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Abstract—It is well known that the Shannon information II. CONVERGENCE ANDCONTINUITY

measures are continuous functions of the probability distribution . ] .
when the support is finite. This, however, does not hold when ~ Definition 1 (Left Convergence): A sequence of probabil-

the support is countably infinite. In this paper, we investigate the ity distributions{ P, } is said toleft convergeto a probability
continuity of the Shannon information measures for countably in-  distribution @ if for every e > 0 there exists an integek (¢)

finite support. With respect to a distance based on the Kullback- ¢;ch thatD(Q||P,) < e for all n > K(e). If {P,} left
Liebler divergence, we use two different approaches to show that converges tap, we write

all the Shannon information measures are in fact discontinuous

at all probability distributions with countably infinite support. DL
Pn — Q7

| INTRODUCTION and call@ thelimit of {P,}. When there is no ambiguity, we

The Shannon information measures are functions mappialgo write

a probability distribution into a real value. If the input proba- lim P, = Q.
bility distribution is restricted to a finite support, then it is well nmee

known that the Shannon information measures are continuou
functions. Harremés [1] has shown that the Shannon entropgr
of a probability distribution with countably infinite support
can be discontinuous, and he has given conditions for it
be continuous. For a sequence of probability distributibps

Fwo characteristics of the above definition of convergence

e noteworthy: a) The Kullback-Leibler distance measure is

Lfged instead of thd; distance measure. Due to Pinsker’s

inequality (cf. [2], p.22), if a sequence of probability distri-

and a fixed probability distribution), [1] uses the Kullback- 2utons left converges ":}'th respect to the K””bacr'f'Le'b'er .

Leibler divergenceD(P,||Q) to define the convergence ode.Stance measure, then the sequence converges o the same dis-
" tribution with respect to thd.,; distance measure. Therefore,

P.” to Q. However, if D(QHR.‘) is used instead, r.eSUItchnvergence with respect to the Kullback-Leibler distance
different from [1] can be obtained, and they are discusse . .
measure is stronger than convergence with respect td.the

in this paper. We use two different approaches to show thé—} tance measure. b) We ug¥Q||P,) instead ofD(P,||Q)
all the Shannon information measures are discontinuous at.a . : " . "

. L ) s in'the definition. Our results are, therefore, different from the
probability distributions with countably infinite support.

results obtained in [1].

The re_st (.)f this Paper Is organized as follows. In Section We now define the continuity of a function based on the
II, we will first define the convergence of a sequence of

probability distributionsP, to a fixed probability distribution "0te" Of left convergence.
Q with respect to the distancB(Q||P,,). Based on this defi-
nition of convergence, a continuous function of a probability - i ;
distribution is defined. In Section I, we will discuss a class O%utpns and letQ € A. Then a functionf : A — R is
sequences of probability distributions such that each of théfgntinuousat( if, given anye > 0, there exists @ > 0 such
converges to the distributiofil, 0, 0, ..}, but the entropy of thatif £”is any distribution in satisfyingD(Q||P’) < 4, then
the sequence does not converge to 0. Then entropy will Efép) - Q) <e

shown to be discontinuous at all probability distributions with

countably infinite support. In Section 1V, mutual informatiorlf f fails to be continuous at), then we say thatf is
will be shown to be discontinuous following two differentdiscontinuous at ). The following proposition, which is an
approaches. By extending these two approaches in Sectiorﬁ“’@l’naﬂve form of Definition 2, will be used to test the
the discontinuity of conditional mutual information will becontinuity of a function.

discussed. Finally, all the Shannon information measures are

shown to be discontinuous at all probability distributions with Proposition 1: Let A be a subset of all probability dis-
countably infinite support. tributions and letQ) € A. Then a functionf : A — R is

Definition 2: Let A be a subset of all probability distri-



discontinuousat @ if there exists a sequendé, } in .4 such Thus we have the following proposition.
that
P, De, Q. Proposition 2: The Shannon entropy is discontinuous at
) the probability distributionv = {1,0,0,...}.
but f(P,) does not converge t6(Q), i.e.
Proof: By takinga > 1 and0 < g <1 in (3), we have

lim f(P) # f(Q).
e lim H(D*P) = 0o # H(v),
IIl. THE DISCONTINUITY OF ENTROPY n—00

In this section, we first discuss a probability distributiork?Ut
D,(f“’ﬁ) which will be used to show that entropy is discon-
tinuous at the probability distribution = {1,0,0,...}. This By Proposition 1,H is discontinuous at the probability distri-
distribution will subsequently be used to prove that the entrofytion v. [ ]
is discontinuous at all probability distributions with countably Now, we are going to prove that entropy is discontinuous
infinite support. not only atv but also at any probability distribution. Consider

For fixed real numbera and and an integen, wherea > D,, = D{*%% so that
1, 8 >0, andn > a, let D pe a probability distribution 1 1 1
such that one of the elementslis- (182)5, p of them are D, = {1 - , , sy 0, ...}(4)

\/loga n n\/loga n n\/loga n

logn
L(loeays and the rest are all 0, i.e.,

) L1 L1 andlim,, .., H(D,,) = oo from (3). In (4), sincen, the base
Do) — {1 (8% 2 (%8s (9805 g0, } of the logarithms, can be any real number strictly larger than

D) 2 v,

logn
logn’” "n'logn” "n logn 1, we can simply write

We write }ggz instead of —1— so that all the logarithms _{ 1 1 1 0.0 5
in this paper are in the same base. For any giweand 3, " - Vlogn nylogn nylogn 7 ©)
we will show that the sequenc{ﬂ),({m)} converges ta =
{1,0,0,...}.
Consider Theorem 3: For any probability distribution P° =
5 {po, p1, ...} with countably infinite support such that(P°) <
D(v||DlP) = —log <1 _ <loga> ) 0o, there exists a sequence of probability distributiBhissuch
logn that H(P,,) is bounded for integers > 2 and P, Dr, po

which tends to) whenn tends to infinity. Therefore, for any butlim, .o #(P,) = oo and H(P) is discontinuous aP®.

o andf, Proof: In Proposition 2, we have shown the claim in the

(a.8) D1 S
Dy = theorem at the probability distribution and so we assume

The entropy ofp!*?) is given by PY # v. Then, without loss of generality, we can assume that
| s : 8 0<pyg<l1l. Letg=1-py and
@ og o og o _ _ _
H(D) =~ [1 - <1Ogn> ] log [1 - <1Ogn> ] Pt ={0,¢""'p1,q" P2, 4" 'p3, -}

3 5 which is seen to be a probability distribution.
nlk (bga) oo | L <loga) (1) Recall the definition ofD, in (5). Let the probability
n \logn n \logn distributions of random variableg and W,, be P! and D,,,
respectively. Let the probability distribution of an independent
binary random variable Z be such thatZ = 0) = ¢ and
p(Z =1) =1—q. By letting

The first term on the R.H.S. in (1) tends tal - log1 = 0 as
n — oo. Rewrite the second term as

1 A 1 o 1 s
() v (i) | (122) ] N A
nTN W, ifZ=1,
Asn — o0, the second term in (2) tends to 0 singe> 0. the probability distribution ofX,, for n > 2 is given by
For the first term, we have 1 1
—q —q
I P2 o= {1-q) - ——L p+ 7
lim (logar)” - 98" _  lim (log @)” (log n)* 7. -9 Viogn L logn
n—oo (log n)fB n—oo 1—g¢ 1—gq
sy Un + s Pn s Pn g ene
p2 + nlog Pnt Togn Pnt1,Pnt2, -}
Therefore, 1—gq 1—gq 1—gq
= {pO - , P1 + , P2 + )
0 6 >1, Viogn ny/logn ny/logn
nan;OH(Dgla’ﬂ)) =< loga (=1, 3) Dt 1-q Dot rsas b ©)

00 0<p<l. ny/logn



Consider

D(P°||P7)

The first term tends to zero when — oco. Without loss of
generality, we assume that > 0 for all ¢ (otherwise we

po log —————
Po —

\/logn
+ Z plegi
i=n+1
Po
pologi
Do — \/logn

=1

1
+Zp P e

D

_1=q

q

n\/log n

+szlog+7l

n+/logn

simply omit all < such thatp, = 0 in a summation). Let

which is less than 0 for alh. By the log-sum inequality (see,
for example,

In

T —szlog

Di + n\/logn

)

[2]), we have
n ;1: i
> <ZP1> log — 2iz1 Zl_q
i=1 Dim1 (Pz‘ + n\/@)

Z’IL

<ZP1> log 1pl .
Pt e

Whenn — oo, we have

lim J, > lim ( Zpl log El 1pl
n— 00 n— 00 i1 21 1 ,L_|_ \/@
(1—po)
= (1- -lo
(1= po) ST po) + 0
= 0.

Therefore lim,, ., J, = 0. Thus we have proved that

lim D(P°||P?) =0,

which means that

D
P2 =L po.

On the other hand,

lim H(P?)

n—o0

lim H(X,)
n—oo

lim H(X,|Z)
lim (¢H(V) +

Y

(1-

e.¢]

> H(PY).

QH(Wn))

gH(V) +(1—q) lim H(D,)

)

By Proposition 1, we conclude thaf is discontinuous aP®.
By comparingP® and P2, the upper bound foH (P2) is

given by

H(P?) <log(n+ 1)+ H(PY).

ThereforeH (P2) is bounded for integers > 2.

IV. THE DISCONTINUITY OF MUTUAL INFORMATION

In this section, the discontinuity of mutual information is
discussed. LeP® = {p(zy)} be a joint probability distribution
for random variablesy andY wherep(xy) is the probability
that X equalsz andY equalsy. We can assume without loss
of generality thatp(00) > 0, because ifp(00) = 0, we can
always makep(00) > 0 with an appropriate reindexing of the
alphabets ofX andY'.

Let ¢ =1 —p(00) and
0 q~'p(10)
pL— | ¢ 'p(01) ¢ 'p(11)

By letting D,, be a diagonal matrix with diagonal equal to the
distributionD,, in (5), we have

1
~voen 0 0
- 0 wign O
Dn N 0 0 n llog n

Let the probability distribution of an independent binary
random variable Z be such thatZ = 0) = ¢ andp(Z =
1) = 1 — ¢q. By letting the joint probability distribution of
(X,Y) be P2 for n > 2 and

5 Pl it Z=0
2 — ~
P { D, ifZ=1
1—q— gt p(10)
_ p(01) p(11) + el (8)

Theorem 4: Let P° be a joint probability distribution for
random variablesX and Y with countably infinite support
for both of the marginal probability distributions such that
IX;y(75°) < oo. There exists a sequence of probability
distributions?,, such thatZx .y (P,,) is finite andP, 2% PO
but lim,, . IX;Y(PN,L) = 0. Thus, Ix.y () is discontinuous
at po.

Proof: By the same argument used in the proof of
P2 2L, po,
we can see that

~ D ~
P2 =L Po.

On the other hand, it can be shown that for a joint probability
distribution with finite support,

I(X;Y) = qI(X;Y]|Z=0)+(1-qI(X;Y]|Z=1)

+I(X;2) - I(X; Z]Y).



For joint probability distribution with countably infinite sup-By the convexity of the Kullback-Leibler distance, we have
port, the summations ih(X; Z|Y), I(X; Z) andI(X;Y|Z = . .
0) are bounded by 7111_)n;oD(7? IP")

~ . 1 SR 1 L~
Ix.zpy (P2) < log2, < Jim (1= —)D(PY|[P?) + —D(P°||¢)
Ix.z(P2) >0, = 0
dIx;yiz—0(P2) = qlx;y (P') >0, Therefore, .
PN L D0
and P = P".
- . On the other hand, it can be shown that for a joint probability
(1 =) Ix;yiz=1(P;) (1—-q)Ix,y(Dy) distribution with finite support,
= (1—q)H(Dy).
I(X;Y) = I(X;Y[Sn) + 1(X;.85) — I(X; Sp[Y).
Thus For a joint probability distribution with countably infinite
]XY(75 ) > 04 (1—¢q)H(D,)+0—log2 support, the summations if(X;S,|Y) and I(X;S,) are
bounded by
= (1-qH(D,)—log2. .
( JH(Dn) Ix;s,|v(P") <log2,
Therefore and )
lim Ixy(P?) > lim (1-q)H(D,) —log?2 Ix;s, (P") 20
= oo0. Since

By Proposition 1, the functiody,y (P) is discontinuous at Pr{S, = 0}Ix,y|s,—o(P") = Pr{Sn = 0} x.y (P°)
the distributionP°. ) and
By comparingP? in (8) with P°, we can obtain an upper

bound Pr{S, = 1}Ixys,=1(P") = Pr{S, = 1}Ix.y(¢) = o0,
Ixy (P?) < (4n+6)e 'loge + Ix.y (P°) we have
for all integersn. The bound is not the tightest but it is enough Ixiyvs, (P") =
to show thatlx.y (P?2) is bounded fom > 2. B Thus
Ixy(P") > o0o+0—1log2= o0, (9)

In the above theorem, we have constructed a sequence of
probability distributions whose mutual information tends teor all integersn. Therefore,

infinity when n — oo but the mutual information of each . - o
distribution inside the sequence is finite. In the next theorem, ,}LH;O Ixy (P") = 00 # Ix;y (P7).
we will resort to a different method to show that mutu

information is disContinuous aI_L;y Proposition 1, the functiody.y (P) is discontinuous at

the distributionP°. ]

Theorem 5: Let P° be a joint probability distribution for
random variablesX and Y with countably infinite support V. THE DISCONTINUITY OF CONDITIONAL MUTUAL
for both of the marginal probability distributions such that ~ INFORMATION AND THE SHANNON INFORMATION

Ix.y(P% < oco. There exists a sequence of probability MEASURES
distributionsP,, such thatPn PO but Ix. Y(P ) = 00 In this section, we extend the results obtained in the previous
for all integersn. ThusIx.y (-) is discontinuous aP°. sections to conclude that all Shannon information measures

are, indeed, discontinuous for any probability distribution with

Proof: Let & be a joint probability distribution with countably infinite support.

I(®) = co. An example is a diagonal matrix with elements

equal to the distribution given in Example 2.46 in [2]. Let Theorem 6: For any joint probability distributior® —

¢ = 0.5P° + 0.5& and note thatD(P°||¢) < log2. Let the {p(zyz)} for random variablesX, Y and Z with countably

distribution of a binary random variabi, be (11, 1), Then infinite support for the marginal probability distributions &f

a sequence of probability distributior2” is constructed by @ndY such thatlx. YIZ(PO) < oo, there exists a sequence

letting (X, Y) be distributed according t®° if S, = 0 and Of probab|l|ty distributionsP,, such thatly,y |z (Py) is finite

according tog if S, = 1. We have and P, 2 PO but lim,,_.o Ix. Y‘Z(P ) = oo. Thus, the
conditional mutual information’x,y () is discontinuous at

~ 1. - 1~
n: 1_7 0 _ . 2
P ( n)P +n¢ PO



Proof: Let the marginal distribution o be {pz(2)}. Proof: By the same setup of and P in the proof of
Without loss of generality, we assume thet(0) > 0 and let Theorem 6 and by Theorem 5, we can construct a probability
v = pz(0). Since distribution P2 such that

R ~ 52 Do A
Ix.yz(P°) = Zp(Z)IX;Y|Z:z(PO)7 Pr =5 PO,
: but for all integersn,

which is bounded andy > 0 so thatIy.y|z—o(P°) is

also bounded. In other words, the mutual information of the ’
distribution Again replace{p(zy0)} in P by v - P2 and let the resulting
~1p(000) 4~ 'p(100) - - joint probability distribution beP2. Then
PO _ v~ p(010) ~~ip(110) - 7 p2 Do, 7507
but for all integersn,
is bounded. Then by Theorem 4, we can construct a probability I 52
distribution 72 such that X;Y'Z@g) >
hrn Ix;y|Z(,P”) = O
752 Dy, 7507 n— o0 )
n # Ix.yz(P°).

but Thus the conditional mutual informatiofy,y |z (-) is discon-

lim Iy (P?) = oo, tinuous atp°. ]

n—oo

Replace{p(zy0)} in PO by ~ - 73% and let the resulting joint Note thgt entropy and condit'ipnal entropy'are spepial cases
probability distribution beﬁfb. Then of mutu_al |_nformat|on anc_i condmc_mal mutual mf_o_rmatlon. The
discontinuity of mutual information and conditional mutual
P2 RN PO, information has been presented in Theorem 5 and Theorem 7
respectively. Thus, for any Shannon information measure
but H(P) and for any probability distributio° with countably
. infinite support such thak((P°) < oo, there exists a sequence

. 2 o
A iz (Pr) = oo of probability distributions?, such that?, 2% PO but

£ IX~Y\Z(730)- H(P,) = oo for all integersn and H(P) is discontinuous
’ at PO,
Thus the conditional mutual informatiofy,y |z (-) is discon-

tinuous atp°. ™
VI. CONCLUSION

Note that conditional entropy is a special case of conditional USing “left convergence” of a sequence of discrete probabil-
mutual information. The discontinuity of entropy, mutual inlty distributions, two different approaches have demonstrated
formation and conditional mutual information has been carridfat all the Shannon information measures are discontinuous
out in Theorem 3, Theorem 4 and Theorem 6 respectivef}l €very distribution with countably infinite support.

Thus, for any Shannon information measut#é?) and for
any probability distributiorP° with countably infinite support ACKNOWLEDGMENT
such thatH(P) < oo, there exists a sequence of probability

distributionsP,, such that(P,,) is finite and P, Dr, po

but lim,, o H(P,) = oo andH(P) is discontinuous aP°.
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