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Abstract — In this paper, we extend the notion of

generalized Hamming weight for classical linear block

code to linear network codes by introducing the net-

work generalized Hamming weight (NGHW) of a lin-

ear block code with respect to a given linear network

code. The basic properties of NGHW are studied.

We further show that NGHW can be used as a tool to

characterize the security performance of a linear net-

work code on a wiretap network. We also introduce

the idea of Network Maximum Distance Separation

code (NMDS code) by extending the notion of Max-

imum Distance Separation code in classical algebraic

coding theory. We prove that NMDS codes play an

important role in minimizing the information that an

eavesdropper can obtain from the network.

I. Introduction

Motivated by the work of Wei on generalized Hamming
weight for linear block codes [1] and the work of Cai and
Yeung on secure network coding [5], we extend the defini-
tion of generalized Hamming weight for linear block codes
to linear network codes. To be more specific, we will de-
fine the network generalized Hamming weight (NGHW)
for a linear block code with respect to a given linear net-
work code. Based on the NGHW for linear network codes,
we will prove a network extension of the generalized Sin-
gleton bound in [1] and show that it is tight. Moreover,
through the construction of a linear network code that
can achieve this bound, we can recover the construction
of a secure network code in [5, 6].

By extending the original definition of the general-
ized Hamming weight, our network generalized Hamming
weight can completely characterize the performance of
linear network codes on a wiretap network [5, 6], which
includes secret sharing in classical cryptography [3,4] as a
special case.2 The details of this application are discussed
in Section IV.

The remainder of the paper is organized as follows. In
Section II, we define NGHW and prove some of its basic
properties. In Section III, we define network generalized
Singleton bound and show its tightness under two differ-
ent conditions. In addition, Network Maximum Distance

1This work was done when Z. Zhang was on leave at The Chinese
University of Hong Kong.

2Secret sharing in turn includes wiretap channel II [2] as a special
case.

Separable (NMDS ) code will be discussed. In Section IV,
we show that NGHW can completely characterize the se-
curity performance of a linear block code when it is ap-
plied in conjunction with a linear network code on a wire-
tap network. In Section V, we show NGHW reduces to
the generalized Hamming weight in [1] when the network
being considered is the degenerated network representing
the classical communication channel.

II. Definitions

Wei [1] introduced the notion of generalized Hamming
weight for the classical point-to-point channel which is
closely related to the security of data transmission in the
wiretap channel II model [2], which can be regarded as a
special case of secret sharing [3,4]. They showed that the
generalized Hamming weight can completely characterize
the performance of coset coding on a wiretap channel II.

In this section, by integrating the generalized Ham-
ming weight with network coding, we extend the notion of
the generalized Hamming weight to point-to-point com-
munication networks. We will first define NGHW and
then prove some of its basic properties. In the following,
〈·〉 denotes the span of a set of vectors.

Definition 1. An n-dimensional linear network code is
said to be full rank if there exists a set of n linearly in-
dependent global encoding kernels.

Definition 2 (Network Generalized Hamming Weight).
Let C be an (n, k) linear block code. The rth general-
ized Hamming weight of C, denoted by dr(C, F ), with
respect to a given n-dimensional full-rank linear net-
work code specified by the set of global encoding kernels
F = {fe, e ∈ E}, is defined as

dr(C, F ) = min
W⊂E
{|W| : LW contains some subcode (1)

D of C with dimension r},

where LW = 〈{fT
e , e ∈W}〉.

Note that in (1), if LW contains some subcode D of C
with dimension r, then dim(C ∩ LW) ≥ r.

For W ⊂ E , let FW be an n×|W| matrix formed by the
juxtaposition of {fe, e ∈ W}. When the network consid-
ered is reduced to the network with n channels connecting
the source node s and the unique sink node t, with the
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Figure 1: A degenerated network consisting of n-channels
with FE = I.

global encoding kernels being the standard basis as in-
dicated in Figure 1, the definition of dr(C, F ) reduces to
the generalized Hamming weight in [1]. See Section V for
a proof.

In the remainder of this section, we study several basic
properties of NGHW. Whenever we refer to the NGHW of
a linear block code C, we always assume a given full-rank
linear network code as prescribed in Definition 2.

Lemma 1 (Monotonicity). For an (n, k) linear block code
C with k > 0,

1 ≤ d1(C, F ) < d2(C, F ) < · · · < dk(C, F ) ≤ n. (2)

Proof. See [9].

For an (n, k) linear block code C, denote its (n−k)×n
parity check matrix by H, that is, for all c ∈ C,HcT = 0.
The following theorem gives a characterization of dr(C, F )
in terms of H.

Theorem 1.

dr(C, F )
= min

W⊂E
{|W| : dim(LW)− dim (〈{Hfe, e ∈W}〉) ≥ r}

(3)

Proof. See [9].

III. Network Generalized Singleton Bound and
Network MDS codes

In this section, we define the generalized Singleton
bound and show its tightness under two different settings.

In addition, the class of Network Maximum Distance Sep-
arable (NMDS ) codes will also be discussed.

In Section IV, we will see that NGHW has a very close
relation with the security performance of a given linear
network code. Moreover, achieving the generalized Sin-
gleton bound is in fact very closely related to achieving
the maximum rate of secure linear multicast in the pres-
ence of an eavesdropper.

Theorem 2 (Generalized Singleton bound). For an
(n, k) linear code C, dr(C, F ) ≤ n− k + r, for 1 ≤ r ≤ k.

Proof. From (2), we can see that dk(C, F ) ≤ n. Assume
that for 1 < r′ ≤ k, dr′(C, F ) ≤ n−k+r′ is true. Then by
the monotonicity of NGHW, dr′−1(C, F ) ≤ d′r(C, F )−1 ≤
n− k + (r′ − 1). The theorem is proved.

In the rest of the paper, we write d1(C, F ) as d1. Note
that in the case of classical algebraic coding, d1 is reduced
to the minimum Hamming distance of C.

Corollary 1. An (n, k) linear code C satisfies

|C| ≤ qn−d1+1. (4)

In Theorem 3 and 4, we will show that the general-
ized Singleton bound is tight for a linear multicast [8].
The result can easily be extended to a general linear net-
work code. Here the tightness of the generalized Single-
ton bound has two meanings. The first one is, for a given
set of global encoding kernels, we can find a linear code
that achieves the tightness of the generalized Singleton
bound. The second one is, for a given linear code, we
can find a set of global encoding kernels that achieves the
generalized Singleton bound.

Theorem 3. Given any n-dimensional linear multicast
over a finite field F, when |F| = q is sufficiently large,
there exists a linear code C with |C| = qk such that

d1 = n− k + 1. (5)

Proof. We start with any given set of global encoding
kernels which defines a linear multicast, which is an n-
dimensional full-rank linear network code. Let W ′ =
{W ⊂ E : |W| = n− k}.

Now we construct the linear code C. Let g1, · · · ,gk ∈
Fn

q be a sequence of row vectors obtained as follows. For
each i, 1 ≤ i ≤ k, choose gi such that

gi /∈
⋃

W∈W′

LW + 〈g1, · · · ,gi−1〉. (6)

We first prove that gi satisfying (6) exists if the field



size q is sufficiently large. We observe that for all i ≤ k,∣∣∣∣∣ ⋃
W∈W′

LW + 〈g1, · · · ,gi−1〉

∣∣∣∣∣
≤ |

⋃
W∈W′

LW|qi−1 (7)

≤
(
|E|
n− k

)
qn−kqi−1 (8)

=
(
|E|
n− k

)
qn−k+i−1 (9)

≤
(
|E|
n− k

)
qn−1 (10)

which does not depend on i.
If

q >

(
|E|
n− k

)
, (11)

then there exists a vector that can be chosen as gi for
i = 1, · · · , k. Note that by virtue of (6), gi 6= 0 for all i.

Fix g1, · · · ,gk that satisfy (6). We prove by induction
that ( ⋃

W∈W′

LW

)
∩ 〈g1, · · · ,gi〉 = {0} (12)

holds for 1 ≤ i ≤ k. If (12) does not hold for i = 1,
then there exists a non-zero vector αg1 ∈

⋃
W∈W′ LW,

where α ∈ F\{0}. Since
⋃

W∈W′ LW is closed under scalar
multiplication and α 6= 0, we have g1 ∈

⋃
W∈W′ LW, a

contradiction to (6) for i = 1. Assume (12) holds for
i ≤ k − 1. If (12) does not hold for i = k, then there
exists a non-zero vector

k∑
i=1

αigi ∈
⋃

W∈W′

LW, (13)

where αi ∈ Fq. If αk = 0, then

k−1∑
i=1

αigi ∈
⋃

W∈W′

LW, (14)

a contradiction to the assumption that (12) holds for i =
k − 1. Thus αk 6= 0. Again, by

⋃
W∈W′ LW being closed

under scalar multiplication, we have

gk ∈
⋃

W∈W′

LW −

{
α−1

k

k−1∑
i=1

αigi

}
(15)

⊂
⋃

W∈W′

LW + 〈g1, · · · ,gk−1〉, (16)

a contradiction to (6) for i = k. Therefore, g1, · · · ,gk

satisfy (12), and we let C = 〈g1, · · · ,gk〉.
For any subspace D of C and any W ⊂ E with |W| ≤

n− k, it follows from (12) for i = k that

LW ∩D = {0}. (17)

In particular, (17) holds when the dimension of D is equal
to 1. Therefore, by Definition 2, d1 ≥ n−k+1. Together
with Theorem 2, we obtain

d1 = n− k + 1 (18)

The proof is completed.

Theorem 4. Given an (n, k) linear code C with |C| = qk,
we can construct a linear multicast over a finite field F,
when q is sufficiently large, such that

d1 = n− k + 1 (19)

Proof. We first use the Jaggi-Sanders algorithm in [7]
to construct an n-dimensional deterministic linear mul-
ticast, whose global encoding kernels are denoted by
F ′ = {f ′e, e ∈ E}. Then we use the method in the proof of
Theorem 3 to find an (n, k) linear code C′ that achieves
the upper bound in (4), i.e., d1(C′, F ′) = n − k + 1. We
will show that C can be obtained from C′ by taking an
invertible linear transformation T , i.e., T (c′) = c′M for
all c′ ∈ C′, where M is an n × n invertible matrix. Let
fe = M−1f ′e for e ∈ E . We will further show that the set
of global encoding kernel F = {fe : e ∈ E} achieves the
upper bound in (4).

i) Let G0 be a k × n matrix formed by the first k rows
of the n× n identity matrix I, and G and G′ be the
generator matrix of C and C′, respectively. We form
two invertible n× n matrices M1 and M2, such that
the first k columns of M1 and M2 are GT and G′T

respectively. Then G0M
T
1 = G and G0M

T
2 = G′.

Hence G(M2M
−1
1 )T = G′ and M can be taken to be

M2M
−1
1 .

ii) The sink nodes in the network can still decode suc-
cessfully with the new network code specified by
the global encoding kernels {fe : e ∈ E} since M
is invertible. We now prove that the linear code
C achieves the upper bound in (4) with respect to
F = {fe : e ∈ E}. Assume that C does not achieve
the upper bound, i.e., d1 ≤ n− k or k < n− d1 + 1.
Then according to the definition of the generalized
Hamming weight, there exists c ∈ C, c 6= 0 and
n − k global encoding kernels, say f1, f2, · · · , fn−k,
such that c = a1f

T
1 + · · · + an−kf

T
n−k and ai, i =

1, · · · , n− k are not all zero.

Therefore,

c = (a1f
′T
1 + a2f

′T
2 + · · ·+ an−kf

′T
n−k)(MT )−1

(20)

or

cMT = a1f
′T
1 + a2f

′T
2 + · · ·+ an−kf

′T
n−k. (21)

Let c′ = cM−1. Since 〈c′〉 is a 1-dimensional subcode
of C′, in light of (21) and Definition 2, d1(C′, F ′) is
less than n− k + 1. This is contradictory to that C′
achieves the upper bound in (4).



The proof is completed.

Theorem 5. Given a linear code C (a linear multicast
specified by F = {fe, e ∈ E}), we can find a corresponding
linear multicast specified by F = {fe, e ∈ E}(linear code
C), such that the tightness of the generalized Singleton
bound of C can be achieved, that is, dr(C, F ) = n− k + r
for all 1 ≤ r ≤ k.

Proof. d1(C, F ) = n − k + 1 is obtained by Theorem 3
(Theorem 4). Together with the monotonicity proved in
Lemma 1 and the fact that dk(C, F ) ≤ n, we see that
dr(C, F ) = n− k + r for all 1 ≤ r ≤ k.

We will refer to those linear codes that achieve the gen-
eralized Singleton bound based on a given linear network
code as Network Maximum Distance Separable (NMDS )
codes. This terminology is motivated by the fact that
in the classical channel, MDS codes are the only linear
codes that can achieve the generalized Singleton bound
induced by the generalized Hamming weight.

Definition 3. Given a full-rank linear network code, a
Network Maximum Distance Separable (NMDS ) code is
a linear block code that achieves the tightness of the gen-
eralized Singleton bound.

By Theorem 4, for any full-rank block code, we can
find a corresponding full-rank linear network code such
that the generalized Singleton bound is achieved. In other
words, any full-rank block code is an NMDS code for some
full-rank linear network code. However, such a block code
is not necessarily an MDS code.

On the other hand, with respect to the full-rank net-
work code depicted in Figure 1, a linear block code is an
NMDS code if and only if it is an MDS code.

IV. Security Performance of Linear Network
Codes

The generalized Hamming weight in [1] can completely
characterize the performance of a linear code C on wire-
tap channel II. The network generalized Hamming weight
introduced in this paper can also fully characterize the
performance of a linear code on the wiretap network.

In the model of wiretap network studied here, we as-
sume that there is an eavesdropper in the network who
can arbitrarily choose and fully access µ edges in the net-
work. We define W := {W ⊂ E : |W| = µ} and say an
eavesdropper is characterized by W if the eavesdropper
can arbitrarily choose and access one and only one set in
W.

We denote the message that the source node wants to
transmit securely by a k-dimensional row vector s ∈ Fk

q

and let C be an (n, n− k) linear code and H be the k×n
parity check matrix of C. In order to protect the mes-
sages from the eavesdropper, we apply coset coding [2]
based on C at the source node as follows: The encoded
message that is transmitted in the network is denoted by
an n-dimensional row vector x ∈ Fn

q . The source selects

one of the qk cosets to represent s, and transmits a vec-
tor x chosen from that coset according to the uniform
distribution. Equivalently, we can write

x = [ s r ]
[
GM

GC

]
, (22)

where GC is the (n−k)×n generator matrix of C, GM is
any k×n full-rank matrix such that GM and GC together
forms an n×n full-rank matrix, and r is chosen from Fn−k

q

uniformly. The proof is omitted here due to limited space.
Let S be the random variable denoting the information

source, X be the random variable denoting the source
of the encoded message to be transmitted by the source
node, and Y be the random variable denoting the message
received by the eavesdropper.

We denote the symbols that the eavesdropper ob-
tains by a |W|-dimensional row vector y ∈ F|W|q . Write
s = (s1, s2, · · · , sk),x = (x1, x2, · · · , xn) and y =
(y1, y2, · · · , y|W|). The symbols in s and x are i.i.d. and
chosen uniformly from Fq. Since GM and GC together
form an n × n full-rank matrix, for all s ∈ Fk

q such that
s 6= 0, sGMHT 6= 0, otherwise, there exists a non-zero
vector R ∈ Fn−k

q such that sGM = rGC . This contra-
dicts the fact that GM and GR together forms a n × n
full-rank matrix. Therefore, GMHT is invertible. Then
letting H′ = (GMHT )−1, we have

xHT H′ = [ s r ]
[
GM

GC

]
HT H′ (23)

= sGMHT H′ (24)
= s, (25)

giving the formula for recovering the information source
s from the encoded message x.

We assume that the eavesdropper knows the (n, n−k)
linear code C and its parity check matrix H used in the
coset coding scheme as well as the matrix FE . We define
the uncertainty of the eavesdropper about the source as
∆ = minW∈W H(S|Y ), and say the network is perfectly
secured if ∆ = H(S) = k. Here H(·) denotes entropy in
the base q, and H(·|·) denotes conditional entropy.

In [6], Rouayheb and Soljanin treated the secure net-
work coding problem as a network generalization of wire-
tap channel II in [2], and coined the term “wiretap net-
work.” They gave a construction based on coset coding,
which is equivalent to the approach in [5] with the excep-
tion that in [6] the linear block code at the source node
must be an MDS code.

Theorem 6. Given an acyclic directed network G =
{V, E}, a linear multicast, and an eavesdropper charac-
terized by W = {W ⊂ E : |W| ≤ µ}, if we apply coset
coding at the source node using an (n, n− k) linear code
C, then

i) the eavesdropper cannot obtain any information
about the source, i.e., ∆ = k, if and only if
d1(C⊥, F ) > µ.



ii) the eavesdropper can obtain r units of information
about the source, i.e., ∆ ≤ k − r, if and only if µ ≥
dr(C⊥, F ).

Proof. We first compute the uncertainty of the eavesdrop-
per about the source. Let H be the parity check matrix
of C. Then

(H′)T HxT = sT (26)

according to (25) and

xFW = y. (27)

The uncertainty we seek is given by

∆ = min
W∈W

H(S|Y ) (28)

= min
W∈W

{H(S|X,Y ) +H(X|Y )−H(X|S, Y )} . (29)

Writing (26) and (27) together in matrix form, we have[
H′T H
FT

W

]
xT =

[
sT

yT

]
. (30)

The dimension of solution space of (30) is n −

rank

([
H′T H
FT

W

])
.

Since we assumed x is uniformly distributed,

H(X|S, Y )

= n− rank
([

H′T H
FT

W

])
(31)

= n− rank(H′T H)− rank(FT
W) + dim

(
C⊥ ∩ LW

)
(32)

= n− k − rank(FT
W) + dim

(
C⊥ ∩ LW

)
, (33)

where (32) follows from the fact H′ is a full-rank matrix
and (33) follows from (25). Together with H(S|X,Y ) = 0
and H(X|Y ) = n− rank(FW), we have from (29)

∆ = k − max
W∈W

dim
(
C⊥ ∩ LW

)
. (34)

From (34), the proof for i) and ii) follows immediately:

i) d1(C⊥, F ) > µ, i.e., for all W ∈ W, dim
(
C⊥ ∩ LW

)
=

0, is equivalent to ∆ = k.

ii) µ ≥ dr(C⊥, F ), i.e., there exists W ∈
W s.t. dim

(
C⊥ ∩ LW

)
= r, is equivalent to ∆ ≤

k − r.

In other words, similar to the role of the generalized
Hamming weight in [1] for the classical point-to-point
channel, our network generalized Hamming weight can
also be used to measure the security performance of a
linear code C for a given linear network code on a given
network.

We will see that applying coset coding using a code C
whose dual is an NMDS code is in fact a linear network
code with optimal security performance. The following
theorem gives a lower bound on the information of the
source that the eavesdropper can obtain regardless of the
coding scheme being used to multicast information.

Theorem 7. Given an acyclic directed network G =
{V, E} with maxflow n, and a linear multicast transmit-
ting information at rate k from the source node s to
the set of sink nodes T , the information that the eaves-
dropper, who can wiretap any set of τ channels, where
n − k ≤ τ ≤ n, can obtain at least k + τ − n units of
information.

Proof. See [9].

By Definition 3, an NMDS code achieves the tightness
of the generalized Singleton bound, i.e.,

dr(C⊥, F ) = n− k + r. (35)

Let r′ be the maximum amount of information the eaves-
dropper can obtain by wiretapping τ channels. Then by
ii) of Theorem 6,

τ ≥ d′r(C⊥, F ) = n− k + r′ (36)

which implies

r′ ≤ k + τ − n. (37)

Therefore, the maximum amount of information that the
eavesdropper can obtain is k+τ−n which is also minimal
according to Theorem 7. Therefore, we see that apply-
ing coset coding using a code C whose dual is an NMDS
code is in fact constructing a linear network code which
guarantees that the information obtained by the eaves-
dropper is minimal, that is, the security performance of
the overall linear network code is optimal.

According to [1], if we apply coset coding based on an
(n, n−k) linear code C in the wiretap channel II problem,
the eavesdropper who can access at most (n−k) channels
gains no information about the source (we say the system
achieves the best security performance) if and only if the
dual code of C is an MDS code. In our problem, the net-
work achieves the best security performance if and only
if the dual code of C is an NMDS code.

Corollary 2. Given an acyclic directed network G =
{V, E} and a linear multicast achieving the maxflow bound
n, if we apply coset coding at the source based on an
(n, n− k) linear code C, such that C⊥ is an NMDS code,
then the network is perfectly secure against any eavesdrop-
per with W ′ = {W ⊂ E : |W| ≤ n− k} while information
can be multicast to the sink nodes at the rate of k.

In [6], Rouayheb and Soljanin gave a coding scheme,
which is a construction of linear secure network code
based on an MDS code. According to our analysis of the
NMDS code, one can construct a linear secure network
code based on any full-rank linear block code.



V. Reduction to the Classical Communication
Channel

In this section, we show that our network generalized
Hamming weight reduces to the generalized Hamming
weight in [1] when the network being considered is the
degenerated network representing the classical communi-
cation channel. In such a network, there are only one
source node and one sink node. The source node is con-
nected directly to the sink node by n channels. Let the
global encoding kernels of the channels be δi, 1 ≤ i ≤ n,
respectively, where δi is the unit n-dimensional column
vector whose components are all equal to zero except that
the ith component is equal to 1.

According to our definition,

dr(C, F ) = min
{
|W| :

〈{
δT
i , i ∈W

}〉
contains

some subcode D of C with dimension r} ,
(38)

where F = {δi, 1 ≤ i ≤ n} . We will show that (38) is
equivalent to the definition of the generalized Hamming
weight for the classical point-to-point channel.

The support of a subcode D of C, denoted X (D), is
the set of “not-always-zero” element positions of D, that
is,

X (C) , {i : ∃ (x1, x2, . . . , xn) ∈ C, xi 6= 0}. (39)

Definition 4. (Generalized Hamming Weight [1])

d′r(C) , min{|X (D)| : D is a subcode of (40)
C with dimension r}. (41)

Let D be a subcode of C with dimension r such
that |X (D)| = d′r(C). Without loss of generality, as-
sume X (D) = {1, 2, . . . , d′r(C)}. This implies that for all
x ∈ D,xi = 0 for d′r(C) + 1 ≤ i ≤ n. This further implies
that for all x ∈ D,x ∈

〈
{δT

i , 1 ≤ i ≤ d′r(C)}
〉
. Therefore,

dr(C, F ) ≤ d′r(C). (42)

On the other hand, let W ⊂ {1, 2, . . . , n} and |W| =
dr(C, F ) such that 〈{δi, i ∈W}〉 contains some subcode
D of C with dimension r. Without loss of generality, as-
sume W = {1, 2, . . . , dr(C, F )}. This implies for all x ∈
D,xi = 0 where dr(C, F ) + 1 ≤ i ≤ n. This further im-
plies X (D) ⊂ {1, 2, . . . , dr(C, F )} and |X (D)| ≤ dr(C, F ).
Therefore,

d′r(C) ≤ dr(C, F ). (43)

VI. Conclusion

In this paper, we have introduced the network general-
ized Hamming weight of a linear block code with respect
to the set of global encoding kernels of a given linear
network code. We have obtained the network generalized
Singleton bound and proved its achievability. In addition,

the network generalized Hamming weight can completely
characterize the security performance of a linear block
code when it is applied in conjunction with a linear net-
work code on a wiretap network. Moreover, the previous
constructions of secure network codes in [5] and [6] can
be regarded as a construction of an NMDS code for any
given linear network code.
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