
Construction of Linear Network Codes that
Achieve a Refined Singleton Bound

Shenghao Yang, Chi Kin Ngai, and Raymond W. Yeung
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{shyang5, ckngai2, whyeung}@ie.cuhk.edu.hk

Abstract—In this paper, we present a refined version of the
Singleton bound for network error correction, and propose an
algorithm for constructing network codes that achieve this bound.

Index Terms—Network coding, error correction, Singleton
bound.

I. INTRODUCTION

The network error correction problem studied in [1]–[5] is
to extend classical error correction coding theory to a general
network setting. In Cai and Yeung [1]–[3], network general-
izations of the Hamming bound, the Singleton bound, and the
Gilbert-Varshamov bound in classical algebraic coding theory
were obtained. In particular, the tightness of the Singleton
bound is preserved. The minimum rank for linear network
codes, which plays a role similar to that of the minimum
distance in decoding classical error-correcting codes, was
introduced by Zhang [4]. Recently, network generalizations
of the Hamming weight, the Hamming distance, and the
minimum distance of network codes have been obtained by
Yang and Yeung [5]. In terms of the minimum distance,
the capability of a network code for error correction, error
detection, and erasure correction can be fully characterized.
The relation between network coding and classical algebraic
coding was clarified in [6].

There exist two classes of algorithms for constructing
network error-correcting codes: deterministic algorithms and
randomized algorithms. Jaggi et al. [7] studied the random
design of network error-correcting codes, which can achieve
the Singleton bound asymptotically. Deterministic algorithms
have been discussed in Cai and Yeung [3]. Based on a
given network code that achieves the max-flow bounds, they
proposed a greedy algorithm for constructing the parity check
matrix of the message set, namely the set of vectors that can be
transmitted by the source node. The network codes constructed
by this algorithm can achieve the Singleton bound. However,
as we will explain, when the maximum flows to different sink
nodes are not the same, the network codes so constructed
cannot fully exploit the spacial redundancy provided by the
network to combat the errors that occur.

In this paper, we propose a deterministic algorithm for
constructing network error-correcting codes that achieve the
Singleton bound for individual sink nodes. This is a refinement

of the Singleton bound in [2]. Thus, the codes constructed by
our algorithm are stronger than those constructed in [3]. Our
algorithm first finds a message set that meets the minimum
distance requirement, which can be obtained by usual con-
structions of classical error-correcting codes. Then it updates
the global encoding kernels of each channel in a way such that
the minimum distance is preserved in each step. We prove
that if the algebraic operations are over a sufficiently large
field, our algorithm can always construct a network code that
meets the required minimum distances for all the sink nodes.
Compared with the algorithm in [3], our algorithm renders the
flexibility of the choice of the message set. Roughly speaking,
any classical linear block codes that has the required minimum
distance can be qualified as the message set.

This paper is organized as follows. Section II introduces
the network error correction problem. Section III describes
our algorithm for constructing network codes that achieves
the Singleton bound for each individual sink node. Section
IV proves the correctness of the algorithm. Section V is the
concluding remarks.

II. NETWORK ERROR CORRECTION

A. The Formulation

We study network transmission in a directed acyclic com-
munication network represented by G = (V , E), where V is
the set of nodes in G and E is the set of edges in G. We
assume an order on E which is consistent with the associated
partial order on G. An edge from node a to node b, say edge
e, represents a communication channel from node a to node
b. We call node a (node b) the tail (head) of edge e, denoted
by tail(e) (head(e)). Let In(a) = {e ∈ E : head(e) = a}
and Out(a) = {e ∈ E : tail(e) = a} be the sets of input
edges and output edges of node a, respectively. There can be
multiple edges between a pair of nodes, and each edge can
transmit one symbol in a finite field Fq .

A multicast on G transmits information from a source node
s to a set of sink nodes T . Let ns = |Out(s)|. The source
node s modulates the information to be multicast into a row
vector x ∈ F

ns
q called the message vector. The set of all

message vectors is called the message set, denoted by C. The
source node s transmits the message vector by mapping its
ns components onto the edges in Out(s). Define an ns × |E|

matrix A = [Ai,j] as

Ai,j =

{

1 ej is the ith edge in Out(s),

0 otherwise.

By applying the order on E to Out(s), the ns non-zero
columns of A form an identity matrix. An error vector z is an
|E|-dimensional row vector with each component representing
the error on the corresponding edge. An error pattern ρ is a
set of edges on each of which an error can occur. An error
vector is said to match an error pattern ρ if all the errors occur
on the edges in ρ.

For network G, a linear network error-correcting code, or a
linear network code for brevity, is specified by a set of local
encoding kernels {ke′,e : e′, e ∈ E} and the message set C.
The local encoding kernel ke′,e can be non-zero only if e′ ∈
In(tail(e)). The global encoding kernel of an edge e is an
ns-dimensional column vector fe such that xfe is the symbol
transmitted on edge e when the message vector is x and the
error vector z is the zero vector. The global encoding kernels
of the outgoing edges of the source node s form the natural
basis of F

ns
q . For other edges, the global encoding kernel can

be obtained recursively by

fe =
∑

e′∈In(tail(e))

ke′,efe′ .

Define the |E|×|E| one-step transition matrix K = [Ki,j] for
network G as Ki,j = kei,ej

. For an acyclic network, KN = 0

for some positive integer N . Define the transfer matrix of the
network by F = (I−K)−1 [8], so that the symbols transmitted
on the edges are given by the components of (xA + z)F .

For a sink node t ∈ T , write nt = |In(t)|, and define an
|E| × nt matrix Bt = [Bi,j] for sink node t as

Bi,j =

{

1 ei is the jth edge in In(t),

0 otherwise.

Again by applying the order on E to In(t), the nt nonzero
rows of Bt form an identity matrix. The reception at a sink
node t is given by

yt(x, z) = (xA + z)FBt. (1)

Equation (1) is our formulation of the multicast network
error correction problem. For linear network codes, message
set C is a ω-dimensional linear space of F

ns
q . If so, then there

exists a generator matrix G for the message set C in the sense
of classical algebraic coding, i.e., C is the linear span of the
row vectors of G. In this paper, we only consider this case,
and we denote the dimension of C by ω. Equivalently, one can
think of ω information symbols in F being transmitted from
the source node to the sinks nodes.

B. Minimum Distance and the Singleton Bound

For a given linear network code, let Γt = {z : yt(x,−z) =
0 for some non-zero x ∈ C}. The minimum distance at a sink
node t of a network code with message set C is defined as

dmin,t = min{wH(z) : z ∈ Γt},

where wH(·) is the Hamming weight of a vector [5]. Zhang
[4] defined the minimum rank of network codes which is
equivalent to the minimum distance [5]. It was proved in [5]
that a linear network code with minimum distance dmin,t ≥ dt

at a sink node t can correct (detect) all error vectors with
network Hamming weight less than dt/2 (dt), and can correct
all erasures with network Hamming weight less than dt at sink
node t.

Let
dmin = max

t∈T
dmin,t

and let mt be the max-flow from source node s to sink node
t. In terms of the notion of minimum distance, the Singleton
bound obtained in [2] can be restated as

dmin ≤ min
t∈T

mt − ω + 1. (2)

The tightness of (2) has been proved in [3]. In fact, it can
readily be shown that

dmin,t ≤ mt − ω + 1 for all t ∈ T , (3)
which is more refined than (2), specifically when mt are not
the same for all t ∈ T . The tightness of (3) will be proved by
the construction in Section III.

For an (ns, ω, (dt:t ∈ T)) network code, we refer to one for
which the length of the message vector is ns, the dimension of
the message set is ω, and the minimum distance for sink node
t is dt, t ∈ T . In Section III, we will present an algorithm
that constructs an (ns, ω, (dt:t ∈ T)) network code for any ω
and dt, t ∈ T satisfying (3), showing that this refined version
of the Singleton bound continues to be tight.
C. An Example

The network shown in Fig. 1 has one source node s and
two sink nodes t and u. The max-flow from the source node
s to each sink node is 3. We want to design a network code
with ω = 1 and minimum distances dt = du = 3. We begin
by choosing the generator matrix of the message set as G =
[

1 1 1
]

. Then we find the global encoding kernel for each
edge e from upstream to downstream such that the minimum
distance in each step is preserved.

One necessary condition for choosing the global encoding
kernels is that for each sink node, the global encoding kernels
of its three incoming edges are linearly independent. One
example of such a network code over F3 is that all the non-zero
local encoding kernels are 1. But this code does not meet the
minimum distance requirement at the sink nodes as we now
explain. Assume that the information symbol x = 1 and the
errors are z(a,t) = 2 and z(s,b) = 1. We can check that the
reception at sink node t is 0. Thus the minimum distance at
sink node t must less than 3. So a stronger constraint must be
imposed for choosing the global encoding kernels.

In fact, there exists no network codes over F2 and F3 that
can meet the minimum distance requirement. Nevertheless, a
solution exists over F4 = {0, 1, α, α2}, where α2 +α+1 = 0.
In this solution, G =

[

1 1 1
]

, the local encoding kernels
k(a,d),(d,f), k(b,e),(e,g) and k(f,h),(h,i) are α, while all other
non-zero local encoding kernels are 1.

s

h

a

t

d

f

d

c

u

e

g

i

b

Fig. 1. A network error-correcting code example

III. THE PROPOSED ALGORITHM

At the beginning, the algorithm finds mt edge-disjoint paths
from the source node s to each sink node t using a maximum
flow algorithm, for example, the Ford-Fulkerson algorithm.
Deleting the edges and nodes in G that are not on any paths,
we obtain a network G∗ = (V∗, E∗). A network code for
the network G∗ can be extended to the network G without
changing the minimum distances by assigning the zero global
encoding kernel to all the edges in G but not in G∗. Redefine
Out(s) as the set of outgoing edges of node s in G∗, and
denote ns = |Out(s)|.

Then the algorithm chooses a message set and updates the
global encoding kernels starting with the subgraph G∗

0 of G∗

consisting of the edges in Out(s) (and the associated nodes).
Following the order on E∗ (inherited from E), in the first step,
G∗

0 is expanded into G∗
1 by appending the next edge in E∗, and

a global encoding kernel is assigned to this edge. This step is
repeated until G∗

1 eventually becomes G∗.
Before descripting the algorithm formally in Subsection

III-B, we first introduce a set of notation to facilitate the
formulation and the analysis of the algorithm.

A. Iterative Formulation of Network Coding

In the ith step, the input set for a sink node t, denoted by
Ini(t), consists of mt edges in G∗

i , where the jth edge in
Ini(t) is the most downstream edge on the truncation in G∗

i

of the jth edge-disjoint path from the source node s to sink
node t in G∗. The vector of symbols received on the edges in
Ini(t), denoted by yi

t, are referred to as the current reception
of sink node t. We use F i, Ai, Bi

t , and zi to denoted the
matrices (vectors) in the ith step for G∗

i that correspond to the
matrices (vectors) F , A, Bt, and z for G∗, respectively, so that

yi
t(x, zi) = (xAi + zi)F iBi

t .

Let M be a matrix and L be any subset of the column
index set of M . Define (M)j be the jth column of M , and
M\L be the matrix obtained by deleting the columns of M
indexed by L. Let zi+1 be any error vector in the (i+1)th step.
Let (zi+1)e be the component of zi+1 corresponding to the
error on edge e, and zi+1\e be an error vector in the ith step
obtained by removing the component of zi+1 corresponding
to the error on edge e.

Let edge e be the edge to update in the (i + 1)th step.
We now describe the updating of F i, Ai, Bi

t, and zi. Define

an (i + ns)-dimensional column vector βe = [ke′,e] where
e′ ∈ G∗

i . Then

F i+1 =
(

I − Ki+1
)−1

=

(

I −

[

Ki βe

0 0

])−1

=

[

F i F iβe

0 1

]

.

The matrix Ai+1 is the same as Ai except that Ai+1 has one
more zero column than Ai, i.e.,

Ai+1 =
[

Ai 0
]

.

If the edge e is not on any path from the source node s to
the sink node t, we only need to add a zero row to Bi

t to form
Bi+1

t , i.e.,

Bi+1
t =

[

Bi
t

0

]

.

For this case, we can readily obtain

y
i+1
t (x, zi+1) = yi

t(x, zi+1\e). (4)

If the edge e is on the jth edge-disjoint path from the
source node s to sink node t, we need to first replace the
jth column of Bi

t by the zero column vector and then add a
row to select the last column of F i+1 to form Bi+1

t . That is,
if Bi

t =
[

b1 b2 · · · bmt

]

, then

Bi+1
t =

[

b1 · · · bj−1 0 bj+1 · · · bmt

0 · · · 0 1 0 · · · 0

]

, (5)

where bk is the kth column of Bi
t . It follows that

(yi+1
t (x, zi+1))j = (xAi+1 + zi+1)F i+1(Bi+1

t)j

= (xAi + zi+1\e)F iβe + (zi+1)e, (6)

and

(yi+1
t (x, zi+1))\{j} = (xAi+1 + zi+1)F i+1B

i+1\{j}
t

= (yi
t(x, zi+1\e))\{j}. (7)

B. The Weight Preserving Algorithm

Fig. 2 is a pseudo code of the algorithm, which, at the begin-
ning, initializes F 0, A0, and B0

t , and chooses an ω×ns matrix
G as the generator matrix for the message set C such that the
classical linear block code generated by GB0

t has minimum
Hamming distance larger than dt−1 for every sink node t. This
can be achieved by an (ns, ω, ns−mint∈T (mt−dt)) classical
linear block code. Note that such a code over a sufficiently
large finite field exists because the classical Singleton bound
is satisfied.

The main part of this algorithm is a loop, starting at line
7, for updating the global encoding kernels for the edges in
E∗ \ Out(s) in an upstream-to-downstream order. Let e be
the edge appended to the graph in the ith step. The global
encoding kernel on edge e can be updated by choosing βe,

1: for each sink node t do
2: choose mt edge disjoint paths from s to t;
3: initialize Bt;
4: end for
5: initialize F and A;
6: Find a generator matrix G such that the classical linear

block code generated by GB0
t has minimum Hamming

distance bigger than dt − 1 for all sink node t;
7: for each e ∈ E∗\Out(s) from an upstream to downstream

order do
8: Dβe

= ∅;
9: \\ the set of vectors that cannot be chosen as βe.

10: for each sink node t do
11: if there are no chosen paths from s to t through e

then

12: Bt =

[

Bt

0

]

;

13: else[e is on the jth path from s to t]
14: for each L with 0 ≤ |L| ≤ dt − 1 and j /∈ L

do
15: for each ρ with |ρ| = dt − 1 − |L| do
16: find x0 6= 0 and z0 matching ρ such

that (yt(x0,−z0))
\(L∪{j}) = 0;

17: if such x0 and z0 exist then
18: Dβe

= Dβe
∪{β: (x0A−z0)Fβ =

0};
19: end if
20: end for
21: end for
22: update Bt as (5);
23: end if
24: end for
25: choose a vector βe in F

|In(tail(e))|
q \ Dβe

;

26: F =

[

F Fβe

0 1

]

;

27: end for

Fig. 2. A pseudo code of the proposed algorithm. The superscripts for F ,
A, Bt, z, and yt are omitted.

which is realized by the pseudo codes between line 8 and line
25. Concisely speaking, βe is chosen such that for every sink
node t,

(yi
t(x,−zi))\L 6= 0 (8)

for any L ⊂ {1, 2, . . . , mt} with 0 ≤ |L| ≤ dt − 1, non-zero
x ∈ C, and zi with wH(zi) ≤ dt − 1 − |L|.

We only need (8) to hold for L being the empty set, for all
t ∈ T and for all x and zi as prescribed, in order to preserve
the minimum distances in each step, but it turns out that this is
not enough to guarantee the existence of the required βe. We
will prove in Section IV that (8) is sufficient for this purpose
provided that the field size q is sufficiently large.

C. Time Complexity of the Algorithm

The upper bound on the required field size is
∑

t∈T

(

mt+|E∗|−2
dt−1

)

. The linear equation in line 16 can
be solved in polynomial time. The line 18 and 25 can be
realized by the similar algorithm in [9] in polynomial time.
The three levels of loops in this algorithm process these
polynomial time algorithms

∑|E|
k=ns+1

∑

t∈T

(

mt+k−1
dt−1

)

times.
Thus, this algorithm is polynomial time to |E| of degree dmin.

IV. ALGORITHM VERIFICATION

The algorithm is verified by induction. At the initialization,
for each sink node t, since GB0

t has minimum distance larger
than dt − 1, we have y0

t (x,−z0) = (x − z0)B0
t 6= 0 for any

non-zero x and any z0 with wH (z0) ≤ dt − 1. Let L be a
subset of {1, 2, . . . , mt} with 0 ≤ |L| ≤ dt − 1. We have
(x − z0)B

0\L
t 6= 0 for all z0 with wH(z0) ≤ dt − 1 − |L|.

Thus (8) holds for i = 0.
Assume (8) holds for i ≤ k, where k ≥ 0. In the (k + 1)th

step, let e be the edge appended to the graph. We will find βe

such that (8) continues to hold for i = k +1 and all L, x, and
z as prescribed. We first consider a sink node t for which edge
e is not on any path from the source node s to t. Then by (4),
(8) holds for i = k+1 if and only if (yk

t (x,−zk+1\e))\L 6= 0

for all L, x, and z as prescribed. This is true by the induction
hypothesis because wH (zk+1\e) ≤ wH(zk+1) ≤ dt − 1− |L|.
Thus, any βe works for such a sink node t, i.e., no constraint
is imposed on the choice of βe.

For a sink node t such that edge e is on the jth edge-disjoint
path from the source node s to t, we consider two scenarios
for L, namely j ∈ L and j /∈ L. For L such that j ∈ L, by
(7) and using the same argument as the previous case, we see
that again no constraint is imposed on the choice of βe.

For L such that j 6∈ L, then (8) holds if and only if

(yk+1
t (x,−zk+1))\L∪{j} 6= 0 (9)

or
(yk+1

t (x,−zk+1))j 6= 0. (10)

By (7) and (6), (9) and (10) are equivalent to

(yk
t (x,−zk+1\e))\L∪{j} 6= 0, (11)

and
(xAk − zk+1\e)F kβe − (zk+1)e 6= 0, (12)

respectively. We observe that the LHS in (11) does not involve
βe. This means that for (x, zk+1) satisfying (11), there is no
constraint on the choice of βe. Otherwise, we need to choose
βe such that (12) holds. Let Σk+1 be the set of all (x, zk+1)
that do not satisfy (11), with x ∈ C, x 6= 0, and wH(zk+1) ≤
dt − 1 − |L|.

Lemma 1: Let t be a sink node such that edge e is on
the jth path from the source node s to t, and L be a subset
of {1, 2, . . . , mt} such that j /∈ L. Then there exist at most
(

k+ns

dt−1−|L|

)

q|In(tail(e))|−1 possible βe such that (12) does not
hold for some (x, zk+1) ∈ Σk+1.

Proof: See Appendix.

Considering the worst case that for all t ∈ T , edge e is on
an edge-disjoint path from the source node s to sink node t,
we have at most

∑

t∈T

dt−1
∑

l=0

(

mt − 1

l

)(

k + ns

dt − 1 − l

)

q|In(tail(e))|−1

=
∑

t∈T

(

mt + k + ns − 1

dt − 1

)

q|In(tail(e))|−1 (13)

vectors that cannot be chosen as βe when i = k + 1, where
k ≤ |E∗|−ns −1. Hence, if q >

∑

t∈T

(

mt+|E∗|−2
dt−1

)

, we have
a choice of βe for all i.

V. CONCLUDING REMARKS

In this paper, we present a refinement of the Singleton bound
previously obtained by Cai and Yeung [2] for network error-
correcting codes. Unlike the bound in [2], this refined Sin-
gleton bound imposes different constraints on the individual
sink nodes when the maximum flows from the source node
to the sink nodes are not the same. The tightness of the
refined Singleton bound is proved by a construction of linear
network codes that achieve the bound. The network codes so
constructed can fully exploit the spacial redundancy provided
by the network to combat the errors that occur. Besides, our
construction takes advantage of the rich results in classical
algebraic coding theory.

APPENDIX
PROOF OF LEMMA 1

We first prove the following 3 lemmas.
Lemma 2: If a linear equation x̄M = 0 has only the zero

solution, then x̄M\{j} = 0 has at most a one-dimensional
solution space, where M is an m × n matrix and j is the
index of any column of M .

Proof: Define the linear mapping J : F
n
q → F

n−1
q that

delete the jth component of a vector in F
n
q . The matrix

representation of J is a n × (n − 1) matrix formed by
deleting the jth column of the n × n identity matrix. Since
M\{j} = MJ , the solution space of x̄M\{j} = 0 is simply
the null space of MJ . Since the null space of J is a one-
dimensional subspace and M is an injective mapping, the
dimension of the null space of MJ is at most 1.

Lemma 3: Any (x, zk+1) ∈ Σk+1 satisfies wH(zk+1) =
dt − 1 − |L| and (zk+1)e = 0.

Proof: If |L| = dt−1, since wH (zk+1) ≤ dt−1−|L| = 0,
the lemma is true. If 0 ≤ |L| < dt − 1, by induction, all error
vectors zk+1 with wH(zk+1\e) ≤ dt − 2 − |L| satisfy (11).
Hence dt−1−|L| = wH (zk+1\e) ≤ wH(zk+1) ≤ dt−1−|L|.
This completes the proof.

Lemma 4: Let ρ be an error pattern with |ρ| = dt − 1 −
|L|. The set of all (x, zk+1) ∈ Σk+1 with zk+1 matching ρ,
if nonempty, spans a one-dimensional linear space. In other
words, there exists (x0, z

k+1
0) such that all (x, zk+1) in the

set can be written as α(x0, z
k+1
0) for some non-zero α ∈ F.

Proof: For any (x, zk+1) in the prescribed set, we can
write x = mG where m is an ω-dimensional row vector, and

zk+1 =
[

z̃Ak
ρ 0

]

where z̃ is a (dt − 1 − |L|)-dimensional
row vector and Ak

ρ is a matrix similar to Ak that chooses the
rows of F k corresponding to the edges in ρ. Since (x, zk+1)
does not satisfy (11), (m, z̃) satisfies

[

m −z̃
]

[

GAk

Ak
ρ

]

F kB
k\(L∪{j})
t = 0. (14)

If the row vectors in Ak
ρF kB

k\(L∪{j})
t are linearly dependent,

then it is a contradiction to Lemma 3. Thus the row vectors in
Ak

ρF kB
k\(L∪{j})
t , and hence the row vectors in Ak

ρF kB
k\L
t ,

are linearly independent. Therefore, we see that only m = 0

and z̃ = 0 can satisfy
[

m −z̃
]

[

GAk

Ak
ρ

]

F kB
k\L
t = 0. (15)

By Lemma 2, the set of all non-zero
[

m z̃
]

satisfying (14)
spans a one-dimensional subspace. Let

[

m0 z̃0

]

be any non-
zero vector in this subspace. Then x0 = m0G and zk+1

0 =
[

z̃0A
k
ρ 0

]

satisfy the requirement of the lemma.
For an error pattern ρ with (x0, z

k+1
0) as prescribed in

Lemma 4, all the βe satisfying

(x0A
k − z

k+1\e
0)F kβe = 0 (16)

do not satisfy (12). By induction, we obtain
(yk

t (x0,−z
k+1\e
0))\L 6= 0, and hence (yk

t (x0,−z
k+1\e
0))j =

(x0A
k − z

k+1\e
0)F k(Bk

t)j 6= 0. Thus the solution set of (16)
with βe being the unknown is a F

|In(tail(e))|−1
q -dimensional

linear subspace. Since there are a total of
(

k+ns

dt−1−|L|

)

error
patterns with cardinality dt − 1 − |L|, there exist at most
(

k+ns

dt−1−|L|

)

q|In(tail(e))|−1 possible βe not satisfying (12) for
some (x, zk+1) ∈ Σk+1.

ACKNOWLEDGEMENT

The authors would like to thank Sidharth Jaggi, Min Tan
and Silas Fong for stimulating discussions.

REFERENCES

[1] N. Cai and R. W. Yeung, “Network coding and error correction,” in Proc.
IEEE ITW’02, 2002.

[2] R. W. Yeung and N. Cai, “Network error correction, part I: basic concepts
and upper bounds,” Communications in Information and Systems, vol. 6,
no. 1, pp. 19 – 36, 2006.

[3] N. Cai and R. W. Yeung, “Network error correction, part II: lower
bounds,” Communications in Information and Systems, vol. 6, no. 1, pp.
37 – 54, 2006.

[4] Z. Zhang, “Network error correction coding in packetized networks,” in
Proc. IEEE ITW’06, Oct. 2006.

[5] S. Yang and R. W. Yeung, “Characterizations of network error correc-
tion/detection and erasure correction,” in Proc. Netcod’07, Jan. 2007.

[6] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, “Network coding theory,”
Foundation and Trends in Communications and Information Theory,
vol. 2, no. 4 and 5, pp. 241–381, 2005.

[7] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
“Resilient network coding in the presence of byzantine adversaries,”
submitted to INFOCOM’06.

[8] R. Koetter and M. Medard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782–795, Oct. 2003.

[9] S. Jaggi, P. Sandrs, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction,” IEEE Trans. Inform. Theory, vol. 51, no. 6, pp. 1973 –
1982, June 2005.

