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Abstract—With respect to a given set of local encoding kernels
defining a linear network code, refined versions of the Hamming
bound, the Singleton bound and the Gilbert-Varshamov bound
for network error correction are proved by the weight properties
of network codes. This refined Singleton bound is also proved to
be tight for linear message sets.

Index Terms—Network error correction coding, network Ham-
ming weight, Singleton bound, Gilbert-Varshamov bound.

I. INTRODUCTION

The network error correction problem studied in [1]–[5] is
to extend classical error correction coding theory to a general
network setting. The concept of network error correction
coding was first introduced by Cai and Yeung [1]–[3]. They
generalized the Hamming bound, the Singleton bound and the
Gilbert-Varshamov bound in classical error correction coding
to network coding. Zhang [4] introduced the minimum rank
for linear network codes, which plays a role similar to that of
the minimum distance in decoding classical error-correcting
codes. Recently, network generalizations of the Hamming
weight, the Hamming distance, and the minimum distance
of network codes have been obtained by Yang and Yeung
[5]. In terms of the minimum distance, the capability of a
network code for error correction, error detection, and erasure
correction can be fully characterized. The relation between
network coding and maximum distance separation (MDS)
codes in classical algebraic coding has been clarified in [6].

In this paper, we present stronger versions of the Hamming
bound, the Singleton bound and the Gilbert-Varshamov bound
for network error correction compared with those bounds
obtained in [1]–[3]. Our proofs of these bounds are based
on the weight properties of network codes [5]. An algorithm
that constructs a linear network codes achieving a refined
Singleton bound from a classical linear block code has recently
been presented in [9]. In this paper, we present a different
constructive proof to the tightness of the Singleton bound with
respect to a given sets of global encoding kernels defining a
linear network code.

This paper is organized as follows. Section II formulates
the network error correction problem. Section III reviews the
weight properties of network codes. The coding bounds are
proved in Section IV. In the last section we summarize our
work.

II. PROBLEM FORMULATION

We study network transmission in a directed acyclic com-
munication network represented by G = (V, E), where V is
the set of nodes and E is the set of edges in the network. We
assume an order on the edge set E which is consistent with
the associated partial order of the directed acyclic network
G. An edge from node a to node b, say edge e, represents
a communication channel from node a to node b. We call
node a (node b) the tail (head) of edge e, denoted by tail(e)
(head(e)). Let In(a) = {e ∈ E : head(e) = a} and
Out(a) = {e ∈ E : tail(e) = a} be the sets of input edges
and output edges of node a, respectively. There can be multiple
edges between a pair of nodes, and each edge can transmit one
symbol in a finite field Fq .

A multicast on G transmits information from a source node
s to a set of sink nodes T . Let ns = |Out(s)|. The source node
s modulates the information to be multicast into a row vector
x ∈ Fns

q called the message vector. The set of all message
vectors, a subset of Fns

q , is called the message set and denoted
by C. The source node s transmits the message vector by
mapping its ns components onto the edges in Out(s). Define
an ns × |E| matrix A = [Ai,j ] as

Ai,j =

{
1 ej is the ith edge in Out(s),
0 otherwise.

(1)

By applying the order on E to Out(s), the ns non-zero
columns of A form an identity matrix.

An error vector z is an |E|-dimensional row vector with
each component representing the error on the corresponding
edge. An error pattern is a subset of E . An error vector is
said to match an error pattern if all the errors occur on the
edges in the error pattern. The set of all error vectors that
match error pattern ρ is denoted by ρ∗. Let ρz be the error
pattern corresponding to the non-zero components of an error
vector z.

For network G, a linear network error-correcting code, or a
linear network code for brevity, is specified by a set of local
encoding kernels {ke′,e : e′, e ∈ E} and the message set C.
The local encoding kernel ke′,e can be non-zero only if e′ ∈
In(tail(e)). Define the |E| × |E| one-step transition matrix



K = [Ki,j ] for network G as

Ki,j = kei,ej
. (2)

For an acyclic network, KN = 0 for some positive integer N .
Define the transfer matrix of the network by F = (I −K)−1

[7], so that the symbols transmitted on the edges are given by
the components of (xA + z)F .

For a sink node t ∈ T , write nt = |In(t)|, and define an
|E| × nt matrix Bt = [Bi,j ] for sink node t as

Bi,j =

{
1 ei is the jth edge in In(t),
0 otherwise.

(3)

Again by applying the order on E to In(t), the nt nonzero
rows of Bt form an identity matrix. The reception at a sink
node t is given by

yt = (xA + z)FBt,

= xFs,t + zFt, (4)

where Fs,t = AFBt is the submatrix of F given by the
intersection of the ns rows corresponding to the edges in
Out(s) and the nt columns corresponding to the edges in
In(t), and Ft = FBt is the submatrix of F formed by the
columns of F corresponding to the input edges of sink node t.
Fs,t and Ft are the transfer matrices of message transmission
and error transmission, respectively, for sink node t. Denote
the rank of Fs,t by mt.

Equation (4) is the formulation of the multicast network
error correction problem given in [4]. The classical error
correction problem is a special case in which both of Fs,t

and Ft reduce to identity matrices. The message transmission
capacity of the network code, in the absence of errors, is
measured by the rank of the transfer matrix Fs,t. Denote the
maximum flow between source node s and sink node t by
maxflow(s,t). Evidently, for any linear network code on G, the
rank of Fs,t is upper bounded by maxflow(s,t) [6]. When the
network is error-free, the error correction problem is reduced
to the usual network coding problem, for which the size of
the message set C is bounded by qmint∈T maxflow(s,t) [8].

III. PREVIOUS RESULTS

A. Weight Properties of Network Codes

For any t ∈ T , let Υt(y) = {z ∈ F|E|q : zFt = y} for a
received vector y ∈ Im(Ft) = {z′Ft : z′ ∈ F|E|q }.

Definition 1: For any sink node t, the network Hamming
weights of a received vector y, of an error vector z, and of a
message vector x are defined by

W rec
t (y) = min

z∈Υt(y)
wH(z), (5)

W err
t (z) = W rec

t (zFt), (6)

and
Wmsg

t (x) = W rec
t (xFs,t), (7)

respectively.

Definition 2: For any sink node t, the network Hamming
distance between two received vectors y1 and y2 is defined
by

Drec
t (y1,y2) = W rec

t (y1 − y2); (8)

the network Hamming distance between two message vectors
x1 and x2 is defined by

Dmsg
t (x1,x2) = Wmsg

t (x1 − x2). (9)

Definition 3: The unicast minimum distance of a network
code with message set C for sink node t is defined by

dmin,t = min{Dmsg
t (x,x′) : x,x′ ∈ C,x 6= x′}. (10)

Theorem 1 ( [5]): For a sink node t, the following five
properties of a network code are equivalent:

1) The code can correct any error vector z with wH(z) ≤
d/2;

2) The code can correct any error vector z with W err
t (z) ≤

d/2;
3) The code can detect any error vector z with 0 <

wH(z) ≤ d;
4) The code can detect any error vector z with 0 <

W err
t (z) ≤ d;

5) The code has dmin,t ≥ d + 1;

where d is a nonnegative integer.

B. Coding Bounds

Let

dmin = min
t∈T

dmin,t, (11)

and

n = min
t∈T

maxflow(s, t). (12)

In terms of the notion of minimum distance, the Hamming
bound and the Singleton bound for network codes obtained in
[2] can be restated as

|C| ≤ qn

∑r
i=0

(
n
i

)
(q − 1)i

, (13)

where r = bdmin−1
2 c, and

|C| ≤ qn−dmin+1. (14)

The tightness of (14) has been proved in [3].

IV. REFINED CODING BOUNDS

In this section, we employ the tools of network Hamming
weight to prove refined versions of the coding bounds in [1]–
[3]. The proofs presented here are considerably simpler and
more transparent.



A. Hamming Bound and Singleton Bound

Theorem 2 (Hamming bound and Singleton bound): A
network code with rank(Fs,t) = mt, message set C, and
unicast minimum distance dmin,t > 0 for any sink node t
satisfies the

1) Hamming bound:

|C| ≤ qmt

∑rt

i=0

(
mt

i

)
(q − 1)i

, (15)

where rt = bdmin,t−1
2 c, and the

2) Singleton bound:

|C| ≤ qmt−dmin,t+1 (16)

for all sink node t.
Proof: Fix a sink node t. Find mt linearly independent

rows of Fs,t and let ρt be the set of edges in Out(s) that
corresponds to these mt linearly independent rows. Note that
ρt ⊂ Out(s) ⊂ E , so that ρt is an error pattern. Define the set

C′t = {x′ ∈ Fns
q : x′A ∈ ρ∗t , x′Fs,t = xFs,t for some x ∈ C},

(17)
where the matrix A is defined as (1). Define a mapping

φt : C → C′t (18)

by φt(x) = x′ if x′Fs,t = xFs,t. Since the rows of Fs,t

indexed by ρt form a basis for the row space of Fs,t, φt is
well-defined. The mapping φt is onto by the definition of C′t.
The mapping φt is also one-to-one because otherwise there
exists x′ ∈ C′t such that x′Fs,t = x1Fs,t = x2Fs,t for distinct
x1,x2 ∈ C, a contradiction to the assumption that dmin,t > 0.
Thus the mapping φt is a one-to-one and onto mapping, which
implies that |C′t| = |C|.

Let
Zt = {z ∈ ρ∗t : wH(z) ≤ rt}. (19)

By Theorem 1, the network code with C being the message
set can correct all the errors in Zt at sink node t. Since sink
node t has the same reception for the transmission of either
x ∈ C or φt(x) ∈ C′t for the same error vector, the network
code with C′t being the message set can also correct all the
errors in Zt at sink node t.

Consider the problem of finding a subset of ρ∗t as an error-
correcting code that can correct all the errors in Zt. This prob-
lem is equivalent to the problem in classical algebraic coding
of finding a block code with codeword length mt that can
correct rt errors. The vectors in the set C′′t = {xA : x ∈ C′t}
must form such a code, otherwise the network code with C′t
being the message set cannot possibly correct all the error
vectors in Zt at sink node t. Applying the Hamming bound
and the Singleton bound for classical error-correcting codes to
C′′t , we have

|C′′t | ≤
qmt

∑rt

i=0

(
mt

i

)
(q − 1)i

, (20)

and
|C′′t | ≤ qmt−dmin,t+1. (21)

The proof is completed by noting that |C| = |C′t| = |C′′t |.
The Hamming bound and the Singleton bound in Theorem 2

are more refined than those in [1], [2] because as we will show,
they imply (13) and (14) but not vice versa. The Hamming
bound in Theorem 2 implies

|C| ≤ qmt

∑rt

i=0

(
mt

i

)
(q − 1)i

(22)

≤ qmt

∑r
i=0

(
mt

i

)
(q − 1)i

(23)

≤ qmaxflow(s,t)

∑r
i=0

(
maxflow(s,t)

i

)
(q − 1)i

(24)

for all sink nodes t, where (23) follows from r ≤ rt and (24)
follows from mt ≤ maxflow(s, t) and the inequality proved in
the Appendix. By the same inequality, upon minimizing over
all sink nodes t ∈ T , we obtain (13).

To verify that the condition for the inequality in the Ap-
pendix applies in the above, by considering the Singleton
bound in (16), we obtain

1 ≤ |C| (25)
≤ qmt−dmin,t+1 (26)

or
dmin,t − 1 ≤ mt (27)

for all t ∈ T . Then

r = bdmin − 1
2

c (28)

≤ bdmin,t − 1
2

c (29)

≤ dmin,t − 1
2

(30)

≤ mt

2
(31)

for all t ∈ T .
For the Singleton bound in Theorem 2, we first note that it is

maximized when mt = maxflow(s, t) for all t ∈ T . This can
be achieved by a linear broadcast whose existence was proved
in [10], [6]. To show that the Singleton bound in Theorem 2
implies (14), consider

|C| ≤ qmt−dmin,t+1 (32)
≤ qmt−dmin+1 (33)
≤ qmaxflow(s,t)−dmin+1 (34)

for all sink nodes t. Then (14) is obtained upon minimizing
over all t ∈ T .

B. Gilbert Bound and Varshamov Bound

Let

∆t(x, d) = {x′ ∈ Fns
q : Dmsg

t (x′,x) ≤ d}. (35)

For x = 0, we can write

∆t(0, d) = {x′ ∈ Fns
q : Wmsg

t (x′) ≤ d}. (36)



Then it is readily seen that ∆t(0, d) is closed under scalar
multiplication, i.e.,

α∆t(0, d) = {αx : x ∈ ∆t(0, d)} = ∆t(0, d), (37)

where α ∈ Fq and α 6= 0.
For two subsets V1, V2 ⊂ Fns

q , their sum is the set defined
by

V1 + V2 = {v1 + v2 : v1 ∈ V1,v2 ∈ V2}. (38)

For v ∈ Fns
q and V ⊂ Fns

q , we also write {v}+V as v+V .

Theorem 3 (Gilbert bound): Given a set of local encoding
kernels, let |C|max be the maximum possible size of the
message set such that the network code has unicast minimum
distance greater than or equal to dt > 0 for each sink node t.
Then,

|C|max ≥ qns

|∆(0)| , (39)

where
∆(0) = ∪t∈T ∆t(0, dt − 1). (40)

Proof: Let C be the message set with the maximum
possible size. Then for any x ∈ Fns

q , there exists a codeword
c ∈ C and a sink node t such that

Dmsg
t (x, c) ≤ dt − 1, (41)

since otherwise we could add x to the message set while
keeping the minimum distance larger than or equal to dt for
each sink node t, which is a contradiction on the maximality
of |C|.

Let
∆(c) = ∪t∈T ∆t(c, dt − 1). (42)

Hence, the whole space Fns
q is contained in the union of ∆(c)

over all messages c ∈ C, i.e.,

Fns
q ⊂ ∪c∈C∆(c). (43)

Since ∆(c) = c + ∆(0), we have |∆(c)| = |∆(0)|. So we
deduce that qns ≤ |C||∆(0)|, that is

|C| ≥ qns

|∆(0)| . (44)

Theorem 4 (Varshamov bound): Given a set of local encod-
ing kernels, let ωmax be the maximum possible dimension of
the linear message set such that the network code has unicast
minimum distance larger than or equal to dt > 0 for each sink
node t. Then,

ωmax ≥ ns − logq |∆(0)|, (45)

where ∆(0) is defined in (40).
Proof: Let C be the linear message set with the maximum

possible dimension. We claim that

Fns
q ⊂ ∆(0) + C. (46)

If the claim is true, then

qns = |∆(0) + C| (47)
≤ |∆(0)||C| (48)
= |∆(0)|qωmax , (49)

proving (45).
The claim is proved by contradiction. Let

g ∈ Fns
q \ (∆(0) + C), (50)

and
C′ = C + 〈g〉.

Then C′ is a subspace with dimension ωmax+1. If C′∩∆(0) 6=
{0}, then there exists a non-zero vector

c + αg ∈ ∆(0), (51)

where c ∈ C and α ∈ F. Here, α 6= 0, otherwise we have
c = 0 because C ∩∆(0) = {0}. Since ∆t(0, dt−1) is closed
under scalar multiplication for all t ∈ T , see from (40) that
the same holds for ∆(0). Thus from (51),

g ∈ ∆(0)− α−1c (52)
⊂ ∆(0) + C, (53)

which is a contradiction to (50). Therefore, C′ ∩∆(0) = {0},
i.e., C′ is a message set such that the network code has unicast
minimum distance larger than or equal to dt, which is a
contradiction on the maximality of C. The proof is completed.

C. Tightness of the Singleton Bound

Theorem 5: Given a set of local encoding kernels over a
finite field with size q where q is sufficiently large, for every

0 ≤ ω ≤ min
t∈T

mt, (54)

there exists a message set C with |C| = qω such that

dmin,t = mt − ω + 1 (55)

for all sink nodes t.
Proof: we start with any given set of local encoding

kernels which defines a linear network code. This determines
mt for all sink nodes t. Fix an ω which satisfies (54). We
will then construct an ω-dimensional linear message set which
together with the given linear network code constitute a linear
network error-correcting code that satisfy (55) for all t. Note
that (54) and (55) imply

dmin,t ≥ 1. (56)

We now construct the message set C. Let g1, · · · ,gω ∈ Fns
q

be a sequence of vectors obtained as follows. For each i, 1 ≤
i ≤ ω, choose gi such that

gi /∈ ∆t(0,mt − ω) + 〈g1, · · · ,gi−1〉, (57)

and
∆t(0,mt − ω) ∩ 〈g1, · · · ,gi〉 = {0}, (58)



for each sink node t. If such g1, · · · ,gω exist, then C =
〈g1, · · · ,gω〉 is the desired message set since (58) holding
for i = ω means dmin,t ≥ mt − ω + 1 for any sink node t.

We first prove that gi satisfying (57) exists if the field size
q is sufficiently large. Observe that

|∆t(0,mt − ω) + 〈g1, · · · ,gi−1〉|
≤ |∆t(0, mt − ω)|qi−1 (59)

≤
( |E|

mt − ω

)
qmt−ωqns−mtqi−1 (60)

=
( |E|

mt − ω

)
qns−ω+i−1. (61)

Thus, when considering all the sink nodes, we have at most
∑

t∈T

( |E|
mt − ω

)
qns−ω+i−1 (62)

vectors that cannot be chosen as gi. If

q >
∑

t∈T

( |E|
mt − ω

)
, (63)

then there exists a vector that can be chosen as gi for i =
1, · · · , ω.

Fix g1, · · · ,gω that satisfy (57). We proof by induction
that (58) holds for these gi and any sink node t. If (58)
does not hold for i = 1, then there exists a non-zero vector
αg1 ∈ ∆t(0,mt − ω), where α ∈ F. Since ∆t(0,mt − ω)
is closed under scalar multiplication and α 6= 0, we have
g1 ∈ ∆t(0,mt − ω), a contradiction to (57) holding for g1.
Assume (58) holds for i ≤ k − 1. If (58) does not hold for
i = k, then there exists a non-zero vector

k∑

i=1

αigi ∈ ∆t(0, mt − ω), (64)

where αi ∈ Fq . If αk = 0,
k−1∑

i=1

αigi ∈ ∆t(0,mt − ω), (65)

a contradiction to the assumption that (58) holds for i = k−1.
Thus αk 6= 0. Again, by ∆t(0,mt − ω) being closed under
scalar multiplication, we have

gk ∈ ∆t(0,mt − ω)− α−1
k

k−1∑

i=1

αigi (66)

⊂ ∆t(0,mt − ω) + 〈g1, · · · ,gk−1〉, (67)

a contradiction to gk satisfying (57). The proof is completed.

V. CONCLUDING REMARKS

Refined versions of the Hamming bound, the Singleton
bound and the Gilbert-Varshamov bound for network error
correction in [1]–[3] are obtained. This refined Singleton
bound is also shown to be tight for linear message sets. By
employing the tools of network Hamming weight, the proofs
presented here are considerably simpler and more transparent.

APPENDIX
PROOF OF AN INEQUALITY

The inequality

qm

∑r
i=0

(
m
i

)
(q − 1)i

<
qm+1

∑r
i=0

(
m+1

i

)
(q − 1)i

(68)

for r ≤ m/2 can be established by considering

qm

∑r
i=0

(
m
i

)
(q − 1)i

=
qm+1

∑r
i=0

q(m−i+1)
m+1

(
m+1

i

)
(q − 1)i

(69)

<
qm+1

∑r
i=0

(
m+1

i

)
(q − 1)i

, (70)

where (70) holds because q(m−i+1)
m+1 > 1 given that q ≥ 2 and

i ≤ r ≤ m/2.
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