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Abstract—We consider a two-way relay channel (TRC) in
which two terminals exchange messages with the help of a
relay between them. The two terminals transmit messages to the
relay through the Multiple Access Channel (MAC) and the relay
transmits messages to the two terminals through the Broadcast
Channel (BC). We assume that the MAC and the BC do not
interfere with each other, and each terminal receives signals only
from the relay but not the other terminal. All the nodes are
assumed to be full-duplex, which means that they can transmit
and receive information at the same time. The TRC is said to be
without feedback if each terminal node cannot use its previously
received information for encoding its message. Otherwise, the
TRC is said to be with feedback. We obtain an outer bound
on the capacity region of the discrete memoryless TRC without
feedback and prove that the outer bound is tighter than the cut-
set outer bound. In addition, we show that using feedback can
enlarge the capacity region of some discrete memoryless TRC.

I. INTRODUCTION

We consider a two-way relay channel (TRC) [1], in which

two terminals exchange messages with the help of a relay

between them. The two terminals transmit messages to the

relay through the Multiple Access Channel (MAC) and the

relay transmits messages to the two terminals through the

Broadcast Channel (BC). We assume that the MAC and the BC

do not interfere with each other, and each terminal receives

signals only from the relay but not the other terminal. All

the nodes are assumed to be full-duplex, which means that

they can transmit and receive information at the same time.

The TRC is said to be without feedback if each terminal node

cannot use its previously received information for encoding its

message. Otherwise, the TRC is said to be with feedback.

Although several outer bounds on the capacity rate region

have been proved in [2,3] and several achievable rate regions

have been obtained in [4,5] for the TRC described above,

the capacity region of the TRC is unknown. In this paper

we investigate the capacity region of the discrete memoryless

TRC and establish a new outer bound on the capacity region

of the discrete memoryless TRC without feedback.

This paper is organized as follows. Section II presents the

notation of this paper. Section III establishes an outer bound on

the capacity region of the discrete memoryless TRC without

feedback. Section IV proves that the outer bound is always

contained in the cut-set outer bound [3]. Section V shows

by applying our outer bound that using feedback can enlarge

the capacity region of some discrete memoryless TRC. This

indirectly shows that our outer bound in Section III is tighter

than the cut-set bound. Section VI concludes this paper.

II. NOTATION

We use Pr{E} to represent the probability of an event E.

We use a capital letter X to denote a random variable

with alphabet X , and use the small letter x to denote the

realization of X . We use E[X ] to represent the expectation of

a random variable X . We use Xn to denote a random column

vector [X1 X2 . . . Xn]
T , where the components Xk have

the same alphabet. We let pX(x) and pXn(xn) denote the

probability mass functions of the discrete random variables X
and Xn respectively. We let pY |X(y|x) denote the conditional

probability Pr{Y = y|X = x} for any discrete random

variables X and Y . For simplicity, we drop the subscript of

a notation if there is no ambiguity. The closure of a set S is

denoted by S and the convex hull of S is denoted by conv(S).

To facilitate discussion, we let R2
+ denote the set of all pairs

of non-negative real numbers.

III. DISCRETE MEMORYLESS TWO-WAY RELAY CHANNEL

WITHOUT FEEDBACK

The TRC consists of two terminal nodes t1 and t2 and

a relay node r between them. Node t1 and node t2 do not

communicate directly, but communicate through node r using

two different channels. In each time slot, node t1 and node t2
transmit a symbol to node r through the Multiple Access

Channel (MAC), and node r transmits a symbol to node t1 and

node t2 through the Broadcast Channel (BC). The MAC and

the BC do not interfere with each other. The exchange of one

message between node t1 and node t2 is conducted in n time

slots as follows. Node t1 and node t2 choose messages W1

and W2 independently according to the uniform distribution.

Based on message Wi, node ti constructs codeword Xn
i for

i = 1, 2 and transmits Xi,k through the MAC in the kth time

slot. The received symbol in the kth time slot at r is Yr,k

and in the same time slot, r constructs and transmits Xr,k

through the BC, which depends on Yr,1, Yr,2, . . . , Yr,k−1. The

received symbol in the kth time slot at node ti is Yi,k for

i = 1, 2. After n time slots, node t1 declares Ŵ2 to be the



transmitted W2 based on Y n
1 and W1, and node t2 declares

Ŵ1 to be the transmitted W1 based on Y n
2 and W2.

Definition 1: The discrete memoryless TRC consists of

six finite sets X1, X2, Xr, Y1, Y2 and Yr, one prob-

ability mass function p1(yr|x1, x2) representing the MAC

and one probability mass function p2(y1, y2|xr) represent-

ing the BC. For any two inputs X1 and X2 to the

MAC with a joint distribution p(x1, x2) and any input Xr

to the BC with a distribution p(xr), the relationship

among X1, X2, Xr, the output Yr of the MAC and the out-

puts Y1 and Y2 of the BC satisfies p(x1, x2, xr, y1, y2, yr) =
p(x1, x2, yr)p(xr, y1, y2) for all x1 ∈ X1, x2 ∈ X2,

xr ∈ Xr, y1 ∈ Y1, y2 ∈ Y2 and yr ∈ Yr, where

p(x1, x2, yr) = p(x1, x2)p1(yr|x1, x2) and p(xr , y1, y2) =
p(xr)p2(y1, y2|xr). The discrete memoryless TRC is denoted

by (X1,X2,Xr, p1(yr|x1, x2), p2(y1, y2|xr),Y1,Y2,Yr).

When the discrete memoryless TRC is used without feed-

back, for any integer n, xn
1 ∈ Xn

1 , xn
2 ∈ Xn

2 , xn
r ∈ Xn

r ,

yn1 ∈ Yn
1 , yn2 ∈ Yn

2 and ynr ∈ Yn
r , p(yn1 , y

n
2 , y

n
r |x

n
1 , x

n
2 , x

n
r ) =

∏n

k=1 p(y1,k, y2,k, yr,k|x1,k, x2,k, xr,k). In particular,

p(ynr |x
n
1 , x

n
2 ) =

n
∏

k=1

p1(yr,k|x1,k, x2,k) (1)

and

p(yn1 , y
n
2 |x

n
r ) =

n
∏

k=1

p2(y1,k, y2,k|xr,k). (2)

Unless otherwise specified, the discrete memoryless TRC in

this paper is assumed to be without feedback.

Definition 2: An (n,M1,M2)-code on the channel

(X1,X2,Xr, p1(yr|x1, x2), p2(y1, y2|xr),Y1,Y2,Yr) consists

of the following:

1) A message set W1 = {1, 2, . . . ,M1} at node t1 and a

message set W2 = {1, 2, . . . ,M2} at node t2.

2) An encoding function f1 : W1 → Xn
1 at node t1,

yielding codewords xn
1 (1), x

n
1 (2), . . . , x

n
1 (M1).

3) An encoding function f2 : W2 → Xn
2 at node t2,

yielding codewords xn
2 (1), x

n
2 (2), . . . , x

n
2 (M2).

4) A set of n encoding functions fr,k : Yk−1
r → Xr at r,

k = 1, 2, . . . , n, where fr,k is the encoding function in

the kth time slot such that Xr,k = fr,k(Y
k−1
r ).

5) A decoding function g1 : W1 × Yn
1 → W2 at node t1

such that g1(W1, Y
n
1 ) = Ŵ2.

6) A decoding function g2 : W2 × Yn
2 → W1 at node t2

such that g2(W2, Y
n
2 ) = Ŵ1.

From Definition 2, Xn
1 = f1(W1), Xn

2 = f2(W2),
Xn

r = fr(Y
n
r ), Ŵ1 = g2(W2, Y

n
2 ) and Ŵ2 = g1(W1, Y

n
1 )

for an (n,M1,M2)-code, where fr is a function completely

determined by fr,k, k = 1, 2, . . . , n. The transmissions of

messages in the TRC are illustrated in Figure 1.

Definition 3: The average probabilities of decoding error

of W1 and W2 are defined as Pn
e,1 = Pr{g2(W2, Y

n
2 ) 6= W1}

and Pn
e,2 = Pr{g1(W1, Y

n
1 ) 6= W2} respectively.

Fig. 1. A discrete memoryless TRC without feedback.

Definition 4: A rate pair (R1, R2) is achievable if there

exists a sequence of (n,M1,M2)-codes with lim
n→∞

log
2
M1

n

≥ R1 and lim
n→∞

log
2
M2

n
≥ R2 such that lim

n→∞
Pn
e,1 = 0 and

lim
n→∞

Pn
e,2 = 0.

Definition 5: The capacity region R of the discrete mem-

oryless TRC without feedback is the closure of the set of all

achievable rate pairs.

Let R1 and R2 denote the sets










(R1, R2)
∈ R2

+

∣

∣

∣

∣

∣

∣

∣

R1 ≤ I(X1;Yr|X2), R2 ≤ I(X2;Yr|X1)
where p(x1, x2, yr)=p(x1)p(x2)
p1(yr|x1, x2) for some input distribution
p(x1)p(x2) for the MAC p1(yr|x1, x2).











(3)

and










(R1, R2)
∈ R2

+

∣

∣

∣

∣

∣

∣

∣

R1 ≤ I(Xr;Y2), R2 ≤ I(Xr;Y1)
where p(xr, y1, y2)=p(xr)p2(y1, y2|xr)
for some input distribution p(xr) for the
BC p2(y1, y2|xr).











(4)

respectively.

Lemma 1: R ⊆ conv(R1) ∩ conv(R2).

Proof: Suppose (R1, R2) is achievable. By Definition 4,

there exists a sequence of (n,M1,M2)-codes with

lim
n→∞

log2 M1

n
≥ R1 (5)

such that

lim
n→∞

Pn
e,1 = 0. (6)

Fix n and the corresponding (n,M1,M2)-code. Then,

(W1,W2) → (Xn
1 , X

n
2 ) → Y n

r → Xn
r → Y n

2 (7)

forms a Markov Chain. If W2 is fixed in the channel,

W1 → Xn
1 → Y n

r → Xn
r → Y n

2 → Ŵ1 (8)

forms a Markov Chain. Since W1 and W2 are independent,

log2 M1

= H(W1|W2)

= H(W1|W2, Ŵ1) + I(W1; Ŵ1|W2)

≤ H(W1|Ŵ1) +
∑

w2∈W2

p(w2)I(W1; Ŵ1|W2 = w2)

≤ 1 + Pn
e,1 log2 M1 +

∑

w2∈W2

p(w2)I(W1; Ŵ1|W2 = w2), (9)



where the last inequality follows from Fano’s inequality. Then,

I(Xn
1 ;Y

n
r |W2) =

∑

w2∈W2

p(w2)I(X
n
1 ;Y

n
r |W2 = w2)

≥
∑

w2∈W2

p(w2)I(W1; Ŵ1|W2 = w2) (10)

and

I(Xn
r ;Y

n
2 |W2) =

∑

w2∈W2

p(w2)I(X
n
r ;Y

n
2 |W2 = w2)

≥
∑

w2∈W2

p(w2)I(W1; Ŵ1|W2 = w2) (11)

where the two inequalities follow from applying the data

processing inequality on the Markov Chain in (8). Consider

the following chain of inequalities:

I(Xn
1 ;Y

n
r |W2)

= H(Y n
r |W2)−H(Y n

r |W2, X
n
1 )

(a)
= H(Y n

r |W2, X
n
2 )−H(Y n

r |W2, X
n
1 )

≤ H(Y n
r |Xn

2 )−H(Y n
r |W1,W2, X

n
1 , X

n
2 )

(b)
= H(Y n

r |Xn
2 )−H(Y n

r |Xn
1 , X

n
2 )

(c)
= H(Y n

r |Xn
2 )−

n
∑

k=1

H(Yr,k|X1,k, X2,k)

≤

n
∑

k=1

H(Yr,k|X2,k)−H(Yr,k|X1,k, X2,k)

=

n
∑

k=1

I(X1,k;Yr,k|X2,k) (12)

where

(a) follows from the fact that Xn
2 is a function of W2,

(b) follows from the Markov Chain in (7),

(c) follows from (1).

Using (9), (10), (12), (6) and (5), we obtain

R1 ≤ lim inf
n→∞

n
∑

k=1

1

n
I(X1,k;Yr,k|X2,k), (13)

where each I(X1,k;Yr,k|X2,k) is attained by some

pX1,k,X2,k,Yr,k
(x1,k, x2,k, yr,k)

=
∑

x1,i,x2,i,yr,i,i6=k

pXn
1
,Xn

2
(xn

1 , x
n
2 )p(y

n
r |x

n
1 , x

n
2 )

(a)
=

∑

x1,i,x2,i,yr,i,i6=k

pXn
1
(xn

1 )pXn
2
(xn

2 )p(y
n
r |x

n
1 , x

n
2 )

(b)
=

∑

x1,i,x2,i,i6=k

pXn
1
(xn

1 )pXn
2
(xn

2 )
∑

yr,i,i6=k

n
∏

j=1

p1(yr,j|x1,j , x2,j)

= p1(yr,k|x1,k, x2,k)
∑

x1,i,x2,i,i6=k

pXn
1
(xn

1 )pXn
2
(xn

2 )

= pX1,k
(x1,k)pX2,k

(x2,k)p1(yr,k|x1,k, x2,k), (14)

where (a) follows from the fact that Xn
1 and Xn

2 are indepen-

dent and (b) follows from (1).

On the other hand,

I(Xn
r ;Y

n
2 |W2) = H(Y n

2 |W2)−H(Y n
2 |W2, X

n
r )

≤ H(Y n
2 )−H(Y n

2 |W1,W2, X
n
1 , X

n
2 , Y

n
r , Xn

r )

(a)
= H(Y n

2 )−H(Y n
2 |Xn

r )

(b)
= H(Y n

2 )−

n
∑

k=1

H(Y2,k|Xr,k)

≤
n
∑

k=1

H(Y2,k)−H(Y2,k|Xr,k)

=

n
∑

k=1

I(Xr,k;Y2,k). (15)

where (a) follows from (7) and (b) follows from (2). Using

(9), (11), (15), (6) and (5), we obtain

R1 ≤ lim inf
n→∞

n
∑

k=1

1

n
I(Xr,k;Y2,k), (16)

where each I(Xr,k;Y2,k) is attained by some

pXr,k,Y1,k,Y2,k
(xr,k, y1,k, y2,k) = pXr,k

(xr,k)p2(y1,k, y2,k|xr,k),

which can be obtained by following similar procedures in (14).

By symmetry, we also obtain

R2 ≤ lim inf
n→∞

n
∑

k=1

1

n
I(X2,k;Yr,k|X1,k) (17)

and

R2 ≤ lim inf
n→∞

n
∑

k=1

1

n
I(Xr,k;Y1,k). (18)

Using (13) and (17), we obtain (R1, R2) ∈ conv(R1). Using

(16) and (18), we obtain (R1, R2) ∈ conv(R2). Consequently,

(R1, R2) ∈ conv(R1) ∩ conv(R2). The theorem then follows

from Definition 5 and the fact that conv(R1) ∩ conv(R2) is

closed.

Proposition 2: R2 is convex.

Proof: It suffices to show that any convex combination

of the points (I(Xr;Y2), I(Xr;Y1)) lies in R2. Suppose

(I(X ′
r;Y

′
2), I(X

′
r;Y

′
1)) ∈ R2 and (I(X∗

r ;Y
∗
2 ), I(X

∗
r ;Y

∗
1 )) ∈

R2 are attained by some distributions p′(xr) and p∗(xr)
respectively. Fix 0 ≤ λ ≤ 1. Let (I1λ, I

2
λ) denote

λ(I(X ′
r ;Y

′
2), I(X

′
r;Y

′
1)) + (1 − λ)(I(X∗

r ;Y
∗
2 ), I(X

∗
r ;Y

∗
1 )),

where (I1λ, I
2
λ) is a convex combination of

(I(X ′
r;Y

′
2), I(X

′
r;Y

′
1)) and (I(X∗

r ;Y
∗
2 ), I(X

∗
r ;Y

∗
1 )). Let

(I(X̄r; Ȳ2), I(X̄r; Ȳ1)) be the point attained by the distribution

p̄ = λp′ + (1 − λ)p∗. Since I(Xr;Y2) and I(Xr;Y1) are

concave with respect to the input distribution p(xr) for the

BC channels p2(y1|xr) and p2(y2|xr) respectively (cf. [3,

p.33]), it follows that I1λ ≤ I(X̄r; Ȳ2) and I2λ ≤ I(X̄r; Ȳ1),
which implies (I1λ, I

2
λ) ∈ R2.



Proposition 3: R2 is closed.

Proof: It suffices to show that the limit of any

Cauchy sequence of (I(Xr;Y2), I(Xr;Y1)) in R2 lies in

R2. Let {(I(Xr,n;Y2,n), I(Xr,n;Y1,n))}n=1,2,... be a Cauchy

sequence of points in R2 with respect to the Euclidean

distance and let {sn(xr)}n=1,2,... be the corresponding se-

quence of distributions that attain the points. Regard each

distribution of Xr as a point in an |Xr|-dimensional Euclidean

space. Let {snk
(xr)}k=1,2,... be a convergent subsequence

of {sn(xr)}n=1,2,... with respect to the L1-distance, where

the L1-distance between two distributions u(x) and v(x) on

the same discrete alphabet X is defined as
∑

x∈X |u(x) −
v(x)|. Since the set of all distributions {pXr

(xr)} is closed

and bounded with respect to the L1-distance, there exists

a distribution s̄(xr) such that lim
k→∞

snk
(xr) = s̄(xr). Let

(I(X̄r; Ȳ2), I(X̄r; Ȳ1)) denote the point attained by s̄(xr).
Since (I(Xr;Y2), I(Xr;Y1)) is a continuous functional of

pXr
(xr), it follows that

lim
n→∞

(I(Xr,n;Y2,n), I(Xr,n;Y1,n)) = (I(X̄r; Ȳ2), I(X̄r; Ȳ1)),

which lies in R2.

Theorem 1: R ⊆ conv(R1) ∩R2.

Proof: It follows from Lemma 1, Proposition 2 and

Proposition 3.

Remark: The convexity proof for R2 in Proposition 2 is not

applicable to R1 because the mixture of two independent input

distributions for the MAC is in general not an independent

input distribution.

IV. COMPARISON WITH CUT-SET BOUND

The following proposition is reproduced from Proposi-

tion 2.5 in [6] to facilitate discussion.

Proposition 4: For discrete random variables X , Y and Z ,

X → Y → Z forms a Markov Chain if and only if there

exist two functions χ(x, y) and ϕ(y, z) such that p(x, y, z) =
χ(x, y)ϕ(y, z) for all x, y and z where p(y) > 0.

Let C denote






















(R1, R2)
∈ R2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1 ≤ min{I(X1;Yr|X2), I(Xr;Y2)},
R2 ≤ min{I(X2;Yr|X1), I(Xr;Y1)},

where p(x1, x2, xr, y1, y2, yr) = p(x1, x2)
p(xr)p1(yr|x1, x2)p2(y1, y2|xr) for some in-
put distribution p(x1, x2) for the MAC and
some input distribution p(xr) for the BC.























,

which is proved in [2] as an outer bound for the discrete

memoryless TRC. As pointed out by Young-Han Kim [7], the

cut-set outer bound [3] for the TRC, namely


































(R1, R2)
∈ R2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1 ≤ I(X1;Yr, Y2|Xr, X2),
R1 ≤ I(X1, Xr;Y2|X2),

R2 ≤ I(X2;Yr, Y1|Xr, X1),
R2 ≤ I(X2, Xr;Y1|X1)

where p(x1, x2, xr, y1, y2, yr) = p(x1, x2)
p1(yr|x1, x2)p(xr)p2(y1, y2|xr) for some in-
put distribution p(x1, x2, xr) for the TRC.



































,

can be simplified to C based on the fact that

(Xr, Y1, Y2) → (X1, X2) → Yr and (X1, X2, Yr) →
Xr → (Y1, Y2) form two Markov Chains for any distribution

p(x1, x2, xr, y1, y2, yr) = p(x1, x2)p(xr)p1(yr|x1, x2)
p2(y1, y2|xr) (cf. Proposition 4). Let C1 denote the set
{

(R1, R2)
∈ R2

+

∣

∣

∣

∣

∣

R1 ≤ I(X1;Yr|X2), R2 ≤ I(X2;Yr|X1)
where p(x1, x2, yr)=p(x1, x2)p1(yr|x1, x2) for
some input distribution p(x1, x2) for the MAC.

}

.

(19)

Proposition 5: C = C1 ∩R2.

Proof: Suppose (R1, R2) ∈ C. Then, R1 ≤
min{I(X1;Yr|X2), I(Xr;Y2)} and R2≤min{I(X2;Yr|X1),
I(Xr;Y1)} for some distribution p(x1, x2, xr, y1, y2, yr).
Since I(X1;Yr|X2) and I(X2;Yr|X1) only depend on

the marginal distribution p(x1, x2, yr), it follows that

(R1, R2) ∈ C1. Similarly, (R1, R2) ∈ R2. Therefore,

C∗ ⊆ C1 ∩ R2. Conversely, suppose (R1, R2) ∈ C1 ∩ R2.

Then, R1 ≤ min{I(X1;Yr|X2), I(Xr;Y2)} and R2 ≤
min{I(X2;Yr|X1), I(Xr;Y1)} for the distribution defined as

p(x1, x2, yr)p(xr , y1, y2). Consequently, C1 ∩R2 ⊆ C∗.

Proposition 6: H(Y |X) is concave with respect to p(x, y).
Proof: Let u(y) = 1/|Y| for all y ∈ Y . Then,

D(p(x, y)||p(x)u(y)) = −H(Y |X) + log2 |Y|, (20)

where D(p(x, y)||p(x)u(y)) is the Kullback-Leibler diver-

gence between the distributions p(x, y) and p(x)u(y). Since

D(p(x, y)||p(x)u(y)) is convex with respect to p(x, y) [3], it

follows from (20) that H(Y |X) is concave with respect to

p(x, y).

Proposition 7: I(X1;Yr|X2) and I(X2;Yr|X1) are con-

cave with respect to the input distribution p(x1, x2) for the

MAC p1(yr|x1, x2).
Proof: Suppose I(X ′

1;Y
′
r |X

′
2) and I(X∗

1 ;Y
∗
r |X

∗
2 ) are

attained by some distributions p′(x1, x2) and p∗(x1, x2) re-

spectively. Fix 0 ≤ λ ≤ 1. Let I(X̄1; Ȳr|X̄2) be the mutual

information attained by the distribution p̄ = λp′ + (1− λ)p∗.
Let h denote H(Yr|X1 = x1, X2 = x2), which is a function

of p1(yr|x1, x2). Then,

I(X̄1; Ȳr|X̄2)

= H(Ȳr|X̄2)−
∑

x̄1,x̄2

p̄(x1, x2)h

= H(Ȳr|X̄2)−
∑

x̄1,x̄2

λp′(x1, x2)h−
∑

x̄1,x̄2

(1− λ)p∗(x1, x2)h

= H(Ȳr|X̄2)− λH(Y ′
r |X

′
1, X

′
2)− (1− λ)H(Y ∗

r |X
∗
1 , X

∗
2 )

(a)

≥ λH(Y ′
r |X

′
2) + (1 − λ)H(Y ∗

r |X
∗
2 )− λH(Y ′

r |X
′
1, X

′
2)−

(1− λ)H(Y ∗
r |X

∗
1 , X

∗
2 )

= λI(X ′
1;Y

′
r |X

′
2) + (1− λ)I(X∗

1 ;Y
∗
r |X

∗
2 )

where (a) follows from Proposition 6 that H(Yr|X2) is con-

cave with respect to p(x2, yr). Consequently, I(X1;Yr|X2)
is concave with respect to p(x1, x2). By symmetry,

I(X2;Yr|X1) is also concave with respect to p(x1, x2).



Proposition 8: C1 is convex.

Proof: Using the concavity of I(X1;Yr|X2) and

I(X2;Yr|X1) proved in Proposition 7, we can prove the

convexity of C1 as in Proposition 2. The details are omitted.

Proposition 9: C1 is closed.

Proof: Similar to the proof of Proposition 3.

Theorem 2: conv(R1) ∩R2 ⊆ C.

Proof: Since R1 ⊆ C1 (cf. (3) and (19)), it follows

that conv(R1) ⊆ conv(C1), which implies from Proposi-

tion 8 and Proposition 9 that conv(R1) ⊆ C1. Consequently,

conv(R1) ∩R2 ⊆ C1 ∩R2 = C.

In the next section, we will show that conv(R1)∩R2 is in

fact a tighter outer bound than C on R.

V. BENEFIT OF FEEDBACK

Consider the TRC with deterministic p1(yr|x1, x2) and

deterministic p2(y1, y2|xr) such that all the random variables

are binary,

Yr = X1X2 and Y1 = Y2 = Xr. (21)

We call the TRC described above the binary multiplying relay

channel (BMRC). Consider any independent inputs X1 and X2

to the MAC with joint distribution p(x1, x2) = p(x1)p(x2)
where Pr{X1 = 1} = p and Pr{X2 = 1} = q. For any 0 ≤
α ≤ 1, let H(α) denote the entropy function of a Bernoulli(α)

random variable. Then,

I(X1;Yr|X2)
(a)
= Pr{X2 = 1}I(X1;Yr|X2 = 1)

(b)
= qI(X1;X1|X2 = 1)

(c)
= qH(X1)

= qH(p),

where

(a) follows from the fact that pYr |X2
(0|0) = 1 (cf. (21)),

(b) follows from (21),

(c) follows from the fact that X1 and X2 are independent.

Similarly, I(X2;Yr|X1) = pH(q). Then, R1 for the BMRC

(cf. (3)) becomes
{

(R1, R2)
∈ R2

+

∣

∣

∣

∣

R1 ≤ qH(p), R2 ≤ pH(q)
for some 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1.

}

,

which is denoted by K. It can be shown by standard opti-

mization procedures that the largest value for qH(p)+ pH(q)
is 1.234, which implies that the largest possible sum rate in

conv(K) is 1.234. Therefore, the maximum equal-rate pair

in conv(K) is less than or equal to (1.234/2, 1.234/2) =
(0.617, 0.617) when the BMRC is used without feedback.

In the general setting with feedback, the BMRC can be

used as the binary multiplying channel (BMC) [8], shown

in Figure 2, as follows. The BMC is almost a special case

of the BMRC except that the product of the two inputs of

the channel is broadcast without a unit delay. Suppose a

codebook B designed for the BMC is given and the terminals

Fig. 2. Binary multiplying channel (BMC).

of the BMRC want to communicate using the same codebook.

Specifically, each terminal i transmits two messages Wi,1 and

Wi,2 using B by interleaving the codewords: each terminal

in the BMRC transmits Xn
i (wi,1) during odd time slots and

transmits Xn
i (wi,2) during even time slots, while r forwards

every bit Yk−1 to the two terminals in the kth time slot.

It is shown in [8] that the rate pair (0.63056, 0.63056) is in

the capacity region of the BMC and it is achievable by some

coding scheme with feedback. Therefore, (0.63056, 0.63056)
is in the capacity region of the BMRC with feedback. How-

ever, the rate pair (0.63056, 0.63056) is outside conv(K) and

is therefore outside conv(R1)∩R2. It then follows that using

feedback can enlarge the capacity region of the BMRC and

conv(R1) ∩R2 ( C.

VI. CONCLUSION

We investigate the full-duplex discrete memoryless TRC

without feedback and prove a new outer bound on the capacity

region, which is tighter than the cut-set outer bound. We

also investigate a particular TRC called BMRC and show by

applying our outer bound that using feedback can enlarge

the capacity region of the BMRC. The capacity region of

a general TRC is still an open problem. Further research

includes enhancing capacity bounds for a general TRC and

determining the capacity region for some special TRCs.
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