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Abstract

We introduce the continuous time asynchronous channel as a model for time jitter in a

communication system with no common clock between the transmitter and the receiver.

We have obtained a simple characterization for an optimal zero-error self-synchronizable

code for the asynchronous channel. The capacity of this channel is determined by both

a combinatorial approach and a probabilistic approach. Our results unveil the somewhat

surprising fact that it is not necessary for the receiver clock to re-synchronize with the trans-

mitter clock within a fixed maximum time in order to achieve reliable communication. This

means that no upper limit should be imposed on the runlengths of the self-synchronization

code as in the case of runlength limited (RLL) codes which are commonly used in magnetic
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1 Introduction

In an information storage system, for example, compact disc, magnetic tape, hard disk, or

even the classic vinyl record, information is first stored on a physical medium by a recording

system and later on retrieved from the medium by a playback system. In almost all such

systems, the accuracy of the information reproduced during playback depends critically on

the tracking capability of the playback system. In a digital magnetic recording system, only

‘0’ and ‘1’ can be written on the tape. Suppose there is a long run of the same symbol,

say ‘0’, on the tape. During playback, in the presence of timing jitter, which can be due to

both fluctuation of the speed of the motor drive as well as the tape being elastic, the total

number of ‘0’s of the run may be counted incorrectly. As a result, the information stored

on the tape is reproduced incorrectly.

An information storage system can be modeled as a communication system, with the

storage medium being the communication channel. The recording process is regarded as

transmitting a signal at the input of the channel and the playback process is regarded as

receiving a signal at the output of the channel. Motivated by the tracking problem in an

information storage system, we will introduce in this paper the asynchronous channel.

Consider any continuous time communication system1 where there is no common clock

between the transmitter and the receiver. The fundamental problem in such systems is that

it is impossible for the transmitter clock and the receiver clock to advance synchronously

with respect to each other at all time, and consequently the receiver may not interpret the

received signal correctly. The usual way to tackle this problem is to imbed synchronization

cues2 in the input signal at possibly irregular intervals, hoping that the fluctuation between

the two clocks is not excessively large so that the two clocks can always be re-synchronized

at the cues.

Time jitter is a serious issue which has been addressed and discussed in several previous

works in the context of magnetic recording. In the discrete memoryless jitter channel

1All physical communication systems ultimately are continuous time.

2A synchronization marker and the end of a runlength are examples of a synchronization cue.
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described in [1], a symbol ‘1’ written into time slot n on the tape may be shifted to time

slot n + i with probability pi, where smin ≤ i ≤ smax, with smin and smax being finite

integers. The shifts are assumed to occur in an i.i.d. fashion. In [1], lower and upper

bounds on the channel capacity are obtained. By considering special cases of the model,

stronger lower and upper bounds have been obtained in [2] (which precedes [1]) and [3].

The discrete-time models studied in [1]-[3] suffer from the drawback that the model itself

does not prevent a symbol ‘1’ to “overtake” another symbol ‘1’ previously written on the

tape, which is physically impossible. In order to make the model meaningful, a minimum

separation between two successive ‘1’s written on the tape is imposed. Such a constraint in

the channel input inevitably degrades the performance of the system.

In this paper, instead of a discrete-time model, we capture the effect of time jitter

at the physical level by using a continuous-time model. The asynchronous channel we

will introduce in the next section is a model not only for the tracking problem arising in

information storage systems, but also for any continuous time communication system with

no common clock between the transmitter and the receiver. A main contribution of this

work is to show that, at least in the absence of noise, it is actually not necessary to impose an

upper bound on the time to re-synchronize the transmitter and the receiver clocks in order

to achieve reliable communication. This seemingly counter-intuitive result is established in

Section 3. Based on an optimal code discussed in Section 3, we determine the capacity of the

asynchronous channel in Sections 4 and 5 by a combinatorial approach and a probabilistic

approach, respectively. In Section 4, we also obtain an upper bound on the rate loss when

we impose the constraint that the transmitter and receiver clocks cannot be out-of-sync for

a fixed maximum time. Sections 6 to 8 contain proofs of theorems. Concluding remarks are

in Section 9.

2 The Asynchronous Channel

In this section, we introduce the asynchronous channel as a model for a continuous time

asynchronous communication system. The asynchronous channel can be used as a model
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for information storage systems such as magnetic recording systems and CD players, or

communication systems in which the transmitter and the receiver have no common clock.

Let t be the time index, and let S(t) and V (t) be the input signal and the output signal

of the channel, respectively, which are related by V (t) = S(τ), where

τ(t) =
∫ t

0
r(u)du (1)

and r(u) is a strictly positive function of u, u ≥ 0. Accordingly, τ(0) = 0, i.e., the transmit-

ter clock and the receiver clock are synchronized to start with. In this case, we say that the

asynchronous channel is noiseless because it only compresses or stretches the input signal

in the time domain without changing its values.

In the context of a magnetic recording system, r(u) may be regarded as the motor

speed of the tape drive at time u during playback. Here, the assumption that r(u) is

strictly positive means that while the motor speed can vary, the motor is at any moment

rotating in the forward direction and can never stop. If r(u) = 1 for all u ≥ 0, we have

V (t) = S(t), and we say that the system is synchronous. More generally, we say that the

system is synchronous if r(u) is equal to some known constant c > 0, for then S(t) can be

fully recovered from V (t) as V ( tc). When r(u) is not equal to a known constant, we say

that the system is asynchronous, and we refer to this phenomenon as time jitter.

In the context of a communication system with no common clock, the function τ(t) can

be regarded as the reading of the receiver clock when the reading of the transmitter clock is

t. Here, the assumption that r(u) is strictly positive means that the reading of the receiver

clock is at any moment advancing with respect to the reading of the transmitter clock.

In our model, we assume that S(t) is a step function which takes values from a finite

input alphabet X = {0, 1, 2, . . . , p − 1}, where it is assumed that p ≥ 2 to avoid triviality.

An interval on which S(t) takes a constant value is called a run, and the lengths of runs are

called runlengths.

3



3 The [A, ξ] Channel and an Optimal Code

In this section, we consider a class of asynchronous channels called the [A, ξ] channel,

where A is a set of positive real number, and ξ is a real number at least equal to 1. For

a technical reason to be explained, we assume that A is a closed set with the minimum

element denoted by d. In a communication session with finite duration, the channel takes

as its inputs step functions whose runlengths are elements of the set A, called the runlength

set. The parameter ξ, called the jitter ratio, will be explained in the next paragraph. We

will characterize optimal self-synchronizable codes for the [A, ξ] channel at the end of the

section.

Consider an asynchronous channel with the assumption that r(u) can take arbitrary

values in the interval (b−1, a−1], where 0 < a < b. This is a reasonable physical assumption,

and as we will see, it also makes the problem mathematically tractable. Then a run of

length l in the input is reproduced in the output as a run of length between al and bl. It

is a basic observation that a run of length l and a run of length l′, where l < l′, are always

distinguishable in the output if and only if (b − ε)l < al′ for any ε > 0, or equivalently,

bl ≤ al′. Therefore, we are motivated to define the important parameter ξ = b
a , called the

jitter ratio, so that bl ≤ al′ becomes ξl ≤ l′.

The runlength set A can be specified according to the physical requirement of the system

including the power constraint at the transmitter and the bandwidth constraints at both

the transmitter and receiver. For example, A can be the set of all integers greater than or

equal to some integer d ≥ 1, which corresponds to the constraint that all the runlengths

must be integer values at least d.

We have assumed that the runlength set A is closed. We point out that with this

assumption, the set A cannot contain arbitrarily small real numbers, because otherwise it

also contains the value 0 (since A is closed), a contradiction to the assumption that it only

contains positive real numbers.

Let T > 0, where T may be infinity, be the duration of a communication session. Let

l be the smallest element in A and consider step functions defined on the interval [0, T ]
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satisfying the following properties:

L1. The duration is at most T .

L2. The runs take values in the input alphabet X .

L3. The lengths of the runs take values in the runlength set A.

A set of step functions satisfying the above conditions is called a code, and the step functions

are called codewords of the code. The class of all such codes is denoted by CL.

We assume that the receiver can always recognize the end of the communication session

from the output signal. As an example, in a magnetic recording system, if the communica-

tion session spans the length of the tape, then its end can automatically be detected when

the tape is finished during playback.

The assumption L1 implies that the duration of the communication session can be less

than T . In the context of a magnetic tape, it means that it is possible to use only part of

the tape. We will show in Lemma 1 in the next section that this flexibility in the duration

of the communication session (instead of requiring the duration to be exactly equal to T )

does not increase the capacity of the system.

Let Constraint G be a set of constraints on a code defined as follows. A code S defined

on domain [0, T ] is said to satisfy Constraint G if for all S(t), S′(t) ∈ S, one of the following

holds:

G1. S(t) and S′(t) have different numbers of runs in A;

G2. S(t) and S′(t) have the same number of runs in A and there exists a run in A for

which they take different values in X ;

G3. S(t) and S′(t) have the same number of runs in A and take the same values in all the

runs in A, and there exists an index i such that ξli ≤ l′i or ξl′i ≤ li, where li ∈ A and

l′i ∈ A are the lengths of the ith run in S(t) and S′(t), respectively.

Note that a code in CL is zero-error if and only if the code satisfies Constraint G.

5



We refer to an asynchronous channel with runlength set A and jitter ratio ξ as the [A, ξ]

channel, and refer to a zero-error code in CL as an [A, ξ] self-synchronizable code, or simply

an [A, ξ] code. In this section, we give a characterization of optimal [A, ξ] codes. In the

next two sections, we determine the capacity of the [A, ξ] channel.

We point out that in the definition of an [A, ξ] code, though called a self-synchronizable

code, has no explicit notion of synchronization except at the end of the communication

session. More specifically, when using this code, the transmitter clock and the receiver

clock may have no re-synchronization with each other after a long period of time instead

of re-synchronizing from time to time with each other as in the usual approach. This novel

approach to synchronization is a main contribution of the current work.

An optimal [A, ξ] code in CL is a zero-error code which contains the largest number of

codewords. To obtain an optimal code, we first construct a list L(A, ξ) = {l∗1, l∗2, l∗3, . . . , } of

runlengths by “Construction (A, ξ)” below recursively.

Construction (A, ξ):

Step 1 Let l∗1 be the smallest element of the set A.

Step j Having taken l∗1, l
∗
2, l
∗
3, . . . , l

∗
j−1, take l∗j to be the smallest element of the

closed set A ∩ [ξl∗j−1,∞).

Note that whether the list L(A, ξ) so constructed is finite or countably infinite depends on

whether the procedure stops in a finite number of steps.

Theorem 1 The set of all distinct codewords such that all the runlengths in the codeword

are in L(A, ξ) is an optimal [A, ξ] code in CL.

Remarks:

i) As mentioned before, when an [A, ξ] code is used, the transmitter and receiver clocks do

not re-synchronize with each other from time to time. In the extreme case, the communi-

cation session consists of only one runlength, so that re-synchronization occurs only at the

end of the session.
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ii) Since an [A, ξ] code is zero-error, at the end of the communication session, the receiver is

able to determine correctly the transmitted codeword, and hence the length of each run in

the codeword. In general, this cannot be done before the end of the session. However, for

an optimal [A, ξ] code as constructed, since the runlengths are chosen from a set in which

all the runlengths are distinguishable after passing through the [A, ξ] channel, the receiver

in fact can determine the length of each run (as transmitted) as soon as the transition at

the end of that run is detected in the received signal. This means that at this point in

time the transmitter and receiver clocks can re-synchronize with each other. It is some-

what unexpected that this desirable property, which also is possessed by runlength limited

(RLL) codes [5] commonly used in magnetic recording and optical communications, can be

retained without sacrificing optimality. We note that an RLL code, which imposes an upper

limit on the runlengths, is not optimal in general. See the discussion in Example 2.

Example 1 For A = [a,∞), L(A, ξ) = {aξt : t = 0, 1, 2, . . .}.

Example 2 For A = {a, a+ 1, . . . , }, where a is a positive integer, the members of the list

L(A, ξ) are given recursively by

l∗1 = a

l∗j = dξl∗j−1e, j = 2, 3, . . . .

Let p = 2, and let the logarithms be in the base 2 so that the capacities are expressed in bits

per unit time.

i) Let a = 1 and ξ = 7.1/6. Consider achieving zero-error communication by an RLL code.

Such a code is characterized by two parameters (d+1) and (k+1), which are the minimum

and maximum runlengths, respectively. Here, an RLL code attaining the maximum rate is

the (0, 5) code, which is explained as follows. First, for 0 ≤ d ≤ 5, the maximum k that can

be taken is 5 because (5 + 1) · 7.1
6 > 7, which means that if the runlength 6 is used, then the

runlength 7 cannot be used. Thus for 0 ≤ d ≤ 5, we should let d = 0 and k = 5 in order

to maximize the runlength set. For d > 5, since (d + 1) · 7.1
6 > d + 2, the runlength d + 2

cannot be used and therefore k must be equal to d. In other words, only the runlength d can
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be used, and such a code is obviously inferior to the (5, 5) code, which in turn is inferior to

the (0, 5) code. Hence, the (0, 5) code, with runlength set {1, 2, . . . , 6}, is the optimal RLL

code that can be employed for zero-error communication.

Alternatively, an [A, ξ] code with runlength set L(A, ξ) = {1, 2, ..., 6, 8, 10, 12, ...} can be

used. The (0, 5) RLL code discussed above cannot be optimal because its runlength set is a

proper subset of L(A, ξ). We denote the rate of a (d, k) RLL code by C(d, k), and we have

C(0, 5) = 0.9881 and C(0,∞) = 1 [5, P.62]. The rate of the [A, ξ] code as prescribed should

be somewhere in between and it is found to be 0.9914 by the results in the next section.

When ξ is large, an optimal [A, ξ] code can perform much better than an RLL code, as to

be shown next.

ii) Consider a = 2 and ξ = 1.51. Then we see that the (1, 1) RLL code is the best possible

RLL code for zero-error communication. The rate of this code is equal to 0 because there

are only two codewords. Alternatively, an [A, ξ] code with L(A, ξ) = {2, 4, 7, 11, ...} can be

used, and the rate is 0.4383. In this example, the gain from not imposing an upper limit on

the runlengths is infinite!

Proof of Theorem 1 Consider any [A, ξ] code S such that the runlengths of all the

codewords are not necessarily in L(A, ξ). Then it suffices for us to show that there exists

an [A, ξ] code S ′ such that the lengths of all the runs in the codewords are in L(A, ξ) and

that S ′ has at least the same number of codewords as S.

For any positive real number l ≥ l∗1 in L(A, ξ), let l̃ be the largest element in L(A, ξ)

which is less than or equal to l. To construct the codewords in S ′, we consider each codeword

in S. If the lengths of all the runs are in L(A, ξ), then we leave the codeword unchanged.

Otherwise, we change each runlength l in the codeword to l̃. Obviously, the duration of the

resulting step function is shorter than the original codeword and the runlengths of all these

step functions are in L(A, ξ). This forms the code S ′.

We now show that S ′ is an [A, ξ] code. Consider two step functions S1(t) and S2(t) in

S which become S′1(t) and S′2(t) in S ′. If S1(t) and S2(t) satisfy G1 or G2, then S′1(t) and

S′2(t) continue to satisfy G1 or G2 accordingly. If S1(t) and S2(t) satisfy G3, then S1(t)
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and S2(t) have the same number of runs and take the same values in all the runs, and there

exists an index i such that either ξl1i ≤ l2i or ξl2i ≤ l1i, where l1i and l2i are the lengths of

the ith run in S1(t) and S2(t), respectively. Assume ξl1i ≤ l2i. (The case ξl2i ≤ l1i can be

proved likewise.) Let l̂ be the element in L(A, ξ) after l̃1i in Construction (A, ξ). Now

ξl̃1i ≤ l2i (2)

because ξl̃1i ≤ ξl1i ≤ l2i. It then follows from (2) that

l̂ ≤ l2i, (3)

because l̂ is the smallest element in A ∩ [ξl̃1i,∞) and l2i ∈ A ∩ [ξl̃1i,∞). From (3), since

l̂ ∈ L(A, ξ), we have

l̂ ≤ l̃2i.

On the other hand, since l̂ is the smallest element in A ∩ [ξl̃1i,∞), we have

ξl̃1i ≤ l̂.

Thus we have ξl̃1i ≤ l̃2i. Hence we have shown that S′1(t) and S′2(t) continue to satisfy G3.

This completes the proof. 2

4 The Combinatorial Capacity

The combinatorial capacity of discrete noiseless channels has been studied in Shannon’s

original paper [4] where only integer cases are considered. This subject is treated extensively

in [6] and the proofs for the non-integer cases can be found in [7]-[10]. The combinational

capacity of the [A, ξ] channel will be found via the modification of some well-known results.

Let l1 be the smallest element in A and consider the set of step functions on the interval

[0, T ] satisfying the following:

E1. The duration is equal to T .

E2. The runs take values in the input alphabet X .
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E3. The lengths of the runs, except for possibly the last run, take values in A.

E4. If the length of the last run is not in A, then it is less than l1.

If the length of the last run is not in A, then it is referred to as the incomplete run.

Again, we call a set of step functions satisfying the above conditions a code, and call the

step functions codewords of the code. The class of all such codes is denoted by CE . Note

that CE is different from the class of codes CL we have defined in the last section on which

an [A, ξ] self-synchronizable code is defined, specifically because of the requirement for the

duration of the step functions (E1) and the possible occurrence of the incomplete run (E3

and E4).

For a class of codes, we refer to an optimal code as a code in the class which satisfies

Constraint G and contains the largest number of codewords. When Constraint G is applied,

the incomplete runs in the codewords (if exist) are ignored. In the following, we will show

that an optimal code in CE and an optimal code in CL have the same asymptotic rate as

T → ∞. For this reason, we can analyze the asymptotic rate of an optimal code in CE

instead of CL.

In the rest of the section, we will use φ to denote a code and Φ to denote an optimal

code in a specified class of codes. Let ΦE(A) be an optimal code in CE . Let ΦE(L(A, ξ))

be an optimal code in the subclass of codes of CE such that the codewords satisfy E1 to

E4 with A replaced by L(A, ξ) (note that A and L(A, ξ) have the same smallest element).

Similarly, let ΦL(L(A, ξ)) be an optimal code in the subclass of codes of CL such that the

codewords satisfy L1 to L3 with A replaced by L(A, ξ). By Theorem 1, ΦL(L(A, ξ)) is

also an optimal code in CL. We denote the number of codewords in ΦE(A) by |ΦE(A)|,

etc. Note that |ΦE(A)|, |ΦE(L(A, ξ))|, and |ΦL(L(A, ξ))| are functions of the length T of

the communication session. In the discussion that follows, we will temporarily assume the

existence of all the limits which will be justified in Theorem 2.

Lemma 1

lim
T→∞

1
T

log |ΦE(A)| = lim
T→∞

1
T

log |ΦE(L(A, ξ))| = lim
T→∞

1
T

log |ΦL(L(A, ξ))|.
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Proof We first construct a set temporarily denoted by Γ through the following procedure.

For each codeword in ΦE(A), include the codeword in Γ by first removing the incomplete

run if it exists. Note that |Γ| = |ΦE(A)|, and if ΦE(A) satisfies Constraint G, then Γ

continues to satisfies Constraint G. It follows that Γ is a zero-error code in CL. Let A∗ be

the set of runlengths in Γ and henceforth write Γ as φL(A∗).

Let ΦL(A∗) be an optimal code in the subclass of codes of CL such that all the runlengths

in a codeword are in A∗. Therefore, |φL(A∗)| ≤ |ΦL(A∗)|, and

lim
T→∞

1
T

log |ΦE(A)| = lim
T→∞

1
T

log |φL(A∗)| ≤ lim
T→∞

1
T

log |ΦL(A∗)|. (4)

Let

k =
⌊
T

l∗

⌋
, (5)

where l∗ denotes the smallest element in A∗. Then a codeword in ΦL(A∗) contains at

least one and at most k runs. Thus we can partition ΦL(A∗) into k subsets {ψi(A∗)} for

i = 1, 2, . . . , k such that a codeword in ΦL(A∗) with i runs belongs to ψi(A∗). Assume

ψj(A∗) contains the largest number of codewords. Then we can construct a set with size

|ψj(A∗)| by appending any valid suffix to each codeword in ψj(A∗) to make the duration

of each codeword equal T . Denote this set of codewords by φ′L(A∗), and we will show that

φ′L(A∗) satisfies Constraint G. For any pair of codewords in φ′L(A∗), the pair of codewords

in ψj(A∗) from which they are derived cannot satisfy G1 because the numbers of runlengths

for both are equal to j, and hence they must satisfy either G2 or G3. Then it is readily

seen that if the pair of codewords in φ′L(A∗) does not satisfy G1, then they must satisfy

either G2 or G3 (because they can be distinguished from each other by their first j runs).

This shows that the set of codewords φ′L(A∗) satisfies Constraint G. Therefore,

|ΦL(A∗)|
k

≤ |ψj(A∗)| ≤ |ΦE(A)|. (6)

By (5), we have

lim
T→∞

log k
T

= 0.
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Therefore, (6) becomes

lim
T→∞

1
T

log |ΦL(A∗)| ≤ lim
T→∞

1
T

(log k + log |ΦE(A)|) = lim
T→∞

1
T

log |ΦE(A)|. (7)

Combining it with (4), we obtain

lim
T→∞

1
T

log |ΦE(A)| = lim
T→∞

1
T

log |ΦL(A∗)|. (8)

Similarly, we can show that

lim
T→∞

1
T

log |ΦE(L(A, ξ))| = lim
T→∞

1
T

log |ΦL(L(A, ξ))|. (9)

By Theorem 1 and the definition of an optimal code in CL, we have

lim
T→∞

1
T

log |ΦL(A∗)| ≤ lim
T→∞

1
T

log |ΦL(L(A, ξ))|. (10)

From the definitions of |ΦE(A)| and |ΦE(L(A, ξ))|, we have

lim
T→∞

1
T

log |ΦE(A)| ≥ lim
T→∞

1
T

log |ΦE(L(A, ξ))|. (11)

Therefore,

lim
T→∞

1
T

log |ΦE(L(A, ξ))| = lim
T→∞

1
T

log |ΦL(L(A, ξ))|

≥ lim
T→∞

1
T

log |ΦL(A∗)|

= lim
T→∞

1
T

log |ΦE(A)|

≥ lim
T→∞

1
T

log |ΦE(L(A, ξ))|,

where the equalities and inequalities follow from (9), (10), (8), and (11), respectively. The

lemma is proved. 2

From the above lemma, we see that the combinatorial capacity of the [A, ξ] channel,

given as limT→∞
1
T log |ΦL(L(A, ξ))| by Theorem 1, is equal to limT→∞

1
T log |ΦE(L(A, ξ))|.

In the rest of the section, we will determine this capacity through the determination of the

latter limit.
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Let L = {lj : j = 1, 2, . . . , } be a countable set of positive real numbers such that its

members are labeled in increasing order, i.e.,

l1 < l2 < . . . < lj < . . . , (12)

and for a positive real number τ , let the τth segment of L be

Lτ := L ∩ [0, τ ]. (13)

In general, L is a set of symbol cost which can be time, energy, or some special constraints

related to the system. We, however, focus on L being a list of runlengths. The results we

will developed in the rest of the section apply to general runlength sets L instead of only

to specific runlength sets L(A, ξ).

The “partition function” technique [9] cannot be applied to obtain the capacity of the

[A, ξ] channel because the definition of a codeword therein is different. More fundamentally,

this technique is somewhat restrictive because it requires a condition on the set L to be

satisfied before it can be applied. Let

D(t,L) := {τ < t : there exists at least one step function with duration τ

and all the runlengths are in L }.

The partition technique can be applied provided that the set D(t,L) is not too dense, in

the sense that for any integer t ≥ 0,

|D(t,L)| = O(tK)

for some constant K ≥ 0. This condition, however, is difficult to verify when L is countably

infinite.

Some related results can be found in [7] but the definitions of capacity in [7] are somewhat

different from ours. The simplest way to obtain the capacity of the [A, ξ] channel is to

modify the proof of Proposition 1.1 in [8]. Let N(T ) denote the number of step functions

in ΦE(L(A, ξ)) defined on the interval [0, T ], i.e., N(T ) = |ΦE(L(A, ξ))| (for a general L
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instead of L(A, ξ)), where T ≥ l1. For T = l1, N(T ) = p. For T ≥ l1, N(T ) satisfies

N(T ) =
∑
l∈L
l<T

(p− 1)N(T − l) +
∑
l∈L
l=T

p · 1{T = l}

with N(T ) = p
p−1 for 0 < T < l1 by convention, and

1{T = l} =

 1 if l = T ,

0 if l 6= T .

The above recursive relation for N(T ), T ≥ l1 can be written more compactly as

N(T ) =
∑
l∈L

(p− 1)N(T − l) (14)

by further letting N(0) = p
p−1 and N(T ) = 0 for T < 0. Note that with our convention

for N(T ), 0 ≤ T < l1, the summand in the above summation is equal to p whenever

0 ≤ T − l < l1. This is justified because when constraint G is applied, an incomplete run in

the codeword is ignored.

For a list L, let

C[p,L] := lim
T→∞

1
T

logN(T )

if it exists. All the logarithms in this paper are in the same base.

Definition 1 The capacity of a channel with runlength set L is defined as C[p,L] if it

exists.

Now, we modify the proof given in [8] in order to obtain the capacity of the [A, ξ]

channel. Let

a(w) = (p− 1)
∑
l∈L

w−l. (15)

If |L| is finite, a(w) is bounded for all w > 0. Consider |L| = ∞ and let w∗ denote the

infimum of the positive values w for which a(w) is bounded. Note that w∗ ≥ 1 because a(1)

is unbounded.

14



We first show that a(w) is continuous on (w∗,∞) if w∗ < ∞. For w ∈ (w∗,∞), a(w)

is obviously monotonically decreasing and a(w) is now shown to be continuous. For w ∈

(w∗,∞), let w′ = w∗+w
2 . Then fi(w) = w−li < (w′)−li . Since w′ > w∗, a(w′) is bounded

and
∑n
i=1(w′)−li is convergent to a(w′)/(p − 1). By applying the Weierstrass M-Test [11],∑n

i=1 fi(w) =
∑n
i=1w

−li is uniformly convergent to
∑∞
i=1w

−li = a(w)/(p − 1) on (w∗,∞).

Together with fi(w) being continuous on (w∗,∞) for each integer i, a(w)/(p− 1) and also

a(w) are continuous on (w∗,∞).

Now, suppose w∗ < ∞. We are going to show that there is a unique w0 such that

a(w0) = 1 if a(w∗) > 1. If a(w∗) = ∞, let γ = 2; otherwise, let γ = a(w∗)+1
2 > 1. Then

there exists m > 0 such that

(p− 1)
∑
l∈Lm

(w∗)−l > γ.

Let ε > 0 be sufficiently small such that

a(w∗ + ε) = (p− 1)
∑
l∈L

(w∗ + ε)−l

≥ (p− 1)
∑
l∈Lm

(w∗ + ε)−l

> γ

> 1,

and let s∗ = w∗ + ε. On the other hand, a(w) converges for any w ∈ (w∗,∞), and hence

there exists a real number k > 0 such that

(p− 1)
∑

l∈L\Lk

(s∗)−l < 0.5.

Then for all w > s∗,

(p− 1)
∑

l∈L\Lk

w−l < 0.5. (16)

Therefore, we can find s > s∗ such that

(p− 1)
∑
l∈Lk

s−l < 0.5.
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Together with (16), we have a(s) < 1. Since a(w) is continuous on (w∗,∞), a(w) is con-

tinuous on [s∗, s]. Together with the intermediate value theorem and a(w) being strictly

decreasing on [s∗, s], there is a unique w0 such that a(w0) = 1. Similar to [8], we will show

in Section 6 (Proof of Theorem 2) that

lim
T→∞

1
T

logN(T ) = logw0 for a(w∗) > 1 (17)

and

lim
T→∞

1
T

logN(t) = logw∗ for a(w∗) ≤ 1. (18)

The function a(w) has played an important role in our discussion so far. Let us further

introduce the characteristic function

Q(L, z) = 1− a(z−1)

= 1− (p− 1)
∑
l∈L

zl.

It is then obvious that

w0 is a root of a(·) = 1 ⇐⇒ w0
−1 is a root of Q(L, ·) = 0. (19)

Note that if |L| =∞, Q(L, z) converges for z = 0 and diverges for all z > 1, but it may or

may not converge for 0 < z < 1. We now define the radius of convergence, denoted by r, of

Q(L, z). If Q(L, z) converges only at z = 0, then r = 0. Otherwise, r is the unique positive

real number such that Q(L, z) converges for all z < r and diverges for all z > r. In fact, we

have r = (w∗)−1 and Q(L, z) can be shown to be a decreasing and continuous function on

(0, r). If r > 0 and Q(L, r) < 0, there is a unique positive real root of Q(L, z).

From (17) and the discussion that follows, the capacity C[p,L] can be given in terms

of the characteristic function Q(L, z). This is stated in the corollary of the next theorem

which will be proved in Section 6. When p = 2, this theorem reduces to Proposition 1.1 in

[8].

Theorem 2 The capacity of a channel with runlength set L is as follows:
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i) If r = 0, i.e. Q(L, z) = −∞ for all z > 0, then C[p,L] =∞.

ii) Suppose r > 0. If Q(L, r) < 0, then

C[p,L] = − logµ(L), (20)

where µ(L) is the unique positive real root of Q(L, z). If Q(L, r) ≥ 0,

C[p,L] = − log r. (21)

Corollary 1 The capacity of the [A, ξ] channel is

C[p,L(A, ξ)] = − logµ(L(A, ξ)),

where µ(L(A, ξ)) is the unique positive real root of Q(L(A, ξ), z).

Proof We put L = L(A, ξ). In light of Theorem 2 Part ii), it suffices to show that a(w)

always converges for w > 1. Recall that L(A, ξ) = {l∗1, l∗2, l∗3, . . .}. From Construction (A,

ξ), it is readily checked that l∗i ≥ l∗1ξi−1 for all i. Therefore, we have for w > 1,

a(w) = (p− 1)
∑

l∈L(A,ξ)
w−l

≤ (p− 1)
∞∑
k=0

w−l
∗
1ξ
k
.

Since ξ > 1, there exists an integer K0 such that ξk > k for k ≥ K0. For w > 1, we have

a(w) ≤ (p− 1)
∞∑
k=0

w−l
∗
1ξ
k

≤ (p− 1)
K0−1∑
k=0

w−l
∗
1ξ
k

+ (p− 1)
∞∑

k=K0

w−l
∗
1k

= (p− 1)
K0−1∑
k=0

w−l
∗
1ξ
k

+ (p− 1)
w−l

∗
1K0

1− w−l∗1
,

which proves that a(w) is bounded from above. Together with aτ (w) = (p − 1)
∑
l∈Lτ w

−l

being an increasing function in τ , a(w) = limτ→∞ aτ (w) converges to a finite value. There-

fore, we have shown that w∗ ≤ 1, r ≥ 1. Since Q(L(A, ξ), r) < 0, we can apply (20) to

obtain the capacity of the [A, ξ] channel. 2
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Corollary 2 If L is a subset of integers, Q(L, z) converges on [0, θ] for all θ ∈ (0, 1) and

− logµ(L) ≤ log p.

Theorem 2 also provides an easy way to determine C[p,L] when Q(L, z) has a closed

form.

Example 3 Consider binary codes whose runlengths are multiples of k. Then L = {k, 2k, 3k, . . .}

and

Q(L, z) = 1−
∞∑
j=1

zkj = 1− zk

1− zk

for z ∈ [0, 1). Therefore, µ(L) = 2−
1
k , and C[p,L] = 1/k bit per unit time.

The following example illustrates the scenario in Theorem 2 Part i).

Example 4 Consider a channel with runlength set

L = {l1, l2, . . .} =
{

1,
3
2
,
5
3
,
7
4
, . . .

}
,

where li = 2i−1
i for i ≥ 1. Then for 0 < z < 1,

Q(L, z) = 1− (p− 1)
∑
l∈L

zl

≤ 1− (p− 1)
∑
l∈L

z2

= −∞.

By Theorem 2 Part i), the capacity of this channel is infinite.

In general, Q(L, z) may not have a closed form so that µ(L) is difficult to compute.

In this case, we may need to approximate µ(L) by µm(L) for a sufficiently large m, where

µm(L) is the unique positive root of

Qm(L, z) = 1− (p− 1)
∑
l∈Lm

zl,

and Lm is defined in (13). Thus the convergence rate of {µm(L)} is of practical interest.
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Theorem 3 (The Convergence Rate) For any 0 < θ1 < θ2 with Q(L, θ1) ≥ 0 and

Q(L, θ2) < 0,

0 ≤ µm(L)− µ(L) ≤
∑
l∈L\Lm θ2

l∑
l∈L′m lµm(L)l−1 +

∑
l∈L′′m lθ1

l−1
, (22)

where L′m = {l ∈ Lm : l ≤ 1} and L′′m = {l ∈ Lm : l > 1}.

The proof of Theorem 3 is deferred to Section 7. In addition to the convergence rate, this

theorem has the following physical interpretation. Recall from Remark ii) following Theo-

rem 1 that for a [A, ξ] code, the transmitter and receiver clocks can always re-synchronize

with each other at the end of a runlength. This means that when the set of runlengths is

Lm, the transmitter and receiver clocks can always re-synchronize with each other within

a horizon of length m. Thus if we impose the constraint that the transmitter and receiver

clocks cannot be out-of-sync for more than m time units, the rate loss incurred is at most

− logµ(L) + log µ(Lm),

which by (22) is upper bounded by

− log(µ(Lm)− δm) + log µ(Lm),

where δm denotes the RHS of (22) and we have invoked the monotonicity of the logarithmic

function.

Corollary 3 If L is a subset of positive integers and Q(L, θ) < 0, then

0 ≤ µm(L)− µ(L) ≤ θm+1

(1− θ)
(∑

l∈L′m lµm(L)l−1 + d̃p−(d̃−1)
) , (23)

where d̃ is the smallest element of L′′m.

Proof Observe that

Q(L, p−1) = 1− (p− 1)
∑
l∈L

p−l ≥ 1− (p− 1)
∞∑
l=1

p−l = 0
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since L is a subset of positive integers. Then the corollary can be proved by applying

Theorem 3 with θ1 = p−1 and θ2 = θ together with the inequalities

∑
l∈L′′m

lp−(l−1) ≥ d̃p−(d̃−1)

and ∑
l∈L\Lm

θl ≤
∞∑

l=m+1

θl =
θm+1

1− θ
.

2

5 The Probabilistic Capacity

The Maxentropic Theorem for Markov information sources, which is an important result

in information theory, can go back to Shannon’s original work [4], and the Maxentropic

Theorem for (dk) sequences can be obtained as its special case (cf. [5] for a detailed discus-

sion and further references). For our problem, when the list L of runlengths is an infinite

set, the information source has infinite memory and therefore is not Markovian. So the

approach for proving the Maxentropic Theorem via transition matrices does not work. In

this section, the theorem will be obtained by way of the characteristic function Q(·, ·).

The Maxentropic Theorem not only asserts that the probabilistic capacity and the com-

binatorial capacity are the same for L being an infinite set of runlengths, but also provides

insight into the asymptotic behavior of an optimal code. In fact, this insight has led to the

construction of an optimal code recently reported in [12].

In the following, we are only interested in those L with a positive radius of convergence,

i.e. r > 0, and Q(L, r) < 0. This means w∗ = r−1 is finite and a(w∗) > 1, from which

the existence of µ(L), the unique positive real root of Q(L, z), is guaranteed. Note L(A, ξ)

always satisfy the above requirements which has been shown in the proof of Corollary 1.

Definition 2 For a given list L of runlengths and an alphabet X with cardinality p, let

S(L) be the set of step functions on [0,∞) taking values in X whose runlengths are in L,

K(L) be the set of stochastic processes X(t) on [0,∞) taking values almost surely (a.s.) in
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S(L), XT (t) := {X(t) : 0 ≤ t ≤ T} be the T th segment of stochastic process X(t), and PX(t)

and PXT (t) be the distributions of X(t) and XT (t), respectively. Then the entropy rate of

X(t) ∈ K(L) is defined by

r(X(t)) := lim
T→∞

− 1
T

E logPXT (t)(X
T (t)) (24)

and the maxentropy of K(L) is defined by

r(L) := max
X(t)∈K(L)

r(X(t)). (25)

In order for the maxentropy to be well defined, we have to show that the maximum in

(25) is achievable. Under a reasonable condition, this will be done in the proof of the next

theorem. Specifically, we will show that the stochastic process X∗(t) ∈ K(L) defined below

achieves the maxentropy.

Any step function S(t) ∈ S(L) can be uniquely determined by a pair of sequences,

l∞ = (l1, l2, l3, . . .) and y∞ = (y1, y2, y3, . . .), where li ∈ L and yj ∈ X are respectively the

ith runlength and the value taken by the jth run of S(t). We will write =(S(t)) = (l∞, y∞)

and =−1(l∞, y∞) = S(t). Similarly, a stochastic processX(t) ∈ K(L) is uniquely determined

by a pair of stochastic sequences L(i) and Y (j). Likewise, write =(X(t)) = (L(i), Y (j)) and

=−1(L(i), Y (j)) = X(t). This allows us to define X∗(t) by defining =(X∗(t)). For the list

L, µ(L) satisfies 1− (p− 1)
∑
l∈L(µ(L))l = Q(L, µ(L)) = 0, and so

∑
l∈L(p− 1)(µ(L))l = 1.

Thus Pµ(L) := {Pµ(L)(l) = (p − 1)(µ(L))l : l ∈ L} is a probability distribution over L.

Let {L∗(i)}∞i=1 be an i.i.d. stochastic sequence with distribution Pµ(L) and {Y ∗(j)}∞j=1 be a

Markov chain which is independent of {L∗(i)}∞i=1 and has the following distribution, where

a is any fixed letter in X .

Pr(Y ∗(1) = x) =

 0 if x = a

1
p−1 otherwise,

(26)

and for j = 2, 3, . . . ,

P r(Y ∗(j) = xj |Y ∗(j − 1) = xj−1) =

 0 if xj = xj−1

1
p−1 otherwise.

(27)
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Define X∗(t) = =−1(L∗(i), Y ∗(j)). Then X∗(t) ∈ K(L). Notice that if instead of (26) we

let Y ∗(1) be uniformly distributed over X , then the entropy would be increased, but for the

entropy rate in (24) which we are interested in, it does not make any difference.

Theorem 4 (Maxentropic Theorem) For any X(t) ∈ K(L),

r(X(t)) ≤ − logµ(L). (28)

In the above, equality is achieved by X∗(t), and hence

r(L) = − logµ(L). (29)

6 Proof of Theorem 2

We first prove Part ii) and we let w∗ = r−1 and w∗ is finite. Suppose Q(L, r) < 0 which

means a(w∗) > 1. We have already shown the existence of w0 such that a(w0) = 1. Note

that µ(L) = (w0)−1. In order to show (20), we only need to prove (17). A sequence of

positive numbers bk is defined recursively by

b1 = (p− 1)−1w−l10

and

bk+1 =

(p− 1)
∑

l∈L:l≤kl1
w−l0

 bk
for positive integer k. Then

bk = (p− 1)−1w−l10

k−1∏
j=1

 ∑
l∈L:l≤jl1

(p− 1)w−l0


for k = 1, 2, . . . Similar to [8], we will prove that for 0 ≤ T ≤ kl1,

(p− 1)bkwT0 ≤ N(T ) ≤ pwT0 (30)
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by mathematical induction. For k = 1 and 0 ≤ T ≤ l1,

(p− 1)b1wT0 ≤ (p− 1)b1wl10

= 1

<
p

p− 1
(= N(T ) if 0 ≤ T < l1)

≤ p (= N(T ) if T = l1)

≤ pwT0 ,

since p ≥ 2 and w0 ≥ 1. Therefore, (30) holds. Assume that (30) holds for some positive

integer k. Then for kl1 < T ≤ (k + 1)l1, we have

(p− 1)bk+1w
T
0 = (p− 1)2bk

∑
l∈L:l≤kl1

wT−l0

≤ (p− 1)2bk
∑
l∈L

wT−l0

≤ (p− 1)
∑
l∈L

N(T − l) (= N(T ))

≤ (p− 1)
∑
l∈L

pwT−l0

= wT0 p

(p− 1)
∑
l∈L

w−l0


= pwT0 a(w0)

= pwT0 .

Therefore, we conclude that (30) holds for all k and 0 < T ≤ kl1 (regardless of whether

a(w∗) > 1 or not). Since

bk+1 =

(p− 1)
∑

l∈L:l≤kl1
w−l0

 bk
≤

(p− 1)
∑
l∈L

w−l0

 bk
= a(w0)bk

= bk,
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we see that bk is non-increasing with respect to k. Since

1 = a(w0) = (p− 1)
∑

l∈L:l≤kl1
w−l0 + (p− 1)

∑
l∈L:l>kl1

w−l0 ,

we have

∞∑
k=1

1− (p− 1)
∑

l∈L:l≤kl1
w−l0

 =
∞∑
k=1

(p− 1)
∑

l∈L:l>kl1

w−l0 (31)

=
∑
l∈L

∑
1≤k< l

l1

(p− 1)w−l0

≤
∑
l∈L

l

l1
(p− 1)w−l0

= −w0

l1
a′(w0),

where a′(w0) denotes the derivative of a(w) at w0. Since we have assumed that a(w∗) > 1

and a(w) is continuous on (w∗,∞), we have w0 > w∗. Therefore, a(w) converges in the

neighborhood of w0, which implies −a′(w0) exists and the summation on the LHS of (31)

converges. It is easy to verify that for any 0 < ck < 1 where k = 1, 2, . . ., if
∑∞
k=1 ck < ∞,

then
∏∞
k=1(1− ck) > 0. By letting ck be the kth term in the summation on the LHS of (31),

we have
∑∞
k=1 ck <∞, so that

0 <
∞∏
k=1

(1− ck)

=
∞∏
k=1

(p− 1)
∑

l∈L:l≤kl1
w−l0


= (p− 1)wl10 lim

k→∞
bk.

Since (30) holds for 0 < T ≤ kl1, for any t > 0, it holds for k = d Tl1 e. For this choice of k,

upon taking logarithm and dividing by t in (30), we conclude that

lim
T→∞

1
T

logN(T ) = logw0 for a(w∗) > 1,

i.e., (17).

Now, we are going to show (21) by considering Q(L, r) ≥ 0. It is sufficient to prove (18).

Consider a(w∗) ≤ 1. Since a(w∗ − ε) is unbounded for any 0 < ε < w∗, there exists a real
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number m such that

(p− 1)
∑
l∈Lm

(w∗ − ε)−l > 1.

As

(p− 1)
∑
l∈Lm

(w∗)−l < a(w∗) ≤ 1,

we can find w′0 ∈ (w∗ − ε, w∗) such that

(p− 1)
∑
l∈Lm

(w′0)−l = 1.

If we consider a channel with runlengths given in Lm, the previous results show that the

capacity of the channel is logw′0. Since we are considering a channel supporting more

runlengths as Lm ⊂ L, we have

lim
t→∞

1
t

logN(t) ≥ logw′0 ≥ log(w∗ − ε),

so that upon letting ε→ 0, we have

lim
t→∞

1
t

logN(t) ≥ logw∗.

On the other hand, we recall from the foregoing that the upper bound on N(t) in (30) also

holds for a(w∗) ≤ 1. Since w0 = w∗ in this case, from the upper bound in (30), we have

N(t) ≤ p(w∗)t (32)

for all t > 0, which implies

lim
t→∞

1
t

logN(t) ≤ logw∗,

hence proving (18). The proof of Part ii) is also completed.

For Part i), i.e. Q(L, z) = −∞ for any z > 0, we are going to show that C[p,L] = ∞.

For any s > 0, let w1 = 2s. Since Q(L, (w1)−1) = −∞, there exists an integer m such that

1− (p− 1)
∑
l∈Lm

(w1)−l < 0.
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The previous part of the proof has already shown that the capacity of C[p,Lm] > logw1 =

s log 2. Together with C[p,L] ≥ C[p,Lm], C[p,L] > s log 2. Since s > 0 is arbitrary, we

have

C[p,L] =∞.

7 Proof of Theorem 3

Since Qm(L, ·) is monotonically decreasing (for 0 ≤ z < r), its inverse function Q−1
m (L, ·)

exists and has derivative

dQ−1
m (L, u)
du

=
[
dQm(L, z)

dz
|z=Q−1

m (L,u)

]−1

= − 1
(p− 1)

∑
l∈Lm l(Q

−1
m (L, u))l−1

. (33)

Moreover, µ(L) exists because we have θ2 > 0 and Q(L, θ2) < 0. From

0 = Q(L, µ(L)) = Qm(L, µ(L))− (p− 1)
∑

l∈L\Lm

µ(L)l,

we have

Qm(L, µ(L)) = (p− 1)
∑

l∈L\Lm

µ(L)l, (34)

or

Q−1
m

L, (p− 1)
∑

l∈L\Lm

µ(L)l
 = µ(L).

On the other hand, since µm(L) is a root of Qm(L, z), we have

Q−1
m (L, 0) = µm(L).

Then by Lagrange’s mean value theorem and (33), there exists an

η ∈ (0, (p− 1)
∑

l∈L\Lm

µ(L)l),
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such that

0 ≤ µm(L)− µ(L)

= Q−1
m (L, 0)−Q−1

m

L, (p− 1)
∑

l∈L\Lm

µ(L)l


=
1

(p− 1)
∑
l∈Lm l(Q

−1
m (L, η))l−1

(p− 1)
∑

l∈L\Lm

µ(L)l


=
∑
l∈L\Lm µ(L)l∑

l∈Lm l(Q
−1
m (L, η))l−1

. (35)

By the monotonicity of Q−1
m (L, ·), we have

µ(L) ≤ Q−1
m (L, η) ≤ µm(L).

In the course of lower bounding the denominator in (35), we have to distinguish two cases.

From the inequality above, for l ∈ L′m, i.e., l ≤ 1 (so that l − 1 ≤ 0), we have

(Q−1
m (L, η))l−1 ≥ µm(L)l−1,

and for l ∈ L′′m, i.e., l > 1, we have

(Q−1
m (L, η))l−1 ≥ µ(L)l−1.

Thus ∑
l∈Lm

l(Q−1
m (L, η))l−1 ≥

∑
l∈L′m

lµm(L)l−1 +
∑
l∈L′′m

lµ(L)l−1.

It then follows that

0 ≤ µm(L)− µ(L)

≤
∑
l∈L\Lm µ(L)l∑

l∈L′m lµm(L)l−1 +
∑
l∈L′′m lµ(L)l−1

≤
∑
l∈L\Lm θ2

l∑
l∈L′m lµm(L)l−1 +

∑
l∈L′′m lθ1

l−1
;

the last inequality is justified because Q(L, θ1) ≥ 0 and Q(L, θ2) < 0 imply

θ1 ≤ µ(L) < θ2.

This proves the theorem.
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8 Proof of Theorem 4

In this section we will prove Theorem 4, the Maxentropic Theorem. The upper bound (28)

is actually a direct consequence of Theorem 2 as we now explain. Let

N ′(T ) = |ΦL(L(A, ξ) ∩ [0, T ])|,

the size of an optimal code in the subclass of the code CL such that all the runlengths of

a codeword are in L(A, ξ) ∩ [0, T ], as previously defined in Section 4. For all X(t) ∈ K(L)

and all T > l1, upon truncating the last run if its length is not in L, XT (t) takes values in

the set of step functions on the interval [0, T ] satisfying L1 to L3 with A replaced by L a.s.

Therefore, we have

r(X(t)) = lim
T→∞

− 1
T

E logPXT (t)(X
T (t))

= lim
T→∞

1
T
H(XT (t))

≤ lim
T→∞

1
T

log[(p− 1)N ′(T )]

= lim
T→∞

1
T

logN(T )

= − logµ(L),

where the last equality follows from Theorem 2.

To complete the proof we have to prove X∗(t), t ∈ [0,∞) defined by {L∗(i)}∞i=1 and

{Y ∗(j)}∞j=1 in the last part of Section 5 achieves the upper bound − logµ(L). By the weak

law of large numbers, I−1∑I
i=1 L

∗(i) is convergent to EL∗ in probability as I → ∞. This

means that for any given positive real number T and an arbitrarily small but positive δ, by

letting i(T ) = b T
EL∗+δ c and U(I) =

∑I
i=1 L

∗(i), for any ε > 0 and sufficiently large T ,

Pr(U(i(T )) < T ) ≥ Pr

i(T )∑
i=1

L∗(i) < i(T )(EL∗ + δ)

 > 1− ε. (36)

Now we define

L∗i(T ) = (L∗(1), L∗(2), L∗(3), . . . , L∗(i(T )))
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and

Y ∗i(T ) = (Y ∗(1), Y ∗(2), Y ∗T (3), . . . , Y ∗(i(T ))).

Under the condition U(i(T )) < T , (L∗i(T ), Y ∗i(T )) is a function of X∗T (t). Therefore,

E[− logPX∗T (t)(X
∗T (t))|U(i(T )) < T ]

= H(X∗T (t)|U(i(T )) < T )

≥ H(L∗i(T ), Y ∗i(T )|U(i(T )) < T )

= H(L∗i(T )|U(i(T )) < T ) +H(Y ∗i(T )), (37)

where the last inequality follows from the fact that {Y ∗(j)}∞j=1 is independent of {L∗(i)}∞i=1

as well as U(I) for any I. To bound the first term on the RHS of (37), we have to esti-

mate H(L∗i(T )|U(i(T )) ≥ T ). To simplify notation, we introduce two sets, LI := {lI =

(l1, l2, l3, . . . , lI) : li ∈ L, for i = 1, 2, 3, . . . , I} and U(I) = {u =
∑I
i=1 li : lI ∈ LI}. Then

H(L∗i(T )|U(i(T )) ≥ T )

= E
[
− logPL∗i(T )(L∗i(T ))|U(i(T )) ≥ T

]
= E

[
− log[(p− 1)i(T )(µ(L))

∑i(T )

i=1
L∗(i)]|U(i(T )) ≥ T

]

= −i(T ) log(p− 1)− logµ(L)E

i(T )∑
i=1

L∗(i)|U(i(T )) ≥ T


= −i(T ) log(p− 1)− logµ(L)E [U(i(T ))|U(i(T )) ≥ T ]

= −i(T ) log(p− 1)

− logµ(L)
1

Pr[U(i(T )) ≥ T ]

∑
u∈U(i(T )):u≥T

uPr[U(i(T )) = u]. (38)

Here the second equality follows since (L∗(1), L∗(2), L∗(3), . . . , L∗(i(T ))) is an i.i.d. sequence

of random variables with distribution Pµ(L). For all li(T ) := (l1, l2, l3, . . . , li(T )) ∈ Li(T ), we

have

Pr[L∗i(T ) = li(T )] =
i(T )∏
i=1

(p− 1)µli(L) = (p− 1)i(T )(µ(L))
∑i(T )

i=1
li . (39)
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Among the terms on the RHS of (38),
∑
u∈U(i(T )):u≥T uPr[U(i(T )) = u] is difficult to eval-

uate due to the general form of L. So we instead have to find an upper bound. To this

end, we introduce a random variable V (I) =
∑I
i=1[L∗(i)− EL∗] = U(I)− IEL∗ and a set

V(I) = {v = u− IEL∗ : u ∈ U(I)}, and write∑
u∈U(i(T )):u≥T

uPr[U(i(T )) = u]

=
∑

v∈V(i(T )):v≥T−i(T )EL∗

[v + i(T )EL∗]Pr[V (i(T )) = v]

=
∑

v∈V(i(T )):v>T−i(T )EL∗

vPr[V (i(T )) = v] + Pr[V (i(T )) ≥ T − i(T )EL∗]i(T )EL∗

=
∑

v∈V(i(T )):v≥T−i(T )EL∗

vPr[V (i(T )) = v] + Pr[U(i(T )) ≥ T ]i(T )EL∗. (40)

Recalling that i(T ) = b T
EL∗+δ c, we obtain T ≥ i(T )[EL∗ + δ] and therefore {v : v ≥

T − i(T )EL∗} ⊂ {v : v ≥ i(T )δ}. This observation allows us to bound the first term on the

RHS of (40) as follows.∑
v∈V(i(T )):v≥T−i(T )EL∗

vPr[V (i(T )) = v] ≤
∑

v∈V(i(T )):v≥i(T )δ

vPr[V (i(T )) = v]

≤
∑

v∈V(i(T )):v≥i(T )δ

v2

i(T )δ
Pr[V (i(T )) = v]

≤ 1
i(T )δ

EV 2(i(T ))

=
1

i(T )δ
E[U(i(T ))− i(T )EL∗)]2,

where E[U(i(T )) − i(T )EL∗)]2 can be seen as the variance of U(i(T )). Since U(I) =∑I
i=1 L

∗(i) where {L∗(i)}Ii=1 are i.i.d., we have∑
v∈V(i(T )):v≥T−i(T )EL∗

vPr[V (i(T )) = v] ≤ 1
δ
E [L∗ −EL∗]2 . (41)

By combining (38), (40) and the above inequality, we obtain the bound

H(L∗i(T )|U(i(T )) ≥ T )

≤ −i(T ) log(p− 1)− logµ(L)
Pr[U(i(T )) ≥ T ]

(
1
δ
E[L∗ −EL∗]2 + Pr[U(i(T )) ≥ T ]i(T )EL∗

)
= i(T )(− logµ(L)EL∗ − log(p− 1))− logµ(L)

δPr[U(i(T )) ≥ T ]
E[L∗ −EL∗]2 (42)
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Define a binary random variable

B =

 0 if U(i(T )) < T

1 otherwise.

Then B is a function of L∗i(T ), and so

H(L∗i(T )) = H(L∗i(T )B)

= H(B) + Pr(B = 0)H(L∗i(T )|B = 0) + Pr(B = 1)H(L∗i(T )|B = 1). (43)

It follows that

Pr[U(i(T )) < T ]H(L∗i(T )|U(i(T )) < T )

= H(L∗i(T ))− Pr[U(i(T )) ≥ T ]H(L∗i(T )|U(i(T )) ≥ T )−H(B). (44)

Then by the definition of L∗i(T ), it is not hard for us to calculate

H(L∗i(T )) =
i(T )∑
i=1

H(L∗(i))

= i(T )H(L∗)

= −i(T )E[log(p− 1)(µ(L))L
∗
]

= −i(T )[log(p− 1) + log µ(L)EL∗]. (45)

We next substitute (42) and (45) into (44) and divide both sides of the resulting inequality

by Pr[U(i(T )) < T ]. By using (36) and the fact that B is a binary random variable with

H(B) ≤ 1, we can obtain a lower bound on H(L∗i(T )|U(i(T )) < T ), namely

H(L∗i(T )|U(i(T )) < T ) (46)

≥ i(T )[− log(p− 1)− logµ(L)EL∗] +
logµ(L)
δ(1− ε)

E[L∗ −EL∗]2 − 1
1− ε

. (47)

Let us now return to (37) and consider the second term on the RHS. From the definition

of {Y ∗(j)}∞j=1, it is obvious that H(Y ∗i(T )) =
∑i(T )
j=1 H(Y ∗(j)) = i(T ) log(p − 1). We then

substitute this and (46) into (37) to obtain a final bound on E[− logPX∗T (t)(X∗T (t))],
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namely

E[− logPX∗T (t)(X
∗T (t))|U(i(T )) < T ]

≥ −i(T ) logµ(L)EL∗ +
logµ(L)
δ(1− ε)

E(L∗ −EL∗)2 − 1
1− ε

. (48)

So by (36) and

E[− logPX∗T (t)(X
∗T (t))] = H(X∗T (t))

≥ H(X∗T (t)|U(i(T )))

= Pr[U(i(T )) < T ]E[− logPX∗T (t)(X
∗T (t))|U(i(T )) < T ] +

Pr[U(i(T )) ≥ T ]E[− logPX∗T (t)(X
∗T (t))|U(i(T )) ≥ T ],

we have

r(X∗(t))

= lim
T→∞

1
T

E[− logPX∗T (t)(X
∗T (t))]

≥ lim
T→∞

1
T
Pr[U(i(T )) < T ]E[− logPX∗T (t)(X

∗T (t))|U(i(T )) < T ]

≥ (1− ε) lim
T→∞

1
T

E[− logPX∗T (t)(X
∗T (t))|U(i(T )) < T ]

≥ 1− ε
EL∗ + δ

lim
i(T )→∞

1
i(T )

E[− logPX∗T (t)(X
∗T (t))|U(i(T )) < T ]

≥ 1− ε
EL∗ + δ

{
[− logµ(L)EL∗] + lim

i(T )→∞

1
i(T )

[
logµ(L)
δ(1− ε)

E(L∗ −EL∗)2 − 1
1− ε

]}

= −EL∗(1− ε)
EL∗ + δ

logµ(L). (49)

Finally, by letting δ → 0 and ε → 0 in (49), we obtain r(X∗(t)) ≥ − logµ(L), completing

the proof.

9 Conclusion

In this paper, we have explored a new approach to tackle time jitter in a communication

system with no common clock between the transmitter and the receiver. To start with,
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we only make the assumption the transmitter and receiver clocks can synchronize with

each other explicitly at the beginning and the end of a communication session. Unlike the

traditional approach, we do not impose the constraint that the transmitter and receiver

clocks have to re-synchronize with each other from time to time, in particular, within a

fixed maximum time.

To capture the effect of time jitter at the physical level of a communication system,

we have introduced the asynchronous channel. Unlike previous models in the literature,

our channel model is in continuous time. We have obtained a simple characterization of

an optimal zero-error self-synchronizable code for the asynchronous channel. We also have

proved the Maxentropic Theorem which implies the equivalence between the combinatorial

capacity and the probabilistic capacity of the channel. With the insight provided by this

theorem, a construction of an optimal code has recently been given in [12].

Our characterization of an optimal code for the noiseless asynchronous channel reveals

that in designing efficient codes for the purpose of synchronization, no upper limit should be

imposed on the runlengths as in runlength limited (RLL) codes which are commonly used

in magnetic recording. We have shown this somewhat surprising fact when the channel is

noiseless; whether this remains to be true when the channel is noisy is unknown. After all,

how to incorporate both time jitter and noise into the same model while keeping the model

analytically tractable is perhaps the biggest challenge for future research in this direction.
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