
Probabilistic Capacity and Optimal Coding for
Asynchronous Channel

Ning Cai
The State Key Lab. of ISN

Xidian University,
Xi’an, Shaanxi, 710071, China

Email: caining@mail.xidian.edu.cn

Siu-Wai Ho
Dept. of Electrical Engineering

Princeton University
Princeton, NJ 08544, U.S.A.
Email: siuho@princeton.edu

Raymond W. Yeung
Dept. of Information Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

Email: whyeung@ie.cuhk.edu.hk

Abstract— The continuous-time asynchronous channel as a
model for time jitter in a communication system with no common
clock between the transmitter and the receiver was introduced
in [1]. The paper unveiled that it is not necessary for the receiver
clock to re-synchronize with the transmitter clock within a fixed
maximum time in order to achieve reliable communication. In
this paper, the runlength limited code is shown not to be optimal
for this channel model. An upper bound on the rate loss is
given for the constraint that the transmitter and receiver clocks
cannot be out of synchronization for a fixed maximum time. The
probabilistic capacity of the asynchronous channel is determined
and the result is used to design an optimal code. The relation
between coding in constrained channels and random number
generation is also discussed.

I. INTRODUCTION

The effect of time jitter at the physical level was captured by
a continuous-time model instead of a discrete-time model in
[1]. The paper introduced an asynchronous channel model not
only for the tracking problem arising in information storage
systems, but also for any continuous-time communication
system with no common clock between the transmitter and
the receiver. At least in the absence of noise, it is actually
not necessary to impose an upper bound on the time to re-
synchronize the transmitter and the receiver clocks in order
to achieve reliable communication. Moreover, the paper intro-
duced an optimal code which can be used to determine the
combinatorial capacity of the asynchronous channel. These
results are briefly reviewed in Section II before runlength
limited (RLL) codes are shown to be suboptimal for the
asynchronous channel through an example. Then we obtain an
upper bound on the rate loss when we impose the constraint
that the transmitter and receiver clocks cannot be out-of-
sync for a fixed maximum time. In Section III, we determine
the capacity of the asynchronous channel by a probabilistic
approach. Based on this result, an asymptotically optimal
code is designed in Section IV. Our results also establish a
connection between the code design for constrained channels
and random number generation.

II. RATE LOSS FOR A MAXIMUM RUNLENGTH
CONSTRAINT

We assume that S(t) is a step function which takes values
from a finite input alphabet X = {0, 1, 2, . . . , p − 1}, where

it is assumed that p ≥ 2 to avoid triviality. An interval on
which S(t) takes a constant value is called a run, and the
lengths of runs are called runlengths. The step functions are
sent through a class of asynchronous channels called the [A, ξ]
channel, where A is a set of positive real numbers, and ξ is
a real number at least equal to 1. We assume that there exists
a minimum element in A denoted by d. In a communication
session with finite duration, the channel takes as its inputs
step functions whose runlengths except possibly for the last
run are elements of the set A, called the runlength set. The last
run is called the incomplete run if its length is not in A. The
parameter ξ, called the jitter ratio, will be explained in the next
paragraph. We will characterize optimal self-synchronizable
codes for the [A, ξ] channel.

Consider an asynchronous channel that distorts the input
signal in the time domain as follows: a run of length l in the
input is reproduced in the output as a run of length between
al and bl, where 0 < a < b. It is a basic observation that a
run of length l and a run of length l′, where l < l′, are always
distinguishable in the output if and only if (b − ε)l < al′

for any ε > 0, or equivalently, bl ≤ al′. Therefore, we are
motivated to define an important parameter ξ = b

a , called the
jitter ratio, so that bl ≤ al′ becomes ξl ≤ l′.

Let T > 0, where T may be infinity, be the duration of
a communication session. Consider step functions defined on
the interval [0, T] satisfying the following properties:

1) The duration is equal to t, where t ≤ T .
2) The runs take values from the input alphabet X .
3) The lengths of the runs, except for possibly the last run,

take values in the runlength set A.
4) If the length of the last run is not in A, then it is less

than d.

A set of step functions satisfying the above conditions is called
a code, and the step functions are called codewords of the code.
The class of all such codes is denoted by CL.

We assume that the receiver can always recognize the end
of the communication session from the output signal. As an
example, in a magnetic recording system, if the communica-
tion session spans the length of the tape, then its end can
automatically be detected when the tape is finished during
playback.

A code S with domain [0, T] is zero-error if and only if for
all S(t), S′(t) ∈ S, one of the following holds:

(i) S(t) and S′(t) have different numbers of runs;
(ii) S(t) and S′(t) have the same number of runs and there

exists a run for which they take different values in X ;
(iii) S(t) and S′(t) have the same number of runs and take

the same values in all the runs, and there exists an index
i such that ξli ≤ l′i or ξl′i ≤ li, where li and l′i are the
lengths of the ith run in S(t) and S′(t), respectively.

We refer to an asynchronous channel with runlength set A
and jitter ratio ξ as the [A, ξ] channel, and refer to a zero-
error code in CL as an [A, ξ] code. An optimal [A, ξ] code
in CL is a zero-error code which contains the largest number
of codewords. To obtain an optimal code, we first construct a
list L(A, ξ) = {l∗1, l∗2, l∗3, . . . , } of runlengths by “Construction
(A, ξ)” below recursively.

Construction (A, ξ):
Step 1 Let l∗1 be the smallest element d of the set
A.

Step j Having taken l∗1, l
∗
2, l

∗
3, . . . , l

∗
j−1, take l∗j to be

the smallest element of the closed set A∩[ξl∗j−1,∞).

Note that the list L(A, ξ) so constructed is finite or countably
infinite depends on whether the procedure stops in a finite
number of steps. Let Ψ be the subclass of the code CL such
that all the runlengths in a codeowrd are in L(A, ξ). We have
shown in [1] that Ψ is an optimal code in CL. This implies that
an RLL code, which imposes an upper limit on the runlengths,
is not optimal in general. We will see this in Example 2.

Example 1: For A = [a,∞), L(A, ξ) = {aξt : t =
0, 1, 2, . . .}.

Example 2: For A = {a, a+1, . . . , }, where a is a positive
integer, the members of the list L(A, ξ) are given recursively
by

l∗1 = a

l∗j = dξl∗j−1e, j = 2, 3,

Let p = 2, and let the logarithms be in the base 2 so that the
capacities are expressed in bits per unit time.
i) Let a = 1 and ξ = 7.1/6. Consider achieving zero-error
communication by an RLL code. Such a code is characterized
by two parameters (d+1) and (k+1), which are the minimum
and maximum runlengths, respectively. Here, an RLL code
attaining the maximum rate is the (0, 5) code, which is
explained as follows. First, for 0 ≤ d ≤ 5, the maximum
k that can be taken is 5 because (5 + 1) · 7.1

6 > 7, which
means that if the runlength 6 is used, then the runlength 7
cannot be used. Thus for 0 ≤ d ≤ 5, we should let d = 0
and k = 5 in order to maximize the runlength set. For d > 5,
since (d + 1) · 7.1

6 > d + 1, the runlength d + 1 cannot be
used and therefore k must be equal to d. In other words, only
the runlength d can be used, and such a code is obviously
inferior to the (5, 5) code, which in turn is inferior to the (0, 5)
code. Hence, the (0, 5) code, with runlength set {1, 2, . . . , 6},

is the optimal RLL code that can be employed for zero-error
communication.

Alternatively, an [A, ξ] code with runlength set L(A, ξ) =
{1, 2, ..., 6, 8, 10, 12, ...} can be used. The (0, 5) RLL code
discussed above cannot be optimal because its runlength set
is a proper subset of L(A, ξ). We denote the rate of a (d, k)
RLL code by C(d, k), and we have C(0, 5) = 0.9881 and
C(0,∞) = 1 [2, P.62]. The rate of the [A, ξ] code as
prescribed should be somewhere in between and it is found to
be 0.9914 by the results in the next section. When ξ is large,
an optimal [A, ξ] code can perform much better than an RLL
code, as to be shown next.
ii) Consider a = 2 and ξ = 1.51. Then we see that the
(1, 1) RLL code is the best possible RLL code for zero-error
communication. The rate of this code is equal to 0 because
there are only two codewords. Alternatively, an [A, ξ] code
with L(A, ξ) = {2, 4, 7, 11, ...} can be used, and the rate is
0.4383. In this example, the gain from not imposing an upper
limit on the runlengths is infinite!

Since Ψ is an optimal code in CL, it can be used to define
the capacity of the [A, ξ] channel. The capacity, however, can
be easily determined if we do it in another way. We define the
subclass of CL, denoted by CE , such that all the step functions
in CE have duration t = T and the lengths of the runs, except
for possibly the last run, take values in the list L(A, ξ). The
only difference between CE and CL arises from Points 1 and
3. Let ME be the number of codewords in the optimal code
in CE and let ML be the number of codewords in Ψ. It can
be shown that

lim
T→∞

1
T

log ML = lim
T→∞

1
T

log ME .

Therefore, both definitions of capacity are the same in the
asymptotic sense.

Definition 1: The capacity of the [A, ξ] channel is defined
as C[p,L(A, ξ)] = limT→∞

1
T log ME if it exists.

The capacity C[p,L] can be given in terms of the charac-
teristic function Q(L, z) which is defined as

Q(L, z) = 1− (p− 1)
∑
l∈L

zl. (1)

If (1) converges for some z, let µ(L) be the unique positive real
root of (1). The capacity C[p,L(A, ξ)] is shown [1, Theorem
2] to be

C[p,L(A, ξ)] = − log µ(L). (2)

When p = 2, the above result is reduced to Proposition 1.1
in [3]. If L is a subset of integers, then Q(L, z) converges on
[0, θ] for all θ ∈ (0, 1) and − log µ(L) ≤ log p.

In general, Q(L, z) may not have a closed form so that
µ(L) is difficult to compute. In this case, we may need to
approximate µ(L) by µm(L) for a sufficiently large m, where
µm(L) is the unique positive root of

Qm(L, z) = 1− (p− 1)
∑

l∈Lm

zl,

where Lm = L∩[0,m]. Thus the convergence rate of {µm(L)}
is of practical interest.

Theorem 1 (The Convergence Rate): For any 0 < θ1 < θ2

with Q(L, θ1) ≥ 0 and Q(L, θ2) ≤ 0,

0 ≤ µm(L)− µ(L) ≤
∑

l∈L\Lm
θ2

l∑
l∈L′

m
lµm(L)l−1 +

∑
l∈L′′

m
lθ1

l−1
,

(3)
where L′m = {l ∈ Lm : l ≤ 1} and L′′m = {l ∈ Lm : l > 1}.

Proof: Since Qm(L, ·) is monotonically decreasing (for
z ≥ 0), its inverse function Q−1

m (L, ·) exists and has derivative

dQ−1
m (L, u)
du

= − 1
(p− 1)

∑
l∈Lm

l(Q−1
m (L, u))l−1

. (4)

Moreover we have

Q−1
m

L, (p− 1)
∑

l∈L\Lm

µ(L)l

 = µ(L),

and
Q−1

m (L, 0) = µm(L).

Then by Lagrange’s mean value theorem and (4), there exists
an η ∈ (0, (p− 1)

∑
l∈L\Lm

µ(L)l) such that

0 ≤ µm(L)− µ(L)

= Q−1
m (L, 0)−Q−1

m

L, (p− 1)
∑

l∈L\Lm

µ(L)l

=

∑
l∈L\Lm

µ(L)l∑
l∈Lm

l(Q−1
m (L, η))l−1

. (5)

By the monotonicity of Q−1
m (L, ·), we have

µ(L) ≤ Q−1
m (L, η) ≤ µm(L).

In the course of lower bounding the denominator in (5), we
have to distinguish two cases. From the inequality above, for
l ∈ L′m, i.e., l ≤ 1 (so that l − 1 ≤ 0), we have

(Q−1
m (L, η))l−1 ≥ µm(L)l−1,

and for l ∈ L′′m, i.e., l > 1, we have

(Q−1
m (L, η))l−1 ≥ µ(L)l−1.

Thus∑
l∈Lm

l(Q−1
m (L, η))l−1 ≥

∑
l∈L′

m

lµm(L)l−1 +
∑

l∈L′′
m

lµ(L)l−1.

Then the theorem can be justified because Q(L, θ1) ≥ 0 and
Q(L, θ2) ≤ 0 imply

θ1 ≤ µ(L) ≤ θ2.

In addition to the convergence rate, this theorem has the
following physical interpretation. Note that the transmitter and
receiver clocks can always re-synchronize with each other

at the end of a runlength. This means that when the set
of runlengths is Lm, the transmitter and receiver clocks can
always re-synchronize with each other within a horizon of
length m. Thus if we impose the constraint that the transmitter
and receiver clocks cannot be out-of-sync for more than m
time units, the rate loss incurred is at most

− log µ(L) + log µ(Lm),

which by (3) is upper bounded by

− log(µ(Lm)− δm) + log µ(Lm),

where δm denotes the RHS of (3) and we have invoked the
monotonicity of the logarithmic function.

Corollary 1: If L is a subset of positive integers and
Q(L, θ) ≤ 0, then

0 ≤ µm(L)− µ(L)

≤ θm+1

(1− θ)
(∑

l∈L′
m

lµm(L)l−1 + d̃p−(d̃−1)
) ,

where d̃ is the smallest element of L′′m.

III. THE PROBABILISTIC CAPACITY

The Maxentropic Theorem for Markov information sources,
which is an important result in information theory, can go
back to Shannon’s original work [4], and the Maxentropic
Theorem for (dk) sequences can be obtained as its special
case (cf. [2] for a detailed discussion and further references).
For our problem, when the list L of runlengths is an infinite
set, the information source has infinite memory and therefore
is not Markovian. So the approach for proving the Maxentropic
Theorem via transition matrices does not work. In this section,
the theorem will be obtained by way of the characteristic
function Q(·, ·). The theorem asserts that the probabilistic
capacity and the combinatorial capacity are the same for L
being an infinite set of runlengths.

Definition 2: For a given list L of runlengths and an alpha-
bet X with cardinality p, let S(L) be the set of step functions
on [0,∞) taking values in X whose runlengths are in L, K(L)
be the set of stochastic processes X(t) on [0,∞) taking values
almost surely (a.s.) in S(L), XT (t) := {X(t) : 0 ≤ t ≤ T}
be the T th segment of stochastic process X(t), and PX(t) and
PXT (t) be the distributions of X(t) and XT (t), respectively.
Then the entropy rate of X(t) ∈ K(L) is defined by

r(X(t)) := lim
T→∞

− 1
T

E log PXT (t)(X
T (t)) (6)

and the maxentropy of K(L) is defined by

r(L) := max
X(t)∈K(L)

r(X(t)). (7)

In order for the maxentropy to be well defined, we have
to show that the maximum in (7) is achievable. Under a
reasonable condition, this will be done in the proof of the next
theorem. Actually, we will show that the stochastic process
X∗(t) ∈ K(L) defined below achieves the maxentropy.

Any step function S(t) ∈ S(L) can be uniquely determined
by a pair of sequences, l∞ = (l1, l2, l3, . . .) and y∞ =
(y1, y2, y3, . . .), where li ∈ L and yj ∈ X are respectively
the ith runlength and the value taken by the jth run of S(t).
We will write =(S(t)) = (l∞, y∞) and =−1(l∞, y∞) = S(t).
Similarly, a stochastic process X(t) ∈ K(L) is uniquely
determined by a pair of stochastic sequences L(i) and Y (j).
Likewise, =(X(t)) = (L(i), Y (j)) and =−1(L(i), Y (j)) =
X(t). This allows us to define X∗(t) by defining =(X∗(t)).
For a list L, µ(L) satisfies 1 − (p − 1)

∑
l∈L(µ(L))l =

Q(L, µ(L)) = 0, and so
∑

l∈L(p − 1)(µ(L))l = 1. Thus
Pµ(L) := {Pµ(L)(l) = (p − 1)(µ(L))l : l ∈ L} is a
probability distribution over L. Let {L∗(i)}∞i=1 be an i.i.d.
stochastic sequence with distribution Pµ(L) and {Y ∗(j)}∞j=1

be a Markov chain which is independent of {L∗(i)}∞i=1 and
has the following distribution, where a is any fixed letter in
X .

Pr(Y ∗(1) = x) =
{

0 if x = a
1

p−1 otherwise, (8)

and for j = 2, 3, . . . ,

P r(Y ∗(j) = xj |Y ∗(j−1) = xj−1) =
{

0 if xj = xj−1
1

p−1 otherwise.
(9)

Define X∗(t) = =−1(L∗(i), Y ∗(j)). Then X∗(t) ∈ K(L).
Notice that if instead of (8) we let Y ∗(1) be uniformly
distributed over X , then the entropy would be increased, but
for the entropy rate in (6) which we are interested in, it does
not make any difference.

Theorem 2 (Maxentropic Theorem): For any list L, alpha-
bet X of cardinality p, and any X(t) ∈ K(L),

r(X(t)) ≤ − log µ(L). (10)

In the above, equality is achieved by X∗(t), and hence

r(L) = −logµ(L). (11)

Proof: For the upper bound in (10), we have

r(X(t)) = lim
T→∞

− 1
T

E log PXT (t)(X
T (t))

= lim
T→∞

1
T

H(XT (t))

≤ lim
T→∞

1
T

log N(T)

= − log µ(L),

where N(t) is the total number of possible XT (t) and the
last equality follows from (2). The proof of (11) is shown
in [5] which is too long to appear here. The results in the
next section, however, can support that X∗(t) can achieve the
maximum entropy.

IV. THE INTERVAL CODE

The relation between coding in constrained channels and
random number generation is shown in this section. The
stochastic process X∗(t) described in the last section is used

as an input to the constrained channel. By assuming the
information source generates a sequence of fair bits, the
encoding process is equivalent to converting a stream of fair
bits into the stochastic process X∗(t). On the other hand,
the decoding process is just the reverse, i.e., converting the
stochastic process X∗(t) into fair bits. We call this code as
interval code because our proposed encoding and decoding
algorithms are modified from the interval algorithm [6] which
converts any two stochastic processes from one to another.
Due to Theorem 2 and the optimality of the interval algorithm,
interval code is asymptotically optimal. Moreover, the interval
code can still operate for L being a countably infinite set
of runlengths which cannot be done by the state-splitting
algorithm [7][8].

We now present the encoding and decoding algorithms for
the interval code. Define a random variable Ẑ which takes
value from the set

{(y, i) : y ∈ [1, p− 1] and i ∈ [1, |L|]}

and Ẑ = (y, i) with probability (µ(L))l∗i . Let f(y, i) =
(i − 1)(p − 1) + y and define a random variable Z = f(Ẑ).
Since f is bijective, Z and Ẑ share the same distribution.
For simplicity, we denote the probability distribution of Z by
Q = {q1, q2, . . .} and Pr{Z = z} = qz . For a larger i, l∗i
is larger and (µ(L))l∗i is smaller as 0 < µ(L) < 1. It is
readily checked that qz’s are in non-increasing order. If L has
a countably infinite number of runlengths, the cardinality of
Q is also countably infinite. We use Z to denote a random
vector (Z1, Z2, . . . , ZN), where Zi’s are i.i.d. with the same
distribution Q. Then it is easily seen that a segment of the
stochastic process X∗(t) can be uniquely determined by Z,
and vice versa for the determination of Z from a segment
of X∗(t). We temporarily assume the information source is
generating fair bits which will be generalized at the end of
this section. We write U = (U1, U2, . . . , UM) as a vector of
fair bits. We call the encoding algorithm “Interval Encoding”
because it is basically a successive refinement of interval
partitions. Since Q can have a countably infinite number of
probability masses, the interval encoding is slightly different
from the interval algorithm in [6]. The only main difference
comes from the end of the encoding process. The following
algorithm encodes a random vector U = (U1, U2, . . . , UM)
into a random vector Z = (Z1, Z2, . . . , ZN).

Interval Encoding:

1) Let P0 = 0.5 and P1 = 1.

2) Initialize c = 1, n = 1 and U = Z = (∅), i.e., an empty
vector. Let αU = αZ = 0, βU = βZ = 1, I(U) =
[αU, βU), and J(Z) = [αZ, βZ).

3) If c = M +1, then go to 6). Otherwise, let u be the c-th
input bit, i.e., the realization of Uc. Set c = c + 1 and
U′ = (U, u). Then the subinterval of I(U) is generated
as

I(U′) = [αU′ , βU′),

where

αU′ = αU + (βU − αU)(Pu − 0.5)

and
βU′ = αU + (βU − αU)Pu.

4a) Let j be the largest nonnegative integer such that

αZ + (βZ − αZ)
j∑

i=1

qi ≤ αU′ .

// Note that j = 0 if αZ + (βZ − αZ)q1 > αU′ .
Then the subinterval of J(Z) is generated as

J(Z′) = [αZ′ , βZ′),

where

αZ′ = αZ + (βZ − αZ)
j∑

i=1

qi

and

βZ′ = αZ + (βZ − αZ)
j+1∑
i=1

qi.

If I(U′) * J(Z′), then go to 5).

4b) Set Zn = j+1, i.e., the n-th output and set Z = (Z, Zn).
Update αZ = αZ′ and βZ = βZ′ . Set n = n + 1 and go
to 4a).

5) Set U = U′, αU = αU′ , βU = βU′ and go back to 3).

6) Set Zn = j+1, i.e., the last output and set Z = (Z, Zn).
The algorithm ends here.

The following “Interval Decoding” is basically the reverse
of the interval encoding. It can also be interpreted as an
encoding of Z into U except that the last run is handled in
a different way. The following algorithm decodes a random
vector Z = (Z1, Z2, . . . , ZN) to a random vector U =
(U1, U2, . . . , UM). We temporarily assume the values of M
and N are known at the decoder side which will be generalized
at the end of this section.

Interval Decoding:

1) Let P0 = 0.5 and P1 = 1.

2) Initialize c = 1, m = 1 and U = Z = (∅), i.e., an empty
vector. Let αU = αZ = 0, βU = βZ = 1, I(U) =
[αU, βU), and J(Z) = [αZ, βZ).

3) If c = N +1, then go to 6a). Otherwise, let z be the c-th
input symbol, i.e., the realization of Zc. Set c = c+1 and
Z′ = (Z, z). Then the subinterval of J(Z) is generated
as

J(Z′) = [αZ′ , βZ′),

where

αZ′ = αZ + (βZ − αZ)
z−1∑
i=1

qi

and

βZ′ = αZ + (βZ − αZ)
z∑

i=1

qi.

4a) If αU + 0.5(βU −αU) ≤ αZ′ , let j = 1. Otherwise, let
j = 0. Then the subinterval of I(U) is generated as

I(U′) = [αU′ , βU′),

where

αU′ = αU + (βU − αU)(Pj − 0.5)

and
βU′ = αU + (βU − αU)Pj .

If J(Z′) * I(U′), then go to 5).
4b) Set Um = j, i.e., the m-th output bit and set U =

(U, Um). Update αU = αU′ and βU = βU′ . Set m =
m + 1 and go to 4a).

5) Set Z = Z′, αZ = αZ′ , βZ = βZ′ and go back to 3).
6a) If m = M + 1, then go to 7). Otherwise, If

αU + 0.5(βU − αU) ≤ βZ′ ,

let j = 1. Otherwise, let j = 0. Then the subinterval of
I(U) is generated as

I(U′) = [αU′ , βU′),

where

αU′ = αU + (βU − αU)(Pj − 0.5)

and
βU′ = αU + (βU − αU)Pj .

6b) Set Um = j, i.e., the m-th output bit and set U =
(U, Um). Update αU = αU′ and βU = βU′ . Set m =
m + 1 and go to 6a).

7) The algorithm ends here.

Since we are encoding a binary input, the conversion from Z
to U is similar to the encoding process of the arithmetic code
while the conversion from U to Z is similar to the decoding
process of the arithmetic code. The main difference comes
from the handling of the last input random variable. Moreover,
both the encoding and decoding algorithms can progressively
produce output without waiting for the end of the input random
vector.

We now consider the asymptotic performance of the interval
code. Assume that the source generates an infinite number
of Ui’s, i.e., M = ∞, and the destination decodes an
infinite number of Zi’s, i.e., N = ∞. Then Step 6 in the
interval encoding and Steps 6-7 in the interval decoding will
never be reached, and the interval encoding and decoding are
exactly the same as the interval algorithm for random number
generation. Therefore, by applying the results in [6] here, we
have

NH(Z) ≤ E[M] ≤ NH(Z) + 3, (12)

where the inequalities follow from [6, Theorem 1] and [6, eq.
(5.1)], respectively. Together with

H(Z) = −
p−1∑
x=1

∑
l∈L

(µ(L))l log(µ(L))l

= (− log µ(L)) · (p− 1)
∑
l∈L

l(µ(L))l,

we have bounded the expected number of fair bits, E[M], in
(12) for generating N runs. Since Ẑ = f−1(Z) = (y, i) and
a runlength l∗i ∈ L is produced with probability (µ(L))l∗i , the
expected length of a run is given by

p−1∑
x=1

∑
l∈L

l(µ(L))l = (p− 1)
∑

l

l(µ(L))l. (13)

Let T be the duration of a communication session. For a large
T , we can apply the law of large number to approximate the
number of runs sent through the channel by

N ≈ T

(p− 1)
∑

l l(µ(L))l
=

T (− log µ)
H(Z)

.

Together with (12), we have

− log µ ≤ E[M]
T

≤ − log µ +
3
T

,

and

lim
T→∞

E[M]
T

= − log µ.

Therefore, the interval code is asymptotically optimal. This
result can also give an alternative proof to (11).

Now, we consider a finite communication session, i.e., M is
finite. Denote the size of an interval I = [α, β) by |I| which
is equal to β − α in this case. When Step 6 in the interval
encoding is just reached, Z = (Z1, Z2, . . . , ZN−1) and

|J(Z)| ≥ |I(U)| = 2−M , (14)

from which the duration of a step function converted from Z
can be determined. Let (yi, λi) = f−1(Zi) for 1 ≤ i ≤ N−1.
Then the i-th runlength of the step function is li = l∗λi

, so that

|J(Z)| =
N−1∏
i=1

(µ(L))li .

The length of the step function converted from Z is given by
N−1∑
i=1

li =
log |J(Z)|
log µ(L)

≤ M

− log µ(L)
,

where the inequality follows from (14) and log µ(L) < 0.
Finally, the ZN is generated in Step 6 by finding an interval
J(Z′) such that αU′ ∈ J(Z′). This is a biased random number
generation and therefore, E[ZN] ≤ E[Z]. Then the expected
runlength converted from ZN is smaller than (13). Therefore,
the total length of the step function is upper bounded by

M

− log µ(L)
+ (p− 1)

∑
l

l(µ(L))l,

from which we see that the overhead of the interval code is
only one extra run in the step function.

There are many variety of the interval code for different
applications. Suppose the decoder is required to automatically
determine the value of M and N through the received step
function. If M is known at the beginning, we may encode M
into a header, for example, by the Elias code [9] and send the
header before sending the random vector U. The length of the
header is upper bounded by 2 log M + 1 so that the length
of the header is negligible when M is large. Accordingly,
Step 6 in the interval encoding is changed to finding the largest
subinterval J(Z′) such that J(Z′) ⊂ I(U′). Then the encoder
outputs the random variables in Z′ but not in Z before the
algorithm ends. At the decoder side, the header together with
U can be uniquely decoded due to J(Z′) ⊂ I(U′) so that
the decoder can determine M at the beginning. Then the first
thing to do in Step 3 in the interval decoding is changed to
“if m = M + 1, then the algorithm ends” instead of checking
the value of c.

We have seen the close relation between the interval code
and the arithmetic code. If the information source is not
generating fair bits, we may combine the interval code with
the arithmetic code. The trick is to divide the interval I(U)
according to the source input distribution which may be any
stochastic process. Then a simple joint source-channel coding
for a constrained channel can be obtained.

There are some possible ways to modify the interval code
to cope with possible errors in the received step function.
For example, we may use an error-correcting code to protect
the data before the interval encoding is used. The possibility
of deriving an error-correcting constrained coding from the
interval code will also be an interesting future work. After
all, how to incorporate both time jitter and noise into the
same model while keeping the model analytically tractable
is perhaps the biggest challenge for future research in this
direction.

REFERENCES

[1] N. Cai and R. W. Yeung, “Self-Synchronizable Codes for Asynchronous
Communication”, in Proc. 2002 IEEE Int. Symposium Inform. Theory
(ISIT 2002), Lausanne, Switzerland, June 30-July 5, 2002.

[2] K. A. S. Immink, Codes for Mass Data Storage Systems, Shannon
Foundation Publishers, The Netherlands, 1999.

[3] I. Csiszár, “Simple Proofs of Some Theorems on Noiseless Channels”,
in Information and Control, V. 14, pp. 285-298, 1969.

[4] C. E. Shannon, A Mathematical Theory of Communiction, Bell Tech.
J., V. 27, pp. 379-423, July 1948.

[5] R. W. Yeung, N. Cai and S.-W. Ho, “Reliable Communication in
the Absence of a Common Clock”, submitted to IEEE Trans. Inform.
Theory.

[6] T. S. Han and M Hoshi, “Interval Algorithm for Random Number
Generation”, in IEEE Trans. Inform. Theory, IT-43: 599-611, 1997.

[7] R. L. Alder, D. Coppersmith and M. Hassner, “ Algorithms for Sliding
Block Codes: An Application of Symbolic Dynamics to Information
Theory”, in IEEE Trans. Inform. Theory, IT-29: 5-22, 1983.

[8] K. A. S. Immink, P. H. Siegel and J. K. Wolf, “ Codes for Digital
Recorders”, in IEEE Trans. Inform. Theory, IT-44: 2260-2299, 1998.

[9] P. Elias, “ Universal Codeword Sets and Representations of the Integers”,
in IEEE Trans. Inform. Theory, IT-21: 194-203, 1975.

