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Abstract— Inspir ed by network coding, network
error-correcting codeswas intr oducedin [1] for multi-
castinga sourcemessageto a setof nodeson a network.
The usual approach in existing networks, namely link-
by-link error correction, is a special caseof network
error correction. In [1], network generalizationsof the
Hamming bound and the Gilbert-Varshamov bound
were obtained. In this paper, we prove the network
generalizationsof the Singleton Bound and it’ s tight-
ness.

I . WHAT IS NETWORK CODING?

An acycliccommunicationnetwork is represented
by a finite directedgraph

���������
	��
, where

�
is

the set of nodesin the network and
	

is the set
of edgesin

�
which representthe communication

channels.An edgefrom node 
 to node � is denoted
by
� 
 � � � . We call node 
 (node � ) the input node

(outputnode)of edge
� 
 � � � , andwe call edge

� 
 � � �
an input (output)edgeof node � (node 
 ).

In thenetwork, a messagetakenfrom analphabet�
is generatedby an information sourceat a node��� �

, referred to as the source node. We call
the set

�
the source alphabet and the message

generatedthe source message. The sourcemessage
is transmittedthrough the network to each node����� for some ��� �

, and eachnode in � is
referredto asa sink node.

Let �������  "! be the maximumnumberof symbols
from an alphabet # that can be transmittedon
the channel

� 
 � � � . �������  "! is also referredto as the
capacity (in the senseof graph theory) of edge� 
 � � � . Define $ �&% �������  "!(' � 
 � � � � 	*)

. To
simplify our discussion,we assumethat �+���,�  �! are
(nonnegative) integersfor all

� 
 � � � � 	 .
Sucha network canbe describedalternatively by

a graphin which all the edgeshave capacity1 and
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Fig. 1. A network codingexample.

therecanbemultiple edgesbetweena pair of nodes.
Specifically, if �������  "! �.-0/21

, we representthe
channel

� 
 � � � by
-

edgesof capacity1, denotedby� 
 � � �3�41��5��� 
 � � �3��67�5�98:8:8:�9� 
 � � �3�;-<� , insteadof by the
single edge

� 
 � � � of capapcity
-
. In the rest of

the paper, we will denotethe edgeset for such a
representationby

	>=
. With aslightabuseof notation,

we will use
� 
 � � � to refer to oneof the channelsin	>=

from node 
 to node � .
We will denotea network describedabove by���?� � � � � $ � . For the time being, let us assume

that all the channelsareerror-free.Networkcoding,
which refers to coding at the nodesin a network,
may allow more information to be transmittedthan
whatwould bepossibleby routingalone[2]. In fact,
routing is a specialcaseof network coding.

To illustratetheadvantageof network coding,we
considerthenetwork in Fig. 1. Suppose# ��%,@A�:1B) .
Two bits, �:C and �5D , aretransmittedfrom node � to
both nodes� C and � D , with codingat node3. Here
‘+’ denotesmodulo2 addition.At node � C ( � D ), the
bit �5D ( �:C ) can be recoveredfrom the received bits�:C ( �5D ) and �:CAEF�5D . It is easyto verify that if coding
is not allowed at node3, then the above cannotbe
achieved.



Denoteby GIH<JLKNM<O � � � � � the maximumflow be-
tween node � and node � , where �P�Q� . The
following fundamentaltheoremwasproved in [2].

Theorem1: It is possible to transmit a source
messagewith alphabet

�
in a network

�
from

sourcenode � to sink nodes �R��� if and only
if S MBTVU WXU:Y � Y[Z]\ � (1)

where \ � G_^�`ba7c,d�GIH<JLKNM<O � � � � � .
Subsequently, it was proved in [3] by meansof

a vector spaceapproachthat linear network codes
suffice to achievetheboundin Theorem1. A similar
result was proved in [4] by meansof a matrix
approach.In this paper, the vector spaceapproach
in [3] will be used.

Inspired by network coding, network error-
correcting codeswas introducedin [1] for multi-
casting a sourcemessageto a set of nodeson a
network. The usualapproachin existing networks,
namely link-by-link error correction, is a special
caseof network error correction. In [1], network
generalizationsof the Hamming bound and the
Gilbert-Varshamov boundwereobtained.

In this paper, we prove the Singleton bound
for network error-correcting codes and it’s tight-
ness.The rest of the presentpaperis organizedas
follows. Section II is an introduction to network
error correction.Existing results are describedin
SectionIII, wherepreliminariesto the new results
in Section IV are provided. Section IV presents
the SingletonBound,whosetightnessis proved by
meansof a strengthenedVarshamov bound. Con-
cluding remarksare in SectionV.

I I . NETWORK ERROR CORRECTION

We first begin by defininga network code.Later
on we will show how sucha codecanbe designed
so that it canbeusedfor errorcorrection.Basically,
the source messageis protectedby the network
code from distributed errors occurring in different
channelsin the network.

Let
���?� � � � � $ � be a given acyclic communica-

tion network. Then the directedgraph
�e�f�;�g�4	>�

naturallydefinesa partialorder h ( hXi ) on the node
set
�

(edgeset
	

) i.e., for 
 � � � � (
� 
 �
j:�3�9� � �
kL� �	

), 
lhQ� (
� 
 �mj:� h i � � �
kL� ) if and only if there is

path from 
 to � (from
� 
 �
j:� to

� � �
kL� ). A partial
order can be extendedto a (total) order, and the

extension,called a linear extension of the partial
orderin combinatorics,is usuallynot unique.Let us
call an orderon

�
a legal codingorder, or simply a

codingorder, if it is a linear extensionof h .
Let n�o � 
 ���p%q��j<� 
 � ' �;j<� 
 � � 	*) and n*r � 
 ���%q� 
 � � � ' � 
 � � � � 	*) be the setsof input andoutput

edgesof node 
 , respectively. We alsocall Y n o � 
 � Y
the in-degreeand Y n r � 
 � Y the out-degreeof node 
 .
Without loss of generality, we can always assume
that the in-degree of the sourcenode � is

@
and

all other nodeshave positive in-degree becausea
non-sourcenodewith no input edgecannotobtain
information from the network, and so it is useless
for communicationandcanbedeletedfrom theedge
set. Under this assumption,a coding order always
startswith the sourcenode � . Let

�
be the source

alphabetand # bea finite setthatservesasthecode
alphabetfor the network.

Let
- �s���  "!XZe�������  "! for

� 
 � � � � 	 be positive in-
tegers.A network codefor the network

�"�t� � � � � $ �
is a family of functions

%,u �����  "!v' � 
 � � � � 	w)
such that

u ��xm�  "!p' � ybz #I{
|~}�� ��� and
u �����  "!�'� ���
� �5! c��7� ���5! # {
|���� �4� yVz # {
|���� ��� if 
 is not the

sourcenode � .
Communicationover the network with the code

definedabove may be realizedin a codingorderas
follows.Thenodesin

�
encodeandsendcodewords

according to this order. The source node � first
encodesthe sourcemessage� � � into

u ��x��  �! � � �
for all

� � � � � � n r � � � and then sendsthe values
of
u ��xm�  "! � � � to their output nodes � via channels� � � � � . Then the secondnode in the order (whose

input edgesmust be from node � by definition)
encodes.According to this scheme,when a node
 encodes,all nodes

j
such that

�;j<� 
 � � n�o � 
 �
have already encodedand sent their codewords.
That is, node 
 has received a sequence��{
|~��� �
� in# {
|���� �4� sentby node

j
from eachof its input edge�;j�� 
 � � n�o � 
 � before it encodes.Thus node 
 is

able to encodethe information it receives into the
codewords

u �����  "! � � {
|���� �4� �9�;j�� 
 � � n�o � 
 �4� and send
themto nodes� on theoutputedges

� 
 � � � � n*r � 
 � .
Communicationendsat the last node in the order
whoseout-degreemustbe zeroby definition.

Thusa function �u ���,�  �! from
�

to # {
|���� ��� for each� 
 � � � � 	 is introducedin the naturalway by such
a scheme.Obviously, thesefunctionsintroduceddo
not dependon the choice of the linear extension.



For a sink node ����� , we write � a � � ���� �u ���,� a ! ��� 
 � � � � n�o � � �4� . Thus for a given code,
the outputof every edgeis uniquelydeterminedby
the sourcemessage� if no error occurs(errorswill
be definedbelow). Then a code

%<u �����  "!_' � 
 � � � �	*)
is uniquely decodable,or simply decodable,if��a � � �g�� ��a � �q� � for all � �� �7� andall ���I� .

We now considerthe situation that the channels
in the network are not necessarilyerror-free, i.e., a
channel’s outputmay be different from its input. A
useful way to think of errors in a channelis that
they are “applied” to the input upon transmission.
Since the nodesin the network transmitaccording
to a certaincodingorder, we canthink of the errors
in the network being appliedto the channelinputs
accordingto the samecodingorder.

An error is said to occur if an output symbol of
a channelis different from the correspondinginput
symbol.Thusif a codeword consistingof morethan
onesymbolis senton a channel,multiple errorscan
occur. A � -error is saidto occur(in the network) if
the total numberof errorsoccur in all the channels
is equalto � .

Definition 1: A network code is � -error-
correctingif it can correct all � -errors for �eZp� ,
i.e., if the total numberof errors in the network is
at most � , thenthesourcemessagecanberecovered
by all the sink nodes� �¡� .

I I I . EXISTING BOUNDS

Upon defining a � -error-correcting code for an
acyclic network

�"�t� � � � � $ � in the last section,we
presentin this sectionexisting boundsfor network
error-correctingcodes,namelythe Hammingbound
and the Gilbert-Varshamov bound. The Gilbert-
Varshamov boundis a preliminary to the Singleton
boundto be discussedin SectionIV.

A. TheHammingbound

For a given code
u��(%,u �����  "!�' � 
 � � � � 	*) anda

setof channels¢ , let usdenoteby £ � � ��u�� � � ¢ � � � the
setof all possibleoutputsequencesof the channels
in the set ¢ (with length ¤ �����  "! cB¥ �������  "! ) when �
is the sourcemessageand at most � errors occur
in the network. For disjoint ¦ �m§ � �

such that¦©¨ §��ª� , definej � � � ¦ �m§«�t�¬%q� 
 � � � � 	 'q
 � ¦ and � � §I)q8

We say that
j � � � ¦ �m§«� is a cut betweennodes �

and � if �­� ¦ and � � §
. The quan-

tity ¤ �����  "! c � a�® �°¯>� ±>! �������  "! is called the volume ofj � � � ¦ �
§«� . For a sink node � �¡� , denoteby
j�� � � � �

the minimum volume of a cut between � and � ,
which by the max-flow min-cut theoremin graph
theory is equalto G_H�JLKNM<O � � � � � .

Observation1: For a � -error-correctingnetwork
code

u
, for any

j � � � ¦ �m§«� between the source
node � andany sink node � ,£ � � ��u�� � �mj � � � ¦ �m§«�5� � �m² £ � � ��u�� � �mj � � � ¦ �m§«�3� � � �w��³

(2)
for all � � � � � � suchthat � �� � � .

Basedon this observation,by showing that for all
sinks �´��� , any

j � � � ¦ �
§«� between� and � with
volume µ (say),andall � � � ,

Y £ � � �"u�� � �
j � � � ¦ �
§¶�5� � � Y[· ®¸ ¹ º¼» ½ µ°¾À¿ �;Á y 1��
¹ �

(3)

we can prove the following sphere-packingbound,
or the Hammingbound.

Theorem2 (HammingBound): [1] Let���?� � � � � $ � be an acyclic network and\ � G_^�`ba7c,d j�� � � � � . Let the code alphabet #
be
Á
-ary, i.e., Y #�Y �ÂÁ

. If there exists a � -error-
correctingcodeon

���?� � � � � $ � for an information
sourcewith alphabet

�
, thenY � YLZ Á<Ã¤ ® ¹ º¼»gÄ Ã ¹�Å �;Á y 1,�

¹ 8
Although the RHS of (3) is exactly equalto the

volume of a spherein #IÆ with radius � , (3) by
nomeansimply that £ � � �"u�� � �
j � � � ¦ �
§¶�5� � � contains
a spherein #IÆ with centerat

� �u �����  "! � � �5��� 
 � � � �j � � � ¦ �
§«�
� and radius � . If this is true, then to-
gether with Observation 1,

%L� �u �����  "! � � �3�9� 
 � � � �j � � � ¦ �
§«�
� '7� � � ) would form a classical� -error-
correctingcode in #¡Æ . However, it turns out that
this is actually the casewhen

j � � � ¦ �
§«� satisfiesa
certain property. We refer the readerto [5] for a
detaileddiscussion.

B. TheGilbert-Varshamov Bound

Throughoutthis section,we assumethat thecode
alphabet # is ÇÉÈ ��Á�� for some sufficiently large
prime

Á
, and we will work in an \ -dimensional



linearspaceÇÉÈ Ã �;Á�� spannedby a linear-codemul-
ticast (LCM) definedshortly. The sourcealphabet�

will be a subsetof ÇÉÈ ÃÀ��Á�� for a generalcode
anda Ê -dimensionalsubspaceof ÇÉÈ Ã �;Á�� for some
positive integer Ê�ZË\ for a linear code.Boldfaced
letters(e.g., Ì �
Í?�98:898:�
Î ) standfor row vectorswhose
dimensionsare understoodfrom the context. The
transposeoperationon vectorsandmatriceswill be
denotedby “ � ”. So Ï�Ð �4Ñ Ð , etc,arecolumnvectors.
Addition and subtractionof vectorsare understood
to be in the linearspacesover ÇÉÈ �;Á�� . With a slight
abuse of notation,we also use ÇÉÈ Ã ��Á�� to denote
the linear spacesof \ -dimensionalrow vectorsand
columnvectorsin ÇÉÈ �;Á�� .

Thedefinitionof anLCM we givebelow hasbeen
simplified for acylic networks.Recall the definition
of
	>=

in SectionI.
Definition 2: [3] A linear codemulticast(LCM)Ò
for an acyclic network

���?� � � � � $ � is an assign-
ment of linear subspaceÓÕÔ � 
 � of (column space)ÇÉÈ Ã¼�;Á�� to a node 
 � �

and a column vectorÏ�ÐÔ �4� 
 � � �4� of dimension\ to a channel
� 
 � � � � 	>=

over a sufficiently large finite field ÇÉÈ �;Á�� for a
positive integer \ , suchthat
1) for all nodes 
 � �

and channels
� � �mj:� �	>=

, Ó Ô � 
 � � Ó Ô � � �5� Ï�ÐÖ �
� � �mj:�4� � Ó Ô � � � , andÓ Ô � � � � ÇÉÈ Ã¼�;Á�� ;
2) Ï�ÐÔ �
� 
 � � �
� � Ó Ô � 
 � if

� 
 � � � � n*r � 
 � ;
3) Ï�ÐÔ �4� � �
j9�4� is a linear combinationof Ï�ÐÔ �4� 
 � � �4� ,� 
 � � � � n�o � � � for all output channels

� � �
j9� �n*r � � � .
Denoteby × � 
 � the matrix whosecolumnsare

thevectorsassignedto theinput channelsof node 
 .
For any LCM

Ò
, by 3) in theabove definition,there

exists a column vector ÌAÐ such that Ï�ÐÔ �4� 
 � � �4�I�× � 
 � ÌAÐ . For the time being, let ÇÉÈ Ã¼�;Á�� plays the
role of the sourcealphabetand call a vector

Ñ �ÇÉÈ Ã¼�;Á�� aninput to thenetwork. Thenwecandefine
a linear network code

u
basedon any LCM

Ò
by

1)
u ��x�� �5! ��ÑØ�Ù� Ú�Ñ � Ï Ô �
� � � 
 �4�
Û for all 
 �nwr � � � ;

2)
u ���,�  �! ��Ü?� 
 �4�?�0Ü?� 
 � ÌAÐ , where

Ü?� 
 � is therow
vector whose

¾
th componentis the output of

the
¾
th channelin n�o � 
 � in the sameorderas

the columnsof × � 
 � .
It is easyto verify inductively that�u �����  "! ��ÑØ�?�lÚ�Ñ � Ï Ô �4� 
 � � �4�
Û

for all
� 
 � � � � 	 = .

We now definea genericLCM which we will use
for code construction.The existenceof a generic
LCM is guaranteedby the theoremthat follows.

Definition 3: [3] An LCM
Ò

assigning\ -dimensional column vectors to channels
in a network

�"�?� � � � � $ � is generic if
for all Ê Z \ and any subset of Ê
channels

%L� 
 C � � C �3�9� 
 D � � D �5�:898:89�9� 
[Ý � �3Ý ��) ,
that Ó Ô � 
�Þ � �� �
ß 
q\wà Ï ÐÔ �4� 
 ¹ � � ¹ �
�5� ¾ �� á�â
for all

á � %q1B��6[�:898:85� Ê ) implies thatÏ�ÐÔ �4� 
 C � � C �4�5� Ï�ÐÔ �4� 
 D � � D �4�V898:8:� Ï�ÐÔ �
� 
[Ý � �3Ý �4� are
independent.

Theorem3: [3]
i) For a given network with sourcenode � , for all\�Z�n r � � � and sufficiently large

Á
(dependingon

the network and \ ), thereexists a genericLCM as-
signing \ -dimensionalcolumn vectorsover ÇÉÈ �;Á��
to channelsin the network.
ii) For the genericLCM in i) with \ � n r � � � and
all nodes 
 � ��ãØ% � ) , k ¾ µ � ÓÕÔ � 
 �4� is equal toGIH<JLKNM<O ��ä:� H �å�0j�� � � 
 � .

To constructerror correctingcodesvia a generic
LCM, we needthe following preparation.Consider
the given network and let \ � G_^�` a7c,d j�� � � � � .
Thenwe canobtaina subnetwork by deletingsome
channelsif necessary, suchthat for all ���I� ,j � � � � � � �*��k o � � �w� \ 8 (4)

For simplicity of notation,without lossof generality,
we assumethat (4) holds for the given network.
Now by Theorem3, we can find a genericLCMÒ

assigning \ -dimensionalcolumn vectors to the
channels in the network. This generic LCM

Ò
inducesa network code specifiedby

u
and �u as

describedabove. Sincefor any � �¡� ,k ¾ µ � Ó Ô � � �4�t�0j � � � � � � �w� \ �0k ¾ µ � Ó Ô � � �4�
by Theorem3 and(4), and ÓÕÔ � � � � ÓæÔ � � � , we see
that Ó Ô � � �w� Ó Ô � � �w� ÇÉÈ Ã ��Á��58
This implies that the matrix × � � � is a full rank
squarematrix of size \ .

Fix a coding order in the network and choose
any genericLCM

Ò
as prescribedabove. We now

consider the situation that the channelsare not
necessarilyerror-free. Since the code alphabet #



is ÇÉÈ �;Á�� , we can regard the output of a channel� 
 � � � � 	>= as the sum of the input of the channel
and an error symbol ç7�����  "! � ÇÉÈ ��Á�� . Define è �� ç7���,�  �!é' � 
 � � � � 	 = � , which we will refer to as an
error vector. Note that if an error vector è occurs,
its componentsare added to the channel inputs
accordingto the coding order. Then the output of
a channel

� 
 � � � is a functionof both the input
Ñ

to
the network and the error vector è that occurs,and
we denoteit by ê������  "! ��Ñ � è � .

Lemma1: [1] For all
� 
 � � � � 	å= , any inputs

Ñ
and

Ñ � to the network, andany error vectors è andèL� ,ê������  "! ��Ñ E Ñ � � è[Eéè � �w� ê������  "! �;Ñ � è � Egê������  "! �;Ñ � � è � �38
By this lemma,for any network input

Ñ
anderror

vector è , we have,ê������  "! �;Ñ � è �t� ê����,�  �! �;Ñ �më�� Eìê?�s���  "! ��ë�� è �58
Upon observingthat ê������  "! ��Ñ ��ëb�é� �u ���,�  �! ��ÑØ� and
defining íq�����  "! � è �?� ê������  "! ��ë�� è � , we canwriteê������  "! ��Ñ � è �t� �u ���,�  �! �;ÑØ� Eìí7�s���  "! � è �58
For each ���I� , definethe setof � -error patternsî � Ô � ® � a ! º�ï ��ð |���� ñ3� ��ò5!;óØôqõ3� a !��ö���,� a ! c��7� � a !�!�÷ øVù*�°ò�!�ú ®�û �
where üæý � è � denotesthe Hamming weight of è .
Defineþ � Ò � � �t� ¨ a7c,d %,ÿg��� � y � ' �>��� � ��� � Ò � � � � �5)78

Theorem4 (Gilbert-Varshamov Bound): [1] For
all positive integer ¦ with� ¦ y 1,� Y þ � Ò � � � Y�� Á Ã �
there exists a � -error-correcting code with source
alphabetsize ¦ (i.e., Y � Y � ¦ ). In particular, for
all positive integers Ê suchthatY þ � Ò � � � Y�� Á Ã rVÝ �
onecanconstructa linear codeof at least Ê dimen-
sions(i.e., Y � Y ��Á Ý ) via the given genericLCM V.

To obtain a lower boundon Y � Y which doesnot
dependon the particular choice of LCM

Ò
, we

employ the upperboundU � � Ô � ® ! U ú ¤ ñ
	�� U î � Ô � ® � a ! U 
 ú U d U�� ¤������� ��� � � ��� r C ! ��� 
��

This allows us to obtain a lower boundon Y � Y as
follows.

Corollary 1: For a network withG_^°` aBc,d j�� � � � � � \ , for all � /�@ and sufficiently
large

Á
(dependingon the network and � ), one

can constructa � -error correctingcodewith source
alphabet

�
suchthatS M7TgY � YL· � \ y 6 � �3�41 y � � S MBT ÁL8 (5)

Moreover, for all sufficiently large prime power
Á

and Ê � \ y 6 � y 1 one can find a Ê -dimensional
linear � -error correctingcodefor the network.

IV. THE SINGLETON BOUND

In this section,we presentthe Singletonbound
for network error-correctingcodes.The tightnessof
this boundcanbeshown via anenhancementof the
Varshamov boundin Theorem4.

Theorem5 (SingletonBound): Let
�"�t� � � � � $ �

be an acyclic network and \ � G¶^�` a7c,d j�� � � � � . If
thereexistsa � -error-correctingcodefor thenetwork
with sourcealphabet

�
, thenS MBTgY � YLZ � \ y 6 � � S MBT ÁL8 (6)

Comparingthe Singletonbound(upperboundonY � Y ) with the bound in Corollary 1 (lower bound
on Y � Y ), which is a consequenceof the Varshamov
bound,we seethat the two boundsdiffer only by
the � in thelatter. However, thegapbetweenthetwo
boundscanbe quite large becauseaccordingto the
proof of Corollary 1,

Á z �
as � z @

. By em-
ploying a more elaboratetechniqueto estimatethe
sizeof the differenceset

þ � Ò � � � , we canprove the
following strengthenedVarshamov bound,showing
the tightnessof the Singletonbound.

Theorem6 (StrengthenedVarshamov Bound):
For a fixed arbitrary acyclic network withG_^°`baBc,d j�� � � � �Â� \ and all sufficiently largeÁ
, there exists an

� \ y 6 � � -dimensional linear� -error-correctingcodefor the network.
For theproofsof theseresults,we referthereader

to [5].

V. DISCUSSION

Togetherwith our previous work in [1], we have
generalizedthe most important bounds in classi-
cal algebraiccoding theory, namely the Hamming



bound,the Gilbert-Varshamov bound,and the Sin-
gleton bound, for network error-correcting codes.
Moreover, the tightnessof the Singletonbound is
preserved.Conceivably, similar network generaliza-
tions can be obtained for classical convolutional
codes,turbocodes,LDPC codes,etc.Thesearevery
importantproblemsfor future research.

Algebraicnetwork error-correctingcodescanpo-
tentially beappliedin networksfor which thenodes
areconnectedby noisy channels.Whenthesechan-
nels are independentand memoryless,separation
theoremsfor network coding and channelcoding
have beenproved [6] [7] [8]. In other words, link-
by-link error correctiondoesnot sacraficeasymp-
totic optimality, andonecansimply employ thebest
known channelcodesfor point-to-point communi-
cation (e.g., turbo codes,LDPC codes).However,
whenthechannelseitherarenot independentor have
memory, no separationtheoremfor network coding
and channelcoding exists. In suchcases,algebraic
network error-correctingcodescanbe very useful.

In addition to bandwidth optimality, computa-
tionalcomplexity is animportantissuein realimple-
mentations.With link-by-link error correction,de-
codingneedsto be doneat eachintermediatenode,
which is computationallyexpensive. By contrast,
by employing linearnetwork error-correctingcodes,
only a verysimplelineartransformationis neededat
eachintermediatenode,anddecodingis doneonly
at the sink nodes.

In certainnetwork applications,errorsareinjected
by maliciousnodesin the network insteadof being
causedby noisein thechannels.In suchcases,alge-
braic network error-correctingcodessimply render
the naturalsolution.

REFERENCES

[1] N. Cai andR. W. Yeung,“Network codinganderrorcorrec-
tion,” 2002IEEE InformationTheoryWorkshop,Bangalore,
India, Oct 20-25,2002.

[2] R. Ahlswede,N. Cai,S.-Y. R. Li, andR. W. Yeung,“Network
informationflow,” IEEE Trans.Inform. Theory, IT-46: 1204-
1216,2000.

[3] S.-Y. R. Li, R. W. Yeung and N. Cai, “Linear network
coding,” IEEE Trans.Inform. Theory, IT-49: 371-381,2003.

[4] R. Koetterand M. Médard,“An algebraicapproachto net-
work coding,” IEEE/ACM Transactionson networkcoding,
vol. 11, 782-795,2003.

[5] “Network error correction,” preprint.
[6] L.Song and R. W. Yeung,“A separationprinciple of com-

munication network,” 1999 IEEE Information Theory and
Networking Workshop,Metsovo, Greece,Jun27-Jul1, 1999.

[7] S. Borade,“Network InformationFlow: Limits andAchiev-
ability,” 2002IEEE InternationalSymposiumon Information
Theory, Lausanne,Switzerland,Jun30-Jul5, 2002.

[8] L. Song and R. W. Yeung, and N. Cai, “A separation
theoremfor singlesourcenetwork coding,” to appearin IEEE
Transactionson InformationTheory.


