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ABSTRACT
Network coding can significantly improve the transmission
rate of communication networks with packet loss compared
with routing. But using network coding usually involves
more computational and storage costs in network devices
and terminals. We discuss some recent schemes for file trans-
mission in networks employing coding and compare the com-
putational and storage costs of these schemes. The up-to-
date state is that network coding is nearly ready for practical
applications in large file transmission.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Communications

General Terms
Algorithms

Keywords
Network coding, network communications

1. INTRODUCTION
Data packets transmitted in a communication network can

be erased due to channel noise, congestion, faulty network
hardware, and so on. In a routing network, where interme-
diate nodes only forward received packets, the transmission
from a source node to a destination node can naturally be
modeled as an erasure channel. Hence, various erasure cor-
rection techniques have been proposed and used in existing
communication networks. When feedback is assumed from
the destinations, the source node can just retransmit the
erased packets. Retransmission can achieve the maximum
rate of an erasure channel and is used in network protocols,
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for example TCP, to provide reliable end-to-end transmis-
sion.

When there is no feedback, it is also possible to achieve re-
liable end-to-end transmission using properly designed era-
sure codes. There exist erasure codes achieving the maxi-
mum rate of an erasure channel, for example. Reed-Solomon
codes. Using erasure codes usually increases the computa-
tional cost of the source and destination nodes. Several class
of efficient erasure codes were proposed under the fountain
codes framework [2], including LT codes [11], Raptor codes
[16], and online codes [13]. For example, Raptor codes are
capacity achieving and have linear encoding and decoding
complexities in terms of the number of packets for transmis-
sion.

Routing, however, is not an optimal operation at the in-
termediate nodes from the throughput point of view. For
example, the routing capacity of the network in Fig. 1 is
0.64 packet per use. If we allow decoding and encoding op-
erations at the intermediate node and treat the network as
a concatenation of two erasure channels, we can achieve the
rate 0.8 packet per use by using erasure codes on both links.
For a general network with packet loss, the maximum mul-
ticast rate from a source node to a set of destination nodes
is achieved by using erasure codes link-by-link and network
coding in the network layer [1]. Network coding allows an
intermediate node generating and transmitting new packets
using the packets it has received. Linear network coding [9]
was proved to be sufficient for multicast communications
and can be realized distributedly by random linear network
coding [8].

When using network coding, the link layer erasure codes
are not necessary. The following network coding method
has been proved to achieve the multicast capacity for net-
works with packet loss in a wide range of scenarios [12]. The
source node transmits random linear combinations of the in-
put packets and an intermediate node transmits random lin-
ear combinations of the packets it has received. Note that
no erasure codes are required for each link though packet
loss is allowed. Network coding itself plays the role of end-
to-end erasure codes. A destination node can decode the
input packets when it receives enough coded packets with
linearly independent coding vectors.

However, the above scheme, referred to as the ordinary
random linear network coding scheme, has computational
and storage complexities that are not suitable for practi-
cal applications. Consider transmitting K packets and each
packet consists of T symbols in a finite field. The computa-
tional complexity of encoding in the source node is O(TK)
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Figure 1: In this network, s is the source node, a is
the relay node, and t is the destination node. Both
links are can transmit one packet per use with a
packet loss rate 0.2.

per packet. An intermediate node needs to buffer all the
packets it has received for network coding, so in the worst
case, the storage cost is K packets, and the computational
complexity of encoding is O(TK) per packet. Decoding us-
ing Gaussian elimination has complexity O(K3 + TK2), or
O(K2 + TK) per packet. Though these complexities are
polynomials in K, the ordinary random linear network cod-
ing scheme is still difficult to implement for large K.

In practice, we hope to have generic network coding en-
abled devices with limited storage and computational ca-
pabilities. Accordingly, a network coding scheme is hoped
to have i) low encoding complexity in the source node, ii)
low decoding complexity in destination nodes, iii) constant
computational complexity of encoding a packet in an inter-
mediate node, and iv) constant storage requirement in an
intermediate node.

In the rest of this paper, we review some recent attempts
for designing efficient file transmission schemes in networks
with coding at the intermediate nodes. There are roughly
two lines of works. The first line of works tries to extend
fountain codes to networks with coding at the intermedi-
ate nodes. Solutions exist for special network topologies
(e.g., line networks) and special communication scenarios
(e.g., peer-to-peer file sharing), but those solutions cannot
meet our requirement in a general network setting. The sec-
ond line of works try to simplify the complexities of linear
network coding using chunks. Most recent developments of
chunk based codes target the application of peer-to-peer file
sharing, where the storage cost at an intermediate node is
not considered as an issue. At the end, we show that a good
scheme exists in the place where the two lines intersect. By
extending the idea of LT/Raptor codes from erasure chan-
nels to networks employing linear network coding, a new
class of fountain codes, called batched sparse (BATS) codes,
are proposed [19]. BATS codes work naturally with linear
network coding and have all the desired properties.

2. FOUNTAIN CODES WITH CODING IN
NETWORKS

2.1 Fountain Codes
LT codes are a class of fountain codes introduced by Luby

for erasure channels [11]. An LT encoder generates output
packets from K input packets using a degree distribution
Ψ = (Ψ0, Ψ1, · · · , ΨK). Every time an output packet is gen-
erated, the degree distribution is sampled and an integer
value d is returned with probability Ψd. Then d distinct
input packets are chosen randomly and they are added to-
gether to yield the output packet.

An LT decoder uses any n output packets to recover the
original K input packets. A decoding graph is a bipar-
tite graph with K nodes on one side and n nodes on the
other side, which correspond to the input packets and out-
put packets, respectively. There is an edge between an input

packet and an output packet if the input packet contributes
to the value of the output packet. At each step, the decoder
identifies an output packet of degree one, which is just the
value of its unique neighbor among the input packets. Then
the value of the decoded input packet is substituted into its
neighboring output packets. Luby proposed a robust soliton
distribution for Ψ that guarantees successful decoding with
n slightly larger than K.

Raptor codes [16] further reduce the complexity of LT
codes by precoding. The input packets are first encoded by
an erasure code, the output of which is called the intermedi-
ate packets, and then the intermediate packets are encoded
by a variation of LT code. This variation of LT code only re-
cover a constant fraction of the intermediate packets and the
erasure code is capable of recovering all the input packets in
face of a fixed fraction of erasures.

2.2 Link-by-Link Fountain Codes
A line network is a network with a sequence of nodes con-

nected consecutively, where the first node is the source and
the last node is the destination. Figure 1 is an example of
a line network. One coding scheme for a line network is
to apply fountain codes link by link (see the discussion in
[15]). An intermediate node must completely decode and
re-encode all the input packets. Each intermediate node re-
quires a storage to buffer at least K packets. Moreover, the
transmission suffers a delay of O(K) due to the decoding
and encoding operations at each intermediate node.

To reduce the storage cost at the intermediate nodes,
Pakzad et al. [15] proposed several schemes using system-
atic codes. In their schemes, however, the storage required
depends on the erasure probabilities of the links. Though
the storage cost can be reduced to a fraction of K, it still
increases linearly with K.

The delay for applying fountain codes link by link can be
reduced by applying fountain codes in a stack manner [5]:
An intermediate node buffers the packets it receives and re-
encodes them to approximate a fountain code. The difficulty
of this method is to approximate a foundation code by using
a subset of the input packets. While this method moves all
the decoding operations to the destinations nodes, it cannot
reduce the storage cost at the intermediate nodes.

2.3 End-to-End Fountain Codes
The high decoding complexity of the ordinary random lin-

ear network coding scheme comes from the use of Gaussian
elimination to solve a system of linear equations. One way to
resolve the complexity issue is to solve the system of linear
equations by using belief propagation, like the decoding of
an LT code. Champel et al. [3] proposed this for a peer-to-
peer sharing model where all network nodes require the file.
The input packets are encoded not only at the source node
but also at the intermediate nodes in a decentralized manner
so that the resulting receiving packets resemble an LT code.
Their methods require special intermediate operations, and
an intermediate node is required to buffer all the packets it
receives. Designing “sparse” network coding to approximate
fountain codes may be possible for special communication
scenarios, e.g., [3], but in general it is difficult to guarantee
that the degree of the received packets follows a particular
distribution.

3. CHUNK BASED NETWORK CODING



3.1 Using Chunks to Reduce Complexity
A chunk (also called generation or class) is a subset of

the K packets. One practical method to simplify the com-
plexities of network coding is to group the input packets
into disjoint chunks [4]. Encoding at the source node, net-
work coding at the intermediate nodes, and decoding at a
destination node are all performed for packets belong to the
same chunk. Using disjoint chunks reduces the encoding and
decoding complexities to O(TKL) and O(KL2 + TKL), re-
spectively, when all the chunks have the same size L.

In practice, for the sake of complexity, the chunk size L
cannot be too large. For example, L = 100 is used in [4] and
L = 16 is used in [6]. However, a file of 100 MB may have
105 UDP packets and hence may have 1000 chunks when
L = 100. Therefore for large files, the practical number of
chunks is also large.

Using disjoint chunks decomposes the task of transmitting
a large file into subtasks of transmitting small files. This
can increase the protocol overhead significantly when the
number of chunks is large. In the following two sections, we
discuss two approaches to scheduling the transmission of the
chunks and their respective issues.

3.2 Sequential Scheduling of Chunks
If feedback from the destinations is allowed, sequential

scheduling of chunks can be used. In this approach, the
source node keeps transmitting packets belonging to one
chunk until all the destination nodes have successfully de-
coded the chunk. The source node needs positive feedbacks
from all the destination nodes before moving on to the next
chunk. The number of feedbacks required for each chunk
increase with the number of destination nodes.

Feedback generally degrades the system performance due
to the round-trip delay. This degradation can be severe if
the round-trip delay is long and/or some feedbacks are lost
along the way. If a link in the network is half-duplex, the
transmission rate needs to be reduced in order to accommo-
dates the feedbacks.

Besides the protocol overhead, sequential scheduling is
also not scalable for multicast, because when there is a large
number of destination nodes, it will take a long time for all
of them to successfully decode a chunk before the source
node can move on to the next chunk.

3.3 Random Scheduling of Chunks
To resolve the issues in sequential scheduling, chunks can

be scheduled randomly [14]. When the source node or an in-
termediate node needs to generate a packet for transmission,
the node randomly picks a chunk and produces a new pack-
ets using that chunk. (The chunks can also be scheduled by
round robin [4]. However, we will not discuss this schedul-
ing particularly, because it shares the same properties with
random scheduling.)

In [14], an adversarial schedule is used as the network
model and random scheduling is shown to asymptotically
achieving the capacity of the adversarial schedule when the
number of packets goes to infinity and the chunk size is
bounded below by an increasing function of the number of
packets. For practical chunk sizes, performance of random
scheduling of disjoint chunks has been observed to be sub-
optimal [17, 6].

Random scheduling becomes less efficient as the fraction
of decoded chunks increases. For example, when more than

half of the chunks have already been decoded by a desti-
nation node, more than half of the transmissions from the
source node are useless for this destination node. As an al-
leviation of this problem, precoding like Raptor codes are
introduced [14]. The input packets are first encoded by an
erasure code, and then the intermediate packets are trans-
mitted in chunks. Precoding allows the input packets to be
recovered when only a fraction of the set of chunks have been
successfully decoded. However, to have high coding rate, the
rate of the erasure code (precode) should be high and a large
fraction of chunks are required to be decoded individually.
Thus using precoding cannot completely eliminate the issue.

Moreover, for random scheduling the intermediate nodes
are required to buffer all the chunks. This may not be an
issue for peer-to-peer file distribution, but it is not suitable
for networks with intermediate nodes that do not require the
file. The schemes discussed in the next section [17, 6, 10],
which address the issue in random scheduling discussed in
the last paragraph by employing overlapped chunks, share
the same storage cost at the intermediate nodes as random
scheduling discussed in this section.

3.4 Overlapped Chunks
Two groups [17, 6] have independently shown by simula-

tion that using overlapped chunks can improve the through-
put of random scheduling for practical chunk sizes. Intu-
itively, the advantage of overlapped chunks is to use the
already decoded chunks to help the decoding of the other
chunks.

Silva et al. [17] proposed two designs of chunked codes,
rectangular grid codes and diagonal grid codes. For exam-
ple, a rectangular grid code is constructed by placing the
input packets in a rectangular grid and forming chunks us-
ing the packets in the same rows or columns. Heidarzadeh
and Banihashemi [6] used a head-and-toe overlapping pat-
tern for chunked codes and analyzed its asymptotic perfor-
mance over a line network when the number of packets goes
to infinity. Theoretical comparison of disjoint chunks and
overlapped chunks for line networks can be found in [7]. Li
et al. [10] proposed random annex codes which are formed
by adding a number of randomly chosen packets to disjoint
chunks. Random annex codes are analyzed heuristically us-
ing a coupon collection model. Note that the same proba-
bility for the chunks with the same size is used in almost all
analysis and simulations in [17, 6, 10].

Overlapped chunks have some properties similar to foun-
tain codes, but compared with fountain codes, sophisticated
designs and complete performance analysis are still lacking.

4. BATCHED SPARSE CODES
To address the issues of the schemes discussed in Sec-

tions 2 and 3, a class of generalized LT/Raptor codes, called
batched sparse (BATS) codes, are proposed [19]. BATS
codes are designed to be used with networks employing lin-
ear network coding, while preserving the properties of foun-
tain codes such as ratelessness and low encoding/decoding
complexity.

4.1 Encoding of Batches
A batch is a set of M coded packets generated from a

subset of the input packets. The encoding of BATS codes
is similar to LT codes, except that batches instead of coded
packets are generated. When M = 1, BATS codes become
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Figure 2: The Tanner graph for encoding the first
five batches. Here, b1, i = 1, 2, · · · are the input pack-
ets, and Gj, j = 1, 2, · · · are the generator matrices.

b3

G3H3 G4H4

Figure 3: Assume that the third batch is decodable.
Then the contributors of the third batch are recov-
ered by solving a linear system of equations. Here,
b3 is contributor of the third batch. Since b3 is also
a contributor of the fourth batch, besides removing
the node b3, the row in G4H4 corresponding to b3

and hence the edge from node b3 to the fourth batch
are removed.

LT codes.
Specifically, a batch is generated using the following pro-

cedure. First, a degree distribution Ψ = (Ψ0, Ψ1, · · · , ΨK)
is independently sampled and a degree d is returned with
probability Ψd. Second, uniformly at random pick d distinct
input packets, which are called the contributors of the batch.
Last, the M coded packets of the batch are generated using
possibly different linear combinations of the contributors.
The last step can be equivalently specified by a generator
matrix with dimension d×M . There are various options for
designing the generator matrices. For example, the genera-
tor matrices can be deterministic and pre-designed, or they
can be generated on the fly. See Figure 2 for the Tanner
graph describing the encoding of a BATS code.

To transmit a batch, the source node transmits the pack-
ets in the batch. No feedback is required to stop the trans-
mission of each batch. Transmission of the batches at the
source node and the intermediate nodes can be scheduled in
different ways. For example, for file transmission in a line
network, sequential scheduling of the batches can minimize
the buffer requirement at the intermediate nodes. For a gen-
eral network, how to schedule the transmission of batches at
the intermediate nodes is an open research problem.

4.2 Belief Propagation Decoding
When applying linear network coding, an intermediate

node encodes the received packets of a batch into new pack-
ets using linear combinations. These new packets are re-
garded as belonging to the same batch. The packets of a
batch generated in the source node will be thereafter re-
ferred to as the original packets of the batch. The rule is
that the packets in different batches are not mixed inside
the network.

Following this rule, the received packets of a batch are
linear combinations of the original packets of the batch. Let
G be the generator matrix of a batch and H be the trans-
fer matrix of the network from the original packets to the
received packets. The overall transformation from the con-
tributors of the batch to the received packets is GH, which
is known by a destination node.

The decoding process can be described by the bipartite
graph in Figure 3, which is the same as the encoding graph
except that associated with the ith batch is the matrix GiHi,
an instance of GH. The ith batch is called decodable if the
rank of GiHi is equal to the degree of the batch di. Af-
ter decoding a batch, the decoded input packets are sub-
stituted in the undecoded batches. In the decoding graph,
this is equivalent to remove the nodes corresponding to the
decoded packets and the related edges. We repeat this
decoding-substitution procedure on the new graph until no
more batches are decodable.

The same technique of Raptor codes can be applied here
to reduce the encoding/decoding complexity of BATS codes.
The input packets are first encoded using an erasure code,
and then encoded by a BATS code. The belief propagation
decoding of the BATS code is required to recover a constant
fraction of the intermediate packets (the output of the pre-
coder). The erasure code can then decode the input packets
in face of a fixed fraction of erasures of the intermediate
packets.

4.3 Degree Distribution
The degree distribution of a BATS code needs to be cho-

sen such that i) the belief propagation decoding succeeds
with high probability, ii) the encoding/decoding complexity
is low, and iii) the coding rate is large.

By analyzing the decoding process of BATS codes, a suf-
ficient condition of a degree distribution such that the belief
propagation decoding succeeds with high probability is ob-
tained. This sufficient condition induces a linear program-
ming for finding a degree distribution that maximizes the
asymptotic achievable rate. The only channel knowledge re-
quired for the linear programming is the rank distribution
of the network transfer matrix.

It is verified theoretically for certain cases and demon-
strated numerically for the general cases that BATS codes
achieve rates very close to the capacity of a linear operator
channel, which models the transmission of a network em-
ploying linear network coding [18].

The degrees of the batches affect the encoding/decoding
complexity. For an optimal degree distribution, the maxi-
mum degree with non-zero probability is bounded by O(M).
Thus the encoding/decoding of a batch has complexity inde-
pendent of K. The complexity comparison of BATS codes
and chunk based codes are given in Table 1.

4.4 Batches Chunks
Even though both BATS codes and chunked codes require

network coding to be applied within one batch or one chunk,
batches and chunks are different in many aspects.

BATS codes are rateless code, i.e., the number of batches
that can be transmitted is not fixed. By contrast, the num-
ber of chunks is fixed after encoding. The source node only
transmits the original packets of a batch, so the transmis-
sion of a batch uses a fixed time. But the transmission of a
chunk is in a rateless manner for both random and sequential



Table 1: Complexity comparison. The encoding/recoding/decoding complexity is in terms of per packet.
source node intermediate node destination node

encoding recoding storage decoding
routing O(T ) O(T ) O(T ) O(T )

sequential scheduling of chunks O(TL) O(TL) O(TL) O(L2 + TL)

random scheduling of chunks O(TL) O(TL) O(TK) O(L2 + TL)

BATS code O(TM) O(TM) O(TM) O(M2 + TM)

scheduling.
Sequential scheduling of disjoint chunks requires feedback

to signify that a chunk is successfully decoded by all the
destination nodes, while BATS codes do not need feedback
for this purpose. Instead, BATS codes only require a small
fraction of the batches to be decodable to trigger the belief
propagation decoding procedure. This small fraction of de-
codable batches can be guaranteed, for example, by using
small enough degrees.

When using sequential scheduling, BATS codes do not re-
quire an intermediate node buffering all batches for acyclic
networks. Since packets of a same batch are transmitted
consecutively, no new packets of a batch will come after cer-
tain time of the first packet of that batch is received. So
there will be no harm to delete a batch after buffering it
for enough long time. The overlapped chunked schemes [17,
6, 10] are designed to solve the issue of random scheduling
scheme in [14], and hence assume random scheduling. How
to sequentially schedule the chunks without feedbacks is not
clear. One method is to use a round-robin order to schedul-
ing the chunks. However, this method, similar to random
scheduling, requires that an intermediate node buffers all
the chunks. Since the packets of all chucks can come in the
future, buffering a fraction of all the chunks will harm the
benefits of network coding.
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