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Batched Sparse Codes
Shenghao Yang and Raymond W. Yeung, Fellow, IEEE

Abstract

BATched Sparse codes (BATS codes) are proposed for transmitting a collection of packets through a commu-

nication network with packet loss. A BATS code consists of an inner code and an outer code over a finite field.

The outer code is a matrix generalization of a fountain code that preserves desirable properties of the latter such as

ratelessness and low encoding/decoding complexity. The outer code encodes the file to be transmitted into batches,

each of which containing M packets. When the batch size M is equal to 1, the outer code reduces to a fountain code.

The inner code is comprised of the linear network coding performed by the intermediate network nodes. With the

constraint that linear network coding is applied only to packets within the same batch, the structure of the outer code

is preserved. Furthermore, the computational capability of the intermediate network nodes required to apply BATS

codes is independent of the number of packets for transmission. For tree networks, the size of the buffer required

at the intermediate nodes is also independent of the number of packets for transmission. It is verified theoretically

for certain cases and demonstrated numerically for some general cases that BATS codes asymptotically achieve rates

very close to the capacity of the underlying networks.

Index Terms

Network coding, fountain codes, sparse graph codes, belief propagation.

I. INTRODUCTION

One fundamental task of communication networks is to distribute a bulk of digital data, called a file, from a

source node to a set of destination nodes. We consider this file distribution problem, called multicast, in packet

networks, in which data packets transmitted on the network links can be lost due to channel noise, congestion,

faulty network hardware, and so on.

Existing network protocols, for example TCP, mostly use retransmission to guarantee reliable transmission of

individual packets. Retransmission relies on feedback and is not scalable for multicast transmission. On the other
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hand, fountain codes, including LT codes [1], Raptor codes [2] and online codes [3], provide a good solution for

routing networks without relying on feedback, where the intermediate nodes apply store-and-forward. When using

fountain codes, the source node keeps transmitting coded packets generated by a fountain code encoder and a

destination node can decode the original file after receiving n coded packets, where n typically is only slightly

larger than the number of the input packets, regardless of which n packets are received. Fountain codes have the

advantages of ratelessness, universality, and low encoding/decoding complexity. Taking Raptor codes as an example,

both the encoding and decoding of a packet has constant complexity.

Routing, however, is not an optimal operation at the intermediate nodes in the presence of packet loss from

the throughput point of view. For example, the routing capacity of the network in Fig. 1 is 0.64 packet per use.

If we allow decoding and encoding operations at the intermediate node and treat the network as a concatenation

of two erasure channels, we can achieve the rate 0.8 packet per use by using erasure codes on both links. For

a general network, the maximum multicast rate can be achieved only by network coding [4]. Network coding

allows an intermediate node to generate and transmit new packets using the packets it has received. Linear network

coding [5] was proved to be sufficient for multicast communications and can be realized distributedly by random

linear network coding [6]–[9].

The following network coding method has been proved to achieve the multicast capacity for networks with packet

loss in a wide range of scenarios [10], [11]. The source node transmits random linear combinations of the input

packets and an intermediate node transmits random linear combinations of the packets it has received. Note that

no erasure codes are required for each link though packet loss is allowed. Network coding itself plays the role of

end-to-end erasure codes. A destination node can decode the input packets when it receives enough coded packets

with linearly independent coding vectors.

The above scheme, referred to as the baseline random linear network coding scheme, has been implemented in

wireline peer-to-peer (P2P) networks [12], [13] (see [14] for a network coding analysis), in which every node in the

network is required to decode the file. However, the computational and storage complexities of this scheme are not

suitable for many other practical applications, in particular wireless applications. Consider transmitting K packets

where each packet consists of T symbols in a finite field. The computational complexity of encoding in the source

node is O(TK) per packet. An intermediate node needs to buffer all the packets it has received for network coding,

so in the worst case, the storage cost is K packets, and the computational complexity of encoding is O(TK) per

packet. Decoding using Gaussian elimination has complexity O(K2 + TK) per packet. Though these complexities

are polynomials in K, the baseline random linear network coding scheme is still difficult to implement for large

K. In particular, the intermediate nodes, like network routers, usually have limited buffer capability. Since the size

of the required buffer at the intermediate node depends on the file size, such an implementation cannot handle an

arbitrarily large file.

In practice, we hope to build network coding enabled devices with limited storage and computational capabilities.

Accordingly, it is desirable for a network coding scheme to have i) low encoding complexity in the source node

and low decoding complexity in the destination nodes, ii) constant computational complexity of encoding a packet
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Fig. 1. In this network, s is the source node, t is the destination node, and a is the intermediate node that does not demand the file. Both

links are capable of transmitting one packet per use and have a packet loss rate 0.2.

in an intermediate node and constant buffer requirement in an intermediate node, iii) small protocol overhead, and

iv) high transmission rate.

A. Some Previous Works

There are roughly two classes of works for designing efficient file transmission schemes in networks with coding

at the intermediate nodes, but they either cannot meet our requirement at the intermediate nodes or have other

drawbacks.

The first class of works tries to extend fountain codes to networks with coding at the intermediate nodes. Since

coding in the intermediate nodes changes the degrees of the packets, it is difficult to guarantee that the degrees

of the received packets follow a specific distribution. Solutions have been proposed for special network topologies

(e.g., line networks [15], [16]) and special communication scenarios (e.g., peer-to-peer file sharing [17], [18]), but

those solutions are difficult to be extended to general network settings and cannot meet our requirement for the

intermediate nodes. For example, all the schemes proposed in [15]–[18] require the intermediate nodes to have a

buffer size that increases linearly with the number of packets for transmission.

The second class of works try to simplify the complexity of linear network coding using chunks [7]. A chunk

(also called generation or class) is a subset of the packets for transmission. Encoding, recoding and decoding are

all performed within one chunk. It reduces the encoding and decoding complexity to O(TL) and O(L2 + TL) per

packet, respectively, where chunks are disjoint and have size L, but at the same time introduces the scheduling

issues of chunks. Specifically, sequential scheduling of chunks requires feedback and is not scalable for multicast,

while random scheduling of chunks requires the intermediate nodes to cache all the chunks [19]–[22]. For a detailed

discussion on the scheduling issues, we refer the reader to [23].

B. Our Solution

To address the issues of the existing schemes, we propose a solution called BATched Sparse codes (BATS codes),

which extends fountain codes to the realm of networks and at the same time incorporates random linear network

coding. A BATS code consists of an inner code and an outer code over a finite field. The outer code is a matrix

generalization of a fountain code, and hence rateless. The outer code encodes the file to be transmitted into batches,

each containing M packets. When the batch size M is equal to 1, the outer code reduces to a fountain code.

The inner code is comprised of the linear network coding performed by the intermediate network nodes. The only

constraint on the linear network coding scheme (other than causality) is that only packets belonging to the same

batch can be combined. Since the inner code does not change the structure of the outer code, an efficient belief
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propagation (BP) decoding algorithm can be used to decode BATS codes. When the batch size M is equal to K,

a BATS code can become the baseline random linear network coding scheme (see a discussion in Section II-E).

When applying BATS codes, the encoding complexity of the outer code is O(TM) per packet and the corre-

sponding decoding complexity is O(M2 + TM) per packet. An intermediate node uses O(TM) time to recode a

packet, and an intermediate node is required to buffer only O(M) packets for tree networks, including the three-

node network in Fig. 1. Note that all these requirements for BATS codes do not depend on K, the total number of

packets for transmission.

BATS codes are suitable for any network that allows linear network coding at the intermediate nodes. These

codes are robust against dynamical network topology and packet loss since the end-to-end operation remains linear.

Moreover, BATS codes can operate with small finite fields. In contrast, most existing random linear network coding

schemes require a large field size to guarantee a full rank for the transfer matrix. For BATS codes, as we will see,

the transfer matrices of the batches are allowed to have arbitrary rank deficiency.

Even though the underlying network can vary, the performance of a BATS code can be evaluated independent of

the details of the intermediate operations and network topologies given the ranks of the transfer matrices applied on

the batches. We use density evolution to analyze the BP decoding process of BATS codes, and obtain a sufficient

and a necessary condition for the BP decoding succeeding with high probability.

A near optimal degree distribution for a BATS code can be obtained by solving an optimization problem induced

by the sufficient condition. The optimization problem can be approximately solved by linear programming. When

the empirical distribution of the transfer matrix ranks converges to a probability vector (h0, h1, . . . , hM ), we verify

theoretically for certain cases and demonstrate numerically for some general cases that BATS codes can achieve

rates very close to
∑
i ihi, the maximum achievable rate in term of packet per use for such transfer matrices.

In the rest of this paper, BATS codes are formally introduced in Section II. The belief propagation decoding of

BATS codes is analyzed in Section III. An optimization of the degree distribution is discussed in Section IV. An

example of how to use BATS codes in the three-node network is illustrated in Section V.

II. BATS CODES

In this section, we discuss the encoding and decoding of BATS codes. Consider encoding K input packets, each

of which has T symbols in a finite field F with size q. A packet is denoted by a column vector in FT . The rank

of a matrix is denoted by rk(A). In the following discussion, we equate a set of packets to a matrix formed by

juxtaposing the packets in this set. For example, we denote the set of the input packets by the matrix

B =
[
b1, b2, · · · , bK

]
,

where bi is the ith input packet. When treating the packets as a set, with an abuse of notation, we also write bi ∈ B,

B′ ⊂ B, etc.

June 21, 2012 DRAFT



5

b1 b2 b3 b4 b5 b6

G1 G2 G3 G4 G5

Fig. 2. Tanner graph for encoding and transmitting of the first five batches. Nodes in the first row are the variable nodes representing the input

packets. Nodes in the second row are the check nodes representing the batches.

A. Encoding of Batches

A batch is a set of M coded packets generated from a subset of the K input packets. For i = 1, 2, . . ., the ith

batch Xi is generated from a subset Bi ⊂ B of the input packets by the operation

Xi = BiGi,

where Gi, a matrix with M columns, is called the generator matrix of the ith batch. We call the packets in Bi the

contributors of the ith batch. The formation of Bi is specified by a degree distribution Ψ = (Ψ0,Ψ1, · · · ,ΨK): 1)

sample the distribution Ψ which returns a degree di with probability Ψdi ; 2) uniformly at random choose di input

packets to form Bi. The design of Ψ is discussed later in Section IV.

The dimension of Gi is di × M . In this paper, we analyze BATS codes with random generator matrices.

Specifically, all the components of Gi are independently and uniformly chosen at random by the encoder. Such a

random matrix is also called a totally random matrix. Random generator matrices do not only facilitate analysis

but are also readily implementable. For example, Gi, i = 1, 2, · · · can be generated by a pseudorandom number

generator and can be recovered at the destinations by the same pseudorandom number generator.

The code described above, called the outer code of the BATS code, can be described by a Tanner graph. A

Tanner graph has K variable nodes, where variable node i corresponds to the ith input packet bi, and n check

nodes, where check node j corresponds to the jth batch Xj . Check node j is connected to variable node i if bi is

a contributor of Xj . Fig. 2 illustrates an example of a Tanner graph for encoding.

B. Transmission of Batches

To transmit a batch, the source node transmits the packets in the batch, not necessarily in the order they are

generated. No feedback is required to stop the transmission of each batch. A BATS code can be used as a rateless

code, i.e., the number of batches transmitted is not fixed and is potentially unlimited. An intermediate node encodes

the received packets within the same batch into new packets by taking random linear combinations and transmits

these new packets on the outgoing links, i.e., random linear network coding is applied to packets belonging to the

same batch. These new packets so generated are regarded as belonging to the same batch. The rule is that packets

belonging to different batches are not mixed inside the network. BATS codes are robust against dynamical network
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topology and packet loss since the end-to-end operation remains linear. The random linear network coding applied

on batches is referred to as the inner code of the BATS code.

To apply BATS codes, we further need to consider how to schedule the transmission of batches at the source

node and at the intermediate nodes, and how to manage the buffers at the intermediate nodes. The design of these

network operations varies for different scenarios. For the file distribution in a P2P network, since all the network

nodes request the file, random scheduling of the batches can reduce the protocol overhead. In contrast, since the

intermediate node in the three-node network in Fig. 1 does not require the file, sequential scheduling of the batches

at both the source node and the intermediate node can minimize the buffer requirement at the intermediate node.

As we will show in Section V, caching one batch in the intermediate node is asymptotically optimal. The point is

that the intermediate node always receives the packets of the same batch consecutively. Since only the packets of

the same batch can be combined by network coding, it is not necessary to keep the batches whose transmission has

been completed by the intermediate node. Note that the completion of the transmission of a batch at the intermediate

node is signaled by the reception of the first packet of the next batch. Similarly, for tree networks with the root being

the source node, sequential scheduling of the batches can also minimize the buffer requirement at the intermediate

nodes.

Given the end-to-end transformations applied to the batches, the design of the outer code does not depend on

the details of the network operations. So we will not discuss the detailed network operations on the batches in

general networks. Nevertheless, we demonstrate how a BATS code works in the three-node network in Section V,

where some general guidelines on the design of the intermediate operation are given. Note that though the three-

node network is simple, it models many situations that arise in multiple hop transmissions in wireline and wireless

communications.

Let Yi be the received packets at a destination node that belong to the ith batch. We write

Yi = XiHi = BiGiHi, (1)

where Hi is the transfer matrix incurred by the linear network coding operation of the network [5], [24] for the

ith batch. The number of rows of Hi is M , while the number of columns varies for different batches and is finite.

We assume that Hi is known by the destination node through the coding vectors in the packet headers. When the

packet length T is sufficiently large, this overhead is negligible. See an introduction of linear network coding in

[25] for more details.

The operation of the network on the batches in (1) can be modeled as a linear operator channel (LOC), which

has been studied for linear network coding [26]–[28]. The outer code of a BATS code can be regarded as a channel

code for the LOC. In the analysis of BATS codes, we assume that the empirical rank distribution of the transfer

matrices converges in probability to a probability vector. This is a mild assumption since it does not require the

ranks of the transfer matrices to be i.i.d. as in [27], [28]. See Appendix I for more discussion and a characterization

of the capacity of such LOCs.
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Fig. 3. A decoding graph. Nodes in the first row are the variable nodes representing the input packets. Nodes in the second row are the check

nodes representing the batches.

C. Belief Propagation Decoding

A destination tries to decode the input packets using Yi and the knowledge of GiHi for i = 1, 2, . . . , n. The

decoding process is better described using the bipartite graph in Fig. 3, which is the same as the encoding graph

in Fig. 2 except that associated with each check node i is the matrix GiHi.

A check node i is called decodable if GiHi has rank di, the degree of the ith batch. If so, then Bi is recovered

by solving the linear system of equations Yi = BiGiHi, which has a unique solution since rk(GiHi) = di. After

decoding the ith batch, we recover the di input packets in Bi. Then substitute the values of these input packets in

the undecoded batches. Consider that bk is in Bi. If variable node k has only one edge that connects with check

node i, just remove variable node k. If variable node k also connects check node j 6= i, then besides removing

the variable node, also remove the row in GjHj corresponding to variable node k. In the decoding graph, this is

equivalent to first removing check node i and its neighboring variable nodes, and then for each removed variable

node update its neighboring check nodes. We repeat this decoding-substitution procedure on the new graph until

no more check nodes are decodable.

The degree distribution is the crucial parameter that affects the performance of the BP decoding. We want to

design a degree distribution such that i) the BP decoding succeeds with high probability, ii) the encoding/decoding

complexity is low, and iii) the coding rate is high. Based on the analysis of the decoding process in Section III, an

optimization of the degree distribution will be provided in Section IV.

D. Precoding of BATS Codes

The same technique of Raptor codes is applied here to reduce the encoding/decoding complexity of BATS codes.

The input packets are first encoded using a traditional erasure code (precode), and then encoded by a BATS code.

We require that the belief propagation decoding of the BATS code recovers a given fraction of its input packets. The

traditional erasure code is capable of recovering the original input packets in face of a fixed fraction of erasures.

Fig. 4 demonstrates a systematic precode together with a BATS code.

E. Computation Complexity

The complexity of encoding a batch with degree d is O(TMd). For a encoding graph with n check nodes, i.e., n

batches, the encoding complexity is O(TM
∑n
i=1 di), which converges to O(TMnE[Ψ]) when n is large, where
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G1 G2 G3 G4 G5

Fig. 4. Precoding of BATS codes. Nodes in the first row represent the input packets. Nodes in the second row represent the intermediate

packets generated by the precode. Nodes in the third row represent the batches generated by the encoding of a BATS code.

E[Ψ] =
∑
d dΨd.

Let ki = rk(Hi) and let k′i be the rank of GiHi when check node i is decodable. It is clear that k′i ≤ ki ≤M .

The decoding processing involves two parts: the first part is the decoding of the decodable check nodes, which

has complexity O(
∑
i k
′3
i + T

∑
i k
′2
i ); the second part is updating the decoding graph, which has complexity

O(T
∑
i(di−k′i)M). So the total complexity is O(

∑
i k
′3
i +T

∑
i k
′2
i +T

∑
i(di−k′i)M), which can be simplified

to O(nM3 + TM
∑
i di). When n is large, the complexity converges to O(M3n + TMnE[Ψ]). Usually, T and

E[Ψ] is larger than M and the second term is dominant.

We will see from Section IV that we can find a degree distribution with E[Ψ] = O(M). In the design of BATS

codes, M is a parameter independent of K. The rate of the code is K
nM packets per transmission. When the rate

of the code converges to a constant value, we see that the encoding and decoding complexity are O(TKM) and

O(KM2 + TKM), respectively.

The batch size M determines the tradeoff between the complexity and the maximum achievable rate. When

M = 1, a BATS code degenerates to a Raptor code, which has the lowest computation complexity but cannot get

the benefit of network coding. When M = K and the degrees of all batches are K, a BATS code becomes the

baseline random linear network coding scheme. In the second case, though the complexity is high, the potential of

network coding can be fully realized.

III. DECODING ANALYSIS

Some existing methods for analyzing the BP decoding of erasure codes can be modified to analyze the BP

decoding of BATS codes. In this paper, we adopt the differential equation approach [29] that has been used in [30]

(see also [31]).

Compared with the analysis of fountain codes, BATS codes have a relatively complex decoding criteria that

involves both the degree and the rank value of a check node. In addition to the evolution of the degrees of the

check nodes, the evolution of the ranks of the check nodes also needs to be tracked in the decoding analysis.
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A. Random Decoding Graph

Consider a random decoding graph with K variable nodes and n check nodes. Fix a degree distribution Ψ =

(Ψ0,Ψ1, · · · ,ΨD), where D is the maximum integer such that ΨD is nonzero. Assume that D = O(M). The

feasibility of this assumption will be justified later. The degree di of check node i is obtained by sampling the

degree distribution Ψ. The di neighbors of check node i is uniformly chosen and the generator matrix Gi of check

node i is a di ×M totally random matrix, i.e., its components are uniformly i.i.d.

Let Hi be the transfer matrix associated with check node i. Assume that the empirical distribution of the transfer

matrix ranks converges in probability to a probability vector h = (h0, . . . , hM ). Specifically, for k = 0, . . . ,M let

πk ,
|{i : rk(Hi) = k}|

n
.

Note that πk depends on n. We assume that the convergence of the matrix ranks satisfies

|πk − hk| = O(n−1/6), 0 ≤ k ≤M, (2)

with probability at least 1 − γ(n), where γ(n) = o(1), i.e., there exists a constant c such that for all sufficiently

large n,

Pr{|πk − hk| < cn−1/6, 0 ≤ k ≤M} < 1− γ(n),

and

lim
n→∞

γ(n) = 0.

Note that the above assumption on the convergence of {πk} is valid when {Hi} are i.i.d. and rk(Hi) follows the

distribution h. We also assume that the transfer matrices are independent of the generation of batches. The random

decoding graph of a BATS code described above is denoted by BATS(K,n,Ψ, h).

We call ri = rk(GiHi) the rank of check node i. Define the following two regions of the degree-rank pair:

F̄ , {(d, r) : 1 ≤ r ≤M, r ≤ d ≤ D},

F , {(d, r) : 1 ≤ r ≤M, r < d ≤ D}.

We see that F̄ = F ∪ {(r, r), r = 1, . . . ,M}. A check node with rank zero does not help the decoding, so we do

not include (d, 0) in F̄ and F . To analyze the decoding process, we use the degree-rank distribution of the edges

defined as follows. An edge is said to be of degree d and rank r if it is connected to a check node with degree d

and rank r. Let Rd,r be the number of edges of degree d and rank r. Define the degree-rank distribution of the

edges as

R̄ , (Rd,r, (d, r) ∈ F̄).

Note that Rd,r/d gives the number of nodes with degree d and rank r.

For a check node with degree d and transfer matrix rank k, the probability that it has rank r is denoted by ζd,kr .

The details can be found in Appendix II-A, but for the purpose of the discussion here, an explicit form of ζd,kr is
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not needed. Let

hd,r ,
M∑
k=r

ζd,kr hk (3)

be the probability that a check node with degree d has rank r when the rank of the transfer matrix is chosen

according to the probability vector h. Let

ρd,r , dΨdhd,r, (4)

where nρd,r is the expected number of edges of degree d and rank r in the decoding graph when the rank of

a transfer matrix is chosen according to the probability vector h independently. The following lemma shows that

Rd,r/n converges in probability to ρd,r as n goes to infinity.

Lemma 1: With probability at least 1− (γ(n) + 2MD exp(−2n2/3)),∣∣∣∣Rd,rn − ρd,r
∣∣∣∣ = O(n−1/6), (d, r) ∈ F̄ .

Proof: Consider the instances of {πk} satisfying (2). By the assumption on {πk}, this will decrease the bound

by at most γ(n). With an abuse of notation, we treat {πk} as an instance satisfying (2) in the following of this

proof.

The decoding graph has nπk check nodes with transfer matrix rank k. For a check node with degree d and

transfer matrix rank k, the probability that it has rank r is ζd,kr when r ≤ min{d, k}, and is zero otherwise. Thus

the expected number of check nodes with degree d and rank r is
M∑
k=r

nπkΨdζ
d,k
r = nΨd

M∑
k=r

πkζ
d,k
r .

By Hoeffding’s inequality, with probability at least 1− 2MD exp(−2n2/3),∣∣∣∣∣Rd,rdn
−Ψd

M∑
k=r

πkζ
d,k
r

∣∣∣∣∣ < n−1/6, (d, r) ∈ F̄ . (5)

Then, ∣∣∣∣Rd,rdn
−Ψdhd,r

∣∣∣∣ =

∣∣∣∣∣Rd,rdn
−Ψd

M∑
k=r

πkζ
d,k
r + Ψd

M∑
k=r

πkζ
d,k
r −Ψdhd,r

∣∣∣∣∣
≤

∣∣∣∣∣Rd,rdn
−Ψd

M∑
k=r

πkζ
d,k
r

∣∣∣∣∣+ Ψd

M∑
k=r

|πk − hk|ζd,kr ,

where the last inequality follows from the triangle inequality and the definition of hd,r in (3). By (5), under the

condition of (2), we have ∣∣∣∣Rd,rdn
−Ψdhd,r

∣∣∣∣ = O(n−1/6)

with probability at least 1−2MD exp(−2n2/3). The proof is completed by considering {πk} not satisfying (2).

We will analyze the average decoding performance of BATS(K,n,Ψ, h) with a random decoding strategy. In

each decoding step, an edge (U, V ) with degree equal to the rank is uniformly chosen, where U is a check node

and V is a variable node. Since check node U has degree equal to the rank, variable node V is decodable. Variable

node V , as well as all the edges connected to it, are removed in the decoding graph. For each check node connected
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d = 1 2 3 4 5 6 7 8
r = 1

2

3

4

5

α6,2

ᾱ6,2

ᾱ6,3

Fig. 5. State transition diagram for M = 5 and D = 8. Each node in the graph represent a degree-rank pair. In each step, if the check node

connects to the decoded variable node, its state changes according to the direction of the outgoing edges of its current state. The label on an

edge shows the probability that a direction is chosen.

to variable node V , three operations are applied: 1) the degree is reduced by 1; 2) the row in the generator matrix

corresponding to the variable node V is removed; and 3) the rank is updated accordingly. The decoding process

stops when there is no edge with degree equal to the rank. The following decoding analysis is based on this random

decoding strategy. In the decoding process described in the last section, decoding a check node with degree equal

to the rank can recover several variable nodes simultaneously. Note that for a given instance of the decoding graph,

both strategies will reduce the decoding graph to the same residual graph when they stop (see the discussion in

Appendix III).

B. Density Evolution

Consider the evolution of BATS(K,n,Ψ, h) during the decoding process. Time t starts at zero and increases by

one for each variable node removed by the decoder. Let Rd,r(t) denote the number of edges in the residual graph

of degree d and rank r at time t ≥ 0 with Rd,r(0) = Rd,r.

Upon removing a neighboring variable node of a check node with degree d and rank r, the degree of the check

node will change to d− 1. The rank of the check node may remain unchanged with probability

αd,r =
1− q−d+r

1− q−d
, (d, r) ∈ F̄ (6)

(see the derivation in Appendix II-A), or may change to r − 1 with probability ᾱd,r = 1 − αd,r. Regarding a

degree-rank pair as a state, the state transition of a check node during the decoding process is illustrated in Fig. 5.

Assume that the process has not stopped. At time t, we have K− t variable nodes left in the residual graph, and

an edge with degree equal to the rank is uniformly chosen to be removed. Let

R̄(t) , (Rd,r(t) : (d, r) ∈ F̄).

As we will show in the following lemma, the random process {R̄(t)} is a Markov chain. This suggests a straight-

forward approach to compute all the transition probabilities in the Markov chain, but as discussed in [29], this
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approach may lead to a complicated formula. Instead of taking this approach, we work out the expected change

Rd,r(t+ 1)−Rd,r(t) explicitly for all t ≥ 0. Let

R0(t) =

M∑
r=1

Rr,r(t).

We do not need to study the behavior of Rr,r(t) for the individual value of r since R0(t) is sufficient to determine

when the decoding process stops. Specifically, the decoding process stops as soon as R0(t) becomes zero.

Lemma 2: The random process {R̄(t)} is a Markov chain, and for any constant c ∈ (0, 1), as long as t ≤ cK

and R0(t) > 0, we have

E[Rd,r(t+ 1)−Rd,r(t)|R̄(t)] = (αd+1,rRd+1,r(t) + ᾱd+1,r+1Rd+1,r+1(t)−Rd,r(t))
d

K − t
, (d, r) ∈ F , (7)

and

E[R0(t+ 1)−R0(t)|R̄(t)] =

∑
r rαr+1,rRr+1,r(t)

K − t
− R0(t)

K − t
− 1 +O(1/K). (8)

Proof: Fix a time t ≥ 0. With an abuse of notation, we treat R̄(0), . . . , R̄(t) as instances in the proof, i.e., the

values of these random vectors are fixed. Let (U, V ) be the edge chosen to be removed at time t, where V is the

variable node and U is the check node, according to the random decoding algorithm described in Section III-A.

Note that V is uniformly distributed among all variable nodes and U must be a check node with degree equal to

the rank at time t.

Define indicator random variables ιd,r(i), i = 1, . . . ,
Rd,r(t)
d , where ιd,r(i) = 1 if the ith check node with

degree d and rank r becomes degree d − 1 and rank r at time t + 1. Define indicator random variables µd,r(i),

i = 1, . . . ,
Rd,r(t)
d , where µd,r(i) = 1 if the ith check node with degree d and rank r becomes degree d − 1 and

rank r − 1 at time t+ 1. The difference Rd,r(t+ 1)−Rd,r(t) can then be expressed as

Rd,r(t+ 1)−Rd,r(t)

=

Rd+1,r(t)/(d+1)∑
i=1

d · ιd+1,r(i) +

Rd+1,r+1(t)/(d+1)∑
i=1

d · µd+1,r+1(i)−
Rd,r(t)/d∑
i=1

d(ιd,r(i) + µd,r(i)). (9)

Let us look at the joint distribution of ιd,r(i), µd,r(i), (d, r) ∈ F̄ , 1 ≤ i ≤ Rd,r(t)
d . Let Ar(i) be the event that U

is the ith check node with degree r and rank r. Since (U, V ) is uniformly distributed among all edges with degree

equal to rank, we have that Ar(i) for all r and i are mutually exclusive and

Pr{Ar(i)} =
r

R0(t)
.

Define indicator random variable βd,r(i) with βd,r(i) = 1 if V is a neighbor of the ith check node with degree

d and rank r. Conditioning on Ar′(i′), by the construction of the random decoding graph, we know that βd,r(i),

(d, r) ∈ F̄ , i = 1, . . . ,
Rd,r(t)
d are independent and

Pr{βd,r(i) = 1|Ar′(i′)} =

 1 d = r = r′, i = i′,

d
K−t otherwise.

(10)
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Conditioning on βd,r(i), (d, r) ∈ F̄ , i = 1, . . . ,
Rd,r(t)
d , by the construction of the random decoding graph, we

know that (ιd,r(i), µd,r(i)), (d, r) ∈ F̄ , 1 ≤ i ≤ Rd,r(t)
d are independent and (ιd,r(i), µd,r(i)) only depends on

βd,r(i). Specifically, we have

Pr{ιd,r(i) = 0, µd,r(i) = 0|βd,r(i) = 0} = 1

since the degree of a check node will not change if V is not a neighbor,

Pr{ιd,r(i) = 1, µd,r(i) = 1|βd,r(i) = 1} = 0

since ιd,r(i) and µd,r(i) cannot both be 1,

Pr{ιd,r(i) = 1, µd,r(i) = 0|βd,r(i) = 1} = αd,r (11)

(cf. (6)), and

Pr{ιd,r(i) = 0, µd,r(i) = 1|βd,r(i) = 1} = ᾱd,r. (12)

By (9), R̄(t+ 1) is a deterministic function of R̄(t) and ιd,r(i), µd,r(i), (d, r) ∈ F̄ , i = 1, . . . ,
Rd,r(t)
d , where the

distribution of the latter part is determined by R̄(t) independent of R̄(t′), t′ < t. Thus, the random process {R̄(t)}

is a Markov chain.

Now we calculate the marginal distribution of ιd,r(i) and µd,r(i) for all (d, r) and i. When d 6= r, we have

Pr{ιd,r(i) = 1}

=
∑
a,b

∑
r′,i′

Pr{ιd,r(i) = 1, µd,r(i) = b|βd,r(i) = a}Pr{βd,r(i) = a|Ar′(i′)}Pr{Ar′(i′)}

=
∑
r′,i′

αd,r Pr{βd,r(i) = 1|Ar′(i′)}Pr{Ar′(i′)} (13)

=
∑
r′,i′

αd,r
d

K − t
Pr{Ar′(i′)} (14)

= αd,r
d

K − t
,

where (13) follows from (11), and (14) follows from (12) with d 6= r; and similarly

Pr{µd,r(i) = 1} = ᾱd,r
d

K − t
.

When d = r, we have

Pr{ιr,r(i) = 1}

=
∑
a,b

∑
r′,i′

Pr{ιr,r(i) = 1, µr,r(i) = b|βr,r(i) = a}Pr{βr,r(i) = a|Ar′(i′)}Pr{Ar′(i′)}

=
∑
r′,i′

αr,r Pr{βr,r(i) = 1|Ar′(i′)}Pr{Ar′(i′)} (15)

= 0, (16)
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where (15) follows from (11), and (16) follows from αr,r = 0 (cf. (6)); and

Pr{µr,r(i) = 1}

=
∑
a,b

∑
r′,i′

Pr{ιr,r(i) = b, µr,r(i) = 1|βr,r(i) = a}Pr{βr,r(i) = a|Ar′(i′)}Pr{Ar′(i′)}

=
∑
r′,i′

Pr{βr,r(i) = 1|Ar′(i′)}Pr{Ar′(i′)} (17)

= Pr{Ar(i)}+
∑
r′,i′

r

K − t
Pr{Ar′(i′)} −

r

K − t
Pr{Ar(i)} (18)

=
r

R0(t)
+

r

K − t
− r

R0(t)

r

K − t
,

where (17) follows from (12) and ᾱr,r = 1, and (18) follows from (10).

The expectation in (7) is obtained by taking expectation on (9). To verify (8), note that when d = r in (9),

ιr,r = 0 in the last term. Then we have

R0(t+ 1)−R0(t) =
∑
r

(Rr,r(t+ 1)−Rr,r(t))

=
∑
r

r

Rr+1,r(t)/(r+1)∑
i=1

ιr+1,r(i)−
∑
r

Rr,r(t)/r∑
i=1

µr,r(i). (19)

Taking expectation on (19), we have

E[R0(t+ 1)−R0(t)] =
∑
r

rαr+1,r
Rr+1,r(t)

K − t
−
∑
r

(
Rr,r(t)

R0(t)
+

(
1− r

R0(t)

)
Rr,r(t)

K − t

)
=
∑
r

rαr+1,r
Rr+1,r(t)

K − t
− R0(t)

K − t
− 1 +

∑
r

r

R0(t)

Rr,r(t)

K − t
.

The expectation in (8) is obtained by noting that
∑
r

r
R0(t)

Rr,r(t)
K−t < M2

K(1−c) since t ≤ cK by assumption.

C. Sufficient and Necessary Conditions

We care about when R0(t) goes to zero for the first time. The evolution of R0(t) depends on that of Rd,r(t),

(d, r) ∈ F . To study the trend of R0(t), the differential equation approach [29] leads us to consider the system of

differential equations

dρd,r(τ)

dτ
=
(
αd+1,rρd+1,r(τ) + ᾱd+1,r+1ρd+1,r+1(τ)

−ρd,r(τ)
) d

θ − τ
, (d, r) ∈ F , (20)

dρ0(τ)

dτ
=

∑D−1
r=1 rαr+1,rρr+1,r(τ)− ρ0(τ)

θ − τ
− 1 (21)

with initial values ρd,r(0) = ρd,r, (d, r) ∈ F , and ρ0(0) =
∑
r ρr,r, where θ = K/n is the design rate of the BATS

code.

We can get some intuition about how the system of differential equations is obtained by replacing Rd,r(t) and

R0(t) with nρd,r(t/n) and nρ0(t/n), respectively, in (7) and (8). Defining τ = t/n and letting n→∞, we obtain
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the system of differential equations in (20) and (21). The expectation is ignored because ρd,r(τ) and ρ0(τ) are

deterministic functions. Theorem 5 in Appendix IV makes the above intuition rigorous.

The system of differential equations in (20) and (21) is solved in Appendix V for 0 ≤ τ < θ. The solution of

(21) is

ρ0(τ) =
(

1− τ

θ

)( M∑
r=1

αr+1,r

D∑
d=r+1

ρ
(d−r−1)
d,r Id−r,r

(τ
θ

)
+

M∑
r=1

ρr,r + θ ln(1− τ/θ)

)
, (22)

where ρ(d−r−1)
d,r is defined by the recursive formula

ρ
(0)
d,r , ρd,r, (23)

ρ
(i+1)
d,r , αd−i,rρ

(i)
d,r + ᾱd−i,r+1ρ

(i)
d,r+1; (24)

and

Ia,b(x) ,
a+b−1∑
j=a

(
a+ b− 1

j

)
xj(1− x)a+b−1−j

is called the regularized incomplete beta function. For η̄ ∈ (0, 1), the following theorem shows that if ρ0(τ) > 0

for τ ∈ [0, η̄], then the decoding does not stop until t > η̄K with high probability, and Rd,r(t) and R0(t) can be

approximated by nρd,r(t/n) and nρ0(t/n), respectively.

Theorem 1: Consider a sequence of decoding graphs BATS(K,n,Ψ, h), n = 1, 2, . . . with fixed θ = K/n, and

the empirical rank distribution of transfer matrices (π0, . . . , πM ) satisfying

|πi − hi| = O(n−1/6), 0 ≤ i ≤M, (25)

with probability at least 1− γ(n), where γ(n) = o(1). For η̄ ∈ (0, 1),

(i) if ρ0(τ) > 0 for τ ∈ [0, η̄θ], then for sufficiently large K, with probability 1−O(n7/24 exp(−n1/8))− γ(n),

the decoding terminates with at least η̄K variable nodes decoded, and

|Rd,r(t)− nρd,r(t/n)| = O(n5/6), (d, r) ∈ F

|R0(t)− nρ0(t/n)| = O(n5/6)

uniformly for t ∈ [0, η̄K];

(ii) if ρ0(τ) < 0 for some τ ∈ [0, η̄θ], then for sufficiently large K, with probability 1−O(n7/24 exp(−n1/8))−

γ(n), the decoding terminates before η̄K variable nodes are decoded.

Proof: See Appendix IV.

IV. OPTIMIZATION OF DEGREE DISTRIBUTION

Theorem 1 gives a sufficient and a necessary condition such that the BP decoding succeeds with high probability.

These conditions induce an optimization problem that generates a degree distribution that meets our requirement

in Section II-C.
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A. Optimization

We first define some new notations to help the formulation of the optimization of the degree distribution. Let

h∗r , αr+1,rhr+1,r. (26)

Since hr+1,r is a linear function of h (ref. (3)), h∗r is also a linear function of h. Define

Ω(x;h,Ψ) ,
M∑
r=1

h∗r

D∑
d=r+1

dΨd Id−r,r(x) +

M∑
r=1

hr,rrΨr. (27)

When the context is clear, we also write Ω(x; Ψ), Ω(x;h) or Ω(x) to simplify the notation. The expression of ρ0

in (22) can be simplified as follows.

Lemma 3: ρ0(τ) = (1− τ/θ) (Ω(τ/θ) + θ ln(1− τ/θ)).

Proof: Define

h
(0)
d,r , hd,r, 1 ≤ r ≤M, r ≤ d ≤ D. (28)

For d > r and 0 ≤ i ≤ d− r − 1, define

h
(i+1)
d,r , αd−i,rh

(i)
d,r + ᾱd−i,r+1h

(i)
d,r+1. (29)

By Lemma 4 in Appendix II-A, h(d−r−1)
d,r = hr+1,r. By the definitions in (4), (23) and (28), we have ρ(0)

d,r = dΨdh
(0)
d,r.

Since the recursive formulas in (24) and (29) are the same, we have for i = 1, . . . , d− r − 1,

ρ
(i)
d,r = dΨdh

(i)
d,r.

Substitute ρ(d−r−1)
d,r = dΨdh

(d−r−1)
d,r = dΨdhr+1,r in (22). Last, using the definition of h∗r in (26), we obtain the

formula in the lemma.

For η̄ ∈ (0, 1), we say a rate θ is η̄-achievable by BATS codes if for every ε > 0 and every sufficiently large K

there exists a BATS code with K input packets such that for n ≤ K/θ received batches, the BP decoding recovers

at least η̄K input packets with probability at least 1− ε. Define an optimization problem

max θ (30a)

s.t. Ω(x) + θ ln(1− x) ≥ 0, 0 ≤ x ≤ η̄, (30b)∑
d

Ψd = 1 and Ψd ≥ 0, d = 1, · · · , D. (30c)

Let θ̂ be the optimal value in (30).

Proposition 1: When the empirical rank distribution of the transfer matrices converges to h = (h0, . . . , hM ) (in

the sense of (25)), for any ε > 0, the rate θ̂ − ε is η̄-achievable by BATS codes.

Proof: To show that θ̂− ε is η̄-achievable, by Theorem 1 and Lemma 3, we only need to show that there exists

a degree distribution such that

Ω(x) + (θ̂ − ε) ln(1− x) > 0, 0 ≤ x ≤ η̄. (31)
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For the degree distribution Ψ that achieves θ̂, we have from (30b)

Ω(x; Ψ) + θ̂ ln(1− x) ≥ 0, 0 ≤ x ≤ η̄.

Multiplying by θ̂−ε
θ̂

, we have

θ̂ − ε
θ̂

Ω(x; Ψ) + (θ̂ − ε) ln(1− x) ≥ 0, 0 ≤ x ≤ η̄. (32)

Since Ω(x; Ψ) > 0 for x > 0, (32) implies that Ψ satisfies (31) except possibly for x = 0. Checking the definition

of Ω in (27), we have Ω(0; Ψ) =
∑M
r=1 hr,rrΨr. If

∑M
r=1 hr,rrΨr > 0, which implies Ψ satisfies (31), we are

done. In the following, we consider
∑M
r=1 hr,rrΨr = 0.

Let r∗ be the largest integer r such that hr > 0. We can characterize that hr,r = 0 for r > r∗ and hr,r > 0 for

r ≤ r∗ (cf. (3) and (45) in Appendix II-A). Since
∑M
r=1 hr,rrΨr = 0, we know that

∑
d≤r∗ Ψd = 0. Define a new

degree distribution Ψ′ by Ψ′d = Ψd
θ̂−ε
θ̂

for d > r∗ and Ψ′d = ∆ for d ≤ r∗, where ∆ > 0 can be determined by

the constraint
∑
d Ψ′d = 1. The formulation of Ω in (27) can be rewritten as

Ω(x; Ψ) =

D∑
d=1

Ψdfd(x)

for certain functions fd(x), d = 1, . . . , D not related to Ψ. Using the above formulation, we have for 0 ≤ x ≤ η̄,

Ω(x,Ψ′)− θ̂ − ε
θ̂

Ω(x; Ψ) =

r∗∑
d=1

Ψ′dfd(x) +

D∑
d=r∗+1

θ̂ − ε
θ̂

Ψdfd(x)− θ̂ − ε
θ̂

D∑
d=r∗+1

Ψdfd(x)

=

r∗∑
d=1

∆fd(x)

≥ ∆

r∗∑
d=1

dhd,d (33)

> 0,

where (33) follows from fd(x) ≥ dhd,d. By (32), Ψ′ satisfies (31).

For many cases, we can directly use the degree distribution Ψ obtained by solving (30). But when Ω(0; Ψ) = 0,

by Lemma 3, ρ0(0) =
∑
r ρr,r = 0, and hence Ψd = 0, d ≤ M (cf. (4)). Thus, Ψ does not guarantee that the

decoding can start. We can then modify Ψ as we do in the proof of Proposition 1 by increasing the probability

masses Ψd, d ≤M a little bit to make sure that the decoding can start.

The maximum degree D in (30c) affects the encoding/decoding complexity. In Section III-A, we have assumed

that D = O(M). The next theorem shows that it is optimal to choose D ≤ dM/ηe − 1, where η = 1− η̄.

Theorem 2: Using D > dM/ηe − 1 does not give a better optimal value in (30), where η = 1− η̄.

Proof: Consider an integer ∆ such that η ≥ M
∆+1 . Let Ψ be a degree distribution with

∑
d>∆ Ψd > 0. Construct

a new degree distribution Ψ̃ as follows:

Ψ̃d = Ψd, d < ∆,

Ψ̃∆ =
∑
d≥∆

Ψd,
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and

Ψ̃d = 0, d > ∆.

We can show that Ω(x; Ψ̃) > Ω(x; Ψ) for all 0 < x ≤ 1− η. Write

Ω(x; Ψ̃)− Ω(x; Ψ)

=

∞∑
d=∆+1

Ψd

M∑
r=1

h∗r(∆ I∆−r,r(x)− d Id−r,r(x))

For d ≥ ∆ + 1,

r − 1

d− r
≤ M − 1

d−M
<

M

∆−M + 1
≤ η

1− η
.

So we can apply Lemma 8 in Appendix II-B to show that, for 0 < x ≤ 1− η,

d Id−r,r(x)

(d− 1) Id−1−r,r(x)
<

d

d− 1

(
1− η

r

)
≤ d

d− 1

(
1− η

M

)
≤ ∆ + 1

∆

(
1− 1

∆ + 1

)
= 1,

which gives Ω(x; Ψ̃) > Ω(x; Ψ) for 0 < x ≤ 1− η.

Thus, for certain θ such that

Ω(x; Ψ) + θ ln(1− x) ≥ 0, 0 ≤ x ≤ 1− η,

we have

Ω(x; Ψ̃) + θ ln(1− x) ≥ 0, 0 ≤ x ≤ 1− η.

This means that Ψ̃ is potentially better than Ψ. So we do not need to consider a degree distribution Ψ with∑
d>∆ Ψd > 0. Thus, it is sufficient to take the maximum degree D ≤ minη≥ M

∆+1
∆ = dM/ηe − 1.

The converse of Proposition 1 is that “a rate larger than θ̂ is not η̄-achievable”. Intuitively, for any ε > 0, we

cannot have a degree distribution such that

Ω(x) + (θ̂ + ε) ln(1− x) ≥ 0, 0 ≤ x ≤ η̄,

since otherwise, θ̂ is not the optimal value in (30). Thus, for any degree distribution, Ω(x) + (θ̂+ ε) ln(1− x) < 0

for some x ∈ [0, η̄]. Taking θ̂ + ε in place of θ in Lemma 3, for any degree distribution, ρ0(τ) < 0 for some

τ ∈ [0, η̄(θ̂+ ε)]. Hence, we can apply the second part of Theorem 1 to show that θ̂+ ε is not η̄-achievable for any

degree distribution, since for any degree distribution there exists K0 such that when the number of input packets

K ≥ K0, with probability approaching 1 the BATS code cannot recover η̄K input packets. To rigorously prove this

converse, however, we need a uniform bound K0 for all degree distributions such that the second part of Theorem 1

holds, which is very tedious if not impossible. Instead of taking this approach, we demonstrate in the rest of the

section that θ̂ is close to the capacity of the underlying LOC (cf. Section II-B and Appendix I).
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B. Upper Bounds on the Achievable Rates

The first upper bound on the optimal value θ̂ of (30) is given by the capacity of LOCs. When the empirical rank

distribution of the transfer matrices converging to h = (h0, . . . , hM ), the capacity of a LOC, in terms of packets

per use, is E[h] =
∑
r rhr (see Appendix I). The BP decoding algorithm recovers at least a fraction of η̄ of all

the input packets with high probability. So asymptotically BATS codes under BP decoding can recover at least η̄θ̂

fraction of the input packets. Thus, we have η̄θ̂ ≤ E[h].

A tighter upper bound can be obtained by analyzing (30) directly. Using Lemma 5 in Appendix II-A, rewrite

Ω(x; Ψ) =

M∑
r=1

h∗r

D∑
d=r+1

dΨd Id−r,r(x) +

M∑
r=1

h∗r

r∑
d=1

dΨd,

=

M∑
r=1

h∗rSr(x; Ψ), (34)

where

Sr(x; Ψ) = Sr(x) ,
D∑

d=r+1

dΨd Id−r,r(x) +

r∑
d=1

dΨd. (35)

This form of Ω(x; Ψ) will be used in subsequent proofs.

Theorem 3: The optimal value θ̂ of (30) satisfies

η̄θ̂ ≤
M∑
r=1

rh∗r ,

where h∗r is defined in (26).

Note that by Lemma 6 in Appendix II-A, we have
∑
r rh

∗
r ≤

∑
r rhr, i.e., Theorem 3 gives a strictly better

upper bound than E[h]. When q → ∞,
∑
r rh

∗
r →

∑
r rhr (cf. (56) in Appendix II-A). So when the field size is

large, these two upper bounds are very close.

Proof: Using (58) in Appendix II-B, we have∫ 1

0

Sr(x)dx =

D∑
d=r+1

dΨd

∫ 1

0

Id−r,r(x)dx+

r∑
d=1

dΨd

=

D∑
d=r+1

rΨd +

r∑
d=1

dΨd

≤ r
D∑
d=1

Ψd

= r.

Hence, ∫ 1

0

Ω(x)dx =

∫ 1

0

M∑
r=1

h∗rSr(x)dx ≤
M∑
r=1

rh∗r . (36)

Since Ω(x) is an increasing function and the inequality in (30b) holds for x = 1− η = η̄,∫ 1

1−η
Ω(x)dx ≥ ηΩ(1− η) ≥ −ηθ̂ ln η. (37)
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Since Ω(x) + θ̂ ln(1− x) ≥ 0 for 0 < x ≤ 1− η,∫ 1−η

0

Ω(x)dx− θ̂(η ln η + 1− η)

=

∫ 1−η

0

Ω(x)dx+ θ̂

∫ 1−η

0

ln(1− x)dx

≥ 0. (38)

Therefore, by (36)-(38), we have
M∑
r=1

rh∗r ≥
∫ 1

0

Ω(x)dx

=

∫ 1−η

0

Ω(x)dx+

∫ 1

1−η
Ω(x)dx

≥ θ̂(η ln η + 1− η)− ηθ̂ ln η

= θ̂(1− η).

C. Lower Bound on the Achievable Rates

We prove for a special case and demonstrate by simulation for general cases that the optimal value θ̂ of (30) is

very close to
∑
r rh

∗
r .

Theorem 4: The optimal value θ̂ of (30) satisfies

θ̂ ≥ max
r=1,2,··· ,M

r

M∑
i=r

h∗i .

Before proving Theorem 4, we first explain why Theorem 3 and Theorem 4 together demonstrate that θ̂ is close

to the capacity of the underlying LOC for a special case. Consider the case with hκ = 1 for some 1 ≤ κ ≤ M .

Theorem 4 implies that θ̂ ≥ κh∗κ. On the other hand, Theorem 3 says that (1− η)θ̂ ≤
∑
r rh

∗
r = κh∗κ +

∑
r<κ rh

∗
r

(cf. (56) in Appendix II-A). Note that η can be arbitrarily small, and
∑
r<κ rh

∗
r → 0 and h∗κ → hκ when the field

size goes to infinity (again cf. (56)). Thus, the upper bound in Theorem 3 and the lower bound in Theorem 4 match

E[h] = κhκ asymptotically when hκ = 1 for some 1 ≤ κ ≤M .

Proof: Define degree distribution Ψr as

Ψr
d =


0 d ≤ r,

r
d(d−1) d = r + 1, · · · , D − 1,

r
D−1 d = D.

(39)

Recall the definition of Sr(x; Ψ) in (35). For M ≥ r′ ≥ r, we will show that

Sr′(x; Ψr) + r ln(1− x) > 0, 0 ≤ x ≤ 1− η. (40)

By Lemma 9 in Appendix II-B,

−r ln(1− x) = r

∞∑
d=r′+1

1

d− 1
Id−r′,r′(x).
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By (35) and (39),

Sr′(x; Ψr) + r ln(1− x) ≥
D∑

d=r′+1

dΨr
d Id−r′,r′(x)− r

∞∑
d=r′+1

1

d− 1
Id−r′,r′(x)

≥ r D

D − 1
ID−r′,r′(x)− r

∞∑
d=D

1

d− 1
Id−r′,r′(x)

= r ID−r′,r′(x)− r
∞∑

d=D+1

1

d− 1
Id−r′,r′(x).

We will show that ID−r′,r′(x) >
∑∞
d=D+1

1
d−1 Id−r′,r′(x) for x ∈ [0, 1− η]. This is equivalent to show that

∞∑
d=D+1

1

d− 1

Id−r′,r′(x)

ID−r′,r′(x)
< 1 for x ∈ [0, 1− η]. (41)

By Lemma 7 in Appendix II-B, Id−r′,r′ (x)

ID−r′,r′ (x) is monotonically increasing, so we only need to prove the above

inequality for x = 1− η. By Lemma 8 in Appendix II-B, Id−r′,r′ (1−η)

ID−r′,r′ (1−η) < (1− η
M )d−D. Therefore,

∞∑
d=D+1

1

d− 1

Id−r′,r′(x)

ID−r′,r′(x)
≤ 1

D

∞∑
d=D+1

Id−r′,r′(1− η)

ID−r′,r′(1− η)

<
1

D

∞∑
d=D+1

(1− η

M
)d−D

=
M − η
Dη

≤ 1,

where the last inequality follows from D = dM/ηe − 1. So we have established (41) and hence (40).

Last, by (34) and (40), we have for 0 ≤ x ≤ 1− η,

Ω(x; Ψr) ≥
∑
r′≥r

h∗r′Sr′(x; Ψr)

> − ln(1− x)r
∑
r′≥r

h∗r′ ,

or

Ω(x; Ψr) +

r∑
r′≥r

h∗r′

 ln(1− x) > 0. (42)

Comparing (42) and (30b), we conclude that θ̂ ≥ r
∑
r′≥r h

∗
r′ . The proof is completed by considering all r =

1, 2, · · · ,M .

D. Numerical Results

To see the achievable rates for the general cases, we numerically solve (30) by taking discrete values of x. Let

xi = (1−η) iN for some integer N . We relax (30b) by considering only x = xi, i = 1, . . . , N . Let θ̃ be the optimal

value of (30) with this relaxation. Numerical results show that when N is large, θ̃ becomes small. When N is

reasonably large, e.g., 100, the optimal value becomes stable.
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Fig. 6. The empirical cumulative distribution function (CDF) of λ , (
∑M

r=1 rh
∗
r − (1 − η)θ̃)/

∑M
r=1 rh

∗
r for 10000 rank distributions

uniformly at random chosen. Here q = 28 and M = 16.

Set M = 16, q = 28 and η = 0.01. A rank distribution (h0, h1, . . . , hM ) is generated as follows: First, for

i = 0, . . . ,M , hi is independently and uniformly chosen between zero and one; Second, normalize the rank

distribution such that
∑
i hi = 1. We compute θ̃ for 10000 rank distributions independently generated and compare

(1− η)θ̃ with
∑
r rh

∗
r by computing λ , (

∑
r rh

∗
r − (1− η)θ̃)/

∑
r rh

∗
r . The results show that for more than 99%

of the rank distributions, λ is smaller than 0.02, and among all the samples the largest λ is 0.0352. Note that for

these parameters, the difference
∑
r rhr−

∑
r rh

∗
r is of the order 10−3, so the upper bound in Theorem 3 is indeed

very close to the capacity. The empirical cumulative distribution function of λ is drawn in Fig. 6.

V. AN EXAMPLE OF BATS CODES

We apply BATS codes in the network in Fig. 1. The source node s performs BATS code encoding. In each time

slot, node s sends a packet to node a. Assume transmission is instantaneous and node a receives the packet, if not

erased, at the same time slot. No matter whether certain packets are received or not, node a transmits at each time

slot a linear combination of the packets it has received so far. After M time slots, node s switches to another batch

and node a clears its buffer for the last batch. These operations of the network minimize the transmission delay

and are asymptotically optimal when M goes to infinity.

The operation at node a for a batch is given by a random matrix Φ, an M×M upper unitriangular1 matrix with all

the upper triangular, off-diagonal entries being independent and uniformly distributed. Let E be an M ×M random

diagonal matrix with independent components. A diagonal component of E is 0 with probability 0.2 and is 1 with

1A unitriangular matrix has unit entries on the main diagonal. The intermediate operation modelled by a unitriangular matrix becomes

forwarding when M = 1.
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TABLE I

DEGREE DISTRIBUTIONS FOR M = 16, q = 2, 4, 8, 16, RESPECTIVE. HERE ONLY THE DOMINANT PROBABILITY MASSES ARE LISTED. THE

SUMMATION OF ALL OTHER PROBABILITY MASSES ARE LESS THAN 0.001.

Ψ q = 2 q = 4 q = 8 q = 16

Ψ13 0.1500

Ψ14 0.3262 0.2691 0.1850 0.1593

Ψ15 0.1225 0.1903 0.2105

Ψ20 0.0020

Ψ21 0.0491 0.2081 0.2078 0.2055

Ψ22 0.1546

Ψ28 0.0019

Ψ29 0.0996 0.1172 0.1227

Ψ30 0.0019

Ψ31 0.0310

Ψ32 0.0848

Ψ35 0.0854

Ψ36 0.0155

Ψ37 0.0732 0.0437

Ψ38 0.0481

Ψ46 0.0986

Ψ51 0.0936

Ψ52 0.0168

Ψ53 0.1073 0.0015

Ψ54 0.1031

Ψ81 0.1058

Ψ91 0.1040

Ψ94 0.1026

Ψ95 0.1017

probability 0.8. The matrix E models the erasures in a link. The transfer matrix of the network is H = E1ΦE2,

where E1, Φ and E2 are independent, and E1 and E2 follow the same distribution of E.

The rank distribution of H is approximated by the empirical distribution obtained using 105 independent samples

of H . Using the (empirical) rank distribution, a degree distribution is obtained by solving (30) by taking discrete

values of x. Table I lists some degree distributions for different parameters by setting η = 0.08.

BATS codes are rateless, i.e., the coding rate is not fixed. To see the performance of a BATS code, we use the

average coding rate defined as follows. Consider that the source node encodes K packets using a BATS code, and

the decoder stops after recovering η̄K packets. Here we assume that a precode is used to first encode the original

message into K packets and any η̄K out of these K packets are sufficient to recover the message by decoding the

precode (cf. Section II-D). Repeat the above simulation J times and let nj be the number of batches used when

the decoder stops in the jth simulation. The average coding rate of the BATS code is defined as η̄KJ/(M
∑
j nj),

where the rate is normalized by M for the sake of comparison of different value of M . In the following, we will
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TABLE II

AVERAGE CODING RATES FOR M = 16.

K q = 2 q = 4 q = 8 q = 16

16000 0.5466 0.6208 0.6384 0.6484

32000 0.5589 0.6377 0.6563 0.6636

64000 0.5671 0.6484 0.6670 0.6755

Capacity 0.6948 0.7074 0.7115 0.7125

TABLE III

AVERAGE CODING RATES FOR M = 32.

K q = 2 q = 4 q = 8 q = 16

16000 0.5826 0.6145 0.6203 0.6248

32000 0.6087 0.6441 0.6524 0.6574

64000 0.6259 0.6655 0.6762 0.6818

Capacity 0.7178 0.7292 0.7325 0.7334

compare the average coding rates for different parameters, where the average coding rates are maximized over η̄.

The first thing we want to show is that BATS codes outperform fountain codes. We know that when M = 1,

BATS codes become Raptor codes and the intermediate operation T becomes forwarding. BATS codes can achieve

rates exceeding 0.64 (see the rates in bold letters in Table II and III), the routing capacity, which serves as an upper

bound on the maximum achievable rate for Raptor codes.

The capacity of the LOC formed by the network operation (normalized by M ) is E[rk(H)]/M , which takes

the field size q and the batch size M as parameters. The rows labeled by Capacity in Table II and III show the

numerical values of E[rk(H)]/M . The simulation results demonstrate that for fixed q and M , when K becomes

larger, the achievable rate approaches the capacity. For any fixed q, it is not difficult to show that

E[rk(H)]

M
→ 0.8, M →∞.

So when M is large, BATS codes can potentially achieve higher rates. Our simulation results also illustrate this

trend. We observe that when M becomes larger, capacity values are generally higher when the field sizes are the

same.

Another trend we observe is that using large q also increases the rates. A closer look at the simulations further

reveals that the gain by increasing q becomes smaller when q is large. For example, when M = 16 and K = 32000,

increasing q from 2 to 4 gains 5.82% in the rate, but increasing q from 4 to 8 gains only 1.29%.

VI. CONCLUDING REMARKS

Benefiting from network coding and the properties of fountain codes, BATS codes are ideal for transmitting files

through communication networks. Besides low encoding/decoding complexity, BATS codes can be realized with
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constant computation and storage complexity at the intermediate nodes. This desirable property makes BATS code

a suitable candidate for the making of universal network coding based network devices that can potentially replace

routers.

In this paper, we mainly discussed the design of BATS codes for one destination node. Given a rank distribution,

we can design BATS codes that can achieve nearly optimal rates when the empirical distribution of the transfer

matrix rank converges to rank distribution. For more practical applications, we need to consider BATS codes for

multiple destination nodes which may have different empirical distributions of the transfer matrix ranks and to

design BATS codes for unknown empirical distribution of the transfer matrix ranks. The sufficient condition of the

degree distribution for successful decoding (Theorem 1) can be readily applied for multiple rank distributions. We

leave the discussion of designing BATS codes for these scenarios to future works.
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APPENDIX I

LINEAR OPERATOR CHANNELS

The network operation given by the linear network coding on batches described in Section II-B can be modelled

by a linear operator channel (LOC) over finite fields. Let Xi be a T ×M random matrix representing the ith input,

let Yi be a T -row random matrix representing the output of the network for the ith use, and let Hi be an M -row

random matrix representing the network operation. A LOC with input Xi, i = 1, 2, . . ., and output Yi, i = 1, 2, . . .,

is given by

Yi = XiHi.

We assume that the instances of Hi are unknown at the transmitter but known at the receiver. The number of

columns of Hi is arbitrary but finite.

Let Xn = (X1, . . . , Xn). Y n and Hn are defined similarly. We assume that Xn and Hn are independent for

all n. When Hi, i = 1, 2, . . . are independent and follow the same but arbitrary distribution of a random matrix

H , the LOC is a discrete memoryless channel (DMC) and its capacity is E[rk(H)] packet per use (see [28], [32]).

Here we show that the capacity of the LOC can be similarly characterized when the transfer matrices change in an

arbitrary way defined as follows.

Let

πk ,
|{i : 1 ≤ i ≤ n, rk(Hi) = k}|

n
.

Note that πk depends on n. Let (h0, . . . , hM ) be a probability vector. We assume that the convergence of the matrix

ranks satisfies

Pr{|πk − ζk| ≤ σ(n), k = 0, . . . ,M} ≥ 1− ψ(n), (43)
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where σ(n) = o(1) and ψ = o(1). In other words, the empirical rank distribution of Hn converges to (h0, . . . , hM )

as n goes to infinity. Note that the above assumption on the convergence of {πk} is valid when {Hi} are i.i.d. and

rk(Hi) follows the distribution h. Further, we assume that Xn and Hn are statistically independent for all n.

An LOC described above is an arbitrarily varying channel (AVC) with convergent state constraints (refer to [33,

Chapter 6] and [34] for more information about AVCs). Here we are concerned about the capacity of the LOC for

average error probability and randomized codes. For a randomized code, the encoder and the decoder can share a

common randomness which is independent of the channel states. Randomized codes can potentially achieve higher

rates than deterministic codes. Based on the results of the capacity of AVCs with state constraints [35], the capacity

of AVCs with convergent state constraints can be obtained [36]. As a special case, the capacity of the LOC with

constraint (43) is
∑M
k=1 khk packet per use.

APPENDIX II

SOME LEMMAS

A. Rank of a Random Matrix

All matrices discussed here are over the finite field with q elements. Define

ζmr ,

 (1− q−m)(1− q−m+1) · · · (1− q−m+r−1) r > 0,

1 r = 0.

For 1 ≤ r ≤ m, we can count as follows (see also [37], [38]) that the number of full rank r ×M matrices is

qrmζmr = (qm − 1)(qm − q) · · · (qm − qr−1). (44)

A full rank m × r matrix can be obtained by picking its r columns from Fm one by one. The first column has

qm − 1 choices, and the ith column, 1 < i ≤ r, cannot be picked in the subspaces spanned by the first i − 1

columns, and hence has qm − qi−1 choices. So (44) is the number of full rank r ×M matrices. We say a matrix

is totally random if all its components are uniformly i.i.d. By the above counting problem, the probability that an

r ×m totally random matrix is full rank is exactly ζmr .

Let Gd be a totally random matrix with d rows and M columns, and let H be an arbitrary random matrix with

M rows. We show in the following that that for i ≤M and r ≤ min{d, i},

Pr{rk(GdH) = r| rk(H) = i} =
ζdr ζ

i
r

ζrr q
(d−r)(i−r) , ζd,ir . (45)

Let H be any instance of H with rank i. The d rows of GdH are i.i.d. and are uniformly distributed among

the i-dimensional vector space spanned by the rows of H. Thus, the probability of rk(GdH) = r is equal to the

probability of a totally random d × i matrix being rank r. The latter is the ratio of the number of d × i matrices

with rank r, which is qdrζdr q
irζir/(q

rrζrr ) (see [37], [39]). Thus,

Pr{rk(GdH) = r} =
qdrζdr q

irζir/(q
rrζrr )

qdi

=
ζdr ζ

i
r

ζrr q
(d−r)(i−r) .
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Noting that the above probability is only related to the rank of H, the verification of (45) is completed.

Let hi = prk(H)(i). Using (45), we have for r ≤ min{d,M},

Pr{rk(GdH) = r} =

M∑
i=r

Pr{rk(GdH) = r| rk(H) = i}prk(H)(i)

=

M∑
i=r

ζd,ir hi. (46)

This gives another meaning of hd,r defined in (3), i.e.,

hd,r = Pr{rk(GdH) = r}. (47)

Let g be a row of Gd and let G′d be the submatrix of Gd without the row g. We see that αd,r define in (6) is

given by the conditional probability

αd,r = Pr{rk(G′dH) = r| rk(GdH) = r}. (48)

Clearly, αr,r = 0. When d > r,

αd,r =
Pr{rk(G′dH) = r, rk(GdH) = r}

Pr{rk(GdH) = r}

=

∑
i Pr{rk(G′dH) = r, rk(GdH) = r| rk(H) = i}hi

Pr{rk(GdH) = r}

=

∑
i ζ
d−1,i
r qr−ihi

Pr{rk(GdH) = r}
(49)

=

1−q−d+r

1−q−d

∑
i ζ
d,i
r hi

Pr{rk(GdH) = r}

=
1− q−d+r

1− q−d
, (50)

where (49) follows from

Pr{rk(G′dH) = r, rk(GdH) = r| rk(H) = i}

= Pr{rk(G′dH) = r| rk(H) = i}Pr{rk(GdH) = r| rk(H) = i, rk(G′dH) = r}

= ζd−1,i
r Pr{gH ∈ 〈G′dH〉| rk(H) = i, rk(G′dH) = r}

= ζd−1,i
r qr−i, (51)

and (50) follows from (46).

As define in (28) and (29), for 1 ≤ r ≤M and r ≤ d ≤ D,

h
(0)
d,r = hd,r,

and for 0 ≤ i ≤ d− r − 1 and d > r,

h
(i+1)
d,r = αd−i,rh

(i)
d,r + ᾱd−i,r+1h

(i)
d,r+1.

Lemma 4: h(i)
d,r = hd−i,r for d > r and 1 ≤ i ≤ d− r.
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Proof: First we show that h(1)
d,r = hd−1,r for d > r. Let R = rk(GdH) and R′ = rk(G′dH). We have

h
(1)
d,r = αd,rhd,r + ᾱd,r+1hd,r+1

= Pr{R′ = r|R = r}Pr{R = r}+ Pr{R′ = r|R = r + 1}Pr{R = r + 1} (52)

= Pr{R′ = r,R = r}+ Pr{R′ = r,R = r + 1}

= Pr{R′ = r,R ∈ {r, r + 1}}

= Pr{R′ = r}Pr{R ∈ {r, r + 1}|R′ = r}

= Pr{R′ = r} (53)

= hd−1,r, (54)

where (52) and (54) follow from (47) and (48); (53) follows because rk(GdH) must be either r or r+ 1 under the

condition that rk(G′dH) = r.

The general case of the Lemma is proved by induction. Assume h(i)
d,r = hd−i,r for d > r and i < d− r. Then

h
(i+1)
d,r = αd−i,rh

(i)
d,r + ᾱd−i,r+1h

(i)
d,r+1

= αd−i,rhd−i,r + ᾱd−i,r+1hd−i,r+1

= h
(1)
d−i,r

= hd−i−1,r,

completing the proof.

By (47) and (48), h∗r defined in (26) can be written as

h∗r = Pr{rk(G′r+1H) = r, rk(Gr+1H) = r}. (55)

Lemma 5:
M∑
k=r

h∗k = hr,r.

Proof: By (51) and (55),

h∗r =
∑
i

Pr{rk(G′r+1H) = r, rk(Gr+1H) = r| rk(H) = i}prk(H)(i) =

M∑
i=r

ζir
qi−r

hi. (56)

Therefore,
M∑
k=r

h∗k =

M∑
k=r

M∑
i=k

ζik
q(i−k)

hi

=

M∑
i=r

hi

i∑
k=r

ζik
q(i−k)

=

M∑
i=r

hiζ
i
r = hr,r.
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Lemma 6:
∑
r rh

∗
r ≤

∑
r rhr.

Proof: By Lemma 5,
∑M
k=r h

∗
k = hr,r =

∑M
i=r hiζ

i
r ≤

∑M
k=r hk, where the last inequality follows from

ζir < 1. Hence, ∑
r

rh∗r =

M∑
r=1

M∑
k=r

h∗k

≤
M∑
r=1

M∑
k=r

hk

=
∑
r

rhr.

B. Incomplete Beta Function

Beta function with integer parameters is used extensively in this work. Related results are summarized here. For

positive integer a and b, the beta function is defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
(a− 1)!(b− 1)!

(a+ b− 1)!
.

The (regularized) incomplete beta function is defined as

Ia,b(x) =

∫ x
0
ta−1(1− t)b−1dt

B(a, b)
(57)

=

a+b−1∑
j=a

(
a+ b− 1

j

)
xj(1− x)a+b−1−j .

For more general discussion of beta functions, as well as incomplete beta functions, please refer to [40].

Using the above definitions, we can easily show that∫ 1

0

Ia,b(x)dx =
b

a+ b
, (58)

and

Ia+1,b(x) = Ia,b(x)− xa(1− x)b

aB(a, b)
. (59)

Lemma 7: Ia+1,b(x)
Ia,b(x) is monotonically increasing in x.

Proof: By (59),

Ia+1,b(x)

Ia,b(x)
= 1− xa(1− x)b

aB(a, b) Ia,b(x)

= 1− 1

aB(a, b)
∑a+b−1
j=a

(
a+b−1
j

)
xj−a(1− x)a−1−j

= 1− 1

aB(a, b)
∑b−1
j=0

(
a+b−1
j+a

)
xj(1− x)−1−j

,

in which xj(1− x)−1−j is monotonically increasing.
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Lemma 8: When b−1
a+1 ≤

η
1−η where 0 < η < 1, Ia+1,b(x)

Ia,b(x) ≤ 1− η
b for 0 < x ≤ 1− η with equality when b = 1

and x = 1− η.

Proof: Since Ia+1,b(x)
Ia,b(x) is monotonically increasing in x (cf. Lemma 7), it is sufficient to show Ia+1,b(1−η)

Ia,b(1−η) ≤

1− η
b . Since a+ 1 ≥ (b− 1) 1−η

η ,

Ia,b(1− η) =

a+b−1∑
j=a

(
a+ b− 1

j

)
(1− η)jηa+b−1−j

≤ b
(
a+ b− 1

a

)
(1− η)aηb−1,

where the equality holds for b = 1. Thus,

Ia+1,b(1− η)

Ia,b(1− η)
= 1− (1− η)aηb

aB(a, b) Ia,b(1− η)

≤ 1− (1− η)aηb

abB(a, b)
(
a+b−1
a

)
(1− η)aηb−1

= 1− η

b
.

We will use the following result about the summation of binomial coefficients:
n∑
j=0

(−1)j−n
(
j +m

n

)(
n

j

)
= 1, m ≥ n. (60)

The above equality can be verified as follows
n∑
j=0

(−1)j−n
(
j +m

n

)(
n

j

)
=

n∑
j=0

(−1)j−n
(

j +m

j +m− n

)(
n

j

)

=

n∑
j=0

(−1)j−n(−1)j+m−n
(
−j −m+ j +m− n− 1

j +m− n

)(
n

j

)
(61)

=

n∑
j=0

(−1)m
(
−n− 1

j +m− n

)(
n

n− j

)

= (−1)m
(
−1

m

)
(62)

= 1, (63)

where (62) follows from Vandermonde’s identity; (61) and (63) use the relation between binomial coefficients with

negative integers and positive integers.

Lemma 9: For r ≥ 1,
∞∑

d=r+1

1

d− 1
Id−r,r(x) = − ln(1− x), x ∈ [0, 1).

Proof: As a special case, when r = 1, the equality becomes
∞∑
d=2

xd−1

d− 1
= − ln(1− x), (64)

which is the Taylor expansion of − ln(1− x) for x ∈ [0, 1).
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To prove the general case, let us first derive an alternative form of Id−r,r(x). For a > 0,

Ia,b(x) =

a+b−1∑
j=a

(
a+ b− 1

j

)
xj

a+b−1−j∑
i=0

(−1)i
(
a+ b− 1− j

i

)
xi

=

a+b−1∑
m=a

xm
m∑
j=a

(
a+ b− 1

j

)
(−1)m−j

(
a+ b− 1− j

m− j

)

=

a+b−1∑
m=a

(−x)m
(
a+ b− 1

m

) m∑
j=a

(
m

j

)
(−1)j

=

a+b−1∑
m=a

(−x)m
(
a+ b− 1

m

)(
m− 1

a− 1

)
(−1)a

= b

(
a+ b− 1

b

)
(−1)a

a+b−1∑
m=a

(−x)m

m

(
b− 1

m− a

)
.

Using this form for Id−r,r(x), we have
∞∑

d=r+1

1

d− 1
Id−r,r(x) =

∞∑
d=r+1

r

d− 1

(
d− 1

r

) d−1∑
m=d−r

(
r − 1

m− d+ r

)
(−1)m−d+r x

m

m

=

∞∑
m=1

xm

m

m+r∑
d=max{m,r}+1

r

d− 1

(
d− 1

r

)(
r − 1

m− d+ r

)
(−1)m−d+r

=

∞∑
m=1

xm

m
Am, (65)

where

Am ,
m+r∑

d=max{m,r}+1

r

d− 1

(
d− 1

r

)(
r − 1

m− d+ r

)
(−1)m−d+r.

For m ≤ r,

Am =

m+r∑
d=r+1

r

d− 1

(
d− 1

r

)(
r − 1

m− d+ r

)
(−1)m−d+r

=

m+r∑
d=r+1

(
d− 2

r − 1

)(
r − 1

m− d+ r

)
(−1)m−d+r

=

m−1∑
j=0

(
j + r − 1

r − 1

)(
r − 1

m− j − 1

)
(−1)m−j−1

=

m−1∑
j=0

(
j + r − 1

m− 1

)(
m− 1

m− j − 1

)
(−1)m−j−1

= 1,

where the last equality follows from (60). Similarly, for m > r,

Am =

m+r∑
d=m+1

r

d− 1

(
d− 1

r

)(
r − 1

m− d+ r

)
(−1)m−d+r

=

m+r∑
d=m+1

(
d− 2

r − 1

)(
r − 1

m− d+ r

)
(−1)m−d+r
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=

r−1∑
j=0

(
j +m− 1

r − 1

)(
r − 1

r − j − 1

)
(−1)r−j−1

= 1.

The proof is completed by referring to (64) and (65) with Am = 1.

APPENDIX III

LAYERED DECODING GRAPH

We have discussed different decoding strategies under the rule that a check node is decodable if and only if

its rank equals its degree. We say a variable node is decodable if it is connected to a decodable check node. In

Section II-C, a decodable check node is chosen and all its neighbors (variable nodes) are recovered simultaneously,

while in Section III-A, a decodable variable node is uniformly chosen to be recovered. Here we show that under

the decoding rule that a check node is decodable if and only if its rank equals to its degree, both strategies stop

with the same subset of the variable nodes undecoded.

For a given decoding graph G, let G0 = G. Label by L1 all the decodable check nodes in G0 and label by L2 all

the variable nodes in G0 connected to the check nodes with label L1. We repeat the above procedure as follows. For

i = 1, 2, . . ., let Gi be the subgraph of G obtained by removing all the nodes with labels Lj for j ≤ 2i, as well as

the related edges. (The generator matrices of the check nodes are also updated.) Label by L2i+1 all the decodable

check nodes in Gi and label by L2i+2 all the variable nodes in Gi connected to the check nodes with label L2i+1.

This procedure stops when Gi has no more decodable check nodes. Let i0 be the index where the procedure stops.

The above labelling procedure is deterministic and generates unique labels for each decodable variable nodes and

check nodes.

With the labels, we can generate a layered subgraph G′ of G. In G′, layer j, j = 1, 2, . . . , 2i0, contains all the

check/variable nodes with label Lj . Only the edges connecting two nodes belonging two consecutive layers are

preserved in G′. By the assigning rule of the labels, it is clear that a variable node on layer 2i must connect to one

check node on layer 2i − 1, i = 1, . . . , i0, since otherwise, the variable node is not decodable. Further, a check

node on layer 2i+ 1 must connect to some variable nodes on layer 2i, i = 1, . . . , i0−1, since otherwise, the check

node should be on layer 2i− 1.

By the definition of decodability, a decoding strategy must process the variable/check nodes in G′ following an

order such that a variable/check node is processed after all its lower layer descendant variable/check nodes have

been processed. The two random decoding strategies we have discussed in Section II-C and Section III-A both can

process all the nodes in G′ before stopping.

APPENDIX IV

CONCENTRATION

Theorem 1 is proved by applying a general theorem by Wormald [29], [41].
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A. Wormald’s Differential Equation

The statement of the next theorem follows that of [29, Theorem 5.1] with an extra initial condition. A similar

version is provided in [31, Theorem C.28] with the boundedness condition holding deterministically.

We say a function f(u1, . . . , uj) satisfies a Lipschitz condition on D ⊂ Rj if there exists a constant CL such

that

|f(u1, · · · , uj)− f(v1, · · · , vj)| ≤ CL max
1≤i≤j

|ui − vi|

for all (u1, · · · , uj) and (v1, · · · , vj) in D. We call CL the Lipschitz constant for f . Note that max1≤i≤j |ui − vi|

is the distance between (u1, · · · , uj) and (v1, · · · , vj) in the l∞-norm.

Theorem 5: Let G0,G1, . . . be a random process with a positive integer parameter n, and let (Yl(t))
L
l=0 be a

random vector determined by G0, . . . ,Gt. For some constant C0 and all l, |Yl(t)| < C0n for t ≥ 0 and all n. Let

D be some bounded connected open set containing the closure of

{(0, z1, . . . , zL) : ∃n,Pr{Yl(0) = zln, 1 ≤ l ≤ L} 6= 0}.

Define the stopping time TD to be the minimum t such that (t/n, Y1(t)/n, . . . , YL(t)/n) /∈ D. Assume the following

conditions hold.

(i) (Boundedness) For some functions β = β(n) ≥ 1 and γ = γ(n), the probability that

max
l
|Yl(t+ 1)− Yl(t)| ≤ β,

is at least 1− γ for t < TD.

(ii) (Trend) For some function λ1 = λ1(n) = o(1), if t < TD,

E[Yl(t+ 1)− Yl(t)|G1, . . . ,Gt] = fl

(
t

n
,

(
Yi(t)

n

)L
i=0

)
+O(λ1),

for 1 ≤ l ≤ L.

(iii) (Lipschitz) Each function fl satisfies a Lipschitz condition on D ∩ {(t, z1, . . . , zL), t ≥ 0} with the same

Lipschitz constant CL for each l.

(iv) (Initial condition) For some point (0, z0
1 , . . . , z

0
l ) ∈ D,

|Yl(0)/n− z0
l | ≤ σ = o(1), 0 ≤ l ≤ L.

Then the following are true.

(a) For (0, (ẑl)
L
l=1) ∈ D, the system of differential equations

dzl(τ)

dτ
= fl(τ, (zl′(τ))Ll′=1), l = 1, . . . , L,

has a unique solution in D for zl : R→ R passing through zl(0) = ẑl, l = 1, . . . , L, and this solution extends

to points arbitrarily close to the boundary of D.

(b) Let λ > max{σ, λ1 + C0nγ} with λ = o(1). There exists a sufficiently large constant C1 such that when n

is sufficiently large, with probability 1−O(nγ + β
λ exp(−nλ

3

β3 )),

|Yl(t)− nzl(t/n)| = O(λn) (66)
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uniformly for 0 ≤ t ≤ τ̄n and for each l, where ẑl = z0
l , and τ̄ = τ̄(n) is the supremum of those τ to which

the solution of the system of differential equations in (a) can be extended before reaching within l∞-distance

C1λ of the boundary of D.

Proof: The proof follows exactly the proof of [29, Theorem 5.1] except for the place where we should handle

the initial condition (iv). We only need to modify the definition of Bj (below (5.9) in [29]) in the original proof to

Bj = (nλ+ ω)

((
1 +

Bω

n

)j
− 1

)
+B0

(
1 +

Bω

n

)j
,

where B0 = nλ. The induction in the original proof now begins by the fact that |zl(0) − Yl(0)/n| ≤ σ < O(λ).

The other part of the proof stays the same as that of [29, Theorem 5.1].

B. Proof of Theorem 1

We first prove two technical lemmas. For BATS(K,n,Ψ, h), the degrees of the variable nodes are not independent

but follow the same distribution. The following lemma shows that the degree of a variable node is not likely to be

much larger than its expectation.

Lemma 10: Let V be the degree of a variable node of BATS(K,n,Ψ, h). For any α > 0,

Pr{V > (1 + α)E[Ψ]/θ} <
(

eα

(1 + α)(1+α)

)E[Ψ]/θ

,

where θ = K/n.

Proof: Fix a variable node. Let Xi be the indicator random variable of the ith check node being the neighbor

of the specific variable node. Then V =
∑
iXi. We have E[V ] =

∑
i E[Xi] =

∑
i

∑
d
d
KΨd = n

K E[Ψ] = E[Ψ]
θ .

Since Xi, i = 1, . . . , n, are mutually independent, the lemma is proved by applying the Chernoff bound.

The following lemma verifies the boundedness condition of Theorem 5.

Lemma 11: When β/D > E[Ψ]/θ, the probability that

max
ι∈F∪{0}

|Rι(t+ 1)−Rι(t)| ≤ β,

is at least

1− θn exp

(
− β
D

(ln(β/D)− ln(E[Ψ]/θ)− 1)− E[Ψ]

θ

)
.

Proof: Let V be the degree of the variable node to be removed at the beginning of time t + 1. By (9), we

have for (d, r) ∈ F ,

|Rd,r(t+ 1)−Rd,r(t)| ≤ DV,

and by (19), we have

|R0(t+ 1)−R0(t)| ≤ DV.
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Hence when β/D > E[Ψ]/θ,

Pr

{
max

ι∈F∪{0}
|Rι(t+ 1)−Rι(t)| ≤ β

}
≥ Pr{V D ≤ β}

≥ Pr{the degrees of all variable nodes at time zero ≤ β/D}

> 1− θn exp

(
− β
D

(ln(β/D)− ln(E[Ψ]/θ)− 1)− E[Ψ]

θ

)
,

where the last inequality follows from Lemma 10 and the union bound.

Proof of Theorem 1: We consider in the proof only the instances of BATS(K,n,Ψ, h) satisfying∣∣∣∣Rd,rn − ρd,r
∣∣∣∣ = O(n−1/6), (d, r) ∈ F̄ . (67)

By Lemma 1 this will decrease the probability bounds we will obtained by at most γ(n) + 2MD exp(−2n2/3).

Define the stopping time T0 as the first time t such that R0(t) = 0. By defining proper functions fd,r, f0 we

can rewrite (7) and (8) as

E[Rd,r(t+ 1)−Rd,r(t)|R̄(t)]

= fd,r

(
t

n
,

(
R0(t)

n

)
,

(
Rd′,r′(t)

n

)
(d′,r′)∈F

)
, (d, r) ∈ F

E[R0(t+ 1)−R0(t)|R̄(t)]

= f0

(
t

n
,

(
R0(t)

n

)
,

(
Rd′,r′(t)

n

)
(d′,r′)∈F

)
+O

(
1

n

)
,

for t < T0. For ι ∈ F ∪ {0}, define random variable R̂ι as R̂ι(0) = Rι(0) and for t ≥ 0,

R̂ι(t+ 1) =


Rι(t+ 1) t < T0

R̂ι(t) + fι

(
t
n ,
(
R0(t)
n

)
,
(
Rd′,r′ (t)

n

)
(d′,r′)∈F

)
t ≥ T0.

Note that T0 is also the first time that R̂0(t) becomes zeros.

We apply Theorem 5 on (R̂0(t), (R̂d,r(t))(d,r)∈F ) in place of (Yl(t))
L
l=1. The region D is defined as

D = (−η, (1− η/2)θ)× (−M,M + η)× (−η, d)|F|.

So 1) t/n is in the interval (−η, (1 − η/2)θ); 2) R̂0(t)/n is in the interval (−M,M + η); and 3) R̂d,r(t)/n,

(d, r) ∈ F , is in the interval (−η, d). As required, D is a bounded connected open set and containing all the

possible initial state (0, R̂0(0)/n, (R̂d,r(0)/n)(d,r)∈F ).

The conditions of Theorem 5 are ready to be verified. When t ≥ T0, the change |R̂ι(t+1)−R̂ι(t)| for ι ∈ F∪{0}

is deterministic and upper bounded. When t < T0, by Lemma 11 with β = n1/8, the boundedness condition (i)

holds with

γ = n exp
(
−n1/8 (c1,3 lnn− c1,1)− c1,2

)
,
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where c1,1, c1,2, and c1,3 are only related to E[Ψ] and θ. The trend condition (ii) is satisfied with λ1 = O(1/n).

By definition, it can be verified that fι, ι ∈ F ∪ {0} satisfy the Lipschitz condition (iii). The initial condition (iv)

holds with σ = O(n−1/6).

Wormald’s method leads us to consider the system of differential equations

dρd,r(τ)

dτ
= fd,r(τ, ρ0(τ), (ρd′,r′(τ))(d′,r′)∈F ), (d, r) ∈ F

dρ0(τ)

dτ
= f0(τ, ρ0(τ), (ρd′,r′(τ))(d′,r′)∈F )

with the initial condition ρd,r(0) = ρd,r, (d, r) ∈ F , and ρ0(0) =
∑
r ρr,r. The conclusion (a) of Theorem 5 shows

the existence and uniqueness of the solution of the above system of differential equations. We solve the system of

differential equations explicitly in Appendix V.

Let λ = O(n−1/6). By the conclusion (b) of Theorem 5, we know that for a sufficiently large constant C1, with

probability 1−O(nγ + β
λ exp(−nλ

3

β3 )),

|R̂d,r(t)− nρd,r(t/n)| = O(n5/6), (d, r) ∈ F ,

|R̂0(t)− nρ0(t/n)| = O(n5/6)

uniformly for 0 ≤ t ≤ τ̄n, where τ̄ is defined in Theorem 5. Increase n if necessary so that β
λ exp(−nλ

3

β3 ) =

n7/24 exp(−n−1/8) > nγ and C1λ <
η
2θ, which implies τ̄ ≥ (1 − η)θ. So there exists constants c0 and c′0 such

that the event

E0 = {|R̂0(t)/n− ρ0(t/n)| ≤ c0n−1/6, 0 ≤ t ≤ (1− η)K}

holds with probability at least 1− c′0n7/24 exp(−n−1/8).

Now we consider the two cases in the theorem to prove. (i) If ρ0(τ) > 0 for τ ∈ [0, (1− η)θ], then there exists

ε > 0 such that ρ0(τ) ≥ ε for τ ∈ [0, (1− η)θ]. Increase n if necessary so that c0n−1/6 < ε. Then, we have

Pr{T0 > (1− η)K} = Pr{R̂(t) > 0, 0 ≤ t ≤ (1− η)K}

≥ Pr{E0} (68)

≥ 1− c′0n7/24 exp(−n−1/8),

where (68) follows that under the condition E0, for all t ∈ [0, (1−η)K], R̂0(t)/n ≥ ρ0(t/n)− c0n−1/6 > 0. Since

R̂ι = Rι, ι ∈ F ∪ {0}, when t < T0, the first part of the theorem is proved.

(ii) Consider ρ0(τ0) < 0 for τ0 ∈ [0, (1− η)θ]. There exists ε > 0 such that ρ0(τ) ≤ −ε for all τ ∈ [τ0 − ε, τ0 +

ε] ∩ [0, (1− η)θ]. Increase n if necessary so that c0n−1/6 < ε and nε > 1. Then, we have

Pr{T0 ≤ (1− η)K}

= Pr{R̂0(t) < 0, for some t ∈ [0, (1− η)K]}

≥ Pr{E0} (69)

≥ 1− c′0n7/24 exp(−n−1/8),
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where (69) can be shown as follows. Since nε > 1, there exists t0 such that t0/n ∈ [τ0 − ε, τ0 + ε] ∩ [0, (1− η)θ].

Hence, under the condition E0, R̂0(t0)/n ≤ c0n−1/6 + ρ0(t0/n) < 0.

The proof of the theorem is completed by subtracting the probability that (67) does not hold.

APPENDIX V

SOLVE THE SYSTEM OF DIFFERENTIAL EQUATIONS

We solve the following system of differential equations given in (20) and (21), which is repeated as follows:

dρd,r(τ)

dτ
= (αd+1,rρd+1,r(τ) + ᾱd+1,r+1ρd+1,r+1(τ)− ρd,r(τ))×

× d

θ − τ
, 1 ≤ r ≤M, r < d ≤ D

dρ0(τ)

dτ
=

∑D−1
r=1 rαr+1,rρr+1,r(τ)− ρ0(τ)

θ − τ
− 1

with ρd,r(0) = ρ̂d,r and ρ0(0) =
∑D
r=1 ρ̂1,1.

Let yd,r(τ) = (1− τ/θ)−dρd,r(τ). We have

dyd,r(τ)

dτ
=
d

θ
(αd+1,ryd+1,r(τ) + ᾱd+1,r+1yd+1,r+1(τ)).

We see that yd,r(0) = ρ̂d,r. Define

ρ̂
(0)
d,r = ρ̂d,r

ρ̂
(i+1)
d,r = αd−i,rρ̂

(i)
d,r + ᾱd−i,r+1ρ̂

(i)
d,r+1.

We can verify that

yd,r(τ) =

D∑
j=d

(
j − 1

d− 1

)
(τ/θ)j−dρ̂

(j−d)
j,r .

Thus

ρd,r(τ) = (1− τ/θ)d
D∑
j=d

(
j − 1

d− 1

)
(τ/θ)j−dρ̂

(j−d)
j,r . (70)

Using the general solution of linear differential equations, we obtain that

ρ0(τ) = (1− τ/θ)

(∫ τ

0

∑M
r=1 rαr+1,rρr+1,r(t)

θ − t
(1− t/θ)−1dt+ θ ln(1− τ/θ) +

∑
r≥1

ρ̂r,r

)

= (1− τ/θ)

(
M∑
r=1

rαr+1,r

∫ τ

0

ρr+1,r(t)

θ − t
(1− t/θ)−1dt+ θ ln(1− τ/θ) +

∑
r≥1

ρ̂r,r

)
. (71)
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The integral in (71) can be further calculated as follows:∫ τ

0

ρr+1,r(t)

θ − t
(1− t/θ)−1dt

=

∫ τ

0

∑D
j=r+1 ρ̂

(j−r−1)
j,r

(
j−1
r

)
(1− t/θ)r+1(t/θ)j−r−1

(θ − t)(1− t/θ)
dt

=

∫ τ

0

D∑
j=r+1

ρ̂
(j−r−1)
j,r

(
j − 1

r

)
(1− t/θ)r−1(t/θ)j−r−1 dt

θ

=

D∑
j=r+1

ρ̂
(j−r−1)
j,r

(
j − 1

r

)∫ τ/θ

0

(1− t)r−1tj−r−1dt

=

D∑
j=r+1

ρ̂
(j−r−1)
j,r

(
j − 1

r

)
(j − r − 1)!(r − 1)!

(j − 1)!
Ij−r,r(τ/θ) (72)

= 1/r

D∑
j=r+1

ρ̂
(j−r−1)
j,r Ij−r,r(τ/θ),

where (72) is obtained by substituting ρr+1,r(t) in (70), and (72) is obtained by the definition of incomplete beta

function (cf. (57)).
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