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Abstract— It is well known that the Shannon information
measures are continuous functions of the probability distribution
when the support is finite. This, however, does not hold when
the support is countably infinite. In this paper, we investigate the
continuity of the Shannon information measures for countably in-
finite support. With respect to a distance based on the Kullback-
Liebler divergence, we use two different approaches to show that
all the Shannon information measures are in fact discontinuous
at all probability distributions with countably infinite support.

I. I NTRODUCTION

The Shannon information measures are functions mapping
a probability distribution into a real value. If the input proba-
bility distribution is restricted to a finite support, then it is well
known that the Shannon information measures are continuous
functions. Harremöes [1] has shown that the Shannon entropy
of a probability distribution with countably infinite support
can be discontinuous, and he has given conditions for it to
be continuous. For a sequence of probability distributionsPn

and a fixed probability distributionQ, [1] uses the Kullback-
Leibler divergenceD(Pn||Q) to define the convergence of
Pn to Q. However, if D(Q||Pn) is used instead, results
different from [1] can be obtained, and they are discussed
in this paper. We use two different approaches to show that
all the Shannon information measures are discontinuous at all
probability distributions with countably infinite support.

The rest of this paper is organized as follows. In Section
II, we will first define the convergence of a sequence of
probability distributionsPn to a fixed probability distribution
Q with respect to the distanceD(Q||Pn). Based on this defi-
nition of convergence, a continuous function of a probability
distribution is defined. In Section III, we will discuss a class of
sequences of probability distributions such that each of them
converges to the distribution{1, 0, 0, ...}, but the entropy of
the sequence does not converge to 0. Then entropy will be
shown to be discontinuous at all probability distributions with
countably infinite support. In Section IV, mutual information
will be shown to be discontinuous following two different
approaches. By extending these two approaches in Section V,
the discontinuity of conditional mutual information will be
discussed. Finally, all the Shannon information measures are
shown to be discontinuous at all probability distributions with
countably infinite support.

II. CONVERGENCE ANDCONTINUITY

Definition 1 (Left Convergence): A sequence of probabil-
ity distributions{Pn} is said toleft converge to a probability
distributionQ if for every ε > 0 there exists an integerK(ε)
such thatD(Q||Pn) < ε for all n ≥ K(ε). If {Pn} left
converges toQ, we write

Pn
DL−−→ Q,

and callQ the limit of {Pn}. When there is no ambiguity, we
also write

lim
n→∞

Pn = Q.

Two characteristics of the above definition of convergence
are noteworthy: a) The Kullback-Leibler distance measure is
used instead of theL1 distance measure. Due to Pinsker’s
inequality (cf. [2], p.22), if a sequence of probability distri-
butions left converges with respect to the Kullback-Leibler
distance measure, then the sequence converges to the same dis-
tribution with respect to theL1 distance measure. Therefore,
convergence with respect to the Kullback-Leibler distance
measure is stronger than convergence with respect to theL1

distance measure. b) We useD(Q||Pn) instead ofD(Pn||Q)
in the definition. Our results are, therefore, different from the
results obtained in [1].

We now define the continuity of a function based on the
notion of left convergence.

Definition 2: Let A be a subset of all probability distri-
butions and letQ ∈ A. Then a functionf : A → R is
continuousat Q if, given anyε > 0, there exists aδ > 0 such
that if P is any distribution inA satisfyingD(Q||P ) < δ, then
|f(P )− f(Q)| < ε.

If f fails to be continuous atQ, then we say thatf is
discontinuous at Q. The following proposition, which is an
alternative form of Definition 2, will be used to test the
continuity of a function.

Proposition 1: Let A be a subset of all probability dis-
tributions and letQ ∈ A. Then a functionf : A → R is



discontinuousat Q if there exists a sequence{Pn} in A such
that

Pn
DL−−→ Q,

but f(Pn) does not converge tof(Q), i.e.

lim
n→∞

f(Pn) 6= f(Q).

III. T HE DISCONTINUITY OF ENTROPY

In this section, we first discuss a probability distribution
D(α,β)

n which will be used to show that entropy is discon-
tinuous at the probability distributionν = {1, 0, 0, ...}. This
distribution will subsequently be used to prove that the entropy
is discontinuous at all probability distributions with countably
infinite support.

For fixed real numbersα andβ and an integern, whereα >

1, β > 0, andn > α, let D(α,β)
n be a probability distribution

such that one of the elements is1 − ( log α
log n )β , n of them are

1
n ( log α

log n )β and the rest are all 0, i.e.,

D(α,β)
n =

{
1− (

log α

log n
)β ,

1
n

(
log α

log n
)β ,

1
n

(
log α

log n
)β , ..., 0, 0, ...

}
.

We write log α
log n instead of 1

logα n so that all the logarithms
in this paper are in the same base. For any givenα and β,
we will show that the sequence{D(α,β)

n } converges toν =
{1, 0, 0, ...}.

Consider

D(ν||D(α,β)
n ) = − log

(
1−

(
log α

log n

)β
)

,

which tends to0 whenn tends to infinity. Therefore, for any
α andβ,

D(α,β)
n

DL−−→ ν.

The entropy ofD(α,β)
n is given by

H(D(α,β)
n ) =−

[
1−

(
log α

log n

)β
]

log

[
1−

(
log α

log n

)β
]

−n

[
1
n

(
log α

log n

)β
]

log

[
1
n

(
log α

log n

)β
]

. (1)

The first term on the R.H.S. in (1) tends to−1 · log 1 = 0 as
n →∞. Rewrite the second term as

(
log α

log n

)β

log n +
(

log α

log n

)β

log

[(
log n

log α

)β
]

. (2)

As n → ∞, the second term in (2) tends to 0 sinceβ > 0.
For the first term, we have

lim
n→∞

(log α)β · log n

(log n)β
= lim

n→∞
(log α)β(log n)1−β .

Therefore,

lim
n→∞

H(D(α,β)
n ) =





0 β > 1,
log α β = 1,
∞ 0 < β < 1.

(3)

Thus we have the following proposition.

Proposition 2: The Shannon entropy is discontinuous at
the probability distributionν = {1, 0, 0, ...}.

Proof: By taking α > 1 and0 < β ≤ 1 in (3), we have

lim
n→∞

H(D(α,β)
n ) = ∞ 6= H(ν),

but
D(α,β)

n
DL−−→ ν.

By Proposition 1,H is discontinuous at the probability distri-
bution ν.

Now, we are going to prove that entropy is discontinuous
not only atν but also at any probability distribution. Consider
Dn = D(α,0.5)

n so that

Dn =

{
1− 1√

logα n
,

1
n
√

logα n
,

1
n
√

logα n
, ..., 0, ...

}
(4)

and limn→∞H(Dn) = ∞ from (3). In (4), sinceα, the base
of the logarithms, can be any real number strictly larger than
1, we can simply write

Dn =
{

1− 1√
log n

,
1

n
√

log n
,

1
n
√

log n
, ..., 0, 0, ...

}
. (5)

Theorem 3: For any probability distribution P0 =
{p0, p1, ...} with countably infinite support such thatH(P0) <
∞, there exists a sequence of probability distributionsPn such
that H(Pn) is bounded for integersn ≥ 2 andPn

DL−−→ P0

but limn→∞H(Pn) = ∞ andH(P) is discontinuous atP0.

Proof: In Proposition 2, we have shown the claim in the
theorem at the probability distributionν and so we assume
P0 6= ν. Then, without loss of generality, we can assume that
0 < p0 < 1. Let q = 1− p0 and

P1 = {0, q−1p1, q
−1p2, q

−1p3, ...},
which is seen to be a probability distribution.

Recall the definition ofDn in (5). Let the probability
distributions of random variablesV and Wn be P1 andDn,
respectively. Let the probability distribution of an independent
binary random variable Z be such thatp(Z = 0) = q and
p(Z = 1) = 1− q. By letting

Xn =
{

V if Z = 0
Wn if Z = 1,

the probability distribution ofXn for n ≥ 2 is given by

P2
n = {(1− q)− 1− q√

log n
, p1 +

1− q

n
√

log n
,

p2 +
1− q

n
√

log n
, ..., pn +

1− q

n
√

log n
, pn+1, pn+2, ...}

= {p0 − 1− q√
log n

, p1 +
1− q

n
√

log n
, p2 +

1− q

n
√

log n
,

...., pn +
1− q

n
√

log n
, pn+1, pn+2, ...}. (6)



Consider

D(P0||P2
n) = p0 log

p0

p0 − 1−q√
log n

+
n∑

i=1

pi log
pi

pi + 1−q
n
√

log n

+
∞∑

i=n+1

pi log
pi

pi

= p0 log
p0

p0 − 1−q√
log n

+
n∑

i=1

pi log
pi

pi + 1−q
n
√

log n

.

The first term tends to zero whenn → ∞. Without loss of
generality, we assume thatpi > 0 for all i (otherwise we
simply omit all i such thatpi = 0 in a summation). Let

Jn =
n∑

i=1

pi log
pi

pi + 1−q
n
√

log n

,

which is less than 0 for alln. By the log-sum inequality (see,
for example, [2]), we have

Jn ≥
(

n∑

i=1

pi

)
log

∑n
i=1 pi∑n

i=1

(
pi + 1−q

n
√

log n

)

=

(
n∑

i=1

pi

)
log

∑n
i=1 pi∑n

i=1 pi + 1−q√
log n

.

Whenn →∞, we have

lim
n→∞

Jn ≥ lim
n→∞

(
n∑

i=1

pi) log
∑n

i=1 pi∑n
i=1 pi + 1−q√

log n

= (1− p0) · log
(1− p0)

(1− p0) + 0
= 0.

Therefore,limn→∞ Jn = 0. Thus we have proved that

lim
n→∞

D(P0||P2
n) = 0,

which means that
P2

n
DL−−→ P0.

On the other hand,

lim
n→∞

H(P2
n) = lim

n→∞
H(Xn)

≥ lim
n→∞

H(Xn|Z)

= lim
n→∞

(qH(V ) + (1− q)H(Wn))

= qH(V ) + (1− q) lim
n→∞

H(Dn)

= ∞ (7)

> H(P0).

By Proposition 1, we conclude thatH is discontinuous atP0.
By comparingP0 andP2

n, the upper bound forH(P2
n) is

given by

H(P2
n) ≤ log(n + 1) + H(P0).

ThereforeH(P2
n) is bounded for integersn ≥ 2.

IV. T HE DISCONTINUITY OF MUTUAL INFORMATION

In this section, the discontinuity of mutual information is
discussed. Let̃P0 = {p(xy)} be a joint probability distribution
for random variablesX andY wherep(xy) is the probability
thatX equalsx andY equalsy. We can assume without loss
of generality thatp(00) > 0, because ifp(00) = 0, we can
always makep(00) > 0 with an appropriate reindexing of the
alphabets ofX andY .

Let q = 1− p(00) and

P̃1 =




0 q−1p(10) · · ·
q−1p(01) q−1p(11) · · ·

...
...


 .

By letting D̃n be a diagonal matrix with diagonal equal to the
distributionDn in (5), we have

D̃n =




1− 1√
log n

0 0 · · ·
0 1

n
√

log n
0 · · ·

0 0 1
n
√

log n
...

...
.. .




.

Let the probability distribution of an independent binary
random variable Z be such thatp(Z = 0) = q and p(Z =
1) = 1 − q. By letting the joint probability distribution of
(X, Y ) be P̃2

n for n ≥ 2 and

P̃2
n =

{ P̃1 if Z = 0
D̃n if Z = 1

=




1− q − 1−q√
log n

p(10) · · ·
p(01) p(11) + 1−q

n
√

log n
...

.. .


 .(8)

Theorem 4: Let P̃0 be a joint probability distribution for
random variablesX and Y with countably infinite support
for both of the marginal probability distributions such that
IX;Y (P̃0) < ∞. There exists a sequence of probability

distributionsP̃n such thatIX;Y (P̃n) is finite andP̃n
DL−−→ P̃0

but limn→∞ IX;Y (P̃n) = ∞. Thus,IX;Y (·) is discontinuous
at P̃0.

Proof: By the same argument used in the proof of

P2
n

DL−−→ P0,

we can see that

P̃2
n

DL−−→ P̃0.

On the other hand, it can be shown that for a joint probability
distribution with finite support,

I(X; Y ) = qI(X;Y |Z = 0) + (1− q)I(X; Y |Z = 1)
+I(X; Z)− I(X; Z|Y ).



For joint probability distribution with countably infinite sup-
port, the summations inI(X;Z|Y ), I(X; Z) andI(X; Y |Z =
0) are bounded by

IX;Z|Y (P̃2
n) ≤ log 2,

IX;Z(P̃2
n) ≥ 0,

qIX;Y |Z=0(P̃2
n) = qIX;Y (P̃1) ≥ 0,

and

(1− q)IX;Y |Z=1(P̃2
n) = (1− q)IX;Y (D̃n)

= (1− q)H(Dn).

Thus

IX;Y (P̃2
n) ≥ 0 + (1− q)H(Dn) + 0− log 2

= (1− q)H(Dn)− log 2.

Therefore

lim
n→∞

IX;Y (P̃2
n) ≥ lim

n→∞
(1− q)H(Dn)− log 2

= ∞.

By Proposition 1, the functionIX;Y (P̃) is discontinuous at
the distributionP̃0.

By comparingP̃2
n in (8) with P̃0, we can obtain an upper

bound

IX;Y (P̃2
n) ≤ (4n + 6)e−1 log e + IX;Y (P̃0)

for all integersn. The bound is not the tightest but it is enough
to show thatIX;Y (P̃2

n) is bounded forn ≥ 2.

In the above theorem, we have constructed a sequence of
probability distributions whose mutual information tends to
infinity when n → ∞ but the mutual information of each
distribution inside the sequence is finite. In the next theorem,
we will resort to a different method to show that mutual
information is discontinuous.

Theorem 5: Let P̃0 be a joint probability distribution for
random variablesX and Y with countably infinite support
for both of the marginal probability distributions such that
IX;Y (P̃0) < ∞. There exists a sequence of probability

distributionsP̃n such thatP̃n
DL−−→ P̃0 but IX;Y (P̃n) = ∞

for all integersn. ThusIX;Y (·) is discontinuous at̃P0.

Proof: Let Φ̃ be a joint probability distribution with
I(Φ̃) = ∞. An example is a diagonal matrix with elements
equal to the distribution given in Example 2.46 in [2]. Let
φ̃ = 0.5P̃0 + 0.5Φ̃ and note thatD(P̃0||φ̃) ≤ log 2. Let the
distribution of a binary random variableSn be(1− 1

n , 1
n ). Then

a sequence of probability distributions̃Pn is constructed by
letting (X,Y ) be distributed according tõP0 if Sn = 0 and
according toφ̃ if Sn = 1. We have

P̃n = (1− 1
n

)P̃0 +
1
n

φ̃.

By the convexity of the Kullback-Leibler distance, we have

lim
n→∞

D(P̃0||P̃n)

≤ lim
n→∞

(1− 1
n

)D(P̃0||P̃0) +
1
n

D(P̃0||φ̃)

= 0.

Therefore,
P̃n DL−−→ P̃0.

On the other hand, it can be shown that for a joint probability
distribution with finite support,

I(X;Y ) = I(X;Y |Sn) + I(X;Sn)− I(X;Sn|Y ).

For a joint probability distribution with countably infinite
support, the summations inI(X; Sn|Y ) and I(X; Sn) are
bounded by

IX;Sn|Y (P̃n) ≤ log 2,

and
IX;Sn

(P̃n) ≥ 0.

Since

Pr{Sn = 0}IX;Y |Sn=0(P̃n) = Pr{Sn = 0}IX;Y (P̃0)

and

Pr{Sn = 1}IX;Y |Sn=1(P̃n) = Pr{Sn = 1}IX;Y (φ̃) = ∞,

we have

IX;Y |Sn
(P̃n) = ∞.

Thus

IX;Y (P̃n) ≥ ∞+ 0− log 2 = ∞, (9)

for all integersn. Therefore,

lim
n→∞

IX;Y (P̃n) = ∞ 6= IX;Y (P̃0).

By Proposition 1, the functionIX;Y (P̃) is discontinuous at
the distributionP̃0.

V. THE DISCONTINUITY OF CONDITIONAL MUTUAL

INFORMATION AND THE SHANNON INFORMATION

MEASURES

In this section, we extend the results obtained in the previous
sections to conclude that all Shannon information measures
are, indeed, discontinuous for any probability distribution with
countably infinite support.

Theorem 6: For any joint probability distributionP̂0 =
{p(xyz)} for random variablesX, Y and Z with countably
infinite support for the marginal probability distributions ofX
and Y such thatIX;Y |Z(P̂0) < ∞, there exists a sequence
of probability distributionsP̂n such thatIX;Y |Z(P̂n) is finite

and P̂n
DL−−→ P̂0 but limn→∞ IX;Y |Z(P̂n) = ∞. Thus, the

conditional mutual informationIX;Y |Z(·) is discontinuous at
P̂0.



Proof: Let the marginal distribution ofZ be {pZ(z)}.
Without loss of generality, we assume thatpZ(0) > 0 and let
γ = pZ(0). Since

IX;Y |Z(P̂0) =
∑

z

p(z)IX;Y |Z=z(P̂0),

which is bounded andγ > 0 so that IX;Y |Z=0(P̂0) is
also bounded. In other words, the mutual information of the
distribution

P̃0 =




γ−1p(000) γ−1p(100) · · ·
γ−1p(010) γ−1p(110) · · ·

...
...


 ,

is bounded. Then by Theorem 4, we can construct a probability
distribution P̃2

n such that

P̃2
n

DL−−→ P̃0,

but

lim
n→∞

IX;Y (P̃2
n) = ∞.

Replace{p(xy0)} in P̂0 by γ · P̃2
n and let the resulting joint

probability distribution beP̂2
n. Then

P̂2
n

DL−−→ P̂0,

but

lim
n→∞

IX;Y |Z(P̂2
n) = ∞

6= IX;Y |Z(P̂0).

Thus the conditional mutual informationIX;Y |Z(·) is discon-
tinuous atP̂0.

Note that conditional entropy is a special case of conditional
mutual information. The discontinuity of entropy, mutual in-
formation and conditional mutual information has been carried
out in Theorem 3, Theorem 4 and Theorem 6 respectively.
Thus, for any Shannon information measureH(P) and for
any probability distributionP0 with countably infinite support
such thatH(P0) < ∞, there exists a sequence of probability

distributionsPn such thatH(Pn) is finite andPn
DL−−→ P0

but limn→∞H(Pn) = ∞ andH(P) is discontinuous atP0.
By a method similar to the one used in the proof of

Theorem 6, the results in Theorem 5 can be extended to
conditional mutual information.

Theorem 7: For any joint probability distributionP̂0 =
{p(xyz)} for random variablesX, Y and Z with countably
infinite support for the marginal probability distributions ofX
and Y such thatIX;Y |Z(P̂0) < ∞, there exists a sequence

of probability distributionsP̂n such thatP̂n
DL−−→ P̂0 but

IX;Y |Z(P̂n) = ∞ for all n. Thus, the conditional mutual
informationIX;Y |Z(·) is discontinuous atP̂0.

Proof: By the same setup ofγ and P̃0 in the proof of
Theorem 6 and by Theorem 5, we can construct a probability
distribution P̃2

n such that

P̃2
n

DL−−→ P̃0,

but for all integersn,

IX;Y (P̃2
n) = ∞.

Again replace{p(xy0)} in P̂0 by γ · P̃2
n and let the resulting

joint probability distribution beP̂2
n. Then

P̂2
n

DL−−→ P̂0,

but for all integersn,

IX;Y |Z(P̂2
n) = ∞

lim
n→∞

IX;Y |Z(P̂2
n) = ∞

6= IX;Y |Z(P̂0).

Thus the conditional mutual informationIX;Y |Z(·) is discon-
tinuous atP̂0.

Note that entropy and conditional entropy are special cases
of mutual information and conditional mutual information. The
discontinuity of mutual information and conditional mutual
information has been presented in Theorem 5 and Theorem 7
respectively. Thus, for any Shannon information measure
H(P) and for any probability distributionP0 with countably
infinite support such thatH(P0) < ∞, there exists a sequence

of probability distributionsPn such thatPn
DL−−→ P0 but

H(Pn) = ∞ for all integersn andH(P) is discontinuous
at P0.

VI. CONCLUSION

Using “left convergence” of a sequence of discrete probabil-
ity distributions, two different approaches have demonstrated
that all the Shannon information measures are discontinuous
at every distribution with countably infinite support.
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