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Abstract— Inspired by network coding, network
error-correcting codeswasintr oducedin [1] for multi-
castinga sourcemessagéo a setof nodeson a network.
The usual approachin existing networks, namely link-
by-link error correction, is a special caseof network
error correction. In [1], network generalizationsof the
Hamming bound and the Gilbert-Varshamor bound
were obtained. In this paper, we prove the network
generalizations of the Singleton Bound and it's tight-
ness.

I. WHAT ISNETWORK CODING?

An acycliccommunicatiometwork is represented
by a finite directedgraphG = (V, &), whereV is
the set of nodesin the network and £ is the set
of edgesin G which representhe communication
channelsAn edgefrom nodea to nodeb is denoted
by (a,b). We call nodea (nodebd) the input node
(outputnode)of edge(a, b), andwe call edge(a, b)
aninput (output) edgeof nodeb (nodea).

In the network, a messageaken from analphabet
Z is generatedy an information sourceat a node
s € V, referredto as the source node We call
the set Z the source alphabet and the message
generatedhe souice messge. The sourcemessage
is transmittedthrough the network to each node
u € U for someld C V, and eachnodein U is
referredto asa sink node

Let R,z be the maximumnumberof symbols
from an alphabetX” that can be transmitted on
the channel(a, b). R, ) is alsoreferredto asthe
capacity (in the senseof graph theory) of edge
(a,b). Define R = {Rp) : (a,b) € &} To
simplify our discussionwe assumethat R, ;) are
(nonngative) integersfor all (a,b) € £.

Sucha network canbe describedalternatvely by
a graphin which all the edgeshave capacityl and

Fig. 1. A network coding example.

therecanbe multiple edgesbetweera pair of nodes.
Specifically if R, = r > 1, we representhe
channel(a, b) by r edgesof capacityl, denotedby
(a,b)(1), (a,b)(2),...,(a,b)(r), insteadof by the
single edge (a,b) of capapcityr. In the rest of
the paper we will denotethe edgeset for sucha
representatioby £*. With aslightabuseof notation,
we will use(a,b) to referto oneof the channelsn
&* from nodea to nodeb.

We will denotea network describedabove by
(G,s,U,R). For the time being, let us assume
thatall the channelsare errorfree. Networkcoding
which refersto coding at the nodesin a network,
may allow more informationto be transmittedthan
whatwould be possibleby routingalone[2]. In fact,
routing is a specialcaseof network coding.

To illustratethe advantageof network coding,we
considerthenetwork in Fig. 1. SupposeY = {0,1}.
Two bits, b; and b,, aretransmittedfrom nodes to
both nodesu; andu., with codingat node3. Here
‘+’ denotesnodulo2 addition.At nodewu; (us), the
bit b, (b1) canbe recoveredfrom the receved bits
by (b2) andby +b,. It is easyto verify thatif coding
is not allowed at node 3, then the above cannotbe
achieved.



Denoteby maxflow(s, ) the maximumflow be-
tween node s and node u, whereuw € U. The
following fundamentatheoremwas provedin [2].

Theoem1: It is possibleto transmit a source
messagewith alphabetZ in a network G from
sourcenode s to sink nodesu € U if and only
if

wheren = min, ¢y maxflow(s, u).

Subsequentlyit was proved in [3] by meansof
a vector spaceapproachthat linear network codes
suflice to achieve the boundin Theoreml. A similar
result was proved in [4] by meansof a matrix
approach.n this paper the vector spaceapproach
in [3] will be used.

Inspired by network coding, network error
correcting codeswas introducedin [1] for multi-
castinga sourcemessageto a set of nodeson a
network. The usual approachin existing networks,
namely link-by-link error correction, is a special
caseof network error correction.In [1], network
generalizationsof the Hamming bound and the
Gilbert-Varshame boundwere obtained.

In this paper we prove the Singleton bound
for network errorcorrecting codesand it's tight-
ness.The restof the presentpaperis organizedas
follows. Sectionll is an introduction to network
error correction. Existing results are describedin
Sectionlll, where preliminariesto the new results
in Section IV are provided. Section IV presents
the SingletonBound, whosetightnessis proved by
meansof a strengthenedvarshame bound. Con-
cluding remarksarein SectionV.

Il. NETWORK ERROR CORRECTION

We first begin by defininga network code.Later
on we will shov how sucha codecanbe designed
sothatit canbe usedfor error correction.Basically
the source messageis protectedby the network
code from distributed errors occurringin different
channelsn the network.

Let (G, s,U,R) be a given agyclic communica-
tion network. Then the directedgraphg = (V, &)
naturallydefinesa partial order < (<,) onthe node
setV (edgesetf) i.e.,for a,b € V ((a,c), (b,d) €
£), a 2 b ((a,c)=.(b,d)) if andonly if thereis
path from a to b (from (a,c) to (b,d)). A partial
order can be extendedto a (total) order and the

extension, called a linear extension of the partial
orderin combinatoricsjs usuallynot unique.Let us
call anorderon V alegal codingorder, or simply a
codingorder, if it is alinear extensionof <.

Let Ty (a) = {(¢c,a) : (c,a) € £} andT'_(a) =
{(a,b) : (a,b) € £} be the setsof input and output
edgesof nodea, respectiely. We alsocall |T'(a)|
thein-degreeand |I"_ (a)| the out-degreeof nodea.
Without loss of generality we can always assume
that the in-degree of the sourcenode s is 0 and
all other nodeshave positive in-degree becausea
non-sourcenode with no input edge cannotobtain
information from the network, and so it is useless
for communicatiorandcanbedeletedrom theedge
set. Under this assumptiona coding order always
startswith the sourcenodes. Let Z be the source
alphabetand X’ be afinite setthatsenesasthecode
alphabetfor the network.

Let 74,5y < R(ap) fOr (a,b) € £ be positive in-
tegers.A network codefor the network (G, s, U, R)
is a family of functions {¢(,s : (a,b) € &}
suchthat ¢35 : 2 — X7 and ¢, )
Hcwyery (o) X7 — X7@n if a is not the
sourcenodes.

Communicationover the network with the code
definedabove may be realizedin a codingorderas
follows. Thenodesin V encodeandsendcodevords
accordingto this order The source node s first
encodesthe sourcemessagez € Z into ¢, ) (2)
for all (s,b) € I'_(s) and then sendsthe values
of ¢4 (2) to their output nodesd via channels
(s,b). Then the secondnodein the order (whose
input edgesmust be from node s by definition)
encodes.According to this scheme,when a node
a encodesall nodesc suchthat (c,a) € T'y(a)
have already encodedand sent their codevords.
That is, nodea hasreceired a sequencer”(=:=) in
X" sentby nodec from eachof its input edge
(c,a) € T'y(a) beforeit encodesThus nodea is
able to encodethe informationit recevesinto the
codevords ¢, ) (z", (¢,a) € T'y(a)) andsend
themto nodesh onthe outputedges(a, b) € I'_(a).
Communicationendsat the last nodein the order
whoseout-deggreemustbe zero by definition.

Thusa function qE(w) from Z to X"@.» for each
(a,b) € £ is introducedin the naturalway by such
a scheme Obviously, thesefunctionsintroduceddo
not dependon the choice of the linear extension.



For a sink node v € U, we write ®,(2) =
(A(au)» (a,u) € Ty (u)). Thusfor a given code,
the outputof every edgeis uniquely determinedby
the sourcemessage: if no error occurs(errorswill
be definedbelow). Thena code {¢(,) : (a,b) €
£} is uniquely decodableor simply decodablejf
®,(2) # ®,(2") for all z # 2’ andall u € U.

We now considerthe situationthat the channels
in the network are not necessarilyerrorfree, i.e., a
channels outputmay be differentfrom its input. A
useful way to think of errorsin a channelis that
they are “applied” to the input upon transmission.
Sincethe nodesin the network transmitaccording
to a certaincodingorder, we canthink of the errors
in the network being appliedto the channelinputs
accordingto the samecoding ordet

An erroris saidto occurif an outputsymbol of
a channelis differentfrom the correspondingnput
symbol. Thusif a codevord consistingof morethan
onesymbolis senton a channelmultiple errorscan
occur A T-error is saidto occur (in the network) if
the total numberof errorsoccurin all the channels
is equalto 7.

Definition 1: A network code is t-error
correctingif it can correctall r-errorsfor = < t,

e., if the total numberof errorsin the network is
at mostt, thenthe sourcemessageanberecovered
by all the sink nodesu € U.

Upon defining a t-errorcorrecting code for an
agyclic network (G, s,U,R) in the last section,we
presentin this sectionexisting boundsfor network
errorcorrectingcodes ,namelythe Hammingbound
and the Gilbert-Varshame bound. The Gilbert-
Varshamwe boundis a preliminaryto the Singleton
boundto be discussedn SectionlV.

EXISTING BOUNDS

A. TheHammingbound

For a givencoded = {¢(,p) : (a,b) € £} anda
setof channeld3, let usdenoteby out(¢, t, B, z) the
setof all possibleoutputsequencesf the channels
in the set B (with length Z(a e B (a,5)) When z
is the sourcemessageand at most ¢ errors occur
in the network. For disjoint A, B C V suchthat
AU B =Y, define

cut(A,B) = {(a,b) € £:a € A andb € B}.

We say that cut(A, B) is a cut betweennodess
and v if s € A andu € B. The quan-
tity > (4.0 ecut(a,B) Fa,p) is called the volume of
cut(A, B). For asinknodeu € U, denoteby c(s, u)
the minimum volume of a cut betweens and w,
which by the max-flov min-cut theoremin graph
theoryis equalto maxflow(s, u).

Observationl: For a t-errorcorrecting network
code ¢, for any cut(A,B) betweenthe source
nodes andary sink nodeu,

out(p,t, cut(A, B), z)Nout(d,t,cut(A, B),z') =0
2)

for all z,2' € Z suchthatz # 2'.
Basedon this obsenation, by shaving thatfor all
sinksu € U, ary cut(A, B) betweens and u with

volumem (say),andall z € Z,

lout (g, t, cut(A, B), |>Z( ) - 1)}, (3)

we can prove the following sphere-packindpound,
or the Hammingbound.

Theoem?2 (HammingBound): [1] Let
(G,s,U,R) be an agclic network and
n = minyey c(s,u). Let the code alphabet X
be g-ary, i.e., |X| = ¢. If there exists a t-error
correctingcodeon (G, s,U,R) for an information
sourcewith alphabetZ, then

q'n
>N P

Although the RHS of (3) is exactly equalto the
volume of a spherein X™ with radiust, (3) by
no meansmply thatout(¢, t, cut(A, B), z) contains
a spherein X™ with centerat (qz(a,,,) (2),(a,b) €
cut(A, B)) and radius ¢t. If this is true, then to-
gether with Obseration 1, {(fs)(2),(a,b) €
cut(A, B)) : z € Z} would form a classicalt-error
correctingcodein X™. However, it turns out that
this is actually the casewhen cut(A, B) satisfiesa
certain property We refer the readerto [5] for a
detaileddiscussion.

B. TheGilbert-Varshama Bound

Throughoutthis section,we assumehatthe code
alphabetX is GF(q) for some suficiently large
prime ¢, and we will work in an n-dimensional



linear spaceG F™(q) spannedy alinear-codemul-
ticast (LCM) definedshortly The sourcealphabet
Z will be a subsetof GF™(q) for a generalcode
anda k-dimensionalsubspacef GF"(q) for some
positive integer k& < n for a linear code.Boldfaced
letters(e.g.,a, b, . . ., z) standfor row vectorswhose
dimensionsare understoodfrom the context. The
transposeperationon vectorsand matriceswill be
denotedby “7”. Sov”, w7, etc,arecolumnvectors.
Addition and subtractionof vectorsare understood
to bein thelinear spacesover GF(g). With a slight
aluse of notation, we also use GF"(q) to denote
the linear spacesof n-dimensionalrow vectorsand
columnvectorsin GF(q).

Thedefinitionof anLCM we give below hasbeen
simplified for agylic networks. Recallthe definition
of £* in Sectionl.

Definition 2: [3] A linear code multicast(LCM)
V' for an agyclic network (G, s,U,R) is an assign-
ment of linear subspacely (a) of (column space)
GF"(q) to anodea € V and a column vector
v{,((a,b)) of dimensionn to a channel(a,b) € £*
over a sufiiciently large finite field GF(q) for a
positive integer n, suchthat
1) for all nodesa € V and channels(b,c) €
E*, Ly(a) C Ly(s), vi((b,c)) € Ly(s), and
Ly (s) C GF"(q);

2) viy((a,b)) € Ly (a) if (a,b) € T_(a);

3) vi;((b,¢)) is alinear combinationof vi, ((a, b)),
(a,b) € T'4(b) for all output channels(b,c) €
T_(b).

Denoteby M (a) the matrix whosecolumnsare
thevectorsassignedo the input channelof nodea.
Forany LCM V, by 3) in theabove definition, there
exists a column vectora” suchthat vi,((a,b)) =
M (a)a™. For the time being, let GF"(q) playsthe
role of the sourcealphabetand call a vectorw €
GF™(q) aninputto thenetwork. Thenwe candefine
a linear network code ¢ basedon ary LCM V' by

1) ¢(s,a)(W) = (w,vy((s,a))) for all a €
T_(s);

2) P(ap) (u(a)) = u(a)a™, whereu(a) is therow
vector whoseith components the output of
theith channelin T, (a) in the sameorderas
the columnsof M (a).

It is easyto verify inductively that

Pap) (W) = (W, vy ((a,1)))

for all (a,b) € £*.

We now definea genericLCM which we will use
for code construction.The existenceof a generic
LCM is guaranteedy the theoremthat follows.

Definition3: [3] An LCM V  assigning
n-dimensional column vectors to channels
in a network (G,s,U,R) is generic if
for al ¥ < =n and ary subset of k
channels {(a1,b1), (az,b2),...,(ar,br)},
that Lv (aj) Z Span[va((aia b’l))a i # .7]
for all 7 € {1,2,...,k} implies that

VTV((alabl))avTV((G’?:b?))"'7VTV((ak7bk)) are
independent.

Theoem3: [3]

i) For a given network with sourcenodes, for all
n < I'_(s) and suficiently large ¢ (dependingon
the network andn), thereexists a genericLCM as-
signing n-dimensionalcolumn vectorsover GF(q)
to channeldn the network.

ii) For the genericLCM in i) with n =T'_(s) and
all nodesa € V\ {s}, dim(Ly(a)) is equal to
maxflow(s, a) = ¢(s, a).

To constructerror correctingcodesvia a generic
LCM, we needthe following preparation Consider
the given network and let n = mingey c(s,u).
Thenwe canobtaina subnetveork by deletingsome
channelsf necessarysuchthatfor all v € U,

(4)

For simplicity of notation,withoutlossof generality
we assumethat (4) holds for the given network.
Now by Theorem3, we can find a genericLCM
V' assigningn-dimensionalcolumn vectorsto the
channelsin the network. This generic LCM V
inducesa network code specifiedby ¢ and ¢ as
describedabove. Sincefor ary u € U,

dim(Ly (u)) = cut(s,u) =n = dim(Ly (s))

by Theorem3 and(4), and Ly (u) C Ly (s), we see
that

cut(s,u) = dy(u) = n.

Ly (u) = Ly(s) = GF"(q).

This implies that the matrix M (u) is a full rank
squarematrix of sizen.

Fix a coding order in the network and choose
ary genericLCM V as prescribedabore. We now
consider the situation that the channelsare not
necessarilyerrorfree. Since the code alphabetX



is GF(q), we can regard the output of a channel
(a,b) € £* asthe sumof the input of the channel
and an error symbol e(, 5y € GF(q). Definee =
(e(ap) : (a,b) € £%), which we will referto asan
error vector Note thatif an error vectore occurs,
its componentsare added to the channelinputs
accordingto the coding order Then the output of
achannel(a, b) is afunction of boththeinput w to
the network andthe error vectore that occurs,and
we denoteit by v, 3) (W, e).

Lemmal: [1] For all (a,b) € £*, ary inputsw
andw’ to the network, andary error vectorse and

e,

d)(a,b) (W+Wla e+el) = w(a,b) (W7 e)+¢(a,b) (Wla el)'

By thislemma,for ary network input w anderror
vectore, we have,

Y(ap) (W, €) = V(a5 (W, 0) + 14, (0, €).

Upon observingthat 1, 5)(w, 0) = ¢, (W) and
defining 6, 5)(e) = (4,5 (0, e), we canwrite

Plap) (W, €) = Pa,p) (W) + b(a ) (e)-
For eachu € U, definethe setof ¢t-error patterns
E(Vvtau):{(a(a,u) (e)M_l (u)’(a7u)€F+(u)):wH(e)St}a

where wg (e) denotesthe Hamming weight of e.
Define

AV, t) =Uueu{f =g —g:g,8 € E(V,t,u)}.

Theoem4 (Gilbert-Varshame Bound): [1] For
all positive integer A with

there exists a t-errorcorrecting code with source
alphabetsize A (i.e., |Z| = A). In particular for
all positive integersk suchthat

AWV, )] < ¢"7F,
onecanconstructa linear codeof at leastk dimen-
sions(i.e., | Z| = ¢*) via the given genericLCM V.

To obtain a lower boundon | Z| which doesnot
dependon the particular choice of LCM V, we
employ the upperbound

IAWVDISY, o EVt <l [308_ (5)@-1)7]".

This allows us to obtain a lower boundon |Z| as
follows.

Corollary 1: For a network with
mingey ¢(s,u) = n, for all e > 0 and suficiently
large ¢ (dependingon the network and €), one
can constructa t-error correctingcodewith source
alphabetZ suchthat

log|Z| > (n - 2t)(1 —€)logg. (5)

Moreover, for all sufficiently large prime power ¢
andk = n — 2t — 1 one canfind a k-dimensional
linear ¢-error correctingcodefor the network.

IV. THE SINGLETON BOUND

In this section,we presentthe Singletonbound
for network errorcorrectingcodes.The tightnessof
this boundcanbe shonn via an enhancemenf the
Varshame boundin Theorem4.

Theoem5 (SingletonBound): Let (G, s,U,R)
be an agyclic network andn = min,ey ¢(s, u). If
thereexistsat-error-correctingcodefor the network
with sourcealphabetZ, then

log |Z| < (n — 2t)logq. ®)

Comparingthe Singletonbound (upperboundon
|Z|) with the boundin Corollary 1 (lower bound
on | Z]), which is a consequencef the Varshame
bound, we seethat the two boundsdiffer only by
thee in thelatter However, the gapbetweerthetwo
boundscan be quite large becauseaccordingto the
proof of Corollary 1, ¢ — oo ase — 0. By em-
ploying a more elaboratetechniqueto estimatethe
size of the differenceset A(V, t), we canprove the
following strengthened/arshame bound, shaving
the tightnessof the Singletonbound.

Theoem 6 (Strengthened/arshame Bound):
For a fixed arbitrary acgyclic network with
min,ey c(s,u) = n and all suficiently large
g, there exists an (n — 2t)-dimensional linear
t-error-correctingcodefor the network.

For the proofsof theseresults,we referthereader
to [5].

V. DISCUSSION

Togetherwith our previous work in [1], we have
generalizedthe most important boundsin classi-
cal algebraiccoding theory namely the Hamming



bound, the Gilbert-Varshamg bound,and the Sin-

gleton bound, for network errorcorrecting codes.
Moreover, the tightnessof the Singletonbound is

presered. Concevably, similar network generaliza-
tions can be obtained for classical corvolutional

codesturbocodes] DPC codesgetc. Thesearevery

importantproblemsfor future research.

Algebraicnetwork error-correctingcodescan po-
tentially be appliedin networksfor which the nodes
are connectedy noisy channelsWhenthesechan-
nels are independentand memoryless,separation
theoremsfor network coding and channelcoding
have beenproved [6] [7] [8]. In otherwords, link-
by-link error correctiondoesnot sacraficeasymp-
totic optimality, andonecansimply employ the best
known channelcodesfor point-to-pointcommuni-
cation (e.g., turbo codes,LDPC codes).However,
whenthechannelsitherarenotindependentr have
memory no separatiortheoremfor network coding
and channelcoding exists. In suchcasesalgebraic
network errorcorrectingcodescan be very useful.

In addition to bandwidth optimality, computa-
tional compleity is animportantissuein realimple-
mentations.With link-by-link error correction,de-
codingneedsto be doneat eachintermediatenode,
which is computationallyexpensve. By contrast,
by employing linear network error-correctingcodes,
only avery simplelineartransformatioris needecht
eachintermediatenode,and decodingis doneonly
at the sink nodes.

In certainnetwork applicationsgrrorsareinjected
by maliciousnodesin the network insteadof being
causedy noisein the channelsin suchcasesalge-
braic network errorcorrectingcodessimply render
the naturalsolution.
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