩ C5 (21.123)

such that
ω = projYS (h). (21.124)

Since
h ∈ D(Γ ∗∗N ∩ C123), (21.125)

there exist a sequence
h(k) ∈ D(Γ ∗∗N ∩ C123) (21.126)

such that
h = lim

k→∞
h(k). (21.127)

Let
ω(k) = projYS (h(k)). (21.128)

It then follows from (21.127) that

lim
k→∞

ω(k) = ω. (21.129)

By (21.126),
h(k) = α(k)ĥ(k) (21.130)

where ĥ(k) ∈ Γ ∗∗N ∩ C123 and

0 ≤ α(k) ≤ 1. (21.131)

Note that ĥ(k) is an entropy function because it is in Γ ∗∗N , but h(k) and h
are not necessarily entropy functions. Since ĥ(k) ∈ Γ ∗∗N ∩ C123, there exists a
collection of random variables with finite alphabets

N (k) =
{

(Y (k)
s : s ∈ S), (U (k)

e : e ∈ E)
}

(21.132)
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such that

α(k)H
(
Y (k)
s

)
= ω(k)

s , s ∈ S (21.133)

H
(
Y

(k)
S

)
=
∑
s∈S

H
(
Y (k)
s

)
(21.134)

H
(
U

(k)
Out(s)

∣∣∣Y (k)
s

)
= 0, s ∈ S (21.135)

H
(
U

(k)
Out(i)

∣∣∣U (k)
In(i)

)
= 0, i ∈ V \ (S ∪ T ), (21.136)

where (21.133) is implied by (21.128). Furthermore, since h ∈ C4∩C5, it follows
from (21.127) and (21.130) that

α(k)H
(
U (k)
e

)
≤ Re + µ(k), e ∈ E (21.137)

α(k)H
(
Y

(k)
β(t)

∣∣∣U (k)
In(t)

)
≤ γ(k), t ∈ T , (21.138)

where µ(k), γ(k) → 0 as k → ∞. In the rest of the section, we will prove
the achievability of ω(k) for all sufficiently large k. Then the closedness of R
implies the achievability of ω by the remark following Definition 21.3.

21.7.1 Random Code Construction

Fix k and ε > 0, and let δ be a small positive quantity to be specified later.
We first construct a random

(n, (η(k)
e : e ∈ E), (τ (k)

s : s ∈ S)) (21.139)

code with
η(k)
e ≤ 2n(α(k)H(U(k)

e )+ψ(k)
e ) (21.140)

for all e ∈ E and
ω(k)
s −

ε

2
≤ τ (k)

s ≤ ω(k)
s −

ε

3
, (21.141)

where ψ(k)
e > 0 and ψ

(k)
e → 0 as δ → 0, by the steps below. For the sake of

simplicity, we temporarily suppress all the superscripts involving k.

1. Let
n̂ = dnαe. (21.142)

Here n is the block length of the random code we will construct, while n̂ is
the length of a sequence of the typical sets that we will use for constructing
the random code. For each source s ∈ S, let

θs = d2nτse (21.143)

and construct a codebook Cs by generating θs codewords in Y n̂s ran-
domly and independently according to pn̂(ys). Denote these sequences by
Ys(1),Ys(2), · · · ,Ys(θs), and let Ys(0) be an arbitrary constant sequence
in Y n̂s .
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2. Reveal the codebook Cs, s ∈ S to all the nodes in the network.
3. At a source node s ∈ S, the information source Xs is generated according

to the uniform distribution on

Xs = {1, 2, · · · , θs}. (21.144)

4. Let T n̂[Ue]δ denote the set of strongly typical sequences2 with respect to the
distribution p(ue). Let

ζe = |T n̂[Ue]δ|. (21.145)

By the strong AEP and (21.142),

ζe ≤ 2n̂(H(Ue)+ψe/(2α)) ≤ 2n(αH(Ue)+ψe/2), (21.146)

where ψe → 0 as δ → 0. For all channels e ∈ E , choose an ηe satisfying

2n(αH(Ue)+ψe/2) ≤ ηe ≤ 2n(αH(Ue)+ψe). (21.147)

Denote the sequences in T n̂[Ue]δ by Ue(1),Ue(2), · · · , Ue(ζe), and let Ue(0)
be an arbitrary constant sequence in U n̂e .
a) Let the outcome of Xs be xs for a source node s. For a channel e ∈

Out(s), define the local encoding function

ke : Xs → {0, 1, · · · , ηe} (21.148)

as follows. By (21.135), for each channel e ∈ Out(s), there exists a
function ue such that

Ue = ue(Ys), (21.149)

i.e.,
Pr{Ue = ue(y)|Ys = y} = 1 (21.150)

for all y ∈ Ys. By the preservation property of strong typicality (The-
orem 6.8), if

Ys(xs) ∈ T n̂[Ys]δ, (21.151)

then
ue(Ys(xs)) ∈ T n̂[Ue]δ, (21.152)

where in ue(Ys(xs)), the function ue is applied to Ys(xs) componen-
twise. If so, let ke(xs) be the index of ue(Ys(xs)) in T n̂[Ue]δ, i.e.,

Ue(ke(xs)) = ue(Ys(xs)). (21.153)

Otherwise, let ke(xs) be 0. Note that ke is well-defined because

ζe ≤ ηe (21.154)

by (21.146) and (21.147).
2 Strong typicality applies because all the random variables in N (k) have finite

alphabets.
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b) Let Ce be the index sent on channel e. For a channel e ∈ Out(i), where
i ∈ V\(S ∪ T ), define the local encoding function

ke :
∏

d∈In(i)

{0, 1, · · · , ηd} → {0, 1, · · · , ηe} (21.155)

as follows. By (21.136), there exists a function ue such that

Ue = ue(UIn(i)). (21.156)

With a slight abuse of notation, we write

UE′(CE′) = (Ud(Cd) : d ∈ E ′) (21.157)

for E ′ ⊂ E , and
YS′(xS′) = (Ys(xs) : s ∈ S ′) (21.158)

for S ′ ⊂ S. By the preservation property of strong typicality, if

UIn(i)(CIn(i)) ∈ T n̂[UIn(i)]δ
, (21.159)

then
ue(UIn(i)(CIn(i))) ∈ T n̂[Ue]δ. (21.160)

If so, let ke(CIn(i)) be the index of ue(UIn(i)(CIn(i))) in T n̂[Ue]δ, i.e.,

Ue(ke(CIn(i))) = ue(UIn(i)(CIn(i))). (21.161)

Otherwise, let ke(CIn(i)) be 0. Again, ke is well-defined because
(21.154) holds.

5. For a sink node t ∈ T , define the decoding function

gt :
∏

d∈In(t)

{0, 1, · · · , ηd} → Xβ(t) (21.162)

as follows. If the received index Cd on channel d is nonzero for all d ∈ In(t)
and there exists a unique tuple

xβ(t) ∈ Xβ(t) (21.163)

such that

(Yβ(t)(xβ(t)),UIn(i)(CIn(t))) ∈ T n̂[UIn(t)Yβ(t)]δ
, (21.164)

then let gt(CIn(t)) be xβ(t). Otherwise, declare a decoding error.
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21.7.2 Performance Analysis

Let us reinstate all the superscripts involving k that were suppressed when we
described the construction of the random code. Our task is to show that for
any sufficiently large k and any ε > 0, the random code we have constructed
satisfies the following when n is sufficiently large:

n−1 log η(k)
e ≤ Re + ε, e ∈ E (21.165)
τ (k)
s ≥ ω(k)

s − ε, s ∈ S (21.166)

∆
(k)
t ≤ ε, t ∈ T . (21.167)

For e ∈ E , consider

n−1 log η(k)
e ≤ α(k)H(U (k)

e ) + ψ(k)
e (21.168)

≤ Re + µ(k) + ψ(k)
e , (21.169)

where the first inequality follows from the upper bound in (21.147) and the
second inequality follows from (21.137). Since µ(k) → 0 as k →∞, we can let
k be sufficiently large so that

µ(k) < ε. (21.170)

With k fixed, since ψ(k)
e → 0 as δ → 0, by letting δ be sufficiently small, we

have
µ(k) + ψ(k)

e ≤ ε, (21.171)

and (21.165) follows from (21.169). For s ∈ S, from the lower bound in
(21.141), we have

τ (k)
s ≥ ω(k)

s − ε, (21.172)

proving (21.166).
The proof of (21.167), which is considerably more involved, will be orga-

nized into a few lemmas. For the sake of presentation, the proofs of these
lemmas will be deferred to the end of the section.

For i ∈ S and i ∈ V\(S ∪ T ), the function ue, where e ∈ Out(i), has been
defined in (21.149) and (21.156), respectively. Since the network is acyclic,
we see by induction that all the auxiliary random variables Ue, e ∈ E are
functions of the auxiliary random variables YS . Thus there exists a function
ũe such that

Ue = ũe(YS). (21.173)

Equating the above with (21.149) and (21.156), we obtain

ue(Ys) = ũe(YS) (21.174)

and
ue(UIn(i)) = ũe(YS), (21.175)

respectively. These relations will be useful subsequently.
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In the rest of the section, we will analyze the probabilities of decoding
error for the random code we have constructed for a fixed k, namely ∆(k)

t , for
t ∈ T . With a slight abuse of notation, we write

ũE′(·) = (ũd(·) : d ∈ E ′) (21.176)

for E ′ ⊂ E . Again, we temporarily suppress all the superscripts invoking k.

Lemma 21.9. Let

XS = xS (21.177)
YS(xS) = yS ∈ T n̂[YS ]δ, (21.178)

and for e ∈ E, let Ce take the value ce, which by the code construction is a
function of xS and yS . Then

UIn(t)(cIn(t)) = ũIn(t)(yS). (21.179)

and
(yS ,UIn(t)(cIn(t))) ∈ T n̂[YSUIn(t)]δ

(21.180)

for all t ∈ T .

Let

Errt = {gt(CIn(t)) 6= Xβ(t)} = {g̃t(XS) 6= Xβ(t)} (21.181)

be the event of a decoding error at sink node t, i.e.,

Pr{Errt} = ∆t (21.182)

(cf. (21.10)). In the following, we will obtain an upper bound on Pr{Errt}.
Consider

Pr{Errt} =
∑

xβ(t)∈Xβ(t)

Pr{Errt|Xβ(t) = xβ(t)}Pr{Xβ(t) = xβ(t)}, (21.183)

and for S ′ ⊂ S, let
1S′ = (1, 1, · · · , 1)︸ ︷︷ ︸

|S′|

. (21.184)

Since Pr{Errt|Xβ(t) = xβ(t)} are identical for all xβ(t) by symmetry in the
code construction, from (21.183), we have

Pr{Errt}
= Pr{Errt|Xβ(t) = 1β(t)}

∑
xβ(t)∈Xβ(t)

Pr{Xβ(t) = xβ(t)} (21.185)

= Pr{Errt|Xβ(t) = 1β(t)}. (21.186)
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In other words, we can assume without loss of generality that Xβ(t) = 1β(t).
To facilitate our discussion, define the event

ES = {YS(1S) ∈ T n̂[YS ]δ.} (21.187)

Following (21.186), we have

Pr{Errt}
= Pr{Errt|Xβ(t) = 1β(t), ES}Pr{ES |Xβ(t) = 1β(t)}

+Pr{Errt|Xβ(t) = 1β(t), E
c
S}Pr{EcS |Xβ(t) = 1β(t)} (21.188)

= Pr{Errt|Xβ(t) = 1β(t), ES}Pr{ES}
+Pr{Errt|Xβ(t) = 1β(t), E

c
S}Pr{EcS} (21.189)

≤ Pr{Errt|Xβ(t) = 1β(t), ES} · 1 + 1 · Pr{EcS} (21.190)
≤ Pr{Errt|Xβ(t) = 1β(t), ES}+ λ, (21.191)

where the last inequality follows from the strong AEP and λ → 0 as δ → 0.
Upon defining the event

E′S = {Xβ(t) = 1β(t)} ∩ ES , (21.192)

we have
Pr{Errt} ≤ Pr{Errt|E′S}+ λ. (21.193)

We now further analyze the conditional probability in (21.193). For xβ(t) ∈
Xβ(t), define the event

Et(xβ(t)) =
{

(Yβ(t)(xβ(t)),UIn(t)(CIn(t))) ∈ T n̂[Yβ(t)UIn(t)]δ

}
. (21.194)

Since Xβ(t) = 1β(t), decoding at sink node t is correct if the received indices
CIn(t) is decoded to 1β(t). This is the case if and only if Et(1β(t)) occurs but
Et(xβ(t)) does not occur for all xβ(t) 6= 1β(t). It follows that

Errct = Et(1β(t)) ∩
(
∩xβ(t) 6=1β(t)Et(xβ(t))c

)
, (21.195)

or
Errt = Et(1β(t))c ∪

(
∪xβ(t) 6=1β(t)Et(xβ(t))

)
, (21.196)

which implies

Pr{Errt|E′S} = Pr
{
Et(1β(t))c ∪

(
∪xβ(t) 6=1β(t)Et(xβ(t))

)∣∣E′S} . (21.197)

By the union bound, we have

Pr{Errt|E′S}
≤ Pr{Et(1β(t))c|E′S}+

∑
xβ(t) 6=1β(t)

Pr{Et(xβ(t))|E′S} (21.198)

=
∑

xβ(t) 6=1β(t)

Pr{Et(xβ(t))|E′S}, (21.199)
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where the last step follows because Pr{Et(1β(t))c|E′S} in (21.198) vanishes by
Lemma 21.9. The next two lemmas will be instrumental in obtaining an upper
bound on Pr{Et(xβ(t))|E′S} in (21.199).

For any proper subset Ψ of β(t), let

ΛΨ = {xβ(t) 6= 1β(t) : xs = 1 if and only if s ∈ Ψ}. (21.200)

Note that {ΛΨ} is a partition of the set Xβ(t)\{1β(t)}. For xβ(t) ∈ ΛΨ , xβ(t)

and 1β(t) are identical for exactly the components indexed by Ψ .

Lemma 21.10. For xβ(t) ∈ ΛΨ , where Ψ is a proper subset of β(t),

Pr{Et(xβ(t))|E′S} ≤ 2−nα(H(Yβ(t)\Ψ )−H(Yβ(t)|UIn(t))−ϕt), (21.201)

where ϕt → 0 as n→∞ and δ → 0.

Lemma 21.11. For all sufficiently large n,

|ΛΨ | ≤ 2n(αH(Yβ(t)\Ψ )−ε/4). (21.202)

We now reinstate all the superscript involving k that have been suppressed.
By Lemma 21.10, Lemma 21.11, and (21.199),

Pr{Errt|E′S}
≤

∑
xβ(t) 6=1β(t)

Pr{Et(xβ(t))|E′S} (21.203)

≤
∑
Ψ

∑
xβ(t)∈Ψ

Pr{Et(xβ(t))|E′S} (21.204)

≤ 2|E| 2−nα
(k)
[(
H(Y

(k)
β(t)\Ψ

)
−H
(
Y

(k)
β(t)|U

(k)
In(t)

)
−ϕt
]

·2n
[
α(k)H

(
Y

(k)
β(t)\Ψ

)
−ε/4

]
(21.205)

= 2|E| 2−n
[
ε/4−α(k)H

(
Y

(k)
β(t)|U

(k)
In(t)

)
−α(k)ϕt

]
(21.206)

≤ 2|E| 2−n(ε/4−γ(k)−α(k)ϕt) (21.207)

≤ 2|E| 2−n(ε/4−γ(k)−ϕt) (21.208)

where (21.207) follows from (21.138) and (21.208) follows from (21.131). Then
from (21.182), (21.193), and (21.208), we have

∆
(k)
t ≤ 2|E| 2−n(ε/4−γ(k)−ϕt) + λ (21.209)

We now choose k, n, and δ to make the upper bound above smaller than any
prescribed ε > 0. Since γ(k) → 0 as k → ∞, we can let k to be sufficiently
large so that
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γ(k) < ε/4. (21.210)

Then with k fixed, since ϕt → 0 as n → ∞ and δ → 0, and λ → 0 as δ → 0,
by letting n be sufficiently large n and δ be sufficiently small, we have

1. γ(k) + ϕt < ε/4, so that 2|E| 2−n(ε/4−γ(k)−ϕt) → 0 as n→∞;
2. ∆(k)

t ≤ ε.

This completes the proof of (21.167).
Hence, we have proved the achievability of ω(k) for all sufficiently large k.

Then the closedness of R implies the achievability of ω = limk→∞ ω
(k), where

ω ∈ R′. The achievability of R′ is established.

Proof of Lemma 21.9. We first prove that given

XS = xS (21.211)

and
YS(xS) = yS ∈ T n̂[YS ]δ, (21.212)

the following hold for all non-source nodes i (i.e., i ∈ V\S):

i) UIn(i)(cIn(i)) ∈ T n̂[UIn(i)]δ
;

ii) ke(cIn(i)) 6= 0, e ∈ Out(i);
iii) Ue(ke(cIn(i))) = ũe(yS), e ∈ Out(i).

Note that for i ∈ T , Out(i) = ∅ in ii) and iii). By the consistency of strong
typicality (Theorem 6.7),

ys ∈ T n̂[Ys]δ (21.213)

for all s ∈ S. Then according to the construction of the code, for all e ∈ Out(s),

ke(xs) 6= 0 (21.214)

and
Ue(ke(xs)) = ue(ys). (21.215)

We now prove i) to iii) by induction on the non-source nodes according to any
given coding order. Let i1 be the first non-source node to encode. Since

In(i1) ⊂ S, (21.216)

for all d ∈ In(i1), d ∈ Out(s) for some s ∈ S. Then

Ud(cd) = Ud(kd(xs)) (21.217)
= ud(ys) (21.218)
= ũd(yS), (21.219)

where (21.218) and (21.219) follows from (21.215) and (21.174), respectively.
Thus
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UIn(i1)(cIn(i1)) = ũIn(i1)(yS). (21.220)

Since UIn(i1) is a function of YS , in light of (21.178),

UIn(i)(cIn(i)) ∈ T n̂[UIn(i)]δ
(21.221)

by the preservation property of strong typicality, proving i). According to the
code construction, this also implies ii). Moreover,

Ue(ke(cIn(i1))) = ue(UIn(i1)(cIn(i1))) (21.222)
= ũe(yS), (21.223)

where the last equality is obtained by replacing in (21.175) the random vari-
able Ud by the sequence Ud(cd) and the random variable Ys by the sequence
YS(xS) = yS , proving iii).

We now consider any non-source node i in the network. Assume that i) to
iii) are true for all the nodes upstream to node i. For d ∈ In(i), if d ∈ Out(s)
for some s ∈ S, we have already proved in (21.219) that

Ud(cd) = ũd(yS). (21.224)

Otherwise, d ∈ Out(i′), where node i′ is upstream to node i. Then

Ud(cd) = Ud(kd(cIn(i′))) (21.225)
= ud(UIn(i′)(cIn(i′))) (21.226)
= ũd(yS), (21.227)

In the above, (21.226) follows from ii) for node i′ by the induction hypothesis
and the code construction, and (21.227) follows from (21.175). Therefore,
(21.224) is valid for all d ∈ In(i). Hence,

UIn(i)(cIn(i)) = ũIn(i)(yS). (21.228)

which is exactly the same as (21.220) except that i1 is replaced by i. Then by
means of the same argument, we conclude that i), ii), and iii) hold for node i.

As (21.228) holds for any non-source node i, it holds for any sink node t.
This proves (21.179) for all t ∈ T . Furthermore, since UIn(t) is a function of
YS , (YS , UIn(t)) is also a function of YS . Then in view of (21.179), (21.180)
follows from the preservation property of strong typicality. This completes the
proof of the lemma. ut

Proof of Lemma 21.10. Consider

Pr{Et(xβ(t))|E′S}

=
∑

yS∈T n̂[YS ]δ

Pr{Et(xβ(t))|YS(1S) = yS , E′S} Pr{YS(1S) = yS |E′S}.

(21.229)
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To analyze Pr{Et(xβ(t))|YS(1S) = yS , E′S} in the above summation, let us
condition on the event {YS(1S) = yS , E′S}, where yS ∈ T n̂[YS ]δ. It then follows
from (21.179) in Lemma 21.9 that

UIn(t)(cIn(t)) = ũIn(t)(yS). (21.230)

Therefore, the event Et(xβ(t)) is equivalent to

(yΨ ,Yβ(t)\Ψ (xβ(t)\Ψ ), ũIn(t)(yS)) ∈ T n̂[YΨYβ(t)\ΨUIn(t)]δ
(21.231)

(cf. (21.194)), or

Yβ(t)\Ψ (xβ(t)\Ψ ) ∈ T n̂[Yβ(t)\Ψ |YΨUIn(t)]δ
(yΨ , ũIn(t)(yS)). (21.232)

Thus

Pr{Et(xβ(t))|YS(1S) = yS , E′S}

=
∑

yβ(t)\Ψ∈T n̂[Yβ(t)\Ψ |YΨUIn(t)]δ
(yΨ ,ũIn(t)(yS))

Pr{Yβ(t)\Ψ (xβ(t)\Ψ ) = yβ(t)\Ψ |YS(1S) = yS , E′S}. (21.233)

Since xs 6= 1 for s ∈ β(t)\Ψ , Yβ(t)\Ψ (xβ(t)\Ψ ) is independent of the random
sequences YS(1S) and the event E′S by construction. Therefore,

Pr{Yβ(t)\Ψ (xβ(t)\Ψ ) = yβ(t)\Ψ |YS(1S) = yS , E′S}
= Pr{Yβ(t)\Ψ (xβ(t)\Ψ ) = yβ(t)\Ψ}. (21.234)

By the consistency of strong typicality, if

yβ(t)\Ψ ∈ T n̂[Yβ(t)\Ψ |YΨUIn(t)]δ
(yΨ , ũIn(t)(yS)), (21.235)

then
yβ(t)\Ψ ∈ T n̂[Yβ(t)\Ψ ]δ. (21.236)

Since Yβ(t)\Ψ (xβ(t)\Ψ ) are generated i.i.d. according to the distribution of
Yβ(t)\Ψ , by the strong AEP,

Pr{Yβ(t)\Ψ (xβ(t)\Ψ ) = yβ(t)\Ψ} ≤ 2−n̂(H(Yβ(t)\Ψ )−ρ), (21.237)

where ρ→ 0 as δ → 0. Combining (21.234) and (21.237), we have

Pr{Yβ(t)\Ψ (xβ(t)\Ψ ) = yβ(t)\Ψ |YS(1S) = yS , E′S} ≤ 2−n̂(H(Yβ(t)\Ψ )−ρ).

(21.238)

By Theorem 6.10,
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|T n̂[Yβ(t)\Ψ |YΨUIn(t)]δ
(yΨ , ũIn(t)(yS))| ≤ 2n̂(H(Yβ(t)\Ψ |YΨUIn(t))+σ), (21.239)

where σ → 0 as n̂ → ∞ and δ → 0. It then follows from (21.233), (21.238),
and (21.239) that

Pr{Et(xβ(t))|YS(1S) = yS , E′S}
≤ 2n̂(H(Yβ(t)\Ψ |YΨUIn(t))+σ)2−n̂(H(Yβ(t)\Ψ )−ρ) (21.240)
= 2−n̂(H(Yβ(t)\Ψ )−H(Yβ(t)\Ψ |YΨUIn(t))−σ−ρ) (21.241)
≤ 2−n̂(H(Yβ(t)\Ψ )−H(Yβ(t)|UIn(t))−σ−ρ) (21.242)
≤ 2−nα(H(Yβ(t)\Ψ )−H(Yβ(t)|UIn(t))−ϕt) (21.243)

where (21.242) is justified by

H(Yβ(t)\Ψ |YΨUIn(t)) ≤ H(Yβ(t)\Ψ |YΨUIn(t)) +H(YΨ |UIn(t)) (21.244)
= H(Yβ(t),\Ψ , YΨ |UIn(t)) (21.245)
= H(Yβ(t)|UIn(t)), (21.246)

(21.243) follows from (21.142), and ϕt → 0 as n→∞ and δ → 0.
In (21.229),

Pr{YS(1S) = yS |E′S}
= Pr{YS(1S) = yS |Xβ(t) = 1β(t), ES} (21.247)
= Pr{YS(1S) = yS |ES} (21.248)
= Pr{YS(1S) = yS |YS(1S) ∈ T n̂[YS ]δ}. (21.249)

Hence, it follows from (21.229) and (21.243) that

Pr{Et(xβ(t))|E′S}
≤ 2−nα(H(Yβ(t)\Ψ )−H(Yβ(t)|UIn(t))−ϕt) ·∑

yS∈T n̂[YS ]δ

Pr{YS(1S) = yS |YS(1S) ∈ T n̂[YS ]δ} (21.250)

= 2−nα(H(Yβ(t)\Ψ )−H(Yβ(t)|UIn(t))−ϕt) · 1 (21.251)
= 2−nα(H(Yβ(t)\Ψ )−H(Yβ(t)|UIn(t))−ϕt). (21.252)

The lemma is proved. ut

Proof of Lemma 21.11. Let n be sufficiently large. Consider

|ΛΨ | =
∏

s∈β(t)\Ψ

|Xs| (21.253)

a)
=

∏
s∈β(t)\Ψ

θs (21.254)
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b)
=

∏
s∈β(t)\Ψ

d2nτse (21.255)

c)

≤
∏

s∈β(t)\Ψ

d2n(ωs−ε/3)e (21.256)

≤
∏

s∈β(t)\Ψ

2n(ωs−ε/4) (21.257)

d)
=

∏
s∈β(t)\Ψ

2n(αH(Ys)−ε/4) (21.258)

= 2n
∑

s∈β(t)\Ψ
(αH(Ys)−ε/4) (21.259)

= 2
n

[
α
∑

s∈β(t)\Ψ
H(Ys)−(|β(t)|−|Ψ |)ε/4

]
(21.260)

= 2n[αH(Yβ(t)\Ψ )−(|β(t)|−|Ψ |)ε/4] (21.261)
e)

≤ 2n(αH(Yβ(t)\Ψ )−ε/4), (21.262)

where

a) follows from (21.144);
b) follows from (21.143);
c) follows from (21.141);
d) follows from (21.133);
e) follows because Ψ is a proper subset of β(t).

The lemma is proved. ut

Problems

1. Show that source separation is optimal for the networking problem de-
picted in Figure 21.3.

2. Consider the following network. ??
a) Let ωi be the rate of information source Xi. Determine and illustrate

the max-flow bounds.
b) Are the max-flow bounds achievable?
c) Is source separation always optimal?

3. Repeat Problem 2 for the following network in which the capacities of all
the edges are equal to 1.

4. Consider a disk array with 3 disks. Let X1, X2, and X3 be 3 mutually
independent pieces of information to be retrieved from the disk array, and
let S1, S2, and S3 be the data to be stored separately in the 3 disks. It is
required that X1 can be retrieved from Si, i = 1, 2, 3, X2 can be retrieved
from (Si, Sj), 1 ≤ i < j ≤ 3, and X3 can be retrieved from (S1, S2, S3).
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[ X 1 X 2 ] [ X 1 X 2 ] [ X 1 X 2 ] [ X 1 ] [ X 1 ] 

X 1 X 2 

1 
2 2 

2 
1 2 1 1 

2 1 1 

[ X 1 X 2 ] [ X 1 X 2 ] [ X 1 ] 

X 1 X 2 

[ X 1 ] 

a) Prove that for i = 1, 2, 3,

H(Si) = H(X1) +H(Si|X1).

b) Prove that for 1 ≤ i < j ≤ 3,

H(Si|X1) +H(Sj |X1) ≥ H(X2) +H(Si, Sj |X1, X2).

c) Prove that
H(S1, S2, S3|X1, X2) = H(X3).

d) Prove that for i = 1, 2, 3,

H(Si) ≥ H(X1).

e) Prove that

H(Si) +H(Sj) ≥ 2H(X1) +H(X2) +H(Si, Sj |X1, X2).

f) Prove that
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2Si + Si⊕1 + Si⊕2 ≥ 4H(X1) + 2H(X2) +H(X3),

where i = 1, 2, 3 and

i⊕ j =
{
i+ j if i+ j ≤ 3
i+ j − 3 if i+ j > 3

for 1 ≤ i, j ≤ 3.
g) Prove that

H(S1) +H(S2) +H(S3) ≥ 3H(X1) +
3
2
H(X2) +H(X3).

Parts d) to g) give constraints on H(S1), H(S2), and H(S3) in terms of
H(X1), H(X2), and H(X3). It was shown in Roche et al. [279] that these
constraints are the tightest possible.

5. Generalize the setup in Problem 4 to K disks and show that

K∑
i=1

H(Si) ≥ K
K∑
α=1

H(Xα)
α

.

Hint: Use the inequalities in Problem 18 in Chapter 2 to prove that for
s = 0, 1, · · · ,K − 1,

K∑
i=1

H(Si) ≥ nK

s∑
α=1

H(Xα)
α

+
K(
K
s+1

)
×

∑
T :|T |=s+1

H(ST |X1, X2, · · · , Xs)
s+ 1

by induction on s, where T is a subset of {1, 2, · · · ,K}.
6. Write out the achievable information rate region R for the network in

Problem 2.
7. By letting S = {s} and β(t) = {s} for all t ∈ T , the multi-source network

coding problem described in Section 21.3 becomes a single-source network
coding problem. Write ω = ωs.
a) Write out the achievable information rate region R.
b) Show that if ωs ∈ R, then ωs ≤ maxflow(t) for all t ∈ T .

8. Show that if there exists an

(n, (ηij : (i, j) ∈ E), (τs : s ∈ S))

code which satisfies (21.11) and (21.13), then there always exists an

(n, (ηij : (i, j) ∈ E), (τ ′s : s ∈ S))

code which satisfies (21.11) and (21.13), where τ ′s ≤ τs for all s ∈ S. Hint:
use a random coding argument.
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Historical Notes

Multilevel diversity coding was studied by Yeung [359], where it was shown
that source separation is not always optimal. Roche et al. [279] showed that
source separation is optimal for symmetrical three-level diversity coding. This
result was extended to any level by Yeung and Zhang [367] with a painstak-
ing proof. Hau [143] studied all the one hundred configurations of a three-
encoder diversity coding systems and found that source separation is optimal
for eighty-six configurations.

Yeung and Zhang [368] introduced the distributed source coding model
discussed in Section 21.2.2 which subsumes multilevel diversity coding. The
region of all entropy functions previously introduced by Yeung [360] for study-
ing information inequalities enabled them to obtain inner and outer bounds
on the achievable information rate region for a variety of networks.

Distributed source coding is equivalent to multi-source network coding on a
special class of acyclic networks. The inner and outer bounds on the achievable
information rate region in [368] were generalized to arbitrary acyclic networks
by Song et al. [308]. The gap between these bounds was finally closed by
Yan et al. [351].

The insufficiency of specific forms of linear coding for multi-source network
coding were demonstrated and discussed by Riis [274], Rasala Lehman and
Lehman [270], and Medard et al. [242]. The insufficiency of very general forms
of linear coding has been proved by Dougherty et al. [86].

Even though the achievable information rate region for multi-source net-
work coding is characterized by all information inequalities (Shannon-type and
non-Shannon-type), it is not clear whether there exists a multi-source network
coding problem for which the characterization of the achievable information
rate region necessarily involves non-Shannon-type inequalities. This important
question was resolved by Dougherty et al. [88]. In this work, they constructed
a multi-source network coding problem from matroids and demonstrated that
a tighter outer bound on the achievable information rate region can be ob-
tained by invoking the unconstrained non-Shannon-type inequality discovered
by Zhang and Yeung [373]. Chan and Grant [59] recently proved that for ev-
ery non-Shannon-type inequality that exists, there is a multi-source network
coding problem for which the characterization of the achievable information
rate region necessarily involves that particular inequality.
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Math. Sér. 2, 17: 240-246, 1893.

130. B. E. Hajek and T. Berger, “A decomposition theorem for binary Markov
random fields,” Ann. Prob., 15: 1112-1125, 1987.

131. D. Hammer, A. Romashchenko, A. Shen, and N. K. Vereshchagin, “Inequalities
for Shannon Entropy and Kolmogorov Complexity,” J. Comp. and Syst. Sci.,
60: 442-464, 2000.

132. R. V. Hamming, “Error detecting and error correcting codes,” Bell Sys. Tech.
Journal, 29: 147-160, 1950.

133. T. S. Han, “Linear dependence structure of the entropy space,” Info. Contr.,
29: 337-368, 1975.

134. T. S. Han, “Nonnegative entropy measures of multivariate symmetric correla-
tions,” Info. Contr., 36: 133-156, 1978.

135. T. S. Han, “A uniqueness of Shannon’s information distance and related non-
negativity problems,” J. Comb., Info., and Syst. Sci., 6: 320-321, 1981.

136. T. S. Han, “An information-spectrum approach to source coding theorems with
a fidelity criterion,” IEEE Trans. Info. Theory, IT-43: 1145-1164, 1997.

137. T. S. Han and K. Kobayashi, “A unified achievable rate region for a general
class of multiterminal source coding systems,” IEEE Trans. Info. Theory, IT-
26: 277-288, 1980.

138. T. S. Han and K. Kobayashi, Mathematics of Information and Coding, Amer-
ican Mathematical Society, 2003.
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202. M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Ap-
plications, 2nd ed., Springer, New York, 1997.

203. S.-Y. R. Li, Algebraic Switching Theory and Boardband Applications, Academic
Press, 2000.

204. S.-Y. R. Li and R. W. Yeung, “On convolutional network coding,” 2006 IEEE
International Symposium on Information Theory, Seattle, WA, Jul. 9-14, 2006.

205. S.-Y. R. Li, R. W. Yeung and N. Cai, “Linear network coding,” IEEE Trans.
Info. Theory, IT-49: 371-381, 2003.

206. Z. Li, B. Li, and L. C. Lau, “On achieving optimal multicast throughput
in undirected networks,” joint special issue of IEEE Trans. Info. Theory and
IEEE/ACM Trans. Networking on Networking and Information Theory, IT-52:
2410-2424, 2006.

207. X.-B. Liang, “Matrix games in the multicast networks: maximum information
flows with network switching,” joint special issue of IEEE Trans. Info. Theory
and IEEE/ACM Trans. Networking on Networking and Information Theory,
IT-52: 2433-2466, 2006.

208. E. H. Lieb and M. B. Ruskai, “Proof of the strong subadditivity of quantum-
mechanical entropy,” J. Math. Phys., 14: 1938-1941, 1973.

209. S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Appli-
cations, Prentice-Hall, 1983, 2nd ed., 2004.

210. N. Linden and A. Winter, “A new inequality for the von Neumann entropy,”
Comm. Math. Phys., 259: 129-138, 2005.

211. T. Linder, V. Tarokh, and K. Zeger, “Existence of optimal codes for infinite
source alphabets,” IEEE Trans. Info. Theory, IT-43: 2026-2028, 1997.



References 539
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