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Abstract of thesis entitled:

Network Coding for Security and Error Correction
Submitted by NGAI, Chi Kin

for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in July 2008

Network coding is one of the most important breakthroughs in infor-
mation theory in recent years. The theory gives rise to a new concept

regarding the role of nodes in a communication network. Unlike in
existing networks where the nodes act as switches, in the paradigm of
network coding, every node in the network can act as an encoder for

the incoming information. With this new infrastructure, it is possible
to utilize the full capacity of the network where it is impossible to do

so without network coding. In the seminar paper by Ahlswede et al. [1]
where network coding was introduced, the achievability of the max-

flow bound for every single source multicast network by using network
coding was also proved. By further exploring the possibility of linear

network coding, Cai and Yeung introduced the idea of error-correcting
network coding and secure network coding in [5] and [18] respectively.
These papers launched another two important research areas in the

field of network coding.
In this work, we consider the possibility and the effectiveness of im-

plementing secure network coding and error-correcting network coding
at the same time. Upon achieving this goal, information can be multi-

cast securely to the sink nodes through a noisy network. Toward this
end, we propose constructions of such codes and prove their optimality.

After that, we extend the idea of generalized Hamming Weight [9] for
the classical point-to-point communication channel to linear network
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coding. We also extend the idea of generalized Singleton bound to lin-
ear network coding. We further show that the generalized Hamming

weight can completely characterize the security performance of linear
code at the source node on a given linear network code. We then intro-

duce the idea of Network Maximum Distance Separable code (NMDS
code), which can be shown to play an important role in minimizing
the information that an eavesdropper can obtain from the network.

The problem of obtaining the optimal security performance is in fact
equivalent to the problem of obtaining a Network Maximum Distance

Separable code.

ii



Acknowledgement

I want to thank my supervisor Prof. Raymond Wai-Ho Yeung for his
resourceful guidance on my research process. It is Prof. Yeung who
suggested the theme of this thesis and provided me with the best envi-

ronment throughout the whole project. Without his support and advice
on writing and presentation skills, it would be much more difficult for

me to complete the project. This thesis would not have been possible
without his valuable ideas and support. I also want to thanks my dear-

est TAs and friends, Ting, Shue, Wai, Shenghao, Zhixue and Crystal
who gave me lots of support all along the way not only on the research
but also in sharing my pressure while I was dull and anxious. Without

them, it would be much more difficult for me to handle the time while
I felt helpless and lonely.

iii



To mammy, my family, Crystal,

and people who give me support all along the way

iv



Contents

Abstract i

Acknowledgement iii

1 Introduction 1
1.1 Network Code . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Properties of a Linear Network Code . . . . . . . . . . . 9

1.3 Historical note . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Secure Network Code 14

2.1 Communication System on a Wiretap Network . . . . . . 16
2.2 Construction of Admissible Codes . . . . . . . . . . . . . 19

2.3 Historical note . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Error-correcting Network Code 23

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . 25
3.2 Network Hamming Weight and Error-correction . . . . . 27

3.3 Network Erasure Correction . . . . . . . . . . . . . . . . 29
3.4 Singleton Bound . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Historical note . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Secure Error-Correcting (SEC) Network Codes 33
4.1 Combining Network error correction and secure network

code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.1 Code Construction . . . . . . . . . . . . . . . . . 37

v



4.1.2 Security and Error-correction ability of the Code
Constructed . . . . . . . . . . . . . . . . . . . . . 40

4.2 Secret Channel Based Transmission Schemes . . . . . . . 58
4.2.1 Hash Code . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Training Transmission Scheme . . . . . . . . . . . 62
4.2.3 Secret Channel Model With Feedback . . . . . . . 64

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Network Generalized Hamming Weight 67
5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 The Network Generalized Singleton Bound and Network
MDS codes . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 The Network Generalized Singleton Bound . . . . 76
5.2.2 Network MDS Code . . . . . . . . . . . . . . . . 82

5.3 Application of Network Generalized Hamming Weight . . 83
5.3.1 Optimality of NMDS Code . . . . . . . . . . . . . 88
5.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . 90

5.4 One-Pass Construction of Secure Network Code . . . . . 96
5.5 Reduction to the Classical Communication Channel . . . 101

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusion 105

A Coset Coding 107

B Lower Bound on the Information Leakage 109

Bibliography 111

vi



List of Figures

1.1 a two sinks multi-source network . . . . . . . . . . . . . 4

4.1 error components and wiretapping of the edge j . . . . . 44

5.1 A degenerated network consisting of n-channels with FE =

I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 A degenerated network. . . . . . . . . . . . . . . . . . . . 91

5.3 Security curve of code C1 with respect to Figure 5.2. . . . 91
5.4 Security curve of code C2 with respect to Figure 5.2. . . . 93

5.5 A degenerated network with different global encoding
kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Security curve of code C2 with respect to Figure 5.5. . . . 95

vii



Chapter 1

Introduction

Summary

The aim of this chapter is to give a brief introduction

of network coding and linear network coding which are

originated in [1] and [2] respectively. In this chapter,

point-to-point communication network on which one in-

formation source is to be transmitted to certain sets

of sinks are considered. It can be seen by employing

coding at the nodes that bandwidth can in general be

increased over the traditional replication and forward

scheme. Among the simplest coding schemes is linear

coding, which regards a block of data as a vector over

a certain base field and allows a node to apply a linear

transformation to a vector before passing it on. It can

be proved that linear network coding suffices to achieve

the optimum of all single information source multicast

problem.
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CHAPTER 1. INTRODUCTION 2

In a point-to-point communication system, the transmitting point

and the receiving point are connected by a communication channel.

An information source is generated at the transmission point, and the

purpose of the communication system is to deliver the information gen-

erated at the transmission point to the receiving point via the channel.

In a multicast network, data is to be transmitted from the source node

to a prescribed set of destination nodes. Given the transmission re-

quirements, a natural question is whether the network can fulfill these

requirements and how it can be done efficiently.

In existing computer networks, information is transmitted from the

source node to each destination node through a chain of intermediate

nodes by a method known as store-and-forward. In this method, data

packets received from an input link of an intermediate node are stored

and a copy is forwarded to the next node via an output link. In the

case when an intermediate node is on the transmission paths toward

multiple destinations, it sends one copy of the data packets onto each

output link that leads to at least one of the destinations.

The fundamental concept of network coding was first introduced

recently for communication networks in [3] and then fully developed

in [1]. It is in [1] that the term ”‘network coding”’ was first introduced

and the advantage of network coding over store-and-forward was first

demonstrated.

There are various ways, each with different levels of generality, in for-

mulating network code. Generally, a source node generates a pipeline

of messages to be multicast to certain destinations. When the commu-

nication network is acyclic, operation at all the nodes can be so syn-
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chronized that each message is individually encoded and propagated

from the upstream nodes to the downstream nodes. That is the pro-

cessing of each message is independent of the sequential messages in

the pipeline. In this way, the network coding problem is independent

of the propagation delay, which includes the transmission delay over

the channels as well as processing delay at the nodes. In this work, we

mainly deal with acyclic networks.

On the other hand, when a network contains cycles, the propagation

and encoding of sequential messages could convolve together. Thus the

amount of delay becomes part of the consideration in network coding.

The idea of convolutional network coding is first introduced in in [2,4].

The problems of convolutional network coding are more fully investi-

gated later on in [43–46].

To illustrate the usefulness of network coding, let’s first take a look

at an example as denoted in Figure 1.1. The network in the figure has

two sink nodes. It is easy to see that the maximum flow between s and

t1 or between s and t2 are both equal to 2. So the maximum rate at

which information at be sent from s to both t1 and t2 cannot be more

than 2 bits. In Figure 1.1(a), we try to devise a routing scheme which

sends 2 bits b1 and b2 to both t1 and t2. By symmetry, we send one bit

on each output channel at node s. In this case, b1 is sent on edge (s, c)

and b2 is sent on edge (s, d). At node c, b1 is replicated and the copy is

sent on the output channel. Similarly, at node d, b2 is replicated and

the copy is sent on the output channel. At node e, since both b1 and b2

are received but there is only one output channel, we have to choose one

of the two bits to send on the output edge (e, f). Suppose we choose b1

as in Figure 1.1(a). Then the bit is replicated at node f and the copies
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are sent to nodes t1 and t2. At node t2, both b1 and b2 are received.

However, at node t1, two copies of b1 are received but b2 cannot be

recovered. Thus this routing scheme does not work. Similarly, if b2

instead of b1 is sent on channel (e, f), b1 cannot be recovered at node

t2. Therefore, we conclude that for this network, the max-flow bound

cannot be achieved by routing and replication of bits.

However, if coding is allowed at the nodes, it is actually possible to

achieve the max-flow bound. Figure 1.1(b) shows a scheme which sends

2 bits b1 and b2 to both nodes t1 and t2 where ′+′ denotes modulo 2

addition. At node t1, b1 is received, and b2 can be recovered by adding

b1 and b1 + b2, because

b2 = b1 + (b1 + b2). (1.1)

Similarly, b2 is received at node t2, and b1 can be recovered by adding b2

and b1 +b2. Therefore, the max-flow bound is achieved. In this scheme,

b1 and b2 are encoded into the codeword b1 + b2 which is then sent on

channel ef . If coding at a node is not allowed, in order to send both b1

and b2 to node t1 and t2, at least one more bit has to be sent. Figure

1.1(c) shows such a scheme. In this scheme, however, the capacity of

channel (e, f) is exceeded by 1 bit.

Next, we are going to give a formal definition of a network code.

1.1 Network Code

A communication network is a directed graph G = (V, E) allowing

multiple edges from one node to another where V is the set of nodes in

G and E is the set of edges in G. Every edge in the graph represents a
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communication channel with the capacity (in the sense of graph theory,

e.g., [42]) of one data unit per unit time. A node without any incoming

edge is a source node of the network. There exists at least one source

node on every acyclic network. Throughout the text, a lower-case letter

s will be used to represent the source node when there is just one source

node within the network being discussed.

For every node a ∈ V, let In(a) denote the set of incoming chan-

nels to a and Out(a) the set of outgoing channels from a. Meanwhile,

let In(s) denote a set of imaginary channels, which terminate at the

source node s but are without originating nodes. The number of these

imaginary channels is context dependent and always denoted by n. A

data unit is represented by an element of a certain base field F. For

example, F = GF (2) when the data unit is a bit. A message consists

of n data units and is therefore represented by an n-dimensional row

vector x ∈ F
n. The source node s generates a message x and sends

it out by transmitting a symbol over every outgoing channel. Message

propagation through the network is achieved by the transmission of a

symbol f̃e(x) ∈ F over every channel e ∈ E in the network.

A non-source node a may not be able to identify and recover the

value of the source message x. For each channel e in Out(a), node a

simply encode all the received symbols from all the channels in In(a)

to a symbol f̃e(x) which is then transmitted on e. A network code is

specified by such an encoding mechanism for every channel.

Definition 1.1 (Local description of a network code on an acyclic net-

work). Let F be a finite field and n a positive integer. An n-dimensional

F-valued network code on an acyclic communication network consists
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of a local encoding mapping

k̃e : F
|In(a)| → F (1.2)

for each node a in the network and each channel e ∈ Out(a).

Due to the acyclic nature of the network, we can assume an order

on E which is consistent with the associated partial order on G. The

acyclic topology of the network provides an upstream-to-downstream

procedure for the local encoding mappings to accrue into the values

f̃e(x) transmitted over all channel e. The above definition of a network

code does not explicitly give the value of f̃e(x). Therefore, an equivalent

definition will be presented below, which describes a network code by

both the local encoding mechanisms as well as the recursively derived

values f̃e(x).

Definition 1.2 (Global description of a network code on an acyclic net-

work). Let F be a finite field and n a positive integer. An n-dimensional

F-valued network code on an acyclic communication network consists

of a local encoding mapping k̃e : F
|In(a)| → F and a global encoding

mapping f̃e : F
n → F for each channel e in the network such that:

1. For every node a and every channel e ∈ Out(a), f̃e(x) is uniquely

determined by (f̃d(x), d ∈ In(a)), and k̃e is the mapping via

(f̃d(x), d ∈ In(a)) 7→ f̃e(x). (1.3)

2. For the n imaginary channels e, the mappings f̃e are the projec-

tions from the space F
n to the n different coordinates, respectively.
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Network codes that involved only linear mappings are of particular

interest. The main reason is that network codes are in generally difficult

to construct and with high implementation complexity. In order to

allow the network code to be simple enough to be constructed, we try

to confine our interest to network coding composes of linear operations

only.

When a global encoding mapping f̃e is linear, it corresponds to an

n-dimensional column vector fe such that f̃e(x) is the product x · fe,

where the n-dimensional row vector x represents the message generated

by s. Similarly, when a local encoding mapping k̃e, where e ∈ Out(a), is

linear, it corresponds to an |In(a)|-dimensional column vector ke such

that k̃e(y) = y · ke, where y ∈ F |In(a)| is the row vector representing the

symbols received at the node a. In an n-dimensional F-valued network

code on an acyclic communication network, if all the local encoding

mappings are linear, then so are the global encoding mappings since

they are functional compositions of the local encoding mappings. The

converse is also true. If the global encoding mappings are all linear,

then so are the local encoding mappings.

Let a pair of channels (ei, ej) be called an adjacent pair when there

exists a node a with ei ∈ In(a) and ej ∈ Out(a). Below, a linear

network code is formulated as a network code where all the local and

global encoding mappings are linear. Again, both the local and global

descriptions are presented even though they are equivalent.

Definition 1.3 (local description of a linear network code on an acyclic

network). Let F be a finite field and n a positive integer. An n-dimensional

F-valued linear network code on an acyclic communication network con-
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sists of a scalar kei,ej
, called the local encoding kernel, for every adjacent

pair (ei, ej). Meanwhile, the local encoding kernel at the node a means

the |In(a)| × |Out(a)| matrix Ka = [kei,ej
]ei∈In(a),ej∈Out(a).

Definition 1.4 (global description of a linear network code on an

acyclic network). Let F be a finite field and n a positive integer. An

n-dimensional F-valued linear network code on an acyclic communica-

tion network consists of a scalar kei,ej
for every adjacent pair (ei, ej)

in the network as well as an n-dimensional column vector fej
for every

channel ej such that:

1. fej
=
∑

ei∈In(a) kei,ej
fei

, where ej ∈ Out(a).

2. The vectors fej
for the n imaginary channels ei ∈ In(s) form the

natural basis of the vector space F
n.

The vector fe is called the global encoding kernel for the channel e.

1.2 Properties of a Linear Network Code

In this section, we will give out the definition of various kinds of lin-

ear network code that are most commonly discussed in the literature,

namely, linear multicast, linear broadcast, linear dispersion and generic

linear network code. In addition, every one of them have been shown

to be existed if the size of the field F that linear code are constructed

upon is large enough.

With any coding schemes, the data flow at any intermediate node

need to obey the law of information conservation. That is, the content

of information sent out from any group of non-source nodes must be

derived from the accumulated information received by the group from
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outside. In particular, the content of any information coming out of

a non-source node must be derived from the accumulated information

received by that node. Denote the maximum flow from s to a non-source

node t as maxflow(t). From the Max-flow Min-cut Theorem [28, 29],

the information rate received by the node t obviously cannot exceed

maxflow(t). Similarly, denote the maximum flow from s to a collection

℘ of non-source nodes as maxflow(℘). Then, the information rate from

the source node to the collection ℘ cannot exceed maxflow(℘).

Whether this upper bound is achievable depends on the network

topology, the dimension n, and the coding scheme. Three special classes

of linear network codes are defined below by the achievement of this

bound to three extends. The conventional notation 〈·〉 for the linear

span of a set of vectors will be employed.

Definition 1.5. Let vectors fe denote the global encoding kernels in

an n-dimensional F-valued linear network code on an acyclic network.

Write Vt = 〈{fe : e ∈ In(t)}〉. Then, the linear network code qualifies

as a linear multicast, a linear broadcast, or a linear dispersion, respec-

tively, if the following statements hold:

1. dim(Vt) = n for every non-source node t with maxflow(t) ≥ n.

2. dim(Vt) = min{n, maxflow(t)} for every non-source node t.

3. dim (〈∪t∈℘Vt〉) = min{n, maxflow(℘)} for every collection ℘ of

non-source nodes.

From the definitions, we can easily see that every linear dispersion

is a linear broadcast, and every linear broadcast is a linear multicast.
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However, the converse is not necessarily true. From the above defi-

nitions, we can see that the problem of whether a certain linear code

exists or not depends mainly on the number of linearly independent

global encoding kernels that the sink nodes can receive. Therefore, one

way to construct a linear multicast/broadcast/dispersion is by consid-

ering a linear network code in which every collection of global encoding

kernels that can possibly be linearly independent is linearly indepen-

dent. This motivates the following concept of a generic linear network

code.

Definition 1.6. Let F be a finite field and n a positive integer. An n-

dimensional F-valued linear network code on an acyclic communication

network is said to be generic if:

• Let {e1, e2, ..., em} be an arbitrary set of channels, where each ej ∈

Out(aj). Then, the vectors fe1
, fe2

, ..., fem
are linearly independent

(and hence m ≤ n) provided that

〈{fe : e ∈ In(aj)}〉 6⊂ 〈{fek
: k 6= j}〉 for 1 ≤ j ≤ m. (1.4)

Generic network code has been proved to exist when the base field F

is sufficiently large. Every generic network is in fact, on the other hand,

a linear dispersion. Thus, a generic network code, a linear dispersion,

a linear broadcast, and a linear multicast are notions of decreasing

strength in this order with regard to linear independence among the

global encoding kernels. The existence of a generic linear network code

then implies the existence of the rest.
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Theorem 1.1. ( [10]) Given a positive integer n and an acyclic net-

work, there exists an n-dimensional F-valued generic linear network

code for sufficiently large base field F.

Corollary 1.1. ( [10]) Given a positive integer n and an acyclic net-

work, there exists an n-dimensional F-valued generic linear dispersion

for sufficiently large base field F.

Corollary 1.2. ( [10]) Given a positive integer n and an acyclic net-

work, there exists an n-dimensional F-valued generic linear broadcast

for sufficiently large base field F.

Corollary 1.3. ( [10]) Given a positive integer n and an acyclic net-

work, there exists an n-dimensional F-valued generic linear multicast

for sufficiently large base field F.

1.3 Historical note

It was first shown by Ahlswede et al. [1] that the network capacity

for network multicast satisfies the max-flow min-cut theorem, and this

capacity can be achieved by network coding. Li, Yeung, and Cai [2]

further showed that it is sufficient to consider linear network codes

only. Subsequently, Koetther and Médard [4] developed a matrix frame-

work for network coding. Jaggi et al. [11] proposed a deterministic

polynomial-time algorithm to construct network codes. Ho et al. [26]

showed that linear network codes can be effectively constructed by a

randomized algorithm with an exponentially decreasing probability of

error. Researchers have extended the above results to a variety of ar-
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eas including wireless networks [32–34], energy [35], secrecy [5], error-

correcting [18], content distribution [36], and distributed storage [37].

2 End of chapter.



Chapter 2

Secure Network Code

Summary

In the paradigm of network coding, the nodes in a net-

work are allowed to encode the information received

from the input links. With network coding, the full ca-

pacity of the network can be utilized. In this chapter, we

discuss the model proposed by Cai and Yeung [5] which

incorporates network coding and information security.

Most of the studies in the literature of network coding assume that the

network is secure, or eavesdropper-free. Cai and Yeung [5] introduce

the idea secure network coding which can be used to handle the secure

problem of network coding transmission in the presence of an adversary

in the network.

In this chapter, we are going to study a model of secure network

code in which a collection of subsets of the channels in the network is

given, and an eavesdropper is allowed to access any one (but not more

than one) of these subsets without being able to obtain any information

14
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about the message transmitted. The model includes secret sharing in

classical cryptography as a special case. Cai and Yeung have proved

in [5] that there exists a construction of secure linear network codes

provided that a certain graph-theoretic sufficient condition is satisfied.

The proof for the necessity of this condition for the special case that

the eavesdropper may choose to access any subset of channels of a fixed

size is also given in [13].

The work by Cai and Yeung [5] can be considered as a network

generalization of the idea that a sender has to randomize the message to

be transmitted in order to protect it from the eavesdropper. Suppose a

sender wants to send the output of a random message M with alphabet

M = {0, 1, . . . p − 1} to a receiver. The sender can send information

via a “public” channel, whose output can be accessed by the receiver

as well as an eavesdropper who tries to obtain some information about

M , or the sender can send information via a “secure” channel, whose

output can be accessed only by the receiver. The usual way to protect

M from the eavesdropper is that the sender generates a “secret key”

K independent of the source M according to the uniform distribution

over M. Let x be the outcome of M , and let r be the outcome of

K. Then the sender sends the key r to the receiver via the secure

channel, and sends x+r (mod p) via the public channel. Upon receiving

both r and x + r, the receiver as the legal user can recover x because

x = (x + r) − r. On the other hand, the wiretapper cannot obtain

any information about m by knowing x + r alone because what he/she

knows is a total randomization of the message x.

The main idea in the above scheme is that the sender has to ran-

domize the message in order to protect it from the wiretapper, where
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in this case the alphabet sets of the random key and of the informa-

tion source have the same size (the two alphabet sets are the same).

Shannon showed in [30] that this protocol is optimal in the sense of min-

imizing the size of the random key. This result, known as the perfect

secrecy theorem, has been generalized to the imperfect secrecy theorem

by Yeung [31] (p. 116).

2.1 Communication System on a Wiretap Network

First, we will present a model of a communication system on a wiretap

network (CSWN) [5], which subsumes the secret-sharing model pro-

posed independently by Blakley [14] and Shamir [15]. Then we will

define a code for a CSWN.

A CSWN consists of the following components:

i) Directed multigraph G: The pair G = (V, E) is called a directed

multigraph, where V and E are the node set and the edge set of G,

respectively. In our model, we assume that G is acyclic, that is, it

does not contain a directed cycle.

ii) Source node s: The node set E contains a node s, called the source

node, where a random message M taking values in an alphabet M

is generated.

iii) Set of user nodes T : A user node is a node in V which is fully

accessed by a legal user who is required to receive the random

message M with zero error. There is generally more than one user

node in a network. The set of user nodes is denoted by T .
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iv) Collection of sets of wiretap edges W : W is a collection of subsets

of the edge set E . Each member of W may be fully accessed by

a eavesdropper, but no eavesdropper may access more than one

member of W .

The eavesdropper is assumed to be able to gain access to any one, but

not more than one, member of W . And we further assume that no one

but the eavesdropper will know which set of channels are eavesdropped.

The quadruple (G, s, T ,W) is referred as a CSWN. The multigraph

G is referred as a network and the edges in E are referred as channels.

The random message M is generated at the source node s according to

the uniform distribution on an alphabet set M. On each channel in E ,

an index taken from an alphabet set F can be transmitted.

One interesting question would be the maximum rate at which infor-

mation can be multicast to the sink nodes under the presence of such

an eavesdropper. In this chapter, we will discuss maximum value of

|M| for which the message M can be multicast from the source node

s to the set of user nodes T , while the message M is protected from

eavesdropper who can access any set of channels in W .

It worth noting that in the CSWN model, if eavesdropper is absent,

that is, W = ∅, a CSWN is reduced to the model studied in [1] and [2].

It was proved in [1] that information can be multicast from the source

node s to all the user nodes in T at rate n if and only if the value of a

maximum flow from s to each user node is at least n in the graph G. In

general, information can be multicast from the source node to the user

nodes at a higher rate with network coding than the traditional “store

and forward” routing scheme when there are at least two user nodes.

Subsequently, it was proved in [2] by an explicit construction that this
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can be achieved by linear network codes. Based on this result, it would

be interesting know what is the maximum rate at which information can

be multicast in the presence of an eavesdropper and how to construct

a linear network code that can obtain such a maximum data rate.

To protect the message from being eavesdropped, it can be easily

shown that randomizing the message is a necessary measure. If there is

no randomness in the network, the index transmitted on any channel is

a function of the message M and hence is not independent of M unless

the index takes a constant value. If this is the case, the channel becomes

degenerate as it cannot transmit any useful information through.

Let K be an random variable, independent of the message M , that

takes values in an alphabet set K according to the uniform distribu-

tion. A code for a CSWN consists of a set of local encoding mappings

f̃e : e ∈ E such that for all e, f̃e is a function from M × K to F if

e ∈ Out(s), and is a function from F
|In(a)| to F if e ∈ Out(a) for a 6= s.

For e ∈ E , let Ye be the random symbol in F transmitted on channel e,

i.e., the value of f̃e . For a subset B of E , denote (Ye : e ∈ B) by YB.

To complete the description of a code, we have to specify the order

in which the channels send the indices. Since the graph G is acyclic, it

defines a partial order on the node set E . Then the nodes in V can be

indexed in a way such that for two nodes a and a′ , if there is a channel

from node a to node a′ , then a < a′ . According to this indexing,

node a sends symbols in its output channels before node a′ if and only

if a < a′. The order in which the channels within the set of output

channels of a node sends the symbols is immaterial. The important

point here is that whenever a channel sends a symbol, all the symbols

necessary for encoding have already been received. A code defined as
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such induces a function Φt from M × K to F
|In(t)| for all user nodes

t ∈ T , where the value of Φt denotes the symbols received by the user

node t in its input channels.

A code f̃e : e ∈ E is admissible for a CSWN (G, s, T ,W) if the fol-

lowing conditions are satisfied:

i) For all user nodes t ∈ T and all m,m′ ∈ M with m 6= m′,

Φt(m,k) 6= Φt(m
′,k′) (2.1)

for all k,k′ ∈ K. This guarantees that any two messages are distin-

guishable at every user node, and we refer to this as the decodable

condition.

ii) For all W ∈ W

H(M |YW) = H(M). (2.2)

Here H(·|·) and H(·) denote conditional entropy and entropy, respec-

tively. In other words, M and YW are independent. This is referred to

as the security condition.

2.2 Construction of Admissible Codes

Cai and Yeung [13] defined a class of linear codes for a CSWN by the

following construction.

Construction 1

i) Choose suitable positive integers n and r, where r < n. The ran-

dom message M is distributed uniformly on GF (n−r)(q), while the
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independent random key K is distributed uniformly on GF r(q).

Let the outcome m of M be a row vector in GF (n−r)(q) and the

outcome k of K be a row vector in GF r(q). Let x = (m,k).

ii) Choose a suitable n-dimensional linear network code on G.

iii) Encode the vector x by transmitting in each channel e the value

xfe.

Cai and Yeung [13] have also shown that by choosing n, r and the

linear network code probably, the code can be made to be admissible,

i.e., decodable and secure.

Theorem 2.1. ( [5]) There exists an admissible code on G over GF (q)

for q > |W| by Construction 1 if there exists an n-dimensional linear

network code over GF (q) such that for all user nodes t ∈ T ,

dim(Vt) = n, (2.3)

and for all wiretap sets of channels W ∈ W,

dim(VW) ≤ r. (2.4)

In the directed graph G, a path is a sequence of channels e1, e2, . . . , el

such that for 1 ≤ i ≤ l−1, there exists ti ∈ V such that ei ∈ In(ti) and

ei+1 ∈ Out(ti). Two paths are disjoint if they do not share a common

channel (but they may share a common node). The following theorem

is similar to Theorem 2.1, but the condition therein depends only on

the graph G and the collection of wiretap channels W .
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Theorem 2.2. ( [5]) Let G∗ = (V, E∗), where E∗ ⊂ E , be a subgraph of

G satisfying the following:

i) For any t ∈ T , there are n disjoint paths in G∗ from the source

node s to the user node t.

ii) For any W ∈ W, there are at most r disjoint paths in E∗ from the

source node s to the channels in W ⊂ E∗.

If such a subgraph G∗ exists, then there exists an admissible linear net-

work code on G over GF (q) by Construction 1 for q > max{|T |, |W|}.

It has also been shown in [13] that the conditions in Theorem 2.2 is

also a necessary condition for a special case in which the eavesdropper

may choose to access any subset of channels of a fixed size r. As a whole,

it has been shown that in the presence of an eavesdropper which can

eavesdrop a randomly chosen and fixed set of r channels in the network,

the general maximum rate at which information can be multicast from

the source node and the user nodes is equal to n − r. It has also been

shown in [5] that in order to prevent the eavesdropper from obtaining

any useful information about x in the special being discussed, at least

r units of randomness need to be injected into the network.

2.3 Historical note

The problem of secure network coding was first studied by Cai and

Yeung in [5]. They introduced the CSWN, which subsumes the secret-

sharing model proposed independently by Blakley [14] and Shamir [15],

and proposed a secure network coding scheme. Such secure network
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codes have been further studied in [12] by Feldman et. al. Later on,

Cai and Yeung continued their original work in [6] with a more general

model in which there are more than one source node and randomness

can be generated at an arbitrarily given subset of nodes, and obtained a

necessary and sufficient condition for the security of a network code. In

their latest work [13], they further provide the code that can achieve the

required security while using the minimum amount of randomness and

multicasting maximum possible amount of information for the special

case that the eavesdropper may choose to access any subset of channels

of a fixed size.

2 End of chapter.



Chapter 3

Error-correcting Network Code

Summary

In this chapter, the weight properties of linear network

codes are investigated. Some new weight definitions,

called the network Hamming weight, for error vectors,

received vectors and message vectors will be introduced.

All these network Hamming weights reduce to the usual

Hamming weight in the special case of classical error

correction. With these network Hamming weights, the

minimum distance of a network code can be defined.

This aim of this chapter is to review on the existing

work in characterizing the ability of network codes for

error correction, error detection and erasure correction

in terms of the minimum distances of the codes.

Transmission over networks is assumed to be error-free [10] in most

of the works in the literature. In practical, however, transmission may

suffer from different kinds of errors, such as random errors, link failures,

23
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traffic congestion and malicious modifications. In some previous study,

researchers have already noticed that network coding can be used to

detect and correct errors in networks [16–21].

The concept of error-correcting network coding, a generalization

of classical error correction coding, was first introduced by Cai and

Yeung [18–20]. They generalized the Hamming bound, the Singleton

bound and the Gilbert-Varshamov bound in classical error correction

coding to network coding. The Hamming bound, the Singleton bound,

and the Gibert- Varshamov bound are fundamental bounds in classical

algebraic coding theory [38–41]. Zhang [21] introduced the minimum

rank for linear network codes, which plays a role similar to that of the

minimum distance in decoding classical error-correcting codes. The re-

lation between network coding and classical algebraic coding has been

clarified in [10].

In this chapter, we study the problem of error-correcting network

code which will lead to the following properties of linear network code

assembling resembling those of the classical algebraic error-correcting

code. Let d be an integer. The following properties of a linear network

code can be shown to be equivalent:

i) The multicast minimum distance of the code is larger than or equal

to d + 1.

ii) The code can correct all error vectors with Hamming weight less

than (d + 1)/2.

iii) The code can detect all non-zero error vectors with Hamming

weight less than or equal to d.
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iv) The code can correct all erasures will Hamming weight less than

or equal to d.

3.1 Problem Formulation

A multicast on G transmits information from a source node s to a set

of sink nodes T . Let ns = |Out(s)|. The source node s modulates the

information to be multicast into a row vector x ∈ F
ns
q called the message

vector. The vector is sent in one use of the network by mapping the ns

components of the vector onto each edges in Out(s). Define an ns×|E|

matrix A = [Ai,j] as

Ai,j =





1 ej is the ith edge in Out(s),

0 otherwise.
(3.1)

By applying the order on E to Out(s), the ns nonzero columns of A

form an identity matrix. An error vector z is an |E|-tuple with each

component representing the error on an edge.

A network code for network G is specified by a set of local encoding

functions kei,ej
: ei, ej ∈ E and the message set C. Define the |E| × |E|

one-step transition matrix K = [Ki,j] for network G as

Ki,j =





kei,ej
ei ∈ In(a), ej ∈ Out(a) for some a ∈ V,

0 otherwise.
(3.2)

For an acyclic network, KN = 0 for some positive integer N . Define

the transfer matrix of the network by F = (I − K)−1 [4], so that

the symbols transmitted on the edges are given by the components of



CHAPTER 3. ERROR-CORRECTING NETWORK CODE 26

(xA + z)F .

For a sink node t ∈ T , write nt = In(t), and define an |E| × nt

matrix Bt = [Bi,j] for sink node t as

Bi,j =





1 ei is the jth edge in In(t),

0 otherwise.
(3.3)

The nt nonzero rows of Bt form a permutation matrix. The received

vector for a sink node t is

yt = (xA + z)FBt (3.4)

= xFs,t + zFt, (3.5)

where Fs,t = AFBt is the transfer matrix induced by the linear network

code, A is an |Out(s)| × |E| matrix that choose the rows vectors of F

corresponding to the outgoing edges from s, and Bt is an |E| × |In(t)|

matrix which choose the column vectors of F corresponding to the

incoming edges of the sink node t.

Equation (3.5) is the formulation of the multicast network error cor-

rection problem. The classical error correction problem is a special case

in which both of Fs,t and Ft reduce to identity matrices. The message

transmission capacity is measured by the rank of the transfer matrix

Fs,t . Denote the maximum flow between source node s and sink node

t by maxflow(s, t). Evidently, for any linear network code on G, the

rank of Fs,t is upper bounded by maxflow(s, t) [10]. Let C be the set of

message vectors that can be transmitted by the source and be decoded

correctly. When the network is error-free, the error correction problem

is reduced to the usual network coding problem, for which the size of
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C is upper bounded by qmint∈T maxflow(s,t) [1].

3.2 Network Hamming Weight and Error-correction

Next, weights and distances for network codes defined in [22] will be

introduced.

For any t ∈ T , let Υt(y) = {z : zFt = y} for a received vector

y ∈ Im(Ft), the image space of Ft.

Definition 3.1. For any sink t, the network Hamming weight of a

received vector y is defined by

W rec
t (y) = min

z∈Υt(y)
wH(z). (3.6)

Definition 3.2. For any sink t, the network Hamming weight of an

error vector z is defined by

W err
t (z) = W rec

t (zFt). (3.7)

In other words, W err
t (z) is the minimum Hamming weight of any

error vector that causes the same confusion at sink t as the error vector

z. For any vector z ∈ Υt(0), W err
t (z) = W rec

t (0) = minz∈Υt(0) wH(z) =

wH(0) = 0. If error vectors z1 and z2 satisfy z1 − z2 ∈ Υt(0), then

W err
t (z1) = W rec

t (z1Ft) = W rec
t (z2Ft) = W err

t (z2). Thus Definition 3.2

satisfies the two conditions required for the definition of the weight of

error vectors:

i) If zFt = 0, then the weight of z is zero;
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ii) If the difference of two error vectors is an error vector with weight

0, then these two error vectors have the same weight.

Definition 3.3. For any sink t, the network Hamming weight of a

message vector x is defined by

Wmsg
t (x) = W rec

t (xFs,t). (3.8)

In other words, Wmsg
t (x) is the minimum Hamming weight of any error

vector that has the same effect on sink t (when the message vector is

0) as the message vector x (when the error vector is 0).

Definition 3.4. For any t ∈ T , the network Hamming distance between

two received vectors y1 and y2 is defined by

Drec
t (y1,y2) = W rec

t (y1 − y2). (3.9)

Definition 3.5. For any t ∈ T , the network Hamming distance between

two message vectors x1 and x2 is defined by

Dmsg
t (x1,x2) = Wmsg

t (x1 − x2). (3.10)

When Ft = Fs,t = I, these definitions reduce to the usual Hamming

weight and Hamming distance.

A message set C for a multicast in network G is a subset of the vector

space F ns.
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Definition 3.6. The unicast minimum distance of a network code with

message set C for sink node t is defined by

dmin,t = min{Dmsg
t (x,x′) : x,x′ ∈ C,x 6= x′}.

Definition 3.7. The multicast minimum distance of a network code

with message set C is defined by

dmin = min
t∈T

dmin,t.

It has been shown that the following properties of a linear network

code are equivalent:

Theorem 3.1. ( [22]) The following properties of a network code are

equivalent:

1. The code can correct any error vector z with wH(z) ≤ c at all the

sink nodes.

2. The code can correct any error vector z with W err(z) ≤ c at all

the sink nodes.

3. The code has dmin ≥ 2c + 1.

where c is a non-negative integer.

3.3 Network Erasure Correction

When a channel in the network fails, the channel generates no valid

outputs, and we say that an erasure has occurred. If the local encoding
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function of a node depends on the output of that channel, the code has

to assume that a default symbol in the finite field F is received on that

channel when an erasure occurs. So associated with each channel is a

default symbol. Here, we consider a network in which only erasures

can occur in the channels, and the sink nodes know the set of channels

on which erasures occur. However, we make no assumption that the

default symbols of the channels are know by the sink nodes. In other

words, we can simply assume that a random symbol will be transmitted

in a channel if an erasure occurs in that channel. As before, we assume

that sink node t knows the message set C as well as the transfer matrices

Fs,t and Ft.

Two quantities will be employed to characterize the ability of a net-

work code for erasure correction. The first one is the Hamming weight

of an erasure pattern ρ, denoted by |ρ|. The second one, called the net-

work Hamming weight of an error pattern ρ, is defined as W esr
t (ρ) =

maxz∈ρ∗ W err
t (z) where ρ∗ is the set of erasure vectors that match ρ.

Since W esr
t (z) ≤ wH(z) ≤ |ρ| for any z ∈ ρ∗, we have

W esr
t (ρ) ≤ |ρ|. (3.11)

For an erasure pattern ρ, define the multicast weight as

W esr(ρ) = max
t∈T

W esr
t (ρ).

It has been shown that the following properties of a linear network

code are equivalent:

Theorem 3.2. ( [22]) The following properties of a network code are

equivalent:
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1. The code can correct any erasure pattern ρ with |ρ| ≤ d at all the

sink nodes.

2. The code can correct any erasure pattern ρ with W esr(ρ) ≤ d at all

the sink nodes.

3. The code has dmin ≥ d + 1.

where d is a non-negative integer.

3.4 Singleton Bound

In term of the notion of minimum distance, the Singleton bound ob-

tained in [19] can be restated as

dmin ≤ min
t∈T

mt − ω + 1. (3.12)

The tightness of (3.12) has been proved in [20]. In fact, it can readily

be shown that for all t ∈ T ,

dmin,t ≤ mt − ω + 1 (3.13)

which is more refined than (3.12), specifically when mt are not the same

for all t ∈ t. And we have already shown that in [24] the tightness of

(3.13) is achievable.

Theorem 3.3. Given a set of local encoding kernels over a finite field

with size q where q is sufficiently large, for every

0 ≤ ω ≤ min
t∈T

mt, (3.14)
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there exists a message set C with |C| = qω such that

dmin,t = mt − ω + 1 (3.15)

for all sink nodes t.

Proof. See [24].

3.5 Historical note

The concept of error-correcting network coding, a generalization of

classical error correction coding, was first introduced by Cai and Ye-

ung [18–20]. They generalized the Hamming bound, the Singleton

bound and the Gilbert-Varshamov bound in classical error correction

coding to network coding. Zhang [21] introduced the minimum rank for

linear network codes, which plays a role similar to that of the minimum

distance in decoding classical error-correcting codes. The relation be-

tween network coding and classical algebraic coding has been clarified

in [10].

2 End of chapter.
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Chapter 4

Secure Error-Correcting (SEC)

Network Codes

Summary

In this chapter, we propose a deterministic algorithm to

construct secure error-correcting (SEC) network codes

which can transmit information at rate m−2d−k to all

sink nodes, and prevent the information from eavesdrop-

ping and contamination during the transmission, where

m is the minimum among the maxflows of all the sinks,

d is the maximum network Hamming weight of the er-

ror vectors and k is the maximum cardinality of the

subset of channels which can be eavesdropped. Such

constructed network codes can also achieve the refined

Singleton bound. Based on this algorithm we further

present two transmission schemes which can achieve the

transmission rate m − d, when the adversary satisfies

an inaction assumption. We also show that in the pres-

ence of feedback, a rate beyond m − d could be pos-

sibly achieved without reconstructing the existing net-

work code.



CHAPTER 4. SECURE ERROR-CORRECTING (SEC) NETWORK CODES 35

In this chapter, we consider two kinds of adversaries at the same time:

i) Adversary that can contaminate the transmission on a subset of

channels with cardinality less than or equal to d;

ii) Adversary that can eavesdrop another subset of channels with car-

dinality less than or equal to k.

Jaggi et. al [23] studied the similar problem using randomized design.

Under the inaction assumption, where the adversary contaminates the

same subset of channels for a long period of time, they presented a

scheme which can achieve a rate m − d asymptotically based on a

secret channel, where m is the minimum among the maxflows of all

the sink nodes. Their work considered that the adversary can make

use of the eavesdropped information to contaminate the transmission.

They proposed schemes that can prevent, with a high probability of

success rate, the adversary from obtaining any useful information due

to the randomized-nature of random network code.

The main contribution of this chapter is to propose a deterministic

network code, called secure error-correcting network codes (SEC net-

work codes), which can transmit information to all sink nodes at the

rate of m − 2d − k with complete reliability and completely free from

eavesdropping by the adversary without the inaction assumption. The

SEC network codes can also achieve the refined Singleton bound [24].

The SEC network codes give a practical realization of the secret chan-

nel. Based on the secret channel and under the inaction assumption,

we present two deterministic schemes which can achieve the rate m−d.

We also show that in the presence of feedback, a rate beyond m − d



CHAPTER 4. SECURE ERROR-CORRECTING (SEC) NETWORK CODES 36

could be achievable with the existing network code.

4.1 Combining Network error correction and se-

cure network code

In this section, we give a constructive proof showing secure network

coding and error-correcting network coding can in fact be carried out

at the same time without affecting the capability of each other. Such

network code is able to multicast information to sink nodes without

revealing any information to the adversary and without suffering any

unrecoverable data distortion under our assumption.

We first construct an error-correcting network code which can achieve

the refined Singleton bound. After that, the error correcting network

code will further be converted into a secure network code with capacity

m − 2d − k which can multicast information to all sink nodes securely

as long as the number of channels that the adversary can listen to is

less than or equal to k while maintaining its ability to correct at least

d errors injected into the network by the adversary. It is worth noting

that for any fixed choice of d error-correcting network code, the code

can correct any d errors injected into the network. And it is possible

for such a code to correct more than d errors if the dimension of the

errors that are imposed by the the errors on all sink nodes is less than

or equal to d.

By applying the result of Theorem 3.3, we can obtain a network
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code, with capacity m − 2d, such that

dmin,t =mt − (m − 2d) + 1 (4.1)

≥ 2d + 1. (4.2)

By the result of Theorem 3.1, such code can correct any error vector

with hamming weight less than or equal to d.

4.1.1 Code Construction

In this subsection, we will present a code construction by cascading an

error-correcting network code construction with a secure network code

construction. The existence of such a code will also be shown while the

error-correcting capability and the secure issue of the result network

code will be analyzed in the next subsection.

For two subsets V1, V2 ⊂ F
ω+k
q , their sum is the set defined by

V1 + V2 = {v1 + v2 : v1 ∈ V1,v2 ∈ V2}. (4.3)

Denote by W a collection of subsets W of the edge set E such that

|W | ≤ k.

Construction 1:

i) By Theorem 3.3, we can construct a network code with message

set C ′ where |C ′| = qω+k, such that dmin,t = mt − ω − k + 1 for all

sink nodes t. Let G be the (ω + k) × m generator matrix of C ′.

ii) For all W ∈ W , define LW = 〈{Gfe, e ∈ W}〉 where 〈·〉 is the

conventional notation for the linear span of a set of vectors. Then

we choose ω linearly independent vectors b1, b2, ..., bω from F
ω+k
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such that ∀W ∈ W ,

〈{b1, b2, ..., bω}〉 ∩ LW = ∅. (4.4)

There existence of such a set of vectors will be justified later on.

We can extend b1, b2, ..., bω to a linearly independent set with ω +k

vectors, say b1, b2, ..., bω, bω+1, ..., bω+k, and denote

Q =
[

b1 b2 . . . bω+k

]
, (4.5)

which is non-singular.

iii) The information source X takes values in F
ω while the indepen-

dent randomness R takes values in F
k according to the uniform

distribution. Let the message x be a row vector in F
ω, and let the

outcome r of R be a row vector in F
k. Let X ′ = (X, R) and the

outcome of X ′ be x′ = (x, r).

iv) Encode the vector x′ by Q−1G and transmit the encoded vector

x′Q−1G by utilizing the given network code. Therefore the infor-

mation transmitting in each channel e is of the value x′Q−1Gfe.

Justification of the existence of Q:

To prove the claim that there exist ω linearly independent vectors

b1, b2, ..., bω from F
ω+k such that ∀W ∈ W ,

〈{b1, b2, ..., bω}〉 ∩ LW = ∅. (4.6)

We assume that we have already chosen b1, b2, ..., bj−1 such that

〈{b1, b2, ..., bj−1}〉 ∩
⋃

W∈W

LW = ∅. (4.7)
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We can choose bj as any vector not in 〈{b1, b2, ..., bj−1}〉 +
⋃

W∈W LW .

To see the existence of such a bj, we can observe that ∀j, j ≤ ω,

∣∣∣∣∣〈{b1, b2, ..., bj−1}〉 +
⋃

W∈W

LW

∣∣∣∣∣ (4.8)

≤ |〈{b1, b2, ..., bj−1}〉|

∣∣∣∣∣
⋃

W∈W

LW

∣∣∣∣∣ (4.9)

≤ |F|j−1
∑

W∈W

|LW | (4.10)

≤ |F|j−1
∑

W∈W

|F|k (4.11)

≤ |F|j+k−1 |W| (4.12)

≤ |F|ω+k−1 |W| (4.13)

< |F|ω+k , (4.14)

when |F| > |W|.

By the facts that

i) bj /∈ 〈{b1, b2, ..., bj−1}〉 +
⋃

W∈W LW ;

ii) 〈{b1, b2, ..., bj−1}〉 ∩
⋃

W∈W LW = ∅,

we can then infer that

〈{b1, b2, ..., bj}〉 ∩
⋃

W∈W

LW = ∅. (4.15)
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4.1.2 Security and Error-correction ability of the Code Con-

structed

In this subsection, we are going to show that the code constructed in

the previous subsection can correct up to d errors injected into the

network and remain secure to the adversary that can eavesdrop any set

of k channels in the network when information can be transmitted up

to the rate of m − 2d − k.

Theorem 4.1. Given a set of local encoding kernels over a finite field

with size q where q is sufficiently large, there exists a message set C

with |C| = qm−2d−k such that information can be transmitted to all the

sink nodes t at the rate m − 2d − k in the presence of d channels with

errors, and the network code can prevent eavesdroppings on any set of

k channels in the network.

Proof. By using construction 1, we can obtain a linear network code

that allows us to transmit information at the rate ω. All we have to

show now is that the code satisfies the error correcting condition and

the security condition. We first verify the error correcting condition.

By the result of Theorem 3.1, every sink node can decode and get back

x′Q−1 in spite of any d errors injected, where 2d + 1 ≤ mint∈T dmin,t,

errors injected into the network by the malicious party. Therefore,

sink nodes can get back x′ and hence x by multiplying the decoded

information with Q.

Now, let us check the security condition. We first assume that no

error is injected into the network. We first fix an arbitrary set W of

k′ ≤ k channels, e1, e2, ..., ek′ such that {fe1
, fe2

, ..., fek′
} forms a set of

linear independent vectors and assume that it is the set of eavesdropped
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channels. Then the information transmitted on the k′ channels will be

x′Q−1Gfe1
,x′Q−1Gfe2

, ...,x′Q−1Gfek′
respectively. Or equivalently

x′Q−1f ′
e1

, x′Q−1f ′
e2

, ..., x′Q−1f ′
ek

(4.16)

where f ′
el

= Gfel
, ∀1 ≤ l ≤ k′. Next, we are going to show by contradic-

tion that all the symbols the eavesdropper obtains from the channels are

a mixture of the symbols from X and R, and that the eavesdropper can-

not recover any information about X, either completely or partially. To

extract any kind of information consisting only symbols from X, there

must exist at least one vector f in the vector space
〈
f ′

e1
, f ′

e2
, ..., f ′

ek′

〉

such that

Q−1f ∈ V ′ (4.17)

where V ′ is the vector space consisting of all (ω+k)-dimensional column

vectors which contain only zeros starting from the (ω + 1)st position.

If such a vector f does exist, then

f ∈ V ′′ (4.18)

where V ′′ = {Qv : v ∈ V ′}.

And

V ′′ = {Qv : v ∈ V ′} (4.19)

= 〈{Qδ1, Qδ2, . . . , Qδω}〉 (4.20)

= 〈{b1, b2, ..., bω}〉 , (4.21)

where δi, 1 ≤ i ≤ ω is the (ω + k)-dimensional column vector which

contains only zeros except in the ith position which is equal to 1.
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Therefore,

f ∈ 〈{b1, b2, ..., bω}〉 . (4.22)

This contradicts (4.4). Therefore, such vector f does not exist. And

all the symbols that the eavesdropper obtains from the channels are a

mixture of the symbols from X and R.

Let YW be the vector of symbols transmitted on the k′ eavesdropped

channels. Let yW be the value of YW when X = (x, r). The information

transmitted on the k′ eavesdropped channels are

YW =(x, r)
[

Q−1f ′
e1

Q−1f ′
e2

. . . Q−1f ′
ek′

]
(4.23)

=(x, r)


 G1

G2


 (4.24)

=xG1 + rG2 (4.25)

where G1 and G2 are matrices with dimensions ω × k′ and k × k′ re-

spectively. Next, we are going to show that the rank of G2 must be k′,

equals the number of columns of G2. Assume that the rank of G2 is

less than k′. There must exist a k′-dimensional non-zero column vector

v such that,

G2v = 0. (4.26)
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And

YWv = (x, r)


 G1

G2


 v (4.27)

= (x, r)


 G1v

0


 (4.28)

= xG1v. (4.29)

This contradicts the fact that all symbols obtained by the eavesdropper

are mixture of the symbols from X and R. Therefore, the rank of G2

must be k′.

For all subset W of k′ channels, yW ∈ F
k′

and x ∈ F
ω,

Pr{YW = y|X = x} (4.30)

=Pr{xG1 + RG2 = y} (4.31)

=Pr{RG2 = y − xG1} (4.32)

=|F|−k′

(4.33)

which is independent of x.

Therefore,

I(X; YW ) = 0. (4.34)

From now on, we assume that error can happen on all the edges in the

network and we will prove that under this situation, the eavesdropper

can still not obtain any useful information. Let E = {1, 2, . . . , |E|},

where the indexing is consistence with the partial order of edges in the
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Injection

error
Random

error

Wiretapping

Figure 4.1: error components and wiretapping of the edge j

network.

Assume that on each edge i ∈ E , the error is an addition of two

components, as illustrated in Figure 4.1. One of the component is called

random error Zran
i which is not under the control of the adversary and

satisfies

I(X, R; Zran) = 0., (4.35)

where Zran = (Zran
i , 1 ≤ i ≤ |E|). And we assume that the adversary

is powerful enough to know all the random errors Zran injected though

the value of the random errors are out of adversary’s control.

Let {σ(1), σ(2), . . . , σ(k)} be the set of k channels that the adversary

chooses to eavesdrop where the indexing is consistence with the partial

order of the edges in the network. In order words, σ(i) ≤ σ(j), ∀i < j.

Assume that ∀1 ≤ j ≤ |E|, there exists 1 ≤ ij ≤ k such that either

σ(ij) < j and j ≤ σ(ij + 1), or σ(i) < j, ∀1 ≤ i ≤ |E|. And we

assume that the adversary has the ability to decide what errors to be

injected into the downstream of the network based on the information

it obtained in the upstream.
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Let Yj, 1 ≤ j ≤ k, be the symbols transmitted on the edge σ(j) when

there is no error injected into the network and let Y ′
j , 1 ≤ j ≤ k, be

the symbols transmitted on the edge σ(j) when there are errors in the

network (either random or injected). We further assume that for every

channel chosen, the eavesdropper always eavesdrops at the receiving

end of the channel, that is, after the errors are injected if there is any.

This assumption can be justified because in our model, the adversary

are assumed to know not only the injected errors, but also the random

errors that are happening on every channels. The information that

the adversary can obtain by eavesdropping the receiving end of the

channels allows it to calculate the information at the transmitting end

of the channels. Therefore ∀j, 1 ≤ j ≤ k,

Y ′
j = Yj + g′j(Z

in
i , Zran

i , ∀i ≤ σ(j), ) (4.36)

where g′e(·)s are deterministic functions depend only on the local en-

coding kernels of the network.

Then ∀j, 1 ≤ j ≤ k,

I(Z in
j ; Yij+1, . . . , Yk|Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran)

=I(Z in
j ; Yij+1, . . . , Yk|Y

′
1 , . . . , Y

′
ij
, Z in

1 , . . . , Z in
j−1, Z

ran) (4.37)

≤I(Z in
j ; X, R|Y ′

1 , . . . , Y
′
ij
, Z in

1 , . . . , Z in
j−1, Z

ran) (4.38)

=0. (4.39)

where the first equality is valid because when (Z in
1 , . . . , Z in

j−1, Z
ran) are

all known, the values of Y1, . . . , Yij can always be calculated from Y ′
1 , . . . , Y

′
ij

by using equation (4.36) and vice versa, the first inequality comes from
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the fact that Yij+1, . . . , Yk are all functions of X, R and the last equality

is true by the construction of our model. Therefore, ∀j, 1 ≤ j ≤ k,

I(Z in
j ; Yij+1, . . . , Yk|Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran) = 0. (4.40)

Also ∀j, 1 ≤ j ≤ k,

I(Z in
j ; Yij+1, . . . , Yk|X, R, Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran)

≤I(Z in
j ; X, R|X, R, Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran) (4.41)

=0. (4.42)

Therefore, ∀j, 1 ≤ j ≤ k,

I(Z in
j ; Yij+1, . . . , Yk|X, R, Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran) = 0. (4.43)

Then ∀j, 1 ≤ j ≤ k,

I(X, R; Z in
j |Y1, . . . , Yij , Yij+1, . . . , Yk, Z

in
1 , . . . , Z in

j−1, Z
ran)

=I(X, R; Z in
j |Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran)−

I(X, R; Z in
j ; Yij+1, . . . , Yk|Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran) (4.44)

=I(X, R; Z in
j |Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran)−

I(X, R; Z in
j ; Yij+1, . . . , Yk|Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran)−

I(Z in
j ; Yij+1, . . . , Yk|X, R, Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran) (4.45)

=I(X, R; Z in
j |Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran)−

I(Z in
j ; Yij+1, . . . , Yk|Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran) (4.46)

=I(X, R; Z in
j |Y1, . . . , Yij , Z

in
1 , . . . , Z in

j−1, Z
ran) (4.47)

=0 (4.48)



CHAPTER 4. SECURE ERROR-CORRECTING (SEC) NETWORK CODES 47

where equation (4.45) comes from equation (4.43), equation (4.47)

comes from equation (4.40) and the last equality is valid by the con-

struction of our model. (4.44) comes from the following equation

I(A; B; C) = I(A; C)− I(A; B|C)1. (4.49)

Since YW = (Y1, . . . , Yk), it follows from (4.48) that

I(X, R; Z in
j |YW, Z in

1 , . . . , Z in
j−1, Z

ran) = 0 (4.50)

By summing over all j, and applying the chain rule for mutual infor-

matoin, we get

I(X, R; Z in|YW, Zran)

=
∑

j

I(X, R; Z in
j |YW, Z1, . . . , Zj−1, Z

ran) (4.51)

=0. (4.52)

where Z in = (Z in
i , 1 ≤ i ≤ |E|).

1See [31]
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On the other hand,

I(X; YW|Zran)

=I(X; YW) − I(X; YW; Zran) (4.53)

= − I(X; YW; Zran) (4.54)

=I(X; Zran|YW) − I(X; Zran) (4.55)

=I(X; Zran|YW) (4.56)

≤I(X, R; Zran|YW) (4.57)

=I(X, R; Zran) − I(XR; Zran; YW) (4.58)

= − I(X, R; Zran; YW) (4.59)

≤I(Zran; YW|X, R) (4.60)

≤H(YW|X; R) (4.61)

=0 (4.62)

where equation (4.54) comes from equation (4.34), both equations (4.56)

and (4.59) come from equation (4.35) and equation(4.60) follows from

0 ≤ I(Zran; YW) (4.63)

= I(X, R; Zran; YW) + I(Zran; YW|X, R). (4.64)

Since I(X; YW|Zran) ≥ 0, (4.62) implies

I(X; YW|Zran) = 0. (4.65)
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Therefore,

I(X; YW, Z in, Zran)

=I(X; Zran) + I(X; YW|Zran) + I(X; Z in|YW, Zran) (4.66)

=I(X; YW|Zran) + I(X; Z in|YW, Zran) (4.67)

=I(X; Z in|YW, Zran) (4.68)

=0. (4.69)

where equation (4.67) comes from equation (4.35), equation (4.68)

comes from equation (4.65), and equation (4.69) comes from equation

(4.52).

Finally,

I(X; Y ′
W)

≤I(X; Y ′
W, Z in, Zran) (4.70)

=I(X; YW, Z in, Zran) (4.71)

=0. (4.72)

Therefore,

I(X; Y ′
W) = 0, (4.73)

This is, the code we constructed in the last section is indeed secure.

Next, we are going to prove that m−2d−k is an upper bound on the

multicast rate of secure error-correcting network code in the presence

of an adversary that can inject d errors and eavesdrop k channels. In

establishing this result, we need a set of inequalities due to Han [47]



CHAPTER 4. SECURE ERROR-CORRECTING (SEC) NETWORK CODES 50

stated in the next lemma.

Lemma 4.1. ( [13]) For a subset α of N = {1, 2, . . . , m}, let ᾱ = N\α

and (Xi, i ∈ α) by Xα. For 1 ≤ k ≤ m, let

H ′
k =

1(
m−1
k−1

)
∑

α:|α|=k

H(Xα|Xᾱ). (4.74)

Then

H ′
1 ≤ H ′

2 ≤ · · · ≤ H ′
m. (4.75)

Theorem 4.2. The maximum rate at which information can be trans-

mitted from the source node to all sink nodes with linear network code

in the presence of adversary that can eavesdrop k channels and inject

d errors at the same time is m − 2d − k.

Proof. Let t be the sink node such that there exists a cut U between

s and t such that the there are exactly m edges across the cut U . Let

Et = {e1, e2, . . . , em} be the set of edges across the cut U . Assume that

the source node transmits ω units of information, x = {x1, x2, . . . , xω},

to the sink nodes and k′ symbols of randomness are introduced.

Consider a fixed linear network code in which all the node will trans-

mit a linear combination of the information that it received from the

incoming edges onto the outgoing edges according to the local encoding

kernels. Then the information transmitting across the cut is,

xGM + rGR (4.76)

where GM is a ω × m generator matrix for the message and GR is a

k′ × m matrix and the exact value of GM and GR depend on the local
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encoding kernels of the linear network code considered. The rank of GM

must be ω for the message to be decodable at the sink nodes. Also,

〈GM〉 ∩ 〈GR〉 = {0} (4.77)

where 〈GM〉 and 〈GR〉 are the row vector spaces of GM and GR respec-

tively. Otherwise, there exists a x,x′ ∈ F
ω,x 6= x′, r, r′ ∈ F

k, r 6= r′,

such that

(x− x′)GM = (r − r′)GR. (4.78)

This implies

xGM + r′GR = x′GM + rGR. (4.79)

Then, the sink node t would not be able to decode the message correctly.

Assume information is transmitting at the rate of L− a and a units

of randomness, r = {r1, r2, . . . ra}, are introduced where L > a. Next

we are going to show that at least k symbols of randomness are required

for the code to be secured.

We first deal with the case when L ≥ k + 1. Let YE ′, E ′ ⊂ E , be the

vector of symbols transmitted on the edge in E ′. We first assume that

GR is a full rank matrix, since 〈GM 〉 ∩ 〈GR〉 = {0},


 GM

GR


 is a full rank matrix. (4.80)

Therefore, ∃ an L×L submatrix which is invertible. This implies there
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exists a subset E ′
t ⊂ Et, |E

′
t| = L, such that

H(X, R|YE ′
t
) = 0. (4.81)

This further implies

H(X|YE ′
t
) = 0. (4.82)

For the case in which rank(GR) = b < a, there exists a matrix ĜR that

consists of b rows of GR such that ∀x ∈ F
L−a, r ∈ F

a, ∃r′ ∈ F
b such

that

(x, r)


 GM

GR


 = (x, r′)


 GM

ĜR


 (4.83)

where components of r′ is a linear combination of components of r.

Since 〈GM〉 ∩ 〈GR〉 = {0}, ∃ an (L − a + b) × (L − a + b) submatrix

which is invertible. This implies there exists a subset E ′
t ⊂ Et, |E ′

t| = L,

such that

H(X, R′|YE ′
t
) = 0 (4.84)

where r′ is the outcome of the random variable R′. This further implies

H(X|YE ′
t
) = 0. (4.85)
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For any I ⊂ E ′
t, |I| = k, consider

H(X) = H(X|YE ′
t
) + I(YE ′

t
; X) (4.86)

= I(YI; X) + I(YE ′
t\I; X|YI) (4.87)

= I(YE ′
t\I; X|YI) (4.88)

where the second equality comes from equation (4.82) and the last

equality comes from the requirement for the code to be secured. Sum-

ming over all I, we have


 L

k


H(X)

=
∑

I

I(YE ′
t\I; X|YI) (4.89)

≤


 L − 1

L − k − 1



[

1(
L−1

L−k−1

)
∑

I

H(YE ′
t\I|YI)

]
(4.90)

≤


 L − 1

L − k − 1


H(YE ′

t
), (4.91)

where the last inequality follows from Lemman 4.1. Hence,

H(YE ′
t
) ≥

L

L − k
H(X). (4.92)
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Finally,

H(X) + H(R) ≥ H(X, R) (4.93)

= H(X, R, YE ′
t
) (4.94)

≥ H(YE ′
t
) (4.95)

≥
L

L − k
H(X) (4.96)

where equality (4.94) comes from

H(YE ′
t
|X, R) = 0. (4.97)

This implies

H(R) ≥
k

L − k
H(X) ≥ k (4.98)

where X is uniformly distributed. Therefore, at least k symbols of

randomness are needed to be introduced.

On the other hand, when L ≤ k, there exists a subset E ′
t ⊂ Et, |E ′

t| =

k, such that

H(X, R|YE ′
t
) = 0. (4.99)

The code is insecure. Therefore, at least k symbols of randomness are

needed to be introduced.

Now, assume that k symbols of randomness are introduced. For the

network code to correct any d errors injected into Et, ∀x1,x2 ∈ F
ω,x1 6=
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x2, r1, r2 ∈ F
k, and z1, z2 ∈ F

m, |z1| ≤ d, |z2| ≤ d,

x1GM + r1GR + z1

6= x2GM + r2GR + z2. (4.100)

Or ∀x ∈ F
ω,x 6= 0,

xGM /∈ {rGR + z : r ∈ F
k, z ∈ F

m, |z| ≤ 2d} (4.101)

Let

G′
R =




gr,1

gr,2

...

gr,k




(4.102)

be the row-echelon form of GR. We can always find 2d vectors, namely

v1, v2, . . . , v2d, from the set of standard basis of F
m such that

{gr,1, gr,2, . . . , gr,k, v1, v2, . . . , v2d} (4.103)

forms a set of k + 2d linear independent vectors. Therefore,

∣∣{rGR + z : r ∈ F
k, z ∈ F

m, |z| ≤ 2d}
∣∣ (4.104)

≥ |〈{gr,1, gr,2, . . . , gr,k, v1, v2, . . . , v2d}〉| (4.105)

= |F|k+2d (4.106)

where equation (4.105) comes from the fact that

∀y ∈ 〈{gr,i, 1 ≤ i ≤ k, vj, 1 ≤ j ≤ 2d}〉 , ∃r ∈ F
k, z ∈ F

m, |z| ≤ 2d such
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that y = rGR + z.

By equation (4.101), rank of GM must be less than m− 2d− k + 1.

Otherwise the sink node cannot decode the information successfully.

Therefore, the maximum rate at which information can be transmitted

from the source node to all sink nodes must be at most m − 2d − k.

Next, we will see a simple example illustrating the SEC code. A

simple network consisting of one source node s and one sink node t is

considered. The source node and sink node are connected by 4 directed

edges from s to d. The capacity of this network, therefore, is 4. We will

show how the procedure described in the above theorem allows us to

construct a SEC code which can transmit a single unit of information

without exposing any useful information to the adversary which is as-

sumed to be able to inject a single error into any channel and eavesdrop

one of the 4 channels at the same time.

We now construct a 2-dimensional linear network code over GF (5)

by assigning the vector
(
1
1

)
,
(
1
2

)
,
(
1
3

)
and

(
1
4

)
to the 4 channels as global

encoding vectors. The received vector for the sink node is

y = x


 1 1 1 1

1 2 3 4


+ z




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(4.107)

With such an assignment, one can verify easily that the resulting net-

work code is an error-correcting network code with distance 3. Since
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we have to ensure that the adversary would not obtain any useful infor-

mation by eavesdropping any 1 of the 4 channels and the source node

need to transmit a unit of information to the sink node, we now have

to choose, according to Theorem 4.1, a 2-dimensional vector which is

linearly independent to any 1 of the 4 global encoding vector of the 4

channels.
(
1
0

)
is such a vector. We then construct the invertible matrix

Q =


 1 0

0 1


 (4.108)

from the chosen
(
1
0

)
.

According to Theorem 4.1, the transfer matrix will now become

Q−1


 1 1 1 1

1 2 3 4


 (4.109)

=


 1 1 1 1

1 2 3 4


 . (4.110)

Therefore, the information transmitting in the 4 channels will now be

x+ r, x+2r, x+3r and x+4r respectively, where x is the information

unit to be transmitted and r is a number taken randomly in GF (5).

Since information in all channels are mixed with random data, the ad-

versary will not be able to get any useful information by eavesdropping

any 1 of the 4 channels.
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4.2 Secret Channel Based Transmission Schemes

In a secret channel, a transmission can be completely free from eaves-

dropping by the adversary while at the same time the data can still

reach all the sink nodes despite any corrupted data the adversary in-

jects into the network. Such channel can be realized by applying the

SEC network code proposed in Section 4.1. Such a secret channel works

under the condition 2d + k < m. The maximum rate at which source

node can multicast information to the sink nodes is m−2d−k. In [25], a

scheme based on random network coding [26] has been proposed which

can also achieve the capacity of m−d with a looser constraint d+k < m,

but with a bigger sacrifice on bandwidth in the initial stage of secret

data transmission.

By using the secret channel created, we discuss the following three

transmission schemes. The first two schemes can achieve the rate m−d.

In the presence of feedback, the third scheme can possibly achieve a

rate higher than m − d based on the usage of a feedback channel. To

simplify our discussion, we assume that mt = m for all sink node t in

this section. But our results apply to the general cases.

In the first scheme, we will use the secret channel to transmit a parity

check matrix and the hashed data created from the source information

to be transmitted. These information will later be proved to be useful

in decoding the source information at the sink nodes. In the second

scheme, we use the secret channel to notify the sink nodes the time

slots during which information will be transmitted at a lower data rate.

In this scheme, we have to assumed that the adversary will inject errors

into the network randomly. In the third scheme, we assume that there
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exists feedback channels between the sink nodes and the source node.

4.2.1 Hash Code

This scheme is originally proposed and shown to be feasible with a

very high successful rate in [23] with the usage of random network

code. By using deterministic code, this scheme can be modified and

greatly simplified. Also, due to the deterministic nature of the code

that we will construct, it turns out that the sink nodes will be able to

decode the data they received with a higher probability of success.

The scheme goes as follows. The source node will first generate

a secret message which will then be transmitted through the secret

channel. Firstly, we have to accumulate h(m − d) source information

where h is large comparing to m. Then we construct a h × (m − d)

matrix S using the source information accumulated. Secondly, the

source node will then chooses m parity symbols uniformly from the

field F. The parity symbols are labeled rd, for d ∈ {1, 2, ..., m}. Then

a m by h matrix P is defined whose (i, j)th entry equals to (ri)
j. The

second part of source node’s secret message is a m by m − d hash

matrix H, computed as the matrix product PS. The source node will

then transmit both the set of parity symbols and the hash matrix H to

all sink nodes over the security channel. After that, the source message

will then be multicast to the sink nodes with a m − d dimensional

network code with distance d + 1. Such a code can be constructed

without modifying the local encoding kernels of the nodes by applying

the algorithm proposed in Theorem 5 in [27].

A corresponding matrix Yt will then be constructed by every sink
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node, with the message it received. That is,

Yt = SGFs,t + ZFt (4.111)

where G is the generator matrix for the message set and Z is the h by

|E| matrix composed of the error vectors of each time slots as its row

vectors.

Every sink node t will then computed

PYt − PSGFs,t = PZFt. (4.112)

It can be proved [17] that, with very high probability, the rows of PZFt

span the same vector space as the rows of ZFt. Therefore, ZFt can be

written as a linear combinations of the rows of PZFt. Let D be the

matrix whose row vector form an arbitrary set of basis vector generating

the row space of PZFt. This allows the sink node to rewrite (4.111) as

the matrix product

Yt =
[

S A
]

 GFs,t

D


 . (4.113)

where A is a certain matrix when appropriate dimensions.

If the matrix


 GFs,t

D


 has full row rank, there will be a one-to-one

mapping between Yt and
[

S A
]
. The corresponding sink node can

then recover the message matrix S correctly.

Lemma 4.2. Given any network code with minimum distance d + 1



CHAPTER 4. SECURE ERROR-CORRECTING (SEC) NETWORK CODES 61

with transfer matrix F , the matrix



 GFs,t

D



 has full row-rank with

certainty.

Proof. Since the row vectors of PZFt span the same space as the row

vectors of ZFt and D is a set of basis vector generating the row space of

PZFt, it is sufficient to show that 〈GFs,t〉 and 〈ZFt〉 are disjoint vector

spaces, where 〈GFs,t〉 and 〈ZFt〉 represent the row vector spaces of the

matrices GFs,t and ZFt respectively. We will show this by contradiction.

Suppose 〈GFs,t〉
⋂

〈ZFt〉 6= ∅, and let v ∈ 〈GFs,t〉
⋂
〈ZFt〉. Therefore,

there exists a certain vector z such that v = zZFt. One the other hand,

〈GFt〉 is vector space, for every message vector x generated by G, there

exists a message vector x′ such that

xFs,t + zZFt = xFs,t + v = x′Fs,t. (4.114)

Therefore, based on the inaction assumption, there exists z′, wH(z′) ≤

d,

xFs,t + z′Ft = x′Fs,t. (4.115)

This contradicts the fact that the given network coding is a network

code with minimum distance d + 1.

In order to obtain the optimal rate of m − d, h needs to be large

comparing to m so as to make the secret message negligible. However, in

making h arbitrarily large, the probability that matrix D successfully

spanning the row vector space of ZFt can be diminished. In order

to balance out this negative effect, the field size q need also to be

arbitrarily large. In this scheme, the source node needs to store at least
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(m − d) × h source symbols, with each of them in F, for each single

batch of data. The memory requirement for the source node can then

be substantially large.

By making extra assumption, we are going to propose another simple

scheme that can asymptotically achieve the optimal capacity of m − d

in which the memory requirement for the source node is smaller.

4.2.2 Training Transmission Scheme

As discussed in [22], if the sink nodes have the knowledge of the active

error pattern, the error becomes an erasure and the code can have twice

the error correction ability. On the other hand, for the errors with the

same weight d, if the error pattern can be obtained by the sink nodes,

source node can increase its transmission rate from m − 2d to m − d.

The main issue is how to obtain the erasure pattern at the sink nodes.

For a fixed erasure pattern ρ, the observed error zFt at sink node

t must lie in a subspace of F
nt, say Zρ,t where nt is the number of

incoming edges of the node t. It is possible to estimate Zρ,t if an enough

number of zFt was received at the sink nodes. However, if the adversary

changes the set of channels to inject errors in every transmission of the

network, in the worst case, no information about the error pattern

can be estimated. Thus, we assume the adversary is inactive, i.e., the

adversary uses the same set of channels for a long enough period of time.

Assume |ρ| ≤ d. Before knowing ρ, source node s transmits at rate

m− 2d and each sink node can decode correctly. Thus zFt = yt −xFs,t

can be calculated at each sink node t. If ρ remains unchanged for a

period of time, the Zρ,t can then be estimated and reconstructed with
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a very high accuracy.

Thus we can have a transmission scheme based on the error pattern

estimation. The source node first transmit a mount of information at

rate m−2d. Sink nodes can decode such information correctly and use

the received vectors to estimate the error pattern. These transmissions

are called training. After the error pattern is estimated. Then the

source node transmit at rate m − d, and sink nodes can decode the

information correctly by erasure correction. In our scheme we do not

need to change the local encoding kernels but only the message set. For

a fix set of local encoding kernels, different rate of message set can be

constructed by the algorithm in [27].

However, there is a security problem in our transmission scheme. We

should prevent the adversary from knowing the training pattern, the set

of time slots during which the data is transmitted at the lower rate of

m−2d. If the adversary does know the training pattern, it can disguise

itself. For example, the adversary may inject the same corrupted pack-

ets into the network for training transmission. In this way, all the sink

nodes would only be able to recover at most a 1-dimensional subspace

of Zρ,t. Thus we need a secret channel which cannot be eavesdropped

by the adversary to transmit the training pattern from the source node

to all the sink nodes.

At the very beginning of the communication, the source nodes will

notify, using the security channel, all sink nodes the next time slot

during which the source node will transmit information with lower rate,

m − 2d, so that the sink nodes can be prepared and then recover both

the data and the error vectors without acknowledged by the adversary.

Also, by embedding the information about the next training time slot
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into the data being multicast in this time slot, the source node can at

the same time notify the sink nodes when the next training time slot

will be.

Since the adversary cannot determine when the training time slot

will be, we further assume that the adversary will randomly choose some

corrupted data to be injected into the network. This scheme makes sure

that when the field size and the number of training time slot is large

enough, all sink nodes will be able to, with very high probability, receive

and recover data from the source node at the rate m − d.

4.2.3 Secret Channel Model With Feedback

In the presence of feedback, the rate at which information can be mul-

ticast from the source node to the sink nodes can be increased beyond

m− d as obtained before. The main contribution here is to achieve the

better result here without reconstructing the network code. In fact, the

result can be achieved by just changing the message set at the source

node while the local encoding kernels of all nodes in the network re-

main unchanged. In the previous section, we have shown that after a

long enough time, we can reconstruct with a high probability the whole

vector space of errors that can be imposed onto each sink node by the

malicious party. By notifying the source node about the error vector

spaces received by each sink node using the feedback channels, depend-

ing on the maximum dimension of error that is received by every sink

node, the source node may be able to increase the multicast rate fur-

ther. Here we assume that the feedback channels are error-free. Since

the sink nodes only need to feedback the information of error space
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once over the very long period of time, the capacity of these feedback

channels can be assumed to be negligible compared with the forward

channels.

By applying an algorithm similar to that in Theorem 5 in [27], we

can obtain the following Corollary.

Corollary 4.1. Given a linear multicast N which can correct network

erasures with weight less than or equal to d, there exists, in the presence

of feedback channels from sink nodes to source node, a suitable generator

matrix for the message set with which source node can multicast data

at the rate of

min
t∈T

(mt − ut) . (4.116)

where ut is the dimension of the reconstructed error vector space received

by sink node t.

4.3 Conclusion

In this chapter, an algorithm in constructing a deterministic secure

error-correcting (SEC) network code is proposed. We have shown that

in the presence of malicious parties, by combining the idea of secure

network code and error-correcting network code, information still can

be multicast with complete secrecy and error tolerability at the rate

of m − 2d − k, where k and d are the maximum number of channels

the adversary can eavesdrop and contaminate respectively. We further

show that by applying the so constructed network code to create a

temporary secure channel, different schemes can then be proposed with
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which a higher multicast rate of m−d can be obtained with a very high

probability. At last, we also show that with the presence of feedback

channels from the sink nodes to the source node, data rate can be

further boosted beyond m − d, without further modification of the

existing network code, depending on the maximum dimension of errors

the adversary can impose upon every sink nodes.

2 End of chapter.
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Chapter 5

Network Generalized Hamming

Weight

Summary

In this chapter, we extend the notion of generalized

Hamming weight for classical linear block code proposed

by Wei [9] to linear network codes by proposing a net-

work generalized Hamming weight (NGHW) for a given

network with respect to a fixed set of global encoding

kernel. The basic properties of the NGHW will be stud-

ied. We will further show that the NGHW can be used

as a tool to characterize the security performance of a

linear code on the CSWN. We also introduce the idea of

Network Maximum Distance Separation code (NMDS

code) by extending the notion of Maximum Distance

Separation code in classical algebraic coding theory. We

prove that NMDS codes play an important role in mini-

mizing the information that an eavesdropper can obtain

from the network. In addition, a one-pass construction

of a secure network code will also be given.
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Motivated by the work of Wei on generalized Hamming weight for

linear block codes [9], which has connections with wiretap channel II

[8] and secure sharing model proposed independently by Blakley [14]

and Shamir [15], and the work of Cai and Yeung on secure network

coding [5], we extend the definition of generalized Hamming weight

for linear block codes to linear network codes. To be more specific,

we will give a new definition of generalized Hamming weight called the

network generalized Hamming weight (NGHW) for a given network with

respect to a fixed set of global encoding kernels of a given linear network

code. Based on the NGHW for linear network codes, we can prove the

existence of a network extension of the generalized Singleton bound [9].

The tightness of such a generalized Singleton bound will also be proved.

Moreover, through the construction of the linear network code that can

achieve the generalized Singleton bound induced by network generalized

Hamming weight, we can recover the construction of a secure network

code in [5–7].

By extending the original definition of the generalized Hamming

weight, our network generalized Hamming weight can completely char-

acterize the performance of linear network codes on a communication

system on a wiretap network (CSWN) [5], which includes secret shar-

ing in classical cryptography as a special case.1 The details of this

application are contained in Section 5.3.

1The wiretap channel II is a special case of secret sharing.
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5.1 Definitions

Wei [9] introduced the notion of the generalized Hamming weight for the

classical point-to-point channel which is closely related to the security

of data transmission in the wiretap channel II model. He showed that

in the case of coset coding, generalized Hamming weight can be used to

completely characterize the code performance on the wiretap channel of

type II. In this section, by integrating the generalized Hamming weight

with network coding, we extend the notion of the generalized Hamming

weight to communication networks. In the following, we will first define

the network generalized Hamming weight and then prove some of its

basic properties.

Definition 5.1. An n-dimensional linear network code is said to be

full-rank if there exists a set of n linear independent global encoding

kernels.

Definition 5.2 (Network Generalized Hamming Weight). Let C be an

[n, k] linear block code. The rth generalized Hamming weight of C,

denoted by dr(C, F ), with respect to a given n-dimensional full-rank

linear network code specified by the set of global encoding kernels F =

{fe, e ∈ E}, is defined as

dr(C, F ) = min
W⊂E

{|W| : LW contains some subcode D of C

with dimension r}. (5.1)

where LW = 〈{fT
e , e ∈ W}〉. d1(C, F ) is also denoted by wmin.

Note that in (5.1), if LW contains some subcode D of C with dimen-
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Figure 5.1: A degenerated network consisting of n-channels with FE = I.

sion r, then dim(C ∩ LW) ≥ r.

For W ⊂ E , let FW be an n×|W| matrix formed by the juxtaposition

of {fe, e ∈ W}. When the network considered is reduced to the network

with n channels connecting the source node s and the unique sink node

t, and the global encoding kernels forming the n × n identity matrix,

as indicated in Figure 5.1, the definition of dr(C, F ) reduces to the

generalized Hamming weight in [9]. See Section 5.5 for a proof.

In the remainder of this section, we derive several basic properties

of the network generalized Hamming weight. Whenever we refer to the

NGHW of a linear block code C, we always assume a given full-rank

linear network code as prescribed in Definition 5.2.

Lemma 5.1 (Monotonicity). For an [n, k] linear block code C with k >
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0,

1 ≤ d1(C, F ) < d2(C, F ) < · · · < dk(C, F ) ≤ n. (5.2)

Proof. The inequalities 1 ≤ d1(C, F ) and dr−1(C, F ) ≤ dr(C, F ) for 2 ≤

r ≤ k follows directly from Definition 5.2. The inequalities dk(C, F ) ≤ n

holds because the given n-dimensional linear network code is full rank.

We only need to prove the strict inequalities in (5.2).

For a fixed 2 ≤ r ≤ k, let D with dim(D) = r be a subcode of C and

suppose there exists W ⊂ E such that dr(C, F ) = |W| and D ⊂ LW.

Let 〈g1, g2, . . . , gr〉 be a basis of D and {fe, e ∈ W} = {fe1
, fe2

, . . . , fe|W |
}.

Since D ⊂ LW, we may assume that there exists an r × |W| matrix

A = {aij} such that




g1

g2

...

gr




=




a11 a12 . . . a1|W|

a21 a22 . . . a2|W|

...
...

...
...

ar1 ar2 . . . ar|W|







fT
e1

fT
e2

...

fT
e|W|




. (5.3)

Since g1, g2, . . . , gr 6= 0, for any 1 ≤ i ≤ r, 1 ≤ j ≤ |W |, aij do not all

vanish. By reindexing {fe1
, fe2

, . . . , fe|W |
} if necessary, we can assume
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without loss of generality that ar|W | 6= 0. We can then obtain




g′
1

g′
2

...

g′
r−1

gr




=




a′11 a′12 . . . 0

a′21 a′22 . . . 0

...
...

...
...

a′(r−1)1 a′(r−1)2 . . . 0

ar1 ar2 . . . ar|W|







fT
e1

fT
e2

...

fT
e|W|−1

fT
e|W|




(5.4)

where ∀1 ≤ i ≤ r − 1, g′
i = gi − gr

a1|W |

ar|W |
and ∀1 ≤ i ≤ r − 1, 1 ≤ j ≤

|W |−1, a′ij = aij−arj
a1|W |

ar|W |
. It can be readily shown that g′

1, g
′
2, . . . , g

′
r−1

are linearly independent. Therefore, there exists an (r−1)-dimensional

subcode D′ of C with g′
1, g

′
2, . . . , g

′
r−1 as the basis such that




g′
1

g′
2

...

g′
r−1




=




a′11 a′12 . . . a′1(|W|−1)

a′21 a′22 . . . a′2(|W|−1)

...
...

...
...

a′(r−1)1 a′(r−1)2 . . . a′(r−1)(|W|−1)







fT
e1

fT
e2

...

fT
e|W|−1




(5.5)

Therefore,

dr−1(C, F ) ≤ |W| − 1 = dr(C, F ) − 1 < dr(C, F ) (5.6)

For an [n, k] linear block code C, denote its (n− k)× n parity check

matrix by H, that is, ∀c ∈ C,HcT = 0. The following theorem gives a

characterization of dr(C, F ) in terms of H.
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Theorem 5.1.

dr(C, F ) = min
W⊂E

{|W| : dim(LW) − dim (〈{Hfe, e ∈ W}〉) ≥ r} (5.7)

Proof. Consider any W ⊂ E that satisfies

dim(LW) − dim (〈{Hfe, e ∈ W}〉) ≥ r. (5.8)

There exists a subset W′ of W such that fe, e ∈ W′, are linearly inde-

pendent,

dim(LW′) = dim(LW). (5.9)

and

〈{Hfe, e ∈ W}〉 = 〈{Hfe, e ∈ W′}〉 , (5.10)

so that (5.8) is satisfied with W′ in replace of W. Since |W′| ≤ |W|, in

the minimization in (5.7), we only need to consider edge subsets W of

which the global encoding kernels are independent of each other, i.e.,

dim(LW) = |W|. A similar arguement shows that the same applies to

the minimization in (5.1).

Let S(W) = 〈{Hfe, e ∈ W}〉 and Sker(W) =
{
c ∈ LW : HcT = 0

}
.

We define a linear mapping T from the space of 〈{fe, e ∈ W}〉 to the

space of 〈{Hfe, e ∈ W}〉 such that ∀fe ∈ 〈{fe, e ∈ W}〉 , T (fe) = Hfe.

Then we have dim(S(W)) = dim(〈{fe, e ∈ W}〉) − dim(ker(T )) and
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dim(ker(T )) = dim(Sker(W)). Thus

dim(S(W)) + dim(Sker(W)) = dim(〈{fe, e ∈ W}〉) = dim(LW).

(5.11)

Let d be the quantity on the right-hand side of (5.7). Let W′ ⊂ E

be such that dim(LW′) = |W′| = d, and

dim (LW′) − dim (〈{Hfe, e ∈ W′}〉) = r′ ≥ r. (5.12)

Then, dim(Sker(W′)) = r′, and Sker(W′) is a subcode of C. Therefore,

dr(C, F ) ≤ dr′(C, F ) ≤ |W′| = dim(LW′) = d. (5.13)

The last inequality is due to the fact that Sker(W′) is a subcode of C

with dimension r′ and Sker(W′) ⊂ LW′ (cf. Definition 5.2 with Sker(W′)

in place of D). So dr(C, F ) ≤ d.

It remains to establish the inequality in the other direction. Let D

be a subcode of C with dim(D) = r such that ∃W′ ⊂ E , D ⊂ LW′, and

dim(LW′) = |W′| = dr(C, F ). Since D ⊂ Sker(W′),

dim(Sker(W′)) ≥ dim(D). (5.14)

Let dim(Sker(W′)) = r′. Then r′ ≥ r. Assume that r′ > r. Then

D 6= Sker(W′). (5.15)

Using the argument for the last inequality in (5.13), we have

dr(C, F ) < dr′(C, F ) ≤ |W′| = dim(LW′) = dr(C, F ), (5.16)
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which is a contradiction. Hence, dim(Sker(W′)) = r′ = r. By (5.11)

with W′ in place of W, we obtain

dim(LW′) − dim(S(W′)) = r. (5.17)

and by comparing equation (5.17) with the inequalities on the right

hand side of (5.7), we prove that

d ≤ |W′| = dr(C, F ). (5.18)

5.2 The Network Generalized Singleton Bound and

Network MDS codes

In this section, the idea of network generalized Singleton bound will

first be discussed. Later on, we will show the tightness of this bound

under two different conditions.

In Section 5.3, we will see that the generalized Hamming weight

has a very close relation with the secure performance of a given linear

network code. And achieving the generalized Singleton bound is in

fact very closely related to achieving the maximum rate of secure linear

multicast in the presence of an eavesdropper.

5.2.1 The Network Generalized Singleton Bound

Theorem 5.2 (Generalized Singleton bound). For an [n, k] linear code

C, we have dr(C, F ) ≤ n − k + r, for 1 ≤ r ≤ k.
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Proof. From (5.2), we can see that dk(C, F ) ≤ n. Assume that for r′

such that, 1 < r′ ≤ k, d′r(C, F ) ≤ n− k + r′ is true. Then by the mono-

tonicity property of the generalized Hamming weight, dr′−1(C, F ) ≤

d′r(C, F ) − 1 ≤ n − k + (r′ − 1). The theorem is completed.

In the rest of the chapter, we denote d1(C, F ) by wmin. Note that in

the case of classical algebraic coding, wmin is reduced to the minimum

Hamming distance of C.

Corollary 5.1. An [n, k] linear code C satisfies

|C| ≤ qn−wmin+1. (5.19)

Next, we are going to show that the generalized Singleton bound

is tight in the case of linear multicast. The result can then be easily

extended to the case of general linear network code. Here the tightness

of the generalized Singleton bound has two meanings. The first one is,

for a given set of global encoding kernels, we can find a linear code that

achieves the tightness of the generalized Singleton bound. The second

one is, for a given linear code, we can find a set of global encoding

kernels that achieves the generalized Singleton bound.

For two subsets V1, V2 ⊂ F
n
q , their sum is defined by

V1 + V2 = {v1 + v2 : v1 ∈ V1,v2 ∈ V2}. (5.20)

Theorem 5.3. Given any n-dimensional linear multicast over a finite

field F, when |F| = q is sufficiently large, there exists a linear code C
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with |C| = qk such that

wmin = n − k + 1. (5.21)

Proof. We start with any given set of global encoding kernels which

defines a linear multicast, which is an n-dimensional full-rank linear

network code. Let W ′ = {W ⊂ E : |W| = n − k}.

Now we construct the linear code C. Let g1, · · · , gk ∈ F
n
q be a

sequence of row vectors obtained as follows. For each i, 1 ≤ i ≤ k,

choose gi such that

gi /∈
⋃

W∈W ′

LW + 〈g1, · · · , gi−1〉. (5.22)

We first prove that gi satisfying (5.22) exists if the field size q is

sufficiently large. We observe that ∀i ≤ k,

∣∣∣∣∣
⋃

W∈W ′

LW + 〈g1, · · · , gi−1〉

∣∣∣∣∣ (5.23)

≤ |
⋃

W∈W ′

LW|qi−1 (5.24)

≤

(
|E|

n − k

)
qn−kqi−1 (5.25)

=

(
|E|

n − k

)
qn−k+i−1 (5.26)

≤

(
|E|

n − k

)
qn−1 (5.27)

which does not depend on i.
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If

q >

(
|E|

n − k

)
, (5.28)

then there exists a vector that can be chosen as gi for i = 1, · · · , k.

Note that by virtue of (5.22), gi 6= 0 for all i.

Fix g1, · · · , gk that satisfy (5.22). We prove by induction that

(
⋃

W∈W ′

LW

)
∩ 〈g1, · · · , gi〉 = {0}. (5.29)

holds for these gi. If (5.29) does not hold for i = 1, then there ex-

ists a non-zero vector αg1 ∈
⋃

W∈W ′ LW, where α ∈ F\{0}. Since
⋃

W∈W ′ LW is closed under scalar multiplication and α 6= 0, we have

g1 ∈
⋃

W∈W ′ LW, a contradiction to (5.22) for i = 1. Assume (5.29)

holds for i ≤ k − 1. If (5.29) does not hold for i = k, then there exists

a non-zero vector
k∑

i=1

αigi ∈
⋃

W∈W ′

LW, (5.30)

where αi ∈ Fq. If αk = 0, then

k−1∑

i=1

αigi ∈
⋃

W∈W ′

LW, (5.31)

a contradiction to the assumption that (5.29) holds for i = k− 1. Thus

αk 6= 0. Again, by
⋃

W∈W ′ LW being closed under scalar multiplication,
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we have

gk ∈
⋃

W∈W ′

LW −

{
α−1

k

k−1∑

i=1

αigi

}
(5.32)

⊂
⋃

W∈W ′

LW + 〈g1, · · · , gk−1〉, (5.33)

a contradiction to (5.22) for i = k. Therefore, g1, · · · , gk satisfy (5.29)

and we let C = 〈g1, · · · , gk〉.

For any subspace D of C. For any W ⊂ E with |W| ≤ n − k, it

follows from (5.29) for i = k that

LW ∩ D = {0}. (5.34)

In particular, (5.34) holds when the dimension of D is equal to 1. There-

fore, by Definition 5.2, wmin = d1(C, F ) ≥ n − k + 1. Together with

Theorem 5.2, we obtain

wmin = n − k + 1 (5.35)

The proof is completed.

Theorem 5.4. Given an [n, k] linear code C with |C| = qk, we can

construct a linear multicast over a finite field F, when q is sufficiently

large, such that

wmin = n − k + 1 (5.36)

Proof. We first use Jaggi-Sanders’ algorithm in [11] to construct an n-

dimensional deterministic linear multicast, whose global encoding ker-
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nels are denoted by F ′ = {f ′
e, e ∈ E}. Then we use the method in the

proof of Theorem 5.3 to find an [n, k] linear code C ′ that achieves the

upper bound in (5.19), i.e., d1(C
′, F ′) = n− k + 1. We will show that C

can be obtained from C ′ by taking an invertible linear transformation

T , i.e., T (c′) = c′M, ∀c′ ∈ C ′, where M is an n × n invertible matrix.

Let fe = M−1f ′
e for e ∈ E . We will further show that the set of global

encoding kernel F = {fe : e ∈ E} achieves the upper bound in (5.19).

i) Let G0 be a k × n matrix formed by the first k rows of the n ×

n identity matrix I, and G and G′ be the generator matrix of

C and C ′, respectively. We form two invertible n × n matrices

M1 and M2, such that the first k columns of M1 and M2 are GT

and G′T respectively. Then G0M
T
1 = G and G0M

T
2 = G′. Hence

G(M2M
−1
1 )T = G′ and M can be taken to be M2M

−1
1 .

ii) The sink nodes in the network can still decode successfully with

the new network code specified by the global encoding kernels {fe :

e ∈ E} since M is invertible. We now prove that the linear code

C achieves the upper bound in (5.19) with respect to F = {fe :

e ∈ E}. Assume that C does not achieve the upper bound, i.e.,

wmin = d1(C, F ) ≤ n − k or k < n − wmin + 1. Then according to

the definition of the generalized Hamming weight, ∃c ∈ C, c 6= 0

and n − k global encoding kernels, say f1, f2, · · · , fn−k, such that

c = a1f
T
1 + · · · + an−kf

T
n−k and ai, i = 1 · · ·n − k are not all zero.

Therefore,

c = (a1f
′T
1 + a2f

′T
2 + · · · + an−kf

′T
n−k)(M

T )−1 (5.37)
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or

cMT = a1f
′T
1 + a2f

′T
2 + · · · + an−kf

′T
n−k. (5.38)

Let c′ = cM−1. Since 〈c′〉 is a 1-dimensional subcode of C ′, in light

of (5.38) and Definition 5.2, d1(C ′, F ′) is less than n − k + 1. This

is contradictory to that C ′ achieves the upper bound in (5.19).

The proof is completed.

Theorem 5.5. Given a linear code C (a linear multicast specified by

F = {fe, e ∈ E}), we can find a corresponding linear multicast speci-

fied by F = {fe, e ∈ E}(linear code C), such that the tightness of the

generalized Singleton bound of C can be achieved, that is, dr(C, F ) =

n − k + r, ∀1 ≤ r ≤ k.

Proof. d1(C, F ) = n − k + 1 is obtained by the Theorem 5.3 (Theorem

5.4). Together with the monotonicity property obtained in Lemma 5.1

and the fact that dk(C, F ) ≤ n, we can see that dr(C, F ) = n−k+r, ∀1 ≤

r ≤ k are also obtained automatically.

5.2.2 Network MDS Code

Here we introduce the term Network Maximum Distance Separable

(NMDS ) code to identify those linear codes that can be used to achieve

the generalized Singleton bound based on a given linear network code.

Such a name is given to these linear codes is motivated by the fact

that in the classical channel, MDS code is the only linear code that can

achieve the generalized Singleton bound induced by the generalized

Hamming weight.
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Definition 5.3. Given a full-rank linear network code, a Network Max-

imum Distance Separable code (NMDS) is a linear block code that

achieves the tightness of the generalized Singleton bound.

By Theorem 5.4, for any full-rank block code, we can find a corre-

sponding full-rank linear network code such that the generalized Sin-

gleton bound is achieved. In other words, any full-rank block code is

an NMDS code for some full-rank linear network code. However, such

a block code is not necessarily an MDS code.

On the other hand, with respect to the full-rank network code de-

picted in Figure 5.1, a linear block code is an NMDS code if and only

if it is an MDS code.

5.3 Application of Network Generalized Hamming

Weight

The generalized Hamming weight in [9] can completely characterize the

performance of a linear code C on the wiretap channel II. Our definition

of network generalized Hamming weight can also fully characterize the

performance of a linear code C on the CSWN, which can be treated as

a network generalization of wiretap channel II.

The problem of secure network coding was first studied by Cai and

Yeung in [5]. They introduced the CSWN, which subsumes the secret-

sharing model proposed independently by Blakley [14] and Shamir [15],

and proposed a secure network coding scheme. A CSWN consists of

a network and a collection W of subsets of channels, whose members

are called wiretap subsets of channels. An eavesdropper can arbitrarily
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choose one but only one wiretap subset W ∈ W and fully access (the

output of) all the channels in the wiretap subset W. The communicators

over a CSWN know the collection W of wiretap subsets but do not

know which subset W is chosen by the eavesdropper. The goal of

the communicators is that the eavesdropper can obtain absolutely no

information about the messages transmitted through the network. Such

secure network codes have been further studied in [12] by Feldman et

al. Later on, Cai and Yeung continued their original work in [6] with a

more general model in which there are more than one source node and

randomness can be generated at an arbitrarily given subset of nodes,

and obtained a necessary and sufficient condition for the security of

a network code. In their latest work [13], they further prove for the

special case that the eavesdropper may choose to access any subset of

channels of a fixed size, the code they constructed in [5] achieves the

required security with the minimum amount of randomness and at the

same time multicasts the maximum possible amount of information.

In this chapter, we assume that there is an eavesdropper in the

network who can arbitrarily choose and fully access µ edges of the

network. We define W := {W ⊂ E : |W| = µ} and say an eavesdropper

is characterized by W if the eavesdropper can arbitrarily choose and

access one and only one set in W .

We denote the message that the source node wants to transmit se-

curely by a k-dimensional row vector s ∈ F
k
q and let C be an [n, n − k]

linear code and H be the k × n parity check matrix of C. In order to

protect the messages from the eavesdropper, we apply coset coding [8]

based on C at the source node as follows: The encoded message that is

transmitted in the network is denoted by an n-dimensional row vector
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x ∈ F
n
q . The source selects one of the qk cosets to represent s, and

transmits a vector x chosen from that coset according to the uniform

distribution. Equivalently, we can write

x = [ s r ]



 GM

GC



 , (5.39)

where GC is the (n − k) × n generator matrix of C, GM is any k × n

full-rank matrix such that GM and GC together forms a n×n full-rank

matrix, and r is chosen from |Fn−k
q | uniformly. See Appendix A for a

proof.

Let S be the random variable denoting the information source, X

be the random variable denoting the source of the encoded message

to be transmitted by the source node, and Y be the random variable

denoting the message received by the eavesdropper.

We denote the symbols that the eavesdropper obtains by a |W|-

dimensional row vector y ∈ F
|W|
q . Write s = (s1, s2, · · · , sk),x =

(x1, x2, · · · , xn) and y = (y1, y2, · · · , y|W|). The symbols in s and x are

i.i.d. and chosen uniformly from Fq. Since GM and GC together form

an n × n full-rank matrix, ∀s ∈ F
k
q s.t. s 6= 0, sGMHT 6= 0, otherwise,

there exists a non-zero vector R ∈ F
n−k
q such that sGM = rGC . This

contradicts the fact that GM and GR together forms a n × n full-rank

matrix. Therefore, GMHT is invertible. Then letting H′ = (GMHT )−1,
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we have

xHTH′ =[ s r ]


 GM

GC


HTH′ (5.40)

=sGMHTH′ (5.41)

=s, (5.42)

giving the formula for recovering the information source s from the

encoded message x.

We assume that the eavesdropper knows the [n, n− k] linear code C

and its parity check matrix H used in the coset coding scheme as well

as the matrix FE . We define the uncertainty of the eavesdropper about

the source as ∆ = minW∈W H(S|Y ), and say the network is perfectly

secured if ∆ = H(S) = k. Here H(·) denotes entropy in the base q,

and conditional entropy will be denoted by H(·|·).

In another independent work [7], Rouayheb and Soljanin treated the

single source secure network coding problem as a network generalization

of the Ozarow-Wyner’s wiretap channel II in [8], and gave an secure

construction method based on coset coding, which was equivalent to

the approach in [5] with the exception that the authors in [8] assumed

the linear block code at the source node must be an MDS code.

Theorem 5.6. Given an acyclic directed network G = {V, E}, a linear

multicast (see Definition 1.5), and an eavesdropper characterized by

W = {W ⊂ E : |W| ≤ µ}, if we apply coset coding at the source node

using an [n, n − k] linear code C, then

i) the eavesdropper cannot obtain any information about the source,
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i.e., ∆ = k, if and only if d1(C⊥, F ) > µ.

ii) the eavesdropper can obtain r units of information about the source,

i.e., ∆ = k − r, if and only if µ ≥ dr(C⊥, F ).

Proof. We first compute the uncertainty of the eavesdropper about the

source. Let H be the parity check matrix of C. Then (H′)THxT = sT

according to (5.42) and xFW = y.

∆ = min
W∈W

H(S|Y ) (5.43)

= min
W∈W

{H(S|X, Y ) + H(X|Y ) − H(X|S, Y )} . (5.44)





H′THxT = sT

F T
WxT = yT

(5.45)

⇒


H′TH

F T
W


xT =


sT

yT


 (5.46)

The dimension of solution space of (5.46) is n − rank




H′TH

F T
W




.

Since we assumed x is uniformly distributed,

H(X|S, Y ) = n − rank







H′TH

F T
W







 (5.47)

= n − rank(H′TH) − rank(F T
W) + dim

(
C⊥ ∩ LW

)
(5.48)

= n − k − rank(F T
W) + dim

(
C⊥ ∩ LW

)
, (5.49)

where (5.48) comes from the fact H′ is a full-rank matrix and (5.49)
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comes from (5.42), and H(S|X, Y ) = 0, H(X|Y ) = n−rank(FW), thus

∆ = k − max
W∈W

dim
(
C⊥ ∩ LW

)
. (5.50)

From (5.50), the proof for i) and ii) follows immediately:

i) d1(C⊥, F ) > µ, i.e., ∀W ∈ W , dim
(
C⊥ ∩ LW

)
= 0, is equivalent to

∆ = k.

ii) µ ≥ dr(C⊥, F ), i.e., ∃W ∈ W s.t. dim
(
C⊥ ∩ LW

)
= r, is equivalent

to ∆ ≤ k − r.

In other words, similar to the role of the original definition of gener-

alized Hamming weight [9] for the classical point-to-point channel, our

definition of generalized Hamming weight can also be used to measure

the security performance of a linear code C for a given linear network

code on a given network.

5.3.1 Optimality of NMDS Code

We will see that applying coset coding using a code C whose dual is

an NMDS code is in fact a linear network code with optimal security

performance. The following theorem gives a lower bound on the in-

formation of the source that the eavesdropper can obtain despite the

coding scheme being used to multicast information.

Theorem 5.7. Given an acyclic directed network G = {V, E} with

maxflow n, and a linear multicast transmitting information at rate k
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from the source node s to the set of sink nodes T , the information

that the eavesdropper, who can wiretap any set of τ channels, where

n − k ≤ τ ≤ n, can obtain at least k + τ − n units of information.

Proof. See Appendix B.

By Definition 5.3, NMDS code achieves the tightness of the gener-

alized Singleton bound, i.e.,

dr(C
⊥, F ) = n − k + r. (5.51)

Let r′ be the maximum number of information the eavesdropper can

get by wiretapping τ channels. Then by ii) of Theorem 5.6,

τ ≥ d′r(C
⊥, F ) = n − k + r′ (5.52)

⇒r′ ≤ k + τ − n. (5.53)

Therefore, the maximum amount of information that the eavesdropper

can obtain is k+τ −n which is also minimal according to Theorem 5.7.

Therefore, we can see that applying coset coding using a code C whose

dual is an NMDS code is in fact constructing a linear network code

which can guarantee that the information obtained by the eavesdrop-

per is minimal, that is, the security performance of the overall linear

network code is optimal.

According to the result by Wei [9], if we apply coset coding based on

[n, n−k] linear code C in wiretap channel II problem, the eavesdropper

who can access at most (n − k) channels gains no information about

the source (we say the system achieves the best security performance)

if and only if the dual code of C is an MDS code. In our problem, the
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network achieves the best security performance if and only if the dual

code of C is an NMDS code.

Corollary 5.2. Given an acyclic directed network G = {V, E} and

a linear multicast achieving the maxflow bound n, if we apply coset

coding at the source based on an [n, n − k] linear code C, such that

C⊥ is an NMDS code, then the network is perfectly secure against any

eavesdropper with W ′ = {W ⊂ E : |W| ≤ n − k} while information can

be multicast to the sink nodes at the rate of k.

In [7], Rouayheb and Soljanin gave a coding scheme, which is a

construction of linear secure network code based on MDS code. In

fact, according to our analysis of NMDS code, we can construct linear

secure network code based on any full-rank linear block code.

5.3.2 Examples

We consider the kind of degenerated network in which there are only

one source node and one sink node. The source node is connected

directly to the sink node with 7 channels. Let the global encoding

kernels of the channels be δi, 1 ≤ i ≤ 7, respectively, where δi is the

unit 7-dimensional column vector whose components are all equal zero

except that the ith component is equal to 1. Such a network and the

corresponding global encoding kernel are indicated in Figure 5.2. Now,

we are going to measure the security performance of a given linear code



CHAPTER 5. NETWORK GENERALIZED HAMMING WEIGHT 91

0

1

0

0

0

0

0

1

0

0

0

0

0

0

…
0

0

0

0

0

0

1

s

t

0

1

0

0

0

0

0

1

0

0

0

0

0

0

…
0

0

0

0

0

0

1

s

t

Figure 5.2: A degenerated network.

Uncertainty

Figure 5.3: Security curve of code C1 with respect to Figure 5.2.



CHAPTER 5. NETWORK GENERALIZED HAMMING WEIGHT 92

C1. Let the generator matrix G1 of a linear code C1 be

G1 =




1 0 0 1 1 2 3

0 1 0 1 2 4 1

0 0 1 1 3 3 6


 . (5.54)

With the given generator matrix and global encoding kernel, we can

then show that

d1(C
⊥
1 , F ) = 3, (5.55)

d2(C
⊥
1 , F ) = 5, (5.56)

d3(C
⊥
1 , F ) = 6 (5.57)

and

d4(C
⊥
1 , F ) = 7 (5.58)

where F = {δi, 1 ≤ i ≤ 7} .

The dual of C, a [7,4] code, is used as the linear block code at the

source node. Then, by the result in Theorem 5.6, we can see that the

adversary cannot gain any useful information by eavesdropping just 1 or

2 channels in the network. We can see there is a drop in the uncertainty

of the adversary about the source information when it can gain access

to set of 3 channels in the network. However, when the adversary can

gain access to an extra channel in the network, i.e. totally 4 channels,

the unit of useful information that the adversary can resolve is still

equal to 1. That is, accessibility to one extra channel does not give the

adversary any additional benefit if it can already access 3 channels in
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Uncertainty

Figure 5.4: Security curve of code C2 with respect to Figure 5.2.

the network. However, as indicated in Figure 5.3, when the adversary

can gain access to 5, 6 and 7 channels in the network, the amount of

source information that the adversary can obtain will be 2, 3 and 4

respectively.

From this example, we can see that the generalized Hamming weights

of the dual code in fact characterize the drops of the security curve.

Next, we will show that a different linear code C at the source node

that will give an optimal security performance for the overall transmis-

sion with the same given network and linear network code. Given the

same network and linear network code as indicated in Figure 5.2, we

now let the generator matrix G2 of a linear code C2 to be

G2 =




1 0 0 1 1 2 3

0 1 0 1 2 5 1

0 0 1 1 3 3 6


 . (5.59)

With the given generator matrix and global encoding kernels, we can
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then show that

d1(C
⊥
2 , F ) = 4, (5.60)

d2(C
⊥
2 , F ) = 5, (5.61)

d3(C
⊥
2 , F ) = 6 (5.62)

and

d4(C
⊥
2 , F ) = 7. (5.63)

as indicated in Figure 5.4.

By the generalized Singleton bound in Theorem 5.2, we can see that

the overall security performance is already optimal. According to the

definition of Network MDS code in Section 5.2.2, the dual code of C2

is an NMDS code with respect to the given linear network code on the

given network.

On the other hand, the linear code C1 is not a network MDS code

with respect to the given linear network code on the given network as

indicated in Figure 5.2. However, it worth noting that an NMDS code

with respect to a given linear network code does not necessarily imply

that it is an NMDS code with respect to another linear network code.

Figure 5.5 indicates the same degenerated network discussed previ-

ously but with a different set of global encoding kernels. With the same

linear network code C2, the generalized Hamming weights become

d1(C
⊥
2 , F ) = 2, (5.64)

d2(C
⊥
2 , F ) = 5, (5.65)

d3(C
⊥
2 , F ) = 6 (5.66)
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and

d4(C
⊥
2 , F ) = 7. (5.67)

as indicated in Figure 5.6 where

F =








1
1
1
1
1
1
1


 ,




1
1
1
1
1
1
0


 ,




1
1
1
1
1
0
0


 ,




1
1
1
1
0
0
0


 ,




1
1
1
0
0
0
0


 ,




1
1
0
0
0
0
0


 ,




1
0
0
0
0
0
0






 . (5.68)

Since the linear code cannot obtain the best security performance

on the given network with the given linear network code, it is not a

Network MDS code in this case.

5.4 One-Pass Construction of Secure Network Code

In this section, we present an algorithm for constructing a secure net-

work code achieving the generalized Singleton bound. The main dif-

ference between this construction and those have been discussed pre-

viously is that it is a one-pass algorithm in the sense that the linear

code C and the global encoding kernels will be chosen in an upstream-

to-downstream manner. Once the linear block code C and the global

encoding kernels have been fixed, they do not need to be changed.

Algorithm (One-Pass Construction for Secure Network Code)

Let {t1, t2, . . . , tδ} be the set of sink nodes in the acyclic network

with maxflow(tq) ≥ n, ∀1 ≤ q ≤ δ. This algorithm constructs a linear

block code and an n-dimensional F-valued linear network code, where

F is the finite field on which the code is defined, that together can

multicast data securely at the rate n − k to all the predefined sink
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nodes on the acyclic network with the presence of adversary that can

eavesdrop any set of k channels in the network. We are going to show

that such an algorithm always exists when

|F| > δ +


 |E|

k − 1


 . (5.69)

Let a pair of channels (ei, ej) be called an adjacent pair when there

exists a node t ∈ V with ei ∈ In(t) and ej ∈ Out(t). A sequence of

channels e1, e2, ..., el is called a path from a node u to a node v when

e1 ∈ Out(u), el ∈ In(v), and (ej, ej+1) is an adjacent pair for all j. For

each q, 1 ≤ q ≤ δ, there exist channel-disjoint paths Pq,1, Pq,2, ..., Pq,n

from s to tq. Altogether there are δn paths. Adopt the notation

Vt = 〈{fe : e ∈ In(t)}〉 where fe denotes the global encoding kernel

of edge e and 〈·〉 is the conventional notation for the linear span of a

set of vectors. We first choose and fix an [n, n − k] linear code C. The

following procedure will then prescribe a global encoding kernel fe for

every channel e in the network such that dim(Vtq) = n for 1 ≤ q ≤ δ

while maintaining the secrecy of the data transmitted.

{

// By definition, the global encoding kernels for the n

// imaginary channels [10] of the source node s form

// the standard basis of F
n

for (every channel e in the network)

fe = the zero vector;

//This is just initialization. fe will be updated in an

//upstream-to-downstream order.
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for (q = 1; q ≤ δ; q + +)

for (i = 1; i ≤ n; i + +)

{

eq,i = the imaginary channel initiating the path

Pq,i;

//This is just initialization. Later eq,i will be

//dynamically updated by moving down along the

//path Pq,i until finally eq,i becomes a channel in

//In(tq).

}

for (every node t, in any upstream-to-downstream order)

{

for (every channel e ∈ Out(t))

{

//With respect to this channel e, define a “pair” as a

//pair (q, i) of indices such that the channel e is

//on the path Pq,i. Note that for each q, there

//exists at most one pair (q, i). Thus, the number

//of pairs is at least 0 and at most δ.

//Since the nodes t are chosen in an

//upstream-to-downstream manner, if (q, i) is a

//pair, then eq,i ∈ In(t) by induction, so that

//feq,i
∈ Vt. For reasons to be explained in the

//justification below, feq,i
/∈
〈{

feq,i
: j 6= i

}〉
.

Choose a vector w in Vt such that w /∈
〈
{feq,j

: j 6= i}
〉

for every pair

(q, i) and 〈{w} ∪ {fi, i ∈ K}〉 ∩ C⊥ = ∅, ∀K ⊂ E , |K| = k − 1;



CHAPTER 5. NETWORK GENERALIZED HAMMING WEIGHT 99

//For the sake of clarity, the existence

//of such vector w will be justified right

//after the algorithm.

fe = w

//This is equivalent to choosing scalar values for

//local encoding kernels kd,e for all d ∈ In(t)

//such that
∑

d∈In(t) kd,efd /∈
〈
{feq,j

}
〉

for

//every pair (q, i) while maintaining the

//maximum security condition.

For (every pair (q, i))

eq,i = e;

}

}

}

To see the existence of such a vector w, denote dim(Vt) = k. Then,

dim
(
Vt ∩

〈
{feq,j

: j 6= i}
〉)

≤ k − 1 for every pair (q, i) since feq,i
∈

Vt\
〈
{feq,j

: j 6= i}
〉
. Thus

∣∣Vt ∩ (∪(q,i)a pair

〈
{feq,j

: j 6= i}
〉
)
∣∣ ≤ δ|F|k−1.

Since ∀K ⊂ E , |K| = k − 1,
〈
{feq,i

} ∪ {fi, i ∈ K}
〉
∩ C⊥ = ∅, then

dim(〈Vt ∪ {fi, i ∈ K}〉 ∩ C⊥)

≤k − 1. (5.70)

Thus

∣∣∪K⊂E ,|K|=k−1

(
〈Vt ∪ {fi, i ∈ K}〉 ∩ C⊥

)∣∣

≤


 |E|

k − 1


 |F|k−1. (5.71)
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Justification. For 1 ≤ q ≤ δ and 1 ≤ i ≤ n, the channel eq,i is on the

path Pq,i. Initially eq,i is an imaginary channel at s. Through dynamic

updating it moves downstream along the path until finally reaching a

channel in In(tq).

Fix an index q, 1 ≤ q ≤ δ. Initially, the vectors feq,1
, feq,2

, . . . , feq,n

are linearly independent because they form the standard basis of F
n. At

the end, in order for the eventually constructed linear network code to

qualify as secure linear multicast, it suffices to show the preservation of

the linear independence among feq,1
, feq,2

, . . . , feq,n
and that they satisfy

the condition of secure network code throughout the algorithm.

Fix a node t and a channel e ∈ Out(t). We need to show the preser-

vation in the generic step of the algorithm for each channel e in the

“for loop.” The algorithm defines a “pair” as a pair (q, i) of indices

such that the channels e is on the path Pq,i. When no (q, i) is a pair for

1 ≤ i ≤ n, the channels eq,1, eq,2, . . . , eq,n are not changed in the generic

step; neither are the vectors feq,1
, feq,2

, . . . , feq,n
. So we may assume the

existence of a pair (q, i) for some i. The only change among the chan-

nels eq,1, eq,2, . . . , eq,n is that eq,i becomes e. Meanwhile, the only change

among the vectors feq,1
, feq,2

, . . . , feq,n
is that feq,i

becomes a vector w /∈
〈
{feq,j

: j 6= i}
〉

and 〈{w} ∪ {fi, i ∈ K}〉∩C⊥ = ∅, ∀K ⊂ E , |K| = k−1.

This preserves the linear independence among feq,1
, feq,2

, . . . , feq,n
and

the secure condition of a secure linear network code as desired.

Analysis of complexity. Let N be the number of channels in the

network as in the algorithm. For each channel e, the ”for loop” in the

Algorithm process at most


 N

k − 1


 collections of k−1 channels plus

δ pairs.
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The processing includes the calculation of the set

Vt\
(
∪K

(
〈Vt ∪ {fi, i ∈ K}〉 ∩ C⊥

)

∪
(
∪a pair

〈
{feq,j

: j 6= i}
〉))

. (5.72)

This can be done by, for instance, Gaussian elimination.

Throughout the algorithm, the total number of collections of k − 1

channels and pairs processed is at most N







 N

k − 1



+ δ



, a poly-

nomial in N of degree n. Thus, for a fixed n, it is not hard to implement

the algorithm with a polynomial time in N .

5.5 Reduction to the Classical Communication Chan-

nel

In this section, we show that our new definition of generalized Hamming

weight reduces to the generalized Hamming weight proposed in [9] when

the network being considered is the degenerated network representing

the classical communication channel. In such a network, there are only

one source node and one sink node. The source node is connected

directly to the sink node with n channels. Let the global encoding

kernels of the channels be δi, 1 ≤ i ≤ n, respectively, where δi is the

unit n-dimensional column vector whose components are all equal to

zero except that the ith component is equal to 1.
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According to our definition,

dr(C, F ) = min
{
|W| :

〈{
δT
i , i ∈ W

}〉
contains

some subcode D of C with dimension r} (5.73)

where F = {δi, 1 ≤ i ≤ n} .

Next, we will show that (5.73) is equivalence to the definition of

generalized hamming weight for the classical point-to-point channel.

The support of a subcode D of C, denoted X (D), is the set of not-

always-zero element positions of D, that is,

X (C) , {i : ∃(x1, x2, . . . , xn) ∈ C, xi 6= 0}. (5.74)

Definition 5.4. (Generalized Hamming Weight [9])

d′r(C) , min{|X (D)| : D is a subcode of C with dimension r}. (5.75)

Let D be a subcode of C with dimension r such that |X (D)| = d′r(C).

Without loss of generality, assume X (D) = {1, 2, . . . , d′r(C)}. This

implies that ∀x ∈ D, xi = 0 for d′r(C) + 1 ≤ i ≤ n. This further implies

that ∀x ∈ D, x ∈
〈
{δT

i , 1 ≤ i ≤ d′r(C)}
〉
. Therefore,

dr(C, F ) ≤ d′r(C). (5.76)

On the other hand, let W ⊂ {1, 2, . . . , n} and |W| = dr(C, F ) such

that 〈{δi, i ∈ W}〉 contains some subcode D of C with dimension r.

Without loss of generality, assume W = {1, 2, . . . , dr(C, F )}. This im-

plies ∀x ∈ D, xi = 0 where dr(C, F ) + 1 ≤ i ≤ n. This further implies
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X (D) ⊂ {1, 2, . . . , dr(C, F )} and |X (D)| ≤ dr(C, F ). Therefore,

d′r(C) ≤ dr(C, F ). (5.77)

According to Theorem 5.2, the network generalized Hamming weight

can be regarded as a generalized Singleton bound for the classical point-

to-point channel. In particular, for r = 1, we have d1(C, F ) ≤ n − k +

1, which is precisely the Singleton bound in classical algebraic coding

theory.

5.6 Conclusion

In this chapter, we define the network generalized Hamming weight of a

linear block code with respect to a fixed set of global encoding kernels

of a given linear network code, which is a network generalization of

the generalized Hamming weight for the classical point-to-point com-

munication channel. Based on our definition, we obtain the network

generalized Singleton bound and prove its achievability of the general-

ized Singleton bound. In addition, the network generalized Hamming

weight can completely characterize the security performance of linear

block code when it is applied in conjunction with a linear network code

on a CSWN. Moreover, the construction approach of secure network

code in [5] and [7] can be regarded as a construction method of an

NMDS code for any given linear network code. Finally, a one-pass con-

struction of secure linear network coding scheme for the network with

multicast capacity n is also given. A linear secure network code which

can multicast data securely to the predefined sink nodes at the highest

possible rate of k at the present of an adversary that can eavesdrop any
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set of n − k channels can be constructed.

2 End of chapter.



Chapter 6

Conclusion

This thesis explores the security and error-correcting issues in the area

of linear network coding. In Chapter 4, we first formulate the network

coding problem with security and error-correction simultaneously. An

algorithm for constructing a deterministic secure error-correcting (SEC)

network code is proposed. We have shown that in the presence of mali-

cious parties, by combining the ideas of secure network coding and error

correction network coding, information can be multicast with complete

secrecy (i.e., with information theoretic security) and error tolerability

at the rate of m − 2d − k, where m is the minimum of the maxflows

from the source node to the sink nodes, and k and d are the maximum

number of channels the adversary can eavesdrop and contaminate, re-

spectively. By utilizing Han’s inequalies [47], m− 2d− k is also shown

to be an upper bound on the multicast rate of secure error-correcting

network code in the presence of an adversary that can inject d errors

and eavesdrop k channels. However, it is not clear whether this bound

continues to hold for nonlinear network codes. By applying the so con-

structed network code to create a temporary secure channel, we further
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propose different schemes that can achieve the higher multicast rate of

m − d with high probability. At last, we also show that with feed-

back channels from the sink nodes to the source node, depending on

the maximum dimension of errors the adversary can impose upon ev-

erh sink nodes, it is possible to boost the multicast rate beyond m− d

without further modification of the existing network code.

In Chapter 5, we extend the notion of generalized Hamming weight

for classical linear block code proposed by Wei [9] to linear network

codes by proposing the network generalized Hamming weight (NGHW)

for a given network with respect to a fixed set of global encoding kernels.

The basic properties of the NGHW are studied. We also extend the

generalized Singleton bound in [9] to linear network codes. We further

show that the NGHW can be used as a tool to characterize the security

performance of a linear code on the communication system on a wiretap

network (CSWN) [5]. We also introduce the idea of Network Maximum

Distance Separation code (NMDS code) by extending the notion of

Maximum Distance Separation code in classical algebraic coding theory.

We prove that NMDS codes play an important role in minimizing the

information that an eavesdropper can obtain from the network. In

addition, a one-pass construction of a secure network code is given.

2 End of chapter.



Appendix A

Coset Coding

Let C be a subcode of F
n
q and x1 ∈ 〈GM〉. Then,

x1 + C = {x1 + x′ : x′ ∈ 〈GM〉}. (A.1)

For every subcode C of F
n
q , we will show that the collection of sets,

x1 + C, ∀x1 ∈ 〈GM〉 are left cosets of F
n
q under the addition operation,

and all together they form a partition of F
n
q : every element of F

n
q belongs

to one and only one of x1 + C.

Proof. ∀x1,x2 ∈ 〈GM 〉 where x1 6= x2, if there exist c1, c2 ∈ C s.t.

x1 + c1 = x2 + c2 (A.2)

then

x1 − x2 = c2 − c1. (A.3)

That is, there exists x = x1−x2 ∈ 〈GM〉 s.t. x ∈ C. This contradicts the
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fact that GM and GC together form a n×n full-rank matrix. Therefore,

(x1 + C) ∩ (x2 + C) = ∅. (A.4)

In addition, since GM and GC together form a n × n full-rank matrix,

⋃

x∈〈GM 〉

(x + C) = F
n
q . (A.5)

Therefore, x + C, ∀x ∈ 〈GM〉 are left cosets of F
n
q and form a partition

of F
n
q .



Appendix B

Lower Bound on the Information

Leakage

Summary

Here we calculate the lower bound on the information of

the source that the eavesdropper can obtain despite the

coding scheme being used to multicast information.

Given a graph G = {V, E} with maxflow n, we assume that information

is multicasting from the source node s to a set of sink nodes T at rate

k, where k ≤ n. Let the maxflow from source node s to a sink node

t ∈ T be n. There exists a set of channels E ⊂ E , with |E| = n, which

forms a cut between s and t. Let τ , where n − k ≤ τ ≤ n, be the

number of channels that the eavesdropper can wiretap. Let E1 and E2

be two disjoint subsets of E such that E1 ∪ E2 = E with |E1| = n − τ

and |E2| = τ . We further assume that now the eavesdropper choose to

wiretap E2.
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Let S be the random variable denoting the information source, Y1 be

the random variable denoting the message transmitting in E1 and Y2 be

the random variable denoting the message transmitting in E2. H(·|·),

H(·), and I(·; ·|·) will be used to denote conditional entropy, entropy,

and conditional mutual information respectively. Then,

H(S|Y1, Y2) = H(S|Y2) − I(S; Y1|Y2). (B.1)

Since E is a cut between s and t, H(S|Y1, Y2) = 0, so that

0 = H(S|Y2) − I(S; Y1|Y2), (B.2)

or

0 = H(S) − I(S; Y2) − I(S; Y1|Y2), (B.3)

where I(S; Y2) is regarded as the amount of information of the source

that the eavesdropper can obtained by wiretapping E2.

By rearranging the terms in (B.3), we can then obtain

I(S; Y2) = H(S) − I(S; Y1|Y2) (B.4)

≥ H(S) − H(Y1) (B.5)

≥ k − (n − τ) (B.6)

= k + τ − n. (B.7)

2 End of chapter.
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