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Abstract—We study the three-node point-to-point relay net-
work which consists of two terminal nodes and one relay
node between them and investigate practical network coding
schemes for the network. The rate region achievable by the
practical network coding schemes is obtained, and a procedure

for constructing the linear network codes that achieve the rate
pairs in the achievable rate region is presented. In addition, we
show that the use of network coding rather than routing alone
enlarges the achievable rate region, in particular increases the
maximum equal-rate throughput.

I. INTRODUCTION

In a traditional cellular architecture where the base stations

communicate with the mobile users directly, the data rates of

the users at the cell edge are severely limited due to strong

interference from neighboring cells and large propagation

loss from the serving base station. One way to improve the

throughput for these cell-edge users is by placing relay nodes

at different locations in the cell. Since the relay nodes typically

have higher and stronger antennas than the mobile users, they

have better channels than the mobile users to the base station.

In addition, the mobile users that are close to some relay nodes

can receive signals from the relay nodes with high signal to

interference plus noise ratio (SINR) due to close proximity.

Therefore, the installation of relay nodes generally improves

the overall throughput of the system [1]–[3].

For a given mobile user and its associated base station, the

introduction of a relay node virtually creates a two-way relay

channel (TRC) [4], in which the two terminals corresponding

to the mobile user and the base station exchange messages with

the help of the relay between them. A number of achievable

rate regions for the TRC have been obtained in [4]–[11].

However, the transmission schemes proposed in all the above

studies are far from practical due to their high complexity.

Therefore, we focus on investigating practical coding schemes

for the TRC. Since it is difficult to sufficiently isolate a

received wireless signal from a simultaneously transmitted

wireless signal in the same frequency spectrum, we assume

that all the nodes in the TRC are half-duplex, which means

they cannot transmit and receive information at the same time.

Network coding, first studied by Ahlswede et al. [12],

reveals that if coding is applied at the nodes in a network rather

than routing alone, the network capacity can be increased.

Fig. 1. A half-duplex TRC modeled as a network of point-to-point Gaussian
channels.

In addition, practical capacity-approaching coding schemes

for a point-to-point bandlimited Gaussian channel such as

Turbo codes [13] and LDPC codes [14] are well understood.

Therefore, we study practical network coding schemes on the

TRC by modeling the TRC as a three-node point-to-point

relay network consisting of four independent point-to-point

bandlimited Gaussian channels as shown in Figure 1, where

the two terminals are denoted by t1 and t2 and the relay is

denoted by r.

This paper is organized as follows. Section II presents the

formulation of the three-node point-to-point relay network. In

Section III, practical network coding schemes for the network

are investigated and the rate region achievable by the practical

network coding schemes is obtained. In addition, a procedure

for constructing the linear network codes that achieve the rate

pairs in the achievable rate region is presented. Section IV

shows that the use of network coding rather than routing alone

enlarges the achievable rate region, in particular increases

the maximum equal-rate throughput. Section V concludes this

paper.

II. THREE-NODE POINT-TO-POINT RELAY NETWORK

Let (u, v) denote the bandlimited Gaussian channel from u
to v in the three-node point-to-point relay network where u
and v are two adjacent nodes. For comprehensive information-

theoretic treatments of Gaussian channels, we refer the reader

to [15]–[17]. Let C, D, E and F denote the channel capacities

of (t1, r), (r, t2), (t2, r) and (r, t1) respectively. This is

illustrated in Figure 1. It is well known from the channel

coding theorem that an information rate can be achieved



asymptotically by some transmission scheme with arbitrarily

small probability of error if and only if it is less than or equal

to the channel capacity. Therefore, for any transmission link

(u, v), u can transmit at rate R reliably to v if and only if R
is less than the channel capacity of (u, v).

Without loss of generality, we assume in the rest of this

paper that the noise power of channel (r, t1) is less than the

noise power of channel (r, t2) when r transmits, which implies

that

(i) D ≤ F (1)

(ii) any transmission scheme that transmits information re-

liably from r to node t2 can also transmit information

reliably from r to node t1.

Note that channels (r, t1) and (r, t2) share a common input

(cf. Figure 1). It then follows that r can broadcast information

reliably from r to both node t1 and node t2 at rate R if and

only if R ≤ min{D,F} = D. We call D the broadcast

capacity.

In this paper, we study practical network coding schemes

that consist of the following four types of transmissions:

Type 1: Node t1 transmits messages reliably to r at rate C.

Type 2: Node t2 transmits messages reliably to r at rate E.

Type 3: Node r broadcasts messages reliably to both node t1
and node t2 at rate D, the broadcast capacity.

Type 4: Node r transmits messages reliably to node t1 at

rate F .

Without loss of generality, we assume that the transmissions in

the network consist of four sessions such that the transmissions

in the ith session are of Type i for i = 1, 2, 3, 4. We call the

transmission scheme described above a four-session network

coding scheme or simply a four-session scheme.

Note that in the subsequent computation of the achievable

rate region, only the fractions of time allocated to the four

types of transmission matter. Thus the four-session scheme is

the most general scheme if these four types of transmission

are considered.

III. ACHIEVABLE RATE REGION T4

Definition 1: A vector [ p1 p2 p3 p4 ] is called a four-session

allocation if p1, p2, p3 and p4 are non-negative real numbers

such that

p1 + p2 + p3 + p4 ≤ 1. (2)

Definition 2: Let τ be a four-session scheme on the three-

node point-to-point relay network and s = [ p1 p2 p3 p4 ] be a

four-session allocation. The transmission scheme τ is called a

transmission scheme with configuration s if under the scheme,

a fraction pi of the time is allocated to Type i transmissions

for i = 1, 2, 3, 4.

Definition 3: Let s be a four-session allocation, and R1

and R2 be two non-negative real numbers. An information

rate pair (R1, R2) is achievable by a four-session scheme τ if

under the scheme, node t1 and node t2 exchange independent

messages such that node t1 can transmit messages reliably

to node t2 at an average rate higher than or equal to R1 and

node t2 can transmit messages reliably to node t1 at an average
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rate higher than or equal to R2. The rate pair (R1, R2) is said

to be s-achievable if (R1, R2) is achievable by some four-

session scheme τ with configuration s.

Definition 4: The four-session achievable information rate

region, denoted by T4, is the set
{

(R1, R2) ∈ R
2
∣

∣

∣

(R1, R2) is achievable by

some four-session scheme.

}

.

Let T ∗

4 denote






(R1, R2)
∈ R

2

R1 ≥ 0, R2 ≥ 0,

R2 ≤ EF

E+F
−R1

(

CEF+DEF−CDE

CD(E+F )

)

,

R2 ≤ E −R1

(

CE+DE

CD

)

.







, (3)

which is shown in Figure 2, and S4 denote









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







(R1, R2) ∈ R
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1 ≥ 0, R2 ≥ 0,
p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, p4 ≥ 0,

p1 + p2 + p3 + p4 ≤ 1,
R1 ≤ min{p1C, p3D},

R2 ≤ min{p2E, p3D + p4F}.












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



. (4)

We will show in this section that T4 = S4 = T ∗

4 .

Lemma 1: Let s = [ p1 p2 p3 p4 ] be a four-session alloca-

tion. If (R1, R2) is s-achievable, then R1 ≤ min{p1C, p3D}
and R2 ≤ min{p2E, p3D + p4F}.

Proof: The lemma is intuitive and the proof is deferred

to the appendix.

Lemma 2: Suppose [ p1 p2 p3 p4 ] is an allocation

and (R1, R2) is a non-negative pair such that R1 ≤
min{p1C, p3D} and R2 ≤ min{p2E, p3D + p4F}. Then,

there exists an allocation [ p′1 p′2 p′3 p′4 ] such that R1 =
p′1C = p′3D and R2 ≤ min{p′2E, p′3D + p′4F}.

Proof: The lemma can be easily derived from Lemma 1

and the proof is deferred to the appendix.

Lemma 3: S4 ⊂ T ∗

4 .
Proof: Since S4 is the projection of a 6-dimensional

polyhedron on a 2-dimensional space, it can be shown by

Fourier-Motzkin elimination [18] that S4 = T ∗

4 . Since Fourier-

Motzkin elimination is very tedious, we present a simpler

alternative proof in the appendix.

Lemma 4: T4 ⊂ S4 ⊂ T ∗

4 .
Proof: We have shown that S4 ⊂ T ∗

4 in Lemma 3.

It remains to show that T4 ⊂ S4. Suppose (R1, R2) is

in T4. Then, (R1, R2) is s-achievable for some allocation

s = [ p1 p2 p3 p4 ]. Using Lemma 1, we obtain R1 ≤
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TABLE I
THE ALLOCATIONS OF τ1 , τ2 AND τ3 AND THE AVERAGE TRANSMISSION

RATES FOR TYPE 1, 2, 3 AND 4 TRANSMISSIONS.

min{p1C, p3D} and R2 ≤ min{p2E, p3D + p4F}, which

implies that (R1, R2) is in S4 (cf. (4)).

Proposition 5: T ∗

4 is the convex hull of (0, 0), (0, EF

E+F
),

( CDE

CD+CE+DE
, CDE

CD+CE+DE
) and ( CD

C+D
, 0).

Proof: The proposition can be easily verified and the

proof is deferred to the appendix.

Lemma 6: T4 ⊃ T ∗

4 . In particular, the four extreme

points of T ∗

4 , which are (0, 0), (0, EF

E+F
), ( CDE

CD+CE+DE
,

CDE

CD+CE+DE
) and ( CD

C+D
, 0), are achievable by some four-

session schemes that involve linear operations only.

Proof: We only need to show that the four extreme

points of T ∗

4 are achievable by some four-session network

coding schemes. Then any other point in T ∗

4 can be achieved

by time sharing of these schemes by Proposition 5. The

rate pair (0, 0) is trivially achievable by any transmission

scheme. We will propose three transmission schemes τ1, τ2
and τ3 and show that they achieve the rate pairs (0, EF

E+F
),

( CDE

CD+CE+DE
, CDE

CD+CE+DE
) and ( CD

C+D
, 0) respectively. To

facilitate understanding, the allocations [ p1 p2 p3 p4 ] of τ1, τ2
and τ3 and the average transmission rates p1C, p2E, p3D
and p4F for Type 1, 2, 3 and 4 transmissions respectively

are displayed in Table I followed by the descriptions of the

schemes.

Under scheme τ1, the average rates of the messages sent

from node t2 to r and from r to node t1 are both EF/(E+F ).
Node t2 transmits its messages to r in the second session

and r forwards the messages to node t1 in the fourth session.

Therefore, the rate pair (0, EF

E+F
) is achievable by scheme τ2.

Under scheme τ2, the average rates of the messages sent

from node t1 to r, from node t2 to r, from r to node t1
and from r to node t2 are all CDE/(CD + CE + DE).
Node t1 transmits its messages to r in the first session and

node t2 transmits its messages to r in the second session.

In the third session, relay r performs XOR operations be-

tween the messages from node t1 and the messages from

node t2 bit by bit and broadcasts the resultant messages to

both node t1 and node t2. In addition, node t1 can recover

the messages of node t2 by performing XOR operations

between its own messages and the messages from r bit by

bit. Similarly, node t2 can recover the messages of node t1 by

performing XOR operations between its own messages and

the messages from r bit by bit. Consequently, the rate pair
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Fig. 3. The set of rate pairs achievable by four-session routing schemes.

( CDE

CD+CE+DE
, CDE

CD+CE+DE
) is achievable by scheme τ2.

Under scheme τ3, the average rates of the messages sent

from node t1 to r and from r to node t2 are both CD/(C +
D). Node t1 transmits its messages to r in the first session

and r forwards the messages to node t2 in the third session.

Therefore, the rate pair ( CD

C+D
, 0) is achievable by scheme τ3.

Theorem 1: T4 = S4 = T ∗

4 .
Proof: It follows from Lemmas 4 and Lemma 6.

The achievable rate region T4 is the same as T ∗

4 by Theorem 1

and is shown in Figure 2. The extreme points (0, EF

E+F
),

( CDE

CD+CE+DE
, CDE

CD+CE+DE
) and ( CD

C+D
, 0) of T4 correspond

to the rate pairs achievable by schemes τ1, τ2 and τ3 in

Lemma 6 respectively. In addition, for any rate pair in T4,

Lemma 6 provides a procedure to construct a network code

that achieves the rate pair. The network code involves linear

operations only since τ1, τ2 and τ3 involve linear operations

only. Consequently, the network code is practical due to its

low complexity.

IV. ADVANTAGE OF NETWORK CODING

For any four-session routing scheme in the three-node point-

to-point relay network, the relay receives the messages from

node t1 followed by forwarding the messages to node t2, and

similar procedures are performed in the opposite direction.

Let p1, p2, p3 and p4 denote the fractions of time allocated

to the transmission links (t1, r), (t2, r), (r, t2) and (r, t1)
respectively. It is readily observed that the transmission rate

from node t1 to node t2 and the transmission rate from

node t2 to node t1 under the optimal routing scheme are

min{p1C, p3D} and min{p2E, p4F} respectively. Therefore,

the set of rate pairs achievable by the four-session routing

schemes on the three-node point-to-point relay network is






















(R1, R2) ∈ R
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1 ≥ 0, R2 ≥ 0,
p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, p4 ≥ 0,

p1 + p2 + p3 + p4 ≤ 1,
R1 ≤ min{p1C, p3D},
R2 ≤ min{p2E, p4F}.























. (5)

Following similar procedures for proving that (3) and (4) are

equal in Section III, we can obtain that (5) is equal to
{

(R1, R2) ∈ R
2

∣

∣

∣

∣

∣

R1 ≥ 0, R2 ≥ 0,

R2 ≤ EF

E+F
−R1

(

EF (C+D)
CD(E+F )

)

.

}

, (6)



which is shown in Figure 3.

The rate region achievable by four-session schemes was

obtained in the previous section and it is shown in Figure 2.

It is readily observed by comparing Figure 3 with Figure 2

that the use of network coding always enlarges the achievable

rate region. Using the fact that the maximum equal-rate

pair achievable by four-session routing schemes lies on the

straight line connecting the points ( CD

C+D
, 0) and (0, EF

E+F
), we

obtain that the maximum equal-rate pair achievable by four-

session routing schemes is CDEF

CDE+CDF+CEF+DEF
. Since the

maximum equal-rate pair in T4 is CDE

CD+CE+DE
(cf. Figure 2)

and CDE

CD+CE+DE
− CDEF

CDE+CDF+CEF+DEF
> 0, the use

of network coding rather than routing alone increases the

maximum equal-rate throughput in the three-node point-to-

point relay network. Since the maximum equal-rate pair in

T4 is upper bounded by min{ CD

C+D
, EF

E+F
} (cf. Figure 2), the

fractional increase in the maximum equal-rate throughput is

upper bounded by

min{ CD

C+D
, EF

E+F
} − CDEF

CDE+CDF+CEF+DEF

CDEF

CDE+CDF+CEF+DEF

= min

{

CD(E + F )

EF (C +D)
,
EF (C +D)

CD(E + F )

}

≤ 1.

V. CONCLUSION

An achievable rate region for the three-node point-to-point

relay network is obtained. A procedure for constructing net-

work codes that achieve the rate pairs in the achievable rate

region is presented. Since only linear operations are required

for the network codes, the network codes are practical due

to their low complexity. In addition, we show that the use

of network coding rather than routing alone enlarges the

achievable rate region, in particular increases the maximum

equal-rate throughput.

APPENDIX

Proof of Lemma 1: Suppose (R1, R2) is s-achievable.

Under any four-session transmission scheme τ with configu-

ration s = [ p1 p2 p3 p4 ],

1) the highest average rate that node t1 can transmit mes-

sages reliably to r in the first session is p1C;

2) the highest average rate that node t2 can transmit mes-

sages reliably to r in the second session is p2E;

3) the highest average rate that r can broadcast messages

reliably to both node t1 and node t2 in the third session

is p3D;

4) the highest average rate that r can transmit messages

reliably to node t1 in the fourth session is p4F .

Therefore, (R1, R2) must satisfy the rate constraints induced

by the two-source point-to-point network in Figure 4(a), where

the introduction of the dummy node r′ captures the broadcast

nature of Type 3 transmissions. We refer the reader to [16,

p.415] for the use of the dummy broadcast node. Since node t1
and node t2 exchange independent messages in such a way

t1 t2r

r’

�
�

�
�

�
�
� �

�
�

�
�
�

�
�
��

�
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�
�
�

(a) A two-source point-to-
point network.
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(b) A single-source point-
to-point multicast network.

Fig. 4. Two equivalent network coding problems.

that they eventually possess the same set of messages after the

information exchange, the two-source network coding problem

for the network in Figure 4(a) is equivalent to the single-

source multicast problem for the network in Figure 4(b), where

node t1 and node t2 are the receivers and s is the source

node of the network. We refer the reader to [16, p.459] for

the equivalence of the two problems. Applying the cut-set

bound in [16, p.429] for four different cuts of the network

in Figure 4(b), we obtain

R1 +R2 ≤ R2 + p1C,

R1 +R2 ≤ R2 + p3D,

R1 +R2 ≤ R1 + p2E

and

R1 +R2 ≤ R1 + p3D + p4F.

Therefore, R1 ≤ p1C, R1 ≤ p3D, R2 ≤ p2E and R2 ≤
p3D + p4F, and the lemma follows.

Proof of Lemma 2: There exist p′1 ≤ p1 and p′3 ≤ p3 such

that R1 = p′1C = p′3D. Let p′2 = p2 and p′4 = p4 + p3 − p′3.

Then,

R2 ≤ min{p2E, p3D + p4F}

≤ min{p′2E, p′3D + (p3 − p′3)F + p4F}

= min{p′2E, p′3D + p′4F},

where the second inequality follows from (1). Since

p′1 + p′2 + p′3 + p′4 ≤ p1 + p2 + p′3 + (p4 + p3 − p′3) ≤ 1,

it follows that [ p′1 p′2 p′3 p′4 ] is the desired allocation.

Proof of Lemma 3: Suppose (R1, R2) is in S4.

Then, (R1, R2) is a non-negative pair such that R1 ≤
min{p1C, p3D} and R2 ≤ min{p2E, p3D + p4F} for some

allocation [ p1 p2 p3 p4 ]. By Lemma 2, there exists an

allocation [ p′1 p′2 p′3 p′4 ] such that

R1 = p′1C = p′3D (7)

and

R2 ≤ min{p′2E, p′3D + p′4F}. (8)

We will show that (R1, R2) satisfies the four inequalities



defining T ∗

4 (cf. (3)), which will imply that (R1, R2) ∈ T ∗

4 .

The lemma then follows. Clearly, R1 ≥ 0 and R2 ≥ 0.

Consider the following chain of inequalities:

R2 −
EF

E + F
+R1

(

CEF +DEF − CDE

CD(E + F )

)

=
1

CD(E + F )
(CDER2 + CDFR2 − CDEF+

CEFR1 +DEFR1 − CDER1)

(a)

≤
1

CD(E + F )
(CDEFp′4 + CD2Ep′3 + CDEFp′2−

CDEF + CDEFp′3 + CDEFp′1 − CD2Ep′3)

=
EF

E + F
(p′1 + p′2 + p′3 + p′4 − 1)

(b)

≤ 0,

where (a) follows from (7) and (8), and (b) follows from (2).

Therefore, R2 ≤ EF

E+F
−R1

(

CEF+DEF−CDE

CD(E+F )

)

.

Consider the following chain of inequalities:

R2 − E +R1

(

CE +DE

CD

)

=
CDR2 − CDE + CER1 +DER1

CD
(a)

≤
CDEp′2 − CDE + CDEp′3 + CDEp′1

CD
= E(p′1 + p′2 + p′3 − 1)

(b)

≤ −p4E

≤ 0,

where (a) follows from (7) and (8), and (b) follows from (2).

Therefore, R2 ≤ E −R1

(

CE+DE

CD

)

.

Proof of Proposition 5: We will show that (0, 0),
(0, EF

E+F
), ( CDE

CD+CE+DE
, CDE

CD+CE+DE
) and ( CD

C+D
, 0) are

all the vertices of T ∗

4 . The proposition then follows. Let

L1 : R1 = 0, L2 : R2 = 0, L3 : R2 = EF

E+F
−

R1

(

CEF+DEF−CDE

CD(E+F )

)

and L4 : R2 = E − R1(
CE+DE

CD
)

be the four lines defining the boundary of T ∗

4 (cf. (3)). The x-

intercept and y-intercept of L3 are CDF

CF+DF−CD
and EF

E+F
re-

spectively. The x-intercept and y-intercept of L4 are CD

C+D
and

E respectively. It can be verified that CDF

CF+DF−CD
− CD

C+D
> 0

(cf. (1)) and E− EF

E+F
> 0, which implies that the x-intercept

of L3 is larger than that of L4 and the y-intercept of L4 is

larger than that of L3. By inspecting Figure 5, we observe

that the vertices of T ∗

4 are (0, 0), (0, EF

E+F
), ( CD

C+D
, 0) and

( CDE

CD+CE+DE
, CDE

CD+CE+DE
), the intersection point between

L3 and L4.
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