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Network coding is a major breakthrough in modern informa-
tion theory. The revolutionary idea of performing coding rather
than store-and-forward at the intermediate nodes greatly im-
proves network information transmission capacity. More surpris-
ingly, this capacity can be achieved by linear network codes con-
structible in polynomial time. However, the concept of generic
network code, which is the strongest format of linear network
code, is still not well understood. In this thesis, we aim to
give more explicit interpretations of generic network codes. A
condition regarding linear independence among global encoding
kernels is given. Based on this condition, alternative definitions
of generic network codes are proposed and generic network codes
are proved to be the best linear network codes in terms of lin-
early independence; a unified framework of linear network codes
is proposed. This unified framework is used to simplify some
existing results. The results of this work can be potentially ap-
plied to the static network codes and network error-correcting
codes.
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Chapter 1

Introduction

Summary

Review of previous work, motivation and contribution
of this thesis are given

1.1 Previous Work

Since the establishment of Shannon theory, people have been
working hard to find various information transmission capaci-
ties for more than sixty years. The area of single-user channel
capacity is well understood. The capacity of both discrete mem-
oryless channel and Gaussian channel are known. However, our
knowledge of network information theory is still limited. For ex-
ample, the capacity of the broadcast channel and the two-way
channel are still unknown. In the late-1990’s, a major break-
through in network information theory was made by Ahlswede
et al. [1]. In this work, the concept of network coding is intro-
duced and the capacity of the single-source multicast network
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CHAPTER 1. INTRODUCTION 2

was found. Following Ahlswede et al. [1], Li et al. [6] proved
that this single-source multicast capacity can be achieved by
linear network codes. Generic network codes were introduced as
capacity-achieving codes in the same paper. Jaggi et al. [4] fur-
ther proved that capacity achieving linear network codes can be
constructed in polynomial time. Ho et al. [3] showed that ran-
dom linear network codes can achieve multicast capacity with
high probability provided the field size is large enough. Yeung
et al. [9] defined different classes of linear network codes, namely
generic network codes, linear dispersion, linear broadcast, and
linear multicast. They also provided a construction algorithm
for generic network codes. Kwok el at. [5] discussed the rela-
tionship between generic network codes and linear dispersion.

1.2 Motivation

The generic network code in [6] is originally defined using ab-
stract algebra. This makes its definition difficult to understand.
Also, the symmetrical structure of this definition makes it dif-
ficult to verify whether a linear network code is generic or not.
These two points will be explained in details in the later part
of this thesis. Thus, we are motivated to further investigate
this concept with the aim to make it more transparent. As we
will seee, this leads to alternative definitions of generic network
codes that are useful in different contexts.

1.3 Contributions

The main contributions of this paper are summarized in the
following:
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1. Fundamental concepts regarding linear independence among
global encoding kernels are studied in depth and a condi-
tion that governs the possibility and impossibility of linear
independence among global encoding kernels is given.

2. Based on the condition in (1), the relationship between
generic network codes and graph theory is established and
alternative definitions of generic network codes are pre-
sented.

3. A unified framework for linear network codes based on the
condition in (1) is presented.

4. Some exiting results whose original proofs were complicated
can be greatly simplified by using this unified framework.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, the basic con-
cept of linear network codes is reviewed and some new definitions
are introduced for the convenience of discussion. In Chapter 3,
generic network codes are revisited; the disadvantages of the
original definition of such codes are discussed; new definitions
of generic network codes are introduced and their equivalence
to the original definition is proved; we also use the insight de-
veloped in this chapter to simplify several existing results. The
conclusion of this thesis is in chapter 4. Most results presented
in this thesis is based on the author’s published paper [8].
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Chapter 2

Linear Network Coding Basics

Summary

Basic concept of linear network codes are reviewed and
some necessary notations are introduced

2.1 Formulation and Example

A communication network is modeled as a finite directed graph
G = (V , E) where V is a set of nodes and E is a set of edges
connecting these nodes. A edge in E will also be referred to as
a channel. A node is called a source node if it does not con-
tain any incoming edge; a node is called a sink node if it does
not contain any outgoing edge. If the communication network
does not contain any directed cycle, then it is called an acyclic
network. Otherwise, it is called a cyclic network. If the commu-
nication network contains only one source node, then it is called
a single-source network. If it contains multiple sources, then it
is called a multi-source network. The discussion in this paper is

5



CHAPTER 2. LINEAR NETWORK CODING BASICS 6

restricted to single-source acyclic networks. The unique source
node is denoted by s and the set of all sink nodes is denoted by
T . At the source node s, information to be transmitted across
the network is generated. To facilitate our discussion, we as-
sume that multiple edges are allowed between nodes and each
edge has unit capacity, which means that one symbol taken from
a certain finite field GF (q) can be transmitted over each edge.
This assumption is general because we can always quantize the
capacity to arbitrary degree of accuracy and represent it by mul-
tiple edges. We denote by In(v) the set of incoming edges of
node v and Out(v) the set of outgoing edges of node v. We
denote by Tail(e) = t if edge e is an outgoing edge of node t

and by Head(e) = t if edge e is an incoming edge of node t.
Let the information to be transmitted from the source node

be represented by a row vector x which consists of ω symbols in
GF (q). Following [9], we install a set of ω incoming imaginary
edges at s and associate each of them with a distinct vector in
an ω-dimensional standard basis. These vectors are refereed to
as the global encoding kernels of the imaginary edges.

The set of all local encoding kernels kd,e ∈ GF (q), where
d ∈ In(v) and e ∈ Out(v) for some v ∈ V , specifies a linear
network code. For each edge e other than an imaginary edge, we
iteratively define its global encoding kernel by

fe =
∑

d∈In(t)

kd,efd, (2.1)

where t = Tail(e). In other words, at each intermediate node,
the incoming global kernels are linearly combined to produce
the outgoing global encoding kernels. The received information
symbol at each edge e can be calculated as x · fe. The above
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Figure 2.1: The butterfly network

concepts are best explained by an example.

Example 1 Figure 2.1 is the butterfly network. The two vec-
tors at the source are elements of the standard basis that are
associated with the imaginary channels. All other vectors are

the local encoding kernels. The vector

[
1

0

]
is the global en-

coding kernel of the imaginary channel es1
and the vector

[
0

1

]

is the global encoding kernel of the imaginary channel es2
. The

local encoding kernel of node 1, 2 and 4 is

[
1

1

]
; the local en-

coding kernel of node 3
[

1 1
]
; and the local encoding kernel of
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the source node is

[
1 0

0 1

]
. The global encoding kernels of each

edge can be calculated in an upstream-to-downstream manner by
using Formula 2.1. For example, the global encoding kernel of
e1 and e2 can be calculated as

[
fe1

fe2

]
=

[
fes1

fes2

] [
1 0

0 1

]
=

[
1 0

0 1

]
. (2.2)

Thus, fe1
=

[
1

0

]
and fe2

=

[
0

1

]
. The global encoding kernels

of other edges can be calculated in a similar manner. The results
are listed below:

fe3
= fe5

= fe1
=

[
1

0

]
(2.3)

fe2
= fe4

= fe6
=

[
0

1

]
(2.4)

fe7
= fe8

= fe9
=

[
1

1

]
. (2.5)

For each edge e, the received information ye can be calculated
as ye = x · fe where x is the source information which is a 2-
dimensional row vector. Based on the received information, the
sink nodes then can decode the source information if the local
encoding kernels are designed properly. In this example, we have

[
ye5

ye8

]
= x ·

[
fe5

fe8

]
(2.6)

[
ye6

ye9

]
= x ·

[
fe6

fe9

]
. (2.7)
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We note that
[

fe5
fe8

]
=

[
1 1

0 1

]
and

[
fe6

fe9

]
=

[
0 1

1 1

]

are all invertible matrices. Thus, we can always recover the
source information at nodes 5 and 6 by inverting these two ma-
trices respectively.

2.2 Some Notations

For a collection of nodes T , we define

VT = 〈fe : Head(e) ∈ T 〉.
For a set of edges E, we denote their corresponding global en-
coding kernels by

K(E) = {f(e) : e ∈ E}.
A sequence of edges e1, e2, . . . , en, where e1 may be an imag-

inary channel, form a path if Head(ei) = Tail(ei+1) for 1 ≤ i ≤
n− 1. Two paths are edge-disjoint if they do not have any edge
in common.

A set of edges is an independent set1 if each edge is on a path
originating from an imaginary channel (i.e., the first edge of the
path is an imaginary channel) and these paths are edge-disjoint.
We call this set of paths an associated flow for this independent
set. Note that an independent set concerns only the position
of edges in the graph but not the global encoding kernels that
may be assigned to them and the global encoding kernels of an
independent set can be linearly dependent. Also an independent
set may have more than one associated flows.

1This name is justified in a separate paper [7] which explicitly defines the underlying
matroid structure.
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Figure 2.2: Independent set and associated flow

For a linear network code defined on the acyclic network,
if the corresponding global encoding kernels of an independent
set are linearly independent, then we say that this independent
set is regular. For any collection of edges a, b, e1, e2, ..., ei where
i ≥ 0, if Head(a) = Tail(b) and α = {a, e1, e2, ..., ei} and β =
{b, e1, e2, ..., ei} are independent sets, then independent set α is
said to support independent set β and we denote it by α → β.
The above concepts are illustrated in the following example.

Example 2 Figure 2.2 shows a single-source linear network code.
We observe that edge e13 can be traced back to the imaginary
channel via the reversed path P1 = e13, e7, e2, es2 and edge e14

can be traced back to the imaginary channel via the reversed path
P2 = e14, e10, e3, es1. These two paths are edge-disjoint. Thus,
{e13, e14} forms an independent set and {P1, P2} is an associ-
ated flow for this independent set. Here fe14

and fe13
are linearly

independent, and so {e13, e14} is a regular independent set.
Now let us look at edges e3 and e10. Edge e3 is the only
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upstream edge of edge e10 and any reverse path from edge e10

to the imaginary channel must also pass through e3. Thus edge
e3 and edge e10 do not form an independent set. We note that
edge e13 can also be traced back to the imaginary channel by
path P3 = e13, e5, e1, es2, and P3 and P2 are edge-disjoint. Thus,
{P2, P3} forms another associated flow for the independent set
{e13, e14}. It is not difficult to verify that e8 and e10 also form
an independent set with a unique associated flow.

Finally, the global encoding kernels of an independent set are
not necessarily linearly independent. For example, {e12, e13} is
an independent set, but their global encoding kernels are linearly
dependent. We observe that both {e8, e10} and {e8, e3} are inde-
pendent sets and Head(e3) = Tail(e10). Thus, {e8, e3} supports
{e8, e10}, i.e. {e8, e3} → {e8, e10}.



CHAPTER 2. LINEAR NETWORK CODING BASICS 12

2 End of chapter.



Chapter 3

A Unified Framework

Summary

The concept of generic network codes is reviewed.
A condition regarding the linear independence among
global encoding kernels is given. Several equivalent defi-
nitions of generic network codes are proposed. A unified
framework for linear network codes is introduced. Some
existing results are simplified.

3.1 Generic Network Codes Revisited

Generic network codes were first introduced in Li et al. [6] as
a way to achieve the multicast capacity in a single-source net-
work. A construction algorithm of generic network code is also
proposed in that paper. The original definition of generic net-
work codes is reproduced below for convenience.

Definition 1 An ω-dimensional linear network code on a single-
source acyclic communication network is said to be generic if the

13
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following condition holds for any collection of edges e1, e2, ..., em

for 1 ≤ m ≤ ω: VTail(ek) 6⊂ 〈fej
: j 6= k〉 for 1 ≤ k ≤ m if and

only if the vectors fe1
, fe2

, ..., fem
are linearly independent.

This definition has several disadvantages. First, it is concep-
tually difficult to be understood. It was mentioned in [9] that
the motivation for generic network codes is to define a linear
network code such that every collection of global encoding ker-
nels that can possibly be linearly independent must be linearly
independent. However, it is not clear from [9] what it means
by a collection of global encoding kernels being possibly linearly
independent. One goal of this paper is to establish the connec-
tion between linear independence among global encoding kernels
and generic network codes. As we will see later, this connection
allows a more concrete interpretation of generic network codes.

Second, the original definition of generic network code does
not facilitate the verification of a generic network code. As we
will see, the alternative definitions we will present enables such
a verification to be done more efficiently and intuitively.

In this paper, we seek simple characterization for a set of
global encoding kernels to be possibly linearly independent. The
lemma below gives the necessary condition for a set of global
encoding kernels to be linearly independent.

Lemma 1 If the global encoding kernels of a collection of edges
{e1, e2, ..., em}, where 1 ≤ m ≤ ω, are linearly independent,
then each edge is on some path originating from an imaginary
channel and these paths are edge-disjoint, namely these edges
form an independent set.

Proof: Consider a collection of edges {e1, e2, ..., em}, 1 ≤ m ≤
ω, whose global encoding kernels are linearly independent. We
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connect Tail(ei) to a new node t by a new edge e′i for 1 ≤ i ≤ m,
respectively and let fe′i = fei

for 1 ≤ i ≤ m. Consider any cut
U between the source s and node t and let EU be the set of
edges across the cut U . We denote by Mincut(s,t) the min-cut
between s and t and by Maxflow(s,t) the max-flow between s

and t. Then Vt is a linear transformation of K(EU), where

dim(Vt) ≤ dim(K(EU)) ≤ |EU |.
It follows that

dim(Vt) ≤ minU |EU | = Mincut(s,t).

In particular, for the cut U ∗ between s and t such that EU∗ =
{e′i : 1 ≤ i ≤ m}, we have

m = dim(Vt) ≤ Mincut(s,t) ≤ |EU∗| = m.

Thus, Maxflow(s,t) = Mincut(s,t) = m by the Max-flow Min-cut
theorem and t can always be traced back to imaginary channels
by a set of edge-disjoint paths. Changing the last edges in these
edge-disjoint paths from e′i to ei for 1 ≤ i ≤ m, we obtain the
desired set of edge-disjoint paths. We can always do so because
Tail(e′i) = Tail(ei). 2

The above lemma says that a collection of global encoding
kernels can possibly be linearly independent only if their cor-
responding edges form an independent set. Thus the best lin-
ear network code we can hope for in terms of linear indepen-
dence is the one in which a collection of global encoding kernels
are linearly independent whenever the corresponding edges form
an independent set. In designing a linear network code, if the
global encoding kernels are required to be independent on only
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one independent set, it can be achieved by routing alone. This
is illustrated by the example in Figure 3.1. For instance, the
global encoding kernels of the incoming edges of node 3 and
node 4 can be made linearly independent simply by routing the
2 source symbols to node 3 and node 4, respectively.

If the global encoding kernels are required to be linearly inde-
pendent on multiple independent sets, since these independent
sets may couple with each other through their common edges,
routing in general will fail to achieve the desired linear inde-
pendence. This is illustrated in Figure 3.2. Here, independent
set 1 consists of three edges, and independent set 2 consists
of two edges. If these two independent sets are regular, then
fe11

6= fe12
, because fe12

6= fe16
and fe11

= fe16
. If we do not

encode at node R5, then fe12
= fe8

implies that fe7
= fe11

which
in turn implies that fe10

= fe15
. Thus independent set 1 fails

to be regular. Because of the coupling between independent set
1 and independent set 2, routing fails to achieves the desired
linear independence.

The situation may change if coding is allowed at the inter-
mediate nodes. An interesting question to ask is whether we
can always construct a linear network code in which the global
encoding kernels of every independent set are linearly indepen-
dent. The following lemma provides a positive answer to this
question.

Lemma 2 For any collection of independent sets I, there al-
ways exists a linear network code such that any independent set
in I is regular provided q ≥ |I|, where q is the size of the base
field.
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Figure 3.1: For single independent set, linear independence can be achieved
by routing alone.

Independent set 1

Independent set 2

Figure 3.2: Routing in general fails to achieve the desired independence for
multiple independent sets.
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Proof: We specify the global encoding coding kernels itera-
tively as in the Jaggi-Sanders algorithm [4]. By definition, each
independent set in I has an associated flow. Initially, only the
global encoding kernels of the imaginary channels, namely the
standard basis, are specified. In our algorithm, the global encod-
ing kernels are specified in an upstream-to-downstream manner.
For each associated flow, the last processed edges on its paths
form a frontier set. Note that a frontier set is an independent
set.

In our construction, we are to maintain each frontier set as
a regular independent set. At the beginning, the frontier set of
each flow associated with each independent set in I is a subset
of all the imaginary channels. Therefore, each frontier set is a
regular independent set to start with. Assume that the regular-
ity of all the frontier sets are maintained at the current step. Let
e be the next edge to be processed. Let n be the number of new
frontier sets induced by edge e and denote these new frontier
sets by βi, 1 ≤ i ≤ n. Suppose αi → βi for 1 ≤ i ≤ n, where
αi, 1 ≤ i ≤ n are the frontier sets in the current step. Denote
by ei = αi\βi the only edge that belongs to αi but not βi and
by t the tail of edge e. Since the global encoding kernel of ei

and the global encoding kernels of αi\ei are linearly indepen-
dent for 1 ≤ i ≤ n by the induction assumption and fei

∈ Vt for
1 ≤ i ≤ n, Vt\span(K(αi\ei)) is nonempty. This implies that
dim(Vt ∩ span(K(αi\ei))) ≤ dim(Vt) − 1 for 1 ≤ i ≤ n. If the
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base field size q > |I| > n, then we have

|Vt\ ∪1≤i≤n span(K(αi\ei))| = |Vt| − |Vt ∩ [∪1≤i≤nspan(K(αi\ei))]|
≥ |Vt| −

∑
1≤i≤n

|Vt ∩ span(K(αi\ei))|+ 1

≥ qdim(Vt) − n× qdim(Vt)−1 + 1

> qdim(Vt) − |I| × qdim(Vt)−1 + 1

> 0.

In the above, the first ≤ follows from an application of the union
bound and the observation that every subspace contains the
origin. Thus, by setting the base field size q ≥ |I|, we can
always choose the global encoding kernel of e to be a vector in
Vt\∪1≤i≤n span(K(αi\ei)) and the regularity of the new frontier
sets can be always maintained. Hence, all the independent sets
in I are regular upon the termination of the algorithm. 2

Lemma 1 and Lemma 2 together implies that there exists a
linear network code such that the global encoding kernels of a
set of edges are linearly independent if and only if these edges
form an independent set. In other words, the independent set
governs the possibility and impossibility of linear independence
among global encoding kernels. The best linear code in terms of
linear independence is the one with every independent set being
regular. This coincides with the original motivation of generic
network code as explained in [9]. In the following, we prove that
a linear network code with every independent set being regular
is actually a generic network code. We also prove that a generic
network code must have every independent set regular. This
gives an equivalent definition of generic network codes.
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The original definition of generic network codes has an al-
gebraic interpretation, while the equivalent definition gives a
graph-theoretic interpretation which provides more intuition.
Another equivalent definition that we will prove in the next the-
orem gives a simpler way to verify whether a linear network code
is generic or not. We only consider the case when |Out(s)| ≥ ω,
otherwise the problem is degenerate because no node in the net-
work can receive all the information generated at the source
node.

Theorem 1 The following five conditions are equivalent for lin-
ear network codes with |Out(s)| ≥ ω.

1. For any collection of global encoding kernels fe1
, fe2

. . . fem
,

if Vti 6⊂ 〈fek
: k 6= i〉 for 1 ≤ i ≤ m where ti = Tail(ei) for

1 ≤ i ≤ m, then fe1
, fe2

. . . fem
are linearly independent.

2. For any collection of global encoding kernels fe1
, fe2

. . . fem
,

if Vtm 6⊂ 〈fe1
, fe2

. . . fem−1
〉 and there exists no directed path

from tm to tj for 1 ≤ j ≤ m − 1, where ti = Tail(ei) for
1 ≤ i ≤ m, then fem

/∈ 〈fe1
, fe2

. . . fem−1
〉.

3. For any collection of global encoding kernels fe1
, fe2

. . . fem
,

if fe1
, fe2

. . . fem−1
are linearly independent, Vtm 6⊂ 〈fe1

, fe2
. . .

fem−1
〉, and there exists no directed path from tm to tj for

1 ≤ j ≤ m − 1, where ti = Tail(ei) for 1 ≤ i ≤ m , then
fem

/∈ 〈fe1
, fe2

. . . fem−1
〉.

4. For any independent set β, the global encoding kernels K(β)
are linearly independent.

5. For any independent set α with ω edges, the global encoding
kernels K(α) are linearly independent.
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Remark: Condition 1 is the original definition of generic net-
work codes [9]. Roughly speaking, Condition 2 means that
“new” information must be carried by an edge whenever pos-
sible. Conditions 4 and 5 give a graph-theoretical interpretation
of a generic network code. They say that if a set of edges can be
traced back to the imaginary channels via a set of edge-disjoint
paths, then their corresponding global encoding kernels must be
linearly independent. Though these five conditions are equiva-
lent, one condition may be more convenient to use than others
in different contexts. For example, Condition 4 provides bet-
ter intuition. Condition 2 is more useful in constructing such
a linear network code. Compared with Condition 4, Condition
5 gives a simpler way for us to verify whether a linear network
code is generic or not, for we only need to consider independent
sets of size ω.

Proof: We will prove that 5)⇒ 4) ⇒ 3) ⇒ 2) ⇒ 1) ⇒ 5).
5) ⇒ 4): For any independent set β, we can always enlarge it

to an independent set α with ω edges by including some edges
originating from the source node because |Out(s)| ≥ ω. If 5)
holds, then the global encoding kernels K(α) are linearly inde-
pendent. It follows that the global encoding kernels K(β) are
also linearly independent because β is a subset of α. Thus 5)
implies 4).

4)⇒ 3): Let e1, e2, ..., em be a set of edges such that fe1
, fe2

, ...,

fem−1
are linearly independent, Vtm 6⊂ 〈fej

: j 6= m〉, and there
is no directed path from tm to ti for 1 ≤ i ≤ m − 1, where
ti = Tail(ei) for 1 ≤ i ≤ m. We can always find an edge
e′m ∈ In(tm) such that fe1

, fe2
, ..., fem−1

, fe′m are linearly indepen-
dent, because Vtm 6⊂ 〈fei

: i 6= m〉. Thus e1, e2, ..., e
′
m can be
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traced back to the imaginary channels via some edge-disjoint
paths P1, P2, ..., P

′
m respectively by Lemma 1. Because there is

no directed path from tm to ti for 1 ≤ i ≤ m−1 and e1, e2, ..., em

are distinct, P1, P2, ..., Pm, where Pm is the path obtained by ap-
pending em to P ′

m, must also be edge-disjoint paths. Therefore,
e1, e2, ..., em form an independent set. Then fe1

, fe2
, ..., fem

are
linearly independent if 4) holds. Thus 4) ⇒ 3).

3) ⇒ 2): Suppose a linear network code satisfies 3). Consider
any collection of channels ξ = {e1, e2, ..., em−1} and any channel
em /∈ ξ such that Vtm 6⊂ 〈fe1

, fe2
, ..., fem−1

〉, where fe, e ∈ ξ are
not necessarily linearly independent. Then we can always find
a subset ξ′ of ξ such that Vξ = Vξ′ and fe, e ∈ ξ′ are linearly
independent. Since the linear network code satisfies 3), we have

fem
/∈ Vξ′ = Vξ,

so this linear network code also satisfies 2).
2) ⇒ 1): We prove this by induction on m, the number of

edges.
a) Let us consider the case m = 2. Assume 2) holds and

consider any collection of global encoding kernels {fe1
, fe2

} which
satisfy 2). Suppose 2) does not imply 1). Then there must exist
a directed path from t1 to t2. Otherwise, fe1

and fe2
would be

linearly independent if 2) holds. Similarly, there must exist a
directed path from t2 to t1. But this contradicts the fact that
the network is acyclic. Thus our assumption is false, and so 2)
implies 1) for m = 2.

b) Assume 2) ⇒ 1) for m ≤ k for some k ≥ 2. We need to
show that 2) ⇒ 1) for m = k + 1. Consider global encoding
kernels fe1

, fe2
. . . fek+1

such that Vti 6⊂ 〈fek
: k 6= i〉 for 1 ≤ i ≤

k+1. Assume 2) holds. Denote by j the set {i : 1 ≤ i ≤ k+1 and
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i 6= j} for any 1 ≤ j ≤ k + 1. We observe that Vtl 6⊂ 〈fi : i 6= l〉
and 〈fi : i ∈ j and i 6= l〉 ⊆ 〈fi : i 6= l〉 for 1 ≤ j ≤ k+1 and l ∈ j

implies Vtl 6⊂ 〈fi : i ∈ j and i 6= l〉 for 1 ≤ j ≤ k + 1 and l ∈ j.
By the induction hypothesis that 2) implies 1), global encoding
kernels {fei

: i ∈ j} are linearly independent for 1 ≤ j ≤ k+1. If
2) does not imply 1) for m = k+1, then, for ∀1 ≤ i ≤ k+1, there
must exist a directed path from ti to some tj where 1 ≤ j ≤ k+1
and i 6= j. Otherwise, by 2), {fei

: 1 ≤ i ≤ k + 1} would be
linearly independent, a contradiction to that 1) does not hold
for m = k +1. Since k +1 is a finite number, such directed path
would produce a cycle which is a contradiction to the assumption
that the network is acyclic. Thus, 2) implies 1) for m = k + 1.

1)⇒ 5): Let α = {e1, e2, ..., eω} be a size ω independent set.
Then there exist ω edge-disjoint paths P1, P2, ..., Pω from source
node s to the channels in α, where the last channel on path Pi

is ei. Denote the length of Pi by li and let

L =
ω∑

i=1

li

be the total length of all the paths. We will prove the as-
sertion by induction on L. For L = ω, it is easy to check
that 1) implies 5), because Tail(ei) = s for 1 ≤ i ≤ ω and
dim(Vs) = ω. Suppose K(α) is linearly independent for any α

with ω ≤ L ≤ k. We will prove that K(α) is linearly inde-
pendent for any α with L = k + 1. Let A = {i : li > 1} and
αi = {e1, e2, ..., ei−1, e

′
i, ei+1, ..., eω} for i ∈ A, where e′i ∈ Pi and

Head(e′i) = Tail(ei). Then, for αi where i ∈ A, the global en-
coding kernels K(αi) are linearly independent by the induction
hypothesis ,which implies Vti 6⊂ 〈fek

: k 6= i〉. Also, for any
1 ≤ i ≤ ω and i /∈ A, we have Vti = Vs 6⊂ 〈fek

: k 6= i〉. It follows
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that Vti 6⊂ 〈fek
: k 6= i〉 for all 1 ≤ i ≤ ω. If 1) holds, then the

global encoding kernels K(α) are linearly independent and we
have finished the induction. Thus 1) implies 5).2

We note that 1) ⇒ 5) was previously proved in [2]. The
condition that there exists no directed path from tm to tj for
1 ≤ j ≤ m−1 is essential. Otherwise, the equivalence of various
conditions may fail to hold. This is illustrated in Figure 3.3.
We can verify that this linear network code is a generic network
code. It is not difficult to verify that 4) holds. We observe
that VTail(e1) 6⊂ 〈fe2

〉, but the global encoding kernel fe1
∈ 〈fe2

〉.
Thus, 3) does not hold if we do not impose the constraint that
there is no direct path from e1 to e2.

It is also interesting to note that from 5), we can construct a
generic network code by considering only the independent sets

with ω edges. In this case, the required field size is

(
|E|
ω

)
where

|E| is the number of edges in the network.

3.2 A Unified Framework

Traditionally, a linear dispersion, a linear broadcast, or a lin-
ear multicast is characterized by the dimension of incoming
global encoding kernel space associated with certain collections
of nodes. For example, for a linear multicast, any non-source
node t with maxflow(t) ≥ ω has dim(Vt) = ω. For a linear
broadcast, any collection of non-source nodes T has dim(VT ) =
min(maxflow(T ), ω). However, this approach, referred to as
the node-based approach, does not accurately capture the inde-
pendence structure of linear network codes. For example, Fig-
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Figure 3.3: Graph with directed path

ure 3.4(a) is a generic network code and Figure 3.4(b) is a lin-
ear dispersion, but the dimensions of Vt and Vt′ are the same.
Therefore, the node-based approach cannot distinguish between
a generic network code and a linear dispersion. However, we
notice that these two linear network codes have different regular
independent sets. The regular independent sets corresponding
to the linear network code in Figure 3.4(a) are

{e1}, {e2}, {e3}, {e1, e2}, {e1, e3}, {e2, e3}
while the regular independent sets corresponding to the linear
network code in Figure 3.4(b) are

{e1}, {e2}, {e3}, {e1, e2}, {e1, e3}.
Also, in the node-based representation, different classes of lin-
ear network codes cannot be represented in a unified way. As
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Figure 3.4: Drawbacks of node-based approach

discussed in the last section, in linear network coding, every-
thing boils down to linear independence among global encoding
kernels.

We already have obtained necessary and sufficient conditions
for a set of global encoding kernels to be linearly independent
in Lemma 1 and Theorem 2. Therefore, it is possible that dif-
ferent classes of linear network codes can be represented and
constructed in a unified way based on the fundamental concept
of linear independence among global encoding kernels.

A unified approach for characterizing different classes of lin-
ear network codes based on the concept of linearly independence
among global encoding kernels is proposed in this section. All
the information regarding linearly independence among global
encoding kernels is captured by this framework. Specifically, the
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tool of independence set is used to give the “hologram” of lin-
ear network codes in terms of linearly independence. We have
already seen in Theorem 1 that a generic network code is char-
acterized by regular independent sets. In the rest of this section,
we will show that a linear dispersion, a linear broadcast, and a
linear multicast can also be characterized by regular indepen-
dent sets. By using the construction algorithm in Theorem 1,
it is not difficult to see that the construction of different classes
of linear network codes can also be unified. The original defini-
tion of linear dispersion, linear broadcast and linear multicast is
reproduced below for convenience.

Definition 2 [9]A linear network code qualifies as a linear mul-
ticast, a linear broadcast, or a linear dispersion respectively, if
the following statements hold:

1. dim(Vt) = ω for every non-source node t with maxflow(t) ≥
ω.

2. dim(Vt) = min(ω, maxflow(t)) for every non-source node
t.

3. dim(VT ) = min(ω, maxflow(T )) for every collection T of
non-source nodes.

The lemma below establishes the relationship between linear
dispersion and regular independent set and gives an equivalent
definition of linear dispersion in terms of regular independent
sets.

Lemma 3 (Linear dispersion) The following two conditions
are equivalent for any collection of non-source nodes T in a lin-
ear network code.
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1. dim(VT ) = min(maxflow(T ), ω).

2. There exists a size min(maxflow(T ), ω) regular indepen-
dent set ξT such that Head(e) ∈ T and Tail(e) /∈ T for any
edge e ∈ ξT .

Proof: 1) ⇒ 2) : By Lemma 2.27 in [9], we have dim(〈fe :
Head(e) ∈ T, Tail(e) /∈ T 〉) = dim(〈fe : Head(e) ∈ T 〉) =
dim(VT ) = min(maxflow(T ), ω). Thus, we can always find a
subset ξT of ∪t∈T In(t) such that |ξT | = min(maxflow(T ), ω)
and {fe : e ∈ ξT} are linearly independent.

2) ⇒ 1): 2) implies dim(VT ) ≥ min(maxflow(T ), ω). Using
similar argument as in Lemma 1, we can obtain dim(VT ) ≤
min(maxflow(T ), ω). Thus dim(VT ) = min(maxflow(T ), ω),
and 2) implies 1). 2

In a same manner, we can establish similar results for linear
broadcast and linear multicast. The proofs are omitted.

Corollary 1 (Linear broadcast) The following two conditions
are equivalent for any non-source nodes t in a linear network
code.

1. dim(Vt) = min(maxflow(t), ω).

2. There exists a size min(maxflow(t), ω) regular indepen-
dent set It such that Head(e) = t for any edge e ∈ It.

Corollary 2 (Linear multicast) The following two conditions
are equivalent for any non-source node t in a linear network code.

1. dim(Vt) = ω if maxflow(t) ≥ ω.

2. There exists a size ω regular independent set It such that
Head(e) = t for any edge e ∈ It if maxflow(t) ≥ ω.



CHAPTER 3. A UNIFIED FRAMEWORK 29

When we specialize I in Theorem 1 to the corresponding in-
dependent sets for linear dispersion, linear broadcast, or linear
multicast, we can construct a linear dispersion, a linear broad-
cast, or a linear multicast, respectively. This gives a unified con-
struction algorithm for linear network codes. From Theorem 1
and Lemma 4, we see that a linear multicast can be constructed
provided the field size is larger than |T | which is the number of
receivers. The following example explains the points above.

Example 3 The linear network code in Figure 3.5 is a linear
multicast. We observe that the maxflows of nodes 3, 5 and 6 is at
least ω. By Lemma 2, this implies the existence of an associated
regular independent set for node 3, 5 and 6 respectively. The
associated regular independent set for node 3 is {fe3

, fe4
}; the

associated regular independent set for node 5 is {fe6
, fe9

}; the
associated regular independent set for node 6 is {fe5

, fe8
}. These

three regular independent sets defines a linear multicast.

3.3 Simplified Proofs

In this section, we will use the insight obtained in last section to
provide simplified proofs for some existing results whose original
proofs are complicated. It is not difficult to see that a linear
dispersion is a linear broadcast and a linear broadcast is a linear
multicast. However, it is not obvious that a generic network code
is a linear dispersion. The original proof in [9] for this fact is
rather complicated. Here we provide a much simpler proof.

Theorem 2 A generic network code is a linear dispersion.
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Figure 3.5: Linear multicast and regular independent set

Proof: A generic network code means that all independent
sets are regular. In particular, the corresponding independent
sets in Lemma 2 are regular. By the definition of linear disper-
sion, this linear network code is also a linear dispersion. 2

For any acyclic graph G, by breaking each edge ei into two
edges e1

i and e2
i with Tail(e1

i ) = Tail(ei), Head(e2
i ) = Head(ei)

and Head(e1
i ) = Tail(e2

i ) = t′i where ti is a new node inserted in
edge ei, we obtain an extended graph GE. Figure 3.6 provides
one example to illustrate this concept. Now consider any given
linear network code defined on the extended graph GE. Since
node t′i has only one incoming edge, we can assume without loss
of generality that f 1

ei
= f 2

ei
for all i. Then on the original graph

G, by letting fei
= f 1

ei
= f 2

ei
for all i, a linear network code on

G is naturally induced by the given linear network code on GE.
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E

Figure 3.6: Illustration of an extended graph

The following theorem in [5] gives a relationship between generic
network codes and linear dispersion defined on the original graph
and the extended graph, respectively. Again the proof therein
is complicated. A simpler proof based on the unified framework
is provided here.

Theorem 3 Every linear dispersion on the extended graph GE

induces a generic network code on the original graph G.

Proof: Let G be the original graph, GE be the extended
graph, {e1, e2, ..., em} be any independent set on the original
graph, and t′i be the node inserted in edge ei for 1 ≤ i ≤ m.
The incoming and outgoing edges of t′i are denoted by e1

i and e2
i

respectively. Consider a linear dispersion on the extended graph
GE such that fei

= fe1
i
= fe2

i
for 1 ≤ i ≤ m. This is illustrated in

Figure 3.7. The collection of edges {e1, e2, ..., em} is an indepen-
dent set on G implies that the collection of edges {e1

1, e
1
2, ..., e

1
m}
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Figure 3.7: A linear dispersion on GE implies a generic network code on G

is an independent set on GE. Let T = {t′1, t′2, . . . , t′m}. Then
VT = min(maxflow(T ), ω) = m which implies that global en-
coding kernels fe1

= f 1
e1

, fe2
= f 1

e2
, . . . , fem

= f 1
em

are linearly
independent by the definition of linear dispersion. Hence, we
conclude that every linear dispersion on the extended graph GE

induces a generic network code on the original graph G. 2

2 End of chapter.
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Conclusion

The concept of independence set plays a central role in linear
network coding theory. In some sense, it parallels the concept
of capacity in classic information theory. In classic information
theory, the concept of capacity governs the possibility and im-
possibility of information transmission, while in the context of
linear network coding, the concept of independent set governs
the possibility and impossibility of linear independence among
global encoding kernels.

In this thesis, the fundamental concept of linear independence
among global encoding kernels is studied in depth. Based on this
concept, we proved a necessary and sufficient condition for the
existence of linear network codes that satisfy certain indepen-
dence requirement. We proposed and proved the equivalence
of several alternative definitions of generic network codes which
gives interpretations of generic network codes from different per-
spectives.

Based on these alternatives definitions of generic network
codes, we were able to establish the optimality of generic net-
work codes in terms of linear independence among global encod-

33
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ing kernels. Moreover, we obtained a unified framework for dif-
ferent classes of linear network codes. In particular, this frame-
work suggests a unified construction for such classes of linear
network codes.

As applications of our results, we simplified the proofs of
some existing results. The results in this thesis can potentially
be applied to static network codes and network error-correcting
codes.

2 End of chapter.
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