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Abstract

For two probability distributions with finite alphabets, a small variational distance between them

does not imply that the difference between their entropies is small if one of the alphabet sizes is unknown.

This fact, seemingly contradictory to the continuity of entropy for finite alphabet, is clarified in the

current paper by means of certain bounds on the entropy difference between two probability distributions

in terms of the variational distance between them and their alphabet sizes. These bounds are shown to

be the tightest possible. The Lagrange multiplier cannot be applied here because the variational distance

is not differentiable. We also show how to find the distribution achieving the minimum (or maximum)

entropy among those distributions within a given variational distance from any given distribution.

I. INTRODUCTION

When we want to find the maximum or minimum value of the Shannon entropy,

H(P) =
∑
i:pi>0

pi log
1

pi
,

of a probability distribution P = {pi} subject to some constraints, a typical approach is to apply

the Lagrange multiplier [1]. By using differentiation and solving some equations, the solution

satisfying the given set of constraints would be obtained. The powerful Lagrange multiplier can

usually solve this kind of problems, but sometimes it fails. For example, suppose a probability
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distribution P = {p1, p2, . . . , pL} is given and we want to find a probability distribution Q =

{q1, q2, . . . , qL} attaining the maximum entropy subject to the variational distance being less than

or equal to ε, i.e.

V (P ,Q) =
L∑
i=1

|pi − qi| ≤ ε.

The Lagrange multiplier cannot be applied here because V (P ,Q) is not differentiable with

respect to pi. Some literatures [2][3] tackled a similar problem for finding an upper bound on the

difference of entropies, |H(P)−H(Q)|, subject to V (P ,Q) ≤ ε. They used some fundamental

inequalities to obtain the bounds but the bounds are not tight. At the same time, we may want

to know the minimum entropy and the lower bound on the difference of entropies in the above

problems. These mathematical problems will be solved in Section II and their applications in

entropy estimation, rate-distortion theory, generalization of the Fano inequality and complexity

of random number generation will be shown in Part II of this paper. All the logarithms denoted

by log in this paper are in the same base. The natural logarithm is denoted by ln and the natural

number to the power x is denoted by exp(x).

II. NEW BOUNDS

The following theorem refines Theorem 3 in [4] regarding the discontinuity of the Shannon

entropy H(·) with respect to the variational distance. The variational distance between two

probability distributions P = {p1, p2, . . . , pL} and Q = {q1, q2, . . . , qM} with different support

is defined as

V (P ,Q) =
L∑
i=1

|pi − qi|+
M∑

i=L+1

|qi|.

Theorem 1: Suppose δ > 0 and ε > 0 are given. For any probability distribution P with L

probability masses, there exists a sufficient large integer M ≥ L and a probability distribution Q

with M probability masses such that the variational distance V (P ,Q) < ε but H(Q)−H(P) > δ.

Proof: Let P = {p1, p2, . . . , pL} and let

Q =

{
p1 −

p1√
logM

, p2 +
p1

M
√

logM
, . . . ,

pL +
p1

M
√

logM
,

p1

M
√

logM
, . . . ,

p1

M
√

logM

}
.
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be a probability distribution with M+1 probability masses for M ≥ L. Then it is readily checked

that for any positive ε and δ, V (P ,Q) < ε but H(Q)−H(P) > δ when M is sufficiently large.

The four quantities δ, ε, L and M play critical roles in Theorem 1 and the relation among them

will be explored through a possible application in this section. For n ∈ N, let

Γn =

{
P = (p1, p2, . . . , pn) :

n∑
j=1

pj = 1, pj ≥ 0, 1 ≤ j ≤ n

}
,

and let

Γ∞ =

{
P = (p1, p2, . . .) :

∞∑
j=1

pj = 1, pj ≥ 0, 1 ≤ j

}
.

Suppose a probability distribution

P = (p1, p2, . . . , pL) ∈ ΓL, (1)

where L is finite, is obtained from an iterative algorithm. Let Q = (q1, q2, . . . , qM) ∈ ΓM be the

exact solution where Q and M are unknown. We are interested in the case that M ≥ L which

can model a truncation error caused by a program implementing the iterative algorithm. Let di

be real such that

Q = (p1 + d1, p2 + d2, . . . , pL + dL, dL+1, . . . , dM). (2)

Then the variational distance between P and Q can be written as

V (P ,Q) =
L∑
i=1

|pi − (pi + di)|+
M∑

i=L+1

|di| =
M∑
i=1

|di|.

Suppose our iterative algorithm has obtained P , within the neighborhood of Q with respect to

the variational distance, say

V (P ,Q) ≤ ε. (3)

Note that if M is infinite, there exists a Q such that H(Q)−H(P) =∞ from Theorem 3 in [4].

Therefore, no matter how small ε is, if the program can only generate probability distributions

with finite support to approximate an exact solution with infinite support, then the error in
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the estimated entropy can be unbounded. If M is finite but unknown, Theorem 1 says that

H(Q)−H(P) can be any value. However, if M is finite and known, the quantity

sup
Q
|H(Q)−H(P)| (4)

is finite and in this paper we will obtain lower and upper bounds on this quantity. For given P ,

ε, L and M , it turns out that the probability distribution Q achieving the supremum in (4) can

be found easily. Note that
M∑
i=1

di = 0∑
i:di>0

di = −
∑
i:di<0

di,

where di’s are defined in (2). In order to satisfy V (P ,Q) ≤ ε, the choice of di must satisfy the

condition ∑
i:di>0

di = −
∑
i:di<0

di ≤
ε

2
.

We also require that pi + di ≥ 0 for all i. Define the function

f(p, δ) = −(p+ δ) log(p+ δ) + p log p,

for p > 0 and −p ≤ δ ≤ 1 − p and define f(0, δ) = −δ log δ. In the proofs of this paper, we

will frequently use the following two identities:

1) For 0 ≤ δ′ < δ or 0 ≥ δ′ > δ,

f(p, δ) = f(p, δ′) + f(p+ δ′,−δ′ + δ).

2) For p < p′ ≤ p+ δ or p > p′ ≥ p+ δ,

f(p, δ) = f(p,−p+ p′) + f(p′,−p′ + p+ δ).

Two other properties of f(p, δ) are given in the following two lemmas.

Lemma 2: For a fixed δ > 0, f(p, δ) is a strictly decreasing function on p. In particular,

f(0, δ) = −δ log δ ≥ f(p, δ)

for all 0 < p ≤ 1− δ.
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Lemma 3: For a fixed δ < 0, f(p, δ) is a strictly increasing function on p. In particular,

f(1, δ) ≥ f(p, δ)

for all −δ ≤ p ≤ 1.

Proof of Lemma 2 and 3

f ′(p, δ) =
∂

∂p
f(p, δ)

=
∂

∂p
(ln 2)−1(−(p+ δ) ln(p+ δ) + p ln p)

= (ln 2)−1(−1− ln(p+ δ) + 1 + ln p)

= log
p

p+ δ
.

For a fixed δ > 0, f ′(p, δ) < 0 so that f(p, δ) is a strictly decreasing function on p and f(p, δ)

is the largest at p = 0. For a fixed δ < 0, f ′(p, δ) > 0 so that f(p, δ) is a strictly increasing

function on p and f(p, δ) is the largest at p = 1.

By Lemma 2 and Lemma 3, we will prove the following two lemmas which will be used

frequently in this paper.

Lemma 4: Let {pi, di} and {p∗j , d∗j} be two sets of real numbers such that for all i and j,

0 ≤ pi + di ≤ pi ≤ 1

and

0 ≤ p∗j + d∗j ≤ p∗j ≤ 1,

where di and d∗j < 0. If ∑
i

di =
∑
j

d∗j (5)

and

min
i
{pi + di} ≥ max

j
{p∗j}, (6)

then ∑
i

f(pi, di) ≥
∑
j

f(p∗j , d
∗
j).
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Fig. 1. An illustration of the partition {ei}

Proof:

We first consider a simple example in Fig. 1 which illustrates the assumptions in this lemma.

The bars in Fig. 1(a) have lengths {di} while the bars in Fig. 1(b) have lengths {d∗i }. Consider

a partition {ei}, a set of positive real numbers, satisfying that d1 = e3, d2 = e1 + e2, d∗1 = e1

and d∗2 = e2 + e3. Such partition must exist because d1 + d2 = d∗1 + d∗2. Let µ be a real number

such that

min
i
{pi + di} ≥ µ ≥ max

j
{p∗j}.

Then

f(p2, d2) + f(p1, d1) = f(p2,−e1 − e2) + f(p1,−e3)

= f(p2,−e1) + f(p2 − e1,−e2) + f(p1,−e3)

≥ f(µ,−e1) + f(µ,−e2) + f(µ,−e3),

where the inequality follows from Lemma 3 and pi + di ≥ µ for all i. Together with µ ≥ p∗j for

all j and Lemma 3, we can further show that

f(p2, d2) + f(p1, d1) ≥ f(µ,−e1) + f(µ,−e2) + f(µ,−e3)

≥ f(p∗1,−e1) + f(p∗2,−e3) + f(p∗2 − e3,−e2)

= f(p∗1,−e1) + f(p∗2,−e2 − e3)

= f(p∗1, d
∗
1) + f(p∗2, d

∗
2).
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In general, we can always divide the areas covered by {di} and {d∗i } into a suitable partition

{ek} and show ∑
i

f(pi, di) ≥
∑
k

f(µ,−ek) ≥
∑
j

f(p∗j , d
∗
j).

Lemma 5: Let {pi, di} and {p∗j , d∗j} be two sets of real numbers such that for all i and j,

0 ≤ pi ≤ pi + di ≤ 1

and

0 ≤ p∗j ≤ p∗j + d∗j ≤ 1,

where di and d∗j > 0. If ∑
i

di =
∑
j

d∗j (7)

and

min{p∗j} ≥ max{pi + di}, (8)

then ∑
j

f(p∗j , d
∗
j) ≤

∑
i

f(pi, di).

Proof: Note that

−
∑
i

f(pi, di) =
∑
i

f(pi + di,−di).

At the same time,

−
∑
j

f(p∗j , d
∗
j) =

∑
j

f(p∗j + d∗j ,−d∗j)

≥
∑
i

f(pi + di,−di)

= −
∑
i

f(pi, di),

where the inequality follows from Lemma 4. Therefore,∑
j

f(p∗j , d
∗
j) ≤

∑
i

f(pi, di),
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and the lemma is proved.

By using Lemma 4 and Lemma 5, a process to obtain Q achieving the supremum in (4) is

described in the next two theorems. We will first solve the problem

supQ H(Q)−H(P)

subject to V (P ,Q) ≤ ε.

This problem can be solved by any convex optimization method. However, the solution will be

shown to be neat and compact in the following theorem. The theorem is useful to prove some

theorems in the later part of this paper and in Part II of this paper. In the following, we will use

the notations

(x)+ =

 x if x > 0

0 if x ≤ 0,

and

(x)− =

 x if x < 0

0 if x ≥ 0.

Theorem 6: Suppose a positive number ε ≤ 2, P = (p1, p2, . . . , pL) ∈ ΓL and a finite integer

M ≥ L are given. Let pi’s be sorted in descending order and let pL+1 = pL+2 = · · · = pM = 0.

Let µ and ν be real such that

M∑
i=1

(pi − µ)+ =
ε

2
, (9)

and
M∑
i=1

(ν − pi)+ =
ε

2
. (10)

If ν ≥ µ, let q∗i = 1
M

for 1 ≤ i ≤M . Otherwise, let

q∗i =


µ if pi > µ

pi if ν ≤ pi ≤ µ

ν if pi < ν
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Fig. 2. An example demonstrating the choices of µ and ν according to Theorem 6 where L = 7 and M = 9. Here,

Q∗ = {µ, µ, µ, p4, p5, p6, ν, ν, ν}.

for 1 ≤ i ≤M and we denote Q∗ = {q∗i }. See Fig. 2 for example. Then for any Q ∈ ΓM such

that V (P ,Q) ≤ ε, we have

H(Q)−H(P) ≤ H(Q∗)−H(P).

Proof: We follow the definitions of P and Q in (1) and (2), respectively. Let d∗i ’s be some

real values such that

Q∗ = (q∗1, q
∗
2, . . . , q

∗
M) = (p1 + d∗1, p2 + d∗2, . . . , pL + d∗L, d

∗
L+1, . . . , d

∗
M),

where Q∗ is as specified in the theorem. If q∗i = 1
M

for 1 ≤ i ≤ M , then ν ≥ µ. For any

Q ∈ ΓM ,

H(Q)−H(P) ≤ logM −H(P) = H(Q∗)−H(P),

and

V (P ,Q∗) ≤ ε.

Otherwise, we know that ∑
i:d∗i>0

d∗i = −
∑
i:d∗i<0

d∗i =
ε

2
,

and
∑M

i=1 |d∗i | = ε. We first consider V (P ,Q) = ε. Then∑
i:d∗i<0

d∗i =
∑
i:di<0

di = − ε
2
,
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and ∑
i:d∗i>0

d∗i =
∑
i:di>0

di =
ε

2
.

Note that

(H(Q)−H(P))− (H(Q∗)−H(P))

=

(∑
i

f(pi, di)

)
−

(∑
i

f(pi, d
∗
i )

)

=

∑
i:di<0

f(pi, di)−
∑
i:d∗i<0

f(pi, d
∗
i )

+

∑
i:di>0

f(pi, di)−
∑
i:d∗i>0

f(pi, d
∗
i )

 . (11)

Consider the first bracket on the R.H.S. of (11),∑
i:di<0

f(pi, di)−
∑
i:d∗i<0

f(pi, d
∗
i )

=
∑
i

f(pi, (di)
−)−

∑
i

f(pi, (d
∗
i )
−)

=
∑
i

f(pi + (d∗i )
−, (di)

− − (d∗i )
−)

=
∑

i:(di)−−(d∗i )−>0

f(pi + (d∗i )
−, (di)

− − (d∗i )
−)

+
∑

i:(di)−−(d∗i )−<0

f(pi + (d∗i )
−, (di)

− − (d∗i )
−)

= −
∑

i:(di)−−(d∗i )−>0

f(pi + (di)
−, (d∗i )

− − (di)
−)

+
∑

i:(di)−−(d∗i )−<0

f(pi + (d∗i )
−, (di)

− − (d∗i )
−).

By the definition of qi and the assumption that µ > ν, we have

pi + (d∗i )
− ≤ pi + d∗i = q∗i ≤ µ

for all i. Then by Lemma 3,∑
i:di<0

f(pi, di)−
∑
i:d∗i<0

f(pi, d
∗
i )

≤ −
∑

i:(di)−−(d∗i )−>0

f(pi + (di)
−, (d∗i )

− − (di)
−)

+
∑

i:(di)−−(d∗i )−<0

f(µ, (di)
− − (d∗i )

−). (12)
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Fig. 3. A picture illustrating the magnitudes of the variables in (12)

In the first summation of (12), the summation is over all i satisfying

(d∗i )
− < (di)

− ≤ 0. (13)

Since (d∗i )
− < 0, we have d∗i < 0 and pi + (d∗i )

− = µ. At the same time,

pi + (di)
− > pi + (d∗i )

− = µ. (14)

By using the relations in (13) and (14), the terms inside f(·, ·) in the first summation and the

second summation of (12) are picturised in Fig. 3(a) and Fig. 3(b), respectively. Note that the

area covered by the bar chart in Fig. 3(a) and Fig. 3(b) are the same because∑
i:(di)−−(d∗i )−>0

((di)
− − (d∗i )

−)−
∑

i:(di)−−(d∗i )−<0

((d∗i )
− − (di)

−)

=
∑
i

(di)
− −

∑
i

(d∗i )
−

= 0.

By Lemma 4, it is readily seen that∑
i:(di)−−(d∗i )−>0

f(pi + (di)
−, (d∗i )

− − (di)
−) ≥

∑
i:(di)−−(d∗i )−<0

f(µ, (di)
− − (d∗i )

−).

By (12), we have ∑
i:di<0

f(pi, di) ≤
∑
i:d∗i<0

f(pi, d
∗
i ). (15)
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Consider the second bracket on the R.H.S. of (11),∑
i:di>0

f(pi, di)−
∑
i:d∗i>0

f(pi, d
∗
i )

=
∑
i:di>0

f(pi, (di)
+)−

∑
i:d∗i>0

f(pi, (d
∗
i )

+)

=
∑
i

f(pi, (di)
+)−

∑
i

f(pi, (d
∗
i )

+)

=
∑
i

f(pi + (d∗i )
+, (di)

+ − (d∗i )
+)

=
∑

i:(di)+−(d∗i )+>0

f(pi + (d∗i )
+, (di)

+ − (d∗i )
+) +

∑
i:(di)+−(d∗i )+<0

f(pi + (d∗i )
+, (di)

+ − (d∗i )
+)

=
∑

i:(di)+−(d∗i )+>0

f(pi + (d∗i )
+, (di)

+ − (d∗i )
+)−

∑
i:(di)+−(d∗i )+<0

f(pi + (di)
+, (d∗i )

+ − (di)
+)

Since pi + (d∗i )
+ ≥ pi + d∗i = qi ≥ ν, by Lemma 2, we have∑

i:di>0

f(pi, di)−
∑
i:d∗i>0

f(pi, d
∗
i )

≤
∑

i:(di)+−(d∗i )+>0

f(ν, (di)
+ − (d∗i )

+)−
∑

i:(di)+−(d∗i )+<0

f(pi + (di)
+, (d∗i )

+ − (di)
+) (16)

In the second summation of (16), we have

(d∗i )
+ > (di)

+ ≥ 0. (17)

Since (d∗i )
+ > 0, we have d∗i > 0 and pi + (d∗i )

+ = ν. At the same time,

pi + (di)
+ < pi + (d∗i )

+ = ν. (18)

By using the relations in (17) and (18), the terms inside f(·, ·) in the first summation and the

second summation of (16) are picturised in Fig. 4 (a) and Fig. 4 (b), respectively. Note that the

area covered by the bar chart in Fig. 4 (a) and Fig. 4 (b) are the same because∑
i:(di)+−(d∗i )+>0

((di)
+ − (d∗i )

+)−
∑

i:(di)+−(d∗i )+<0

((d∗i )
+ − (di)

+)

=
∑
i

(di)
+ −

∑
i

(d∗i )
+

= 0.
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Fig. 4. A picture illustrating the magnitudes of the variables in (16)

By Lemma 5, it is readily seen that

∑
i:(di)+−(d∗i )+<0

f(pi + (di)
+, (d∗i )

+ − (di)
+) ≥

∑
i:(di)+−(d∗i )+>0

f(ν, (di)
+ − (d∗i )

+).

By (16), we have

∑
i:di>0

f(pi, di) ≤
∑
i:d∗i>0

f(pi, d
∗
i ). (19)

By putting (15) and (19) into (11), for any Q ∈ ΓM ,

H(Q)−H(P) =
∑
i

f(pi, di)

≤
∑
i

f(pi, d
∗
i )

= H(Q∗)−H(P),

which proves the theorem for V (P ,Q) = ε.

If V (P ,Q) = η < ε, then we first find Q∗∗ and Q∗ according to the definition in this theorem

with respect to η and ε, respectively. The previous part of this proof has already shown that

H(Q)−H(P) ≤ H(Q∗∗)−H(P).
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The proof is completed if we can show that H(Q∗) ≥ H(Q∗∗). Note that for δ > 0, p > 1
M

+ δ

and p′ < 1
M
− δ,

f(p,−δ) + f(p′, δ) (20)

≥ f

(
1

M
+ δ,−δ

)
+ f(p′, δ) (21)

≥ f

(
1

M
+ δ,−δ

)
+ f

(
1

M
− δ, δ

)
(22)

= − 2

M
log

1

M
+

(
1

M
+ δ

)
log

(
1

M
+ δ

)
+

(
1

M
− δ
)

log

(
1

M
− δ
)

≥ − 2

M
log

1

M
+

2

M
log

1

M
(23)

= 0,

where (21) follows from Lemma 3, (22) follows from Lemma 2 and (23) follows from that

fact that x log x is a strictly convex function. Therefore, the additional decrements of the large

probability masses and increments of the small probability masses in Q∗∗ with respect to Q∗

makes H(Q∗) ≥ H(Q∗∗). Finally,

H(Q)−H(P) ≤ H(Q∗∗)−H(P) ≤ H(Q∗)−H(P),

and the proof is completed.

From the proof of Theorem 6, it is readily checked the following corollary.

Corollary 7: For any probability distribution P , let Q and Q′ be the Q∗ as specified in

Theorem 6 with V (P ,Q) ≤ ε and V (P ,Q′) ≤ ε′, respectively. Assume ε′ < ε. If H(Q) < logM ,

then

V (P ,Q) = ε,

V (P ,Q′) = ε′,

and

H(Q) > H(Q′).

In Theorem 6, when we find the distribution Q that maximizes H(Q) − H(P) subject to

V (P ,Q) ≤ ε, it is necessary to impose an upper bound on the alphabet size of Q, because

otherwise H(Q)−H(P) is unbounded. However, when we find the distribution Q that maximizes
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14

P1 P3P2 P4 P6 P7P5

P3P2 P5 P6 P7P1 P4

PK PK+1

1

1 2 3

2 3

4

4
5

5

5 5
PK+2 PK+3 PK+4 PK+5 PK+6 PK+7

PK

PK+dK

P'2

P'6

P'8

pK pK+1

1

3

2

3

3 3
pK+2 pK+3 pK+4

pK+dK

p'1

2

P3P2 P5 P6 P7P1 P4

......

ν

P3P2 P5 P6 P7P1 P4

P1 P3P2 P4 P6 P7P5

µ

ν

Fig. 5. An example demonstrating the choices of q∗i ’s according to Theorem 8 where L = 7. Here,Q∗ = {p1+
ε
2
, p2, p3, p4, p5+

p6 + p7 − ε
2
}.

H(P) − H(Q) subject to V (P ,Q) ≤ ε, it is not necessary to impose an upper bound on the

alphabet size of Q, as we will see in the next theorem. In Part II of this paper, this property is

used to give a simple proof that entropy is lower semi-continuous. In the following, we will use

majorization [5] to give a simple proof. We say that Q∗ = {q∗i } ∈ ΓM majorizes Q = {qi} ∈ ΓM ,

where q∗i ’s and qi’s are sorted in descending order, if
n∑
i=1

q∗i ≥
n∑
i=1

qi

for 1 ≤ n ≤M . Moreover, a function g(·) is strictly Suhur-concave if g(Q) > g(Q∗) whenever

Q∗ majorizes Q.

Theorem 8: Suppose a positive number ε ≤ 2 and P = (p1, p2, . . . , pL) ∈ ΓL are given

where L can be infinity. Assume pi’s are sorted in descending order. If 1 − p1 ≤ ε
2
, let Q∗ =

(1, 0, . . . , 0) ∈ ΓL. Otherwise, let K be the largest integer such that

L∑
i=K

pi ≥
ε

2
.

Let

q∗i =


p1 + ε

2
if i = 1

pi if 1 < i < K∑L
i=K pi −

ε
2

if i = K.
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We denote Q∗ = {q∗i }. See Fig. 5 for example. For any Q such that V (P ,Q) ≤ ε, we have

H(P)−H(Q) ≤ H(P)−H(Q∗).

Proof: We follow the definitions of P and Q∗ as specified in the theorem. Consider

Q ∈ ΓM with V (P ,Q) ≤ ε where M ≥ L is a positive integer or M = ∞. If 1 − p1 ≤ ε
2
,

Q∗ = (1, 0, . . . , 0) ∈ ΓL. Then

H(P)−H(Q) ≤ H(P)− 0 = H(P)−H(Q∗)

and

V (P ,Q∗) ≤ ε.

Otherwise, we know that

V (P ,Q∗) = ε.

and

d∗1 =
ε

2
.

Since V (P ,Q) ≤ ε, we have ∑
i:di>0

di = −
∑
i:di<0

di ≤
ε

2
,

and
n∑
i=1

di ≤
ε

2
(24)

for 1 ≤ n ≤ M . Let Q̃ = {q̃1, q̃2, . . . , q̃M} ∈ ΓM contain all the probability masses in Q (c.f.

(2)) but be sorted in descending order. At the same time, add q∗K+1 = q∗K+2 = · · · = q∗M = 0

into Q∗ such that Q∗ ∈ ΓM . Together with (24), it is readily seen that for any n < K,
n∑
i=1

q∗i =
n∑
i=1

pi +
ε

2
≥

n∑
i=1

(pi + di) ≥
n∑
i=1

q̃i.

Furthermore, for K ≤ n ≤M ,
n∑
i=1

q∗i = 1 ≥
n∑
i=1

q̃i.
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Therefore, Q∗ majorizes Q. Since entropy H(·) is strictly Suhur-concave [5], we have

H(Q) ≥ H(Q∗),

which means

H(P)−H(Q) ≤ H(P)−H(Q∗).

The nice property that only p1 is increased in Theorem 8 helps to show that the Q∗ in Theorem 8

majorizes all the feasibleQ. Unfortunately, there is no such nice property for theQ∗ in Theorem 6

and therefore majorization may not shorten the proof of Theorem 6. From Theorem 8, it is readily

checked the following corollary.

Corollary 9: For any probability distribution P , let Q and Q′ be the Q∗ as specified in

Theorem 8 with V (P ,Q) ≤ ε and V (P ,Q′) ≤ ε′, respectively. Assume ε′ < ε. If 1 − p1 >
ε
2
,

then

V (P ,Q) = ε,

V (P ,Q′) = ε′,

and

H(Q′) > H(Q).

Now, we are readily to obtain an upper bound on (4). Note that for any given P ,

sup
Q
|H(Q)−H(P)|

= max

{
sup
Q

(H(Q)−H(P)) ,− inf
Q

(H(Q)−H(P))

}
= max

{
sup
Q

(H(Q)−H(P)) , sup
Q

(H(P)−H(Q))

}
= max{H(Q+)−H(P), H(P)−H(Q−)},

where

Q+ = arg max
Q

(H(Q)−H(P))
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and

Q− = arg max
Q

(H(P)−H(Q))

can be obtained from Theorem 6 and Theorem 8, respectively. Then the upper bound on (4) is

obtained by comparing H(Q+) − H(P) with H(P) − H(Q−). Note that if P is an empirical

distribution obtained from a source, Theorem 6 and Theorem 8 can give us an estimated range

of the true entropy. This will give us the confidence interval of the true entropy in Part II of this

paper.

The value of (4) can be obtained by Theorem 6 and Theorem 8 and the value depends not only

on M but also on P . It is also interesting to obtain an upper bound on (4), which is independent

of P . Such a bound can be used to determine a stopping condition in an iterative algorithm

for obtaining P as an approximation of an unknown distribution Q whose alphabet size M is

known. We will first prove a more general result by assuming the probability masses in P and

Q are less than a. In order to make the expression simple, we assumed a = 1
N

for an integer

N .

Theorem 10: If P ∈ ΓL and Q ∈ ΓM with M ≥ L being two probability distributions such

that V (P ,Q) ≤ ε and the probability masses in P and Q are less than a = 1
N

for an integer

N ≤ L, then

|H(Q)−H(P)| ≤

 H
(
{ ε

2
, 1− ε

2
}
)

+ ε
2

log M−N
N

0 < ε
2
< M−N

M

logM − logN ε
2
≥ M−N

M
.

Proof: We follow the definitions of P and Q in (1) and (2), respectively. Assume pi’s are

sorted in descending order. Let γ = {a, a, . . . , a, 0, 0, . . . , 0} ∈ ΓL where the first N probability

masses are equal to a. We first prove that H(P) ≥ H(γ). Consider

H(P)−H(γ) =
L∑
i=1

f(0, pi)−
N∑
i=1

f(0, a)

=
L∑

i=N+1

f(0, pi)−
N∑
i=1

f(pi,−pi + a). (25)

Before Lemma 5 can be applied, we need to check two conditions. It is easily checked that

L∑
i=N+1

pi = 1−
N∑
i=1

pi =
N∑
i=1

(−pi + a),
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and

max
i:N+1≤i≤L

{pi} ≤ pN = min
i:1≤i≤N

{pi}.

By Lemma 5 and (25), we have

H(P) ≥ H(γ).

Together with H(Q) ≤ logM , the upper bound

|H(Q)−H(P)| ≤ logM −H(γ) = logM − logN

is always valid. Since

V

(
γ,

{
1

M
,

1

M
, . . . ,

1

M

})
= 2 · M −N

M
,

we now consider 0 < ε
2
< M−N

M
for a tighter bound on |H(P)−H(Q)|. For those Q′ satisfying

V (γ,Q′) ≤ ε,

max
Q′

(H(Q′)−H(γ))

= H

({
a− aε

2
, . . . , a− aε

2
,

ε

2(M −N)
, . . . ,

ε

2(M −N)

})
−H(γ) (26)

= Nf
(
a,−aε

2

)
+ (M −N)f

(
0,

ε

2(M −N)

)
, (27)

where (26) follows from Theorem 6. On the other hand, for any P ∈ ΓL and Q′′ = {q′′i } ∈ ΓM

with M ≥ L such that V (P ,Q′′) ≤ ε, we have

H(Q′′)−H(P) ≤ H(Q)−H(P),

where Q is the Q∗ as specified in Theorem 6 subject to V (P ,Q) ≤ ε. We first consider

V (P ,Q) = ε and we will show

H(Q)−H(P) ≤ Nf
(
a,−aε

2

)
+ (M −N)f

(
0,

ε

2(M −N)

)
.

When Q is obtained from Theorem 6, µ and ν are found. In Fig.2, it is easy to see that µ

obtained in case i) a = p1 = p2 = p3 is larger than µ obtained in case ii) a = p1 > p2 > p3. Let

x be the µ obtained in case i). We have (a− x)N = ε
2
, so that x = a− aε

2
. Hence, for all i,

pi + di ≤ µ ≤ x = a− aε

2
. (28)
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Moreover, the ν obtained in case i) p7 = 0 is smaller than the ν obtained in case ii) p7 > 0.

Let y be the ν obtained in case i). Since P has al least N positive probability masses, we have

y(M −N) = ε
2
, so that y = ε

M−N . Hence, for all i,

pi + di ≥ γ ≥ y =
ε

2(M −N)
. (29)

Note that

H(Q)−H(P)−Nf
(
a,−aε

2

)
− (M −N)f

(
0,

ε

2(M −N)

)
=

∑
i

f(pi, di)−Nf
(
a,−aε

2

)
− (M −N)f

(
0,

ε

2(M −N)

)

=

(∑
i:di<0

f(pi, di)−Nf
(
a,−aε

2

))

+

(∑
i:di>0

f(pi, di)− (M −N)f

(
0,

ε

2(M −N)

))
. (30)

We first consider the first bracket on the R.H.S. of (30). Define two sets of positive integers

S0 =
{
i ≤ N : di < 0 and pi ≥ a− aε

2

}

and

S1 = {i : di < 0 and i /∈ S0} .
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Denote the sizes of the sets S0 and S1 by |S0| and |S1|, respectively. Then∑
i:di<0

f(pi, di)−Nf
(
a,−aε

2

)
=

∑
i∈S0

(
f(pi, di)− f

(
a,−aε

2

))
+
∑
i∈S1

f(pi, di)− (N − |S0|)f
(
a,−aε

2

)
=

∑
i∈S0

(
f
(
pi,−pi + a− aε

2

)
+ f

(
a− aε

2
,−a+

aε

2
+ di + pi

)
−f(a,−a+ pi)− f

(
pi,−pi + a− aε

2

))
+
∑
i∈S1

f(pi, di)− (N − |S0|)f
(
a,−aε

2

)
=

∑
i∈S0

(
f
(
a− aε

2
,−a+

aε

2
+ di + pi

)
− f(a, pi − a)

)
+
∑
i∈S1

f(pi, di)−

(N − |S0|)f
(
a,−aε

2

)
=

(∑
i∈S0

f
(
a− aε

2
,−a+

aε

2
+ di + pi

)
+
∑
i∈S1

f(pi, di)

)

−

(∑
i∈S0

f(a, pi − a)− (N − |S0|)f
(
a,−aε

2

))
, (31)

where −a + aε
2

+ di + pi < 0 follows from (28). Before we can apply Lemma 4 to show the

R.H.S. of (31) less than 0, we need to check the conditions in (5) and (6). Note that the canceled

terms do not affect that∑
i∈S0

(
−a+

aε

2
+ di + pi

)
+
∑
i∈S1

di =
∑
i∈S0

(pi − a) + (N − |S0|)
(
−aε

2

)
.

Therefore, (5) is satisfied. Once (6) is also checked, the fact that the R.H.S. of (31) is less than

0 can be seen immediately from Lemma 4. The checking of (6) is done in the following three

cases.

Case 1: |S0| = N . The R.H.S. of (31) becomes(∑
i∈S0

f
(
a− aε

2
,−a+

aε

2
+ di + pi

)
+
∑
i∈S1

f(pi, di)

)
−
∑
i∈S0

f(a, pi − a).

We have

max

{
a− aε

2
,max
i∈S1

pi

}
≤ max

{
a− aε

2
, pN

}
= pN (32)

≤ min
i∈S0

pi,
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where (32) follows from pN ∈ S0.

Case 2: |S0| < N and |S1| = 0. The R.H.S. of (31) becomes(∑
i∈S0

f
(
a− aε

2
,−a+

aε

2
+ di + pi

))
−

(∑
i∈S0

f(a, pi − a)− (N − |S0|)f
(
a,−aε

2

))
.

Then

min

{
min
i∈S0

{a+ pi − a}, a−
aε

2

}
≥ min

{
a− aε

2
, a− aε

2

}
= a− aε

2
.

Case 3: |S0| < N and |S1| > 0. Let b = |S0|. Since pi’s are sorted in descending order,

max
i∈S1

pi = pb+1.

Since pb+1 6∈ S0 but b+ 1 ≤ N , it must be

pb+1 < a− aε

2
.

Case 3a: N > |S0| = b = 0 and |S1| > 0. Then

a− aε

2
≥ p1 ≥ max

i∈S1

pi.

Case 3b: N > |S0| = b > 0 and |S1| > 0. Then

max

{
a− aε

2
,max
i∈S1

pi

}
= max

{
a− aε

2
, pb+1

}
≤ max

{
a− aε

2
, a− aε

2

}
= a− aε

2

and

min

{
min
i∈S0

pi, a−
aε

2

}
≥ min

{
a− aε

2
, a− aε

2

}
= a− aε

2

≥ max

{
a− aε

2
,max
i∈S1

pi

}
.

Therefore, (6) is checked in all possible cases and we can apply Lemma 4 to (31) and show that∑
i:di<0

f(pi, di)−Nf
(
a,−aε

2

)
≤ 0. (33)

Now, we consider the second bracket in (30). Define

S2 =

{
i > N : di > 0 and pi ≤

ε

2(M −N)

}
September 18, 2007 DRAFT



22

and

S3 = {i : di > 0 and i /∈ S2} .

Then ∑
i:di>0

f(pi, di)− (M −N)f

(
0,

ε

2(M −N)

)

=
∑
i∈S2

(
f

(
pi,−pi +

ε

2(M −N)

)
+ f

(
ε

2(M −N)
,− ε

2(M −N)
+ pi + di

))
+
∑
i∈S3

f(pi, di)−
∑
i∈S2

f

(
0,

ε

2(M −N)

)
− (M −N − |S2|)f

(
0,

ε

2(M −N)

)

=

(∑
i∈S2

f

(
ε

2(M −N)
,− ε

2(M −N)
+ pi + di

)
+
∑
i∈S3

f(pi, di)

)

−

(∑
i∈S2

f (0, pi) + (M −N − |S2|)f
(

0,
ε

2(M −N)

))
, (34)

where − ε
2(M−N)

+ pi + di > 0 follows from (29). Before we can apply Lemma 5 to show the

R.H.S. of (34) less than 0, we need to check the conditions in (7) and (8). Note that the canceled

terms will not affect∑
i∈S2

(
− ε

2(M −N)
+ pi + di

)
+
∑
i∈S3

di =
∑
i∈S2

pi + (M −N − |S2|) ·
ε

2(M −N)
.

Therefore, (7) is satisfied. Once (8) is also checked, the fact that the R.H.S. of (34) is less than

0 can be seen immediately from Lemma 5. The checking of (8) is done in the following three

cases.

Case 1: |S2| = 0. The R.H.S. of (34) becomes∑
i∈S3

f(pi, di)− (M −N)f

(
0,

ε

2(M −N)

)
.

Then

min
i∈S3

pi ≥
ε

2(M −N)
.

Case 2: |S2| > 0 and pN ≥ ε
2(M−N)

. We have

min

{
ε

2(M −N)
,min
i∈S3

pi

}
≥ min

{
ε

2(M −N)
,min

{
pN ,

ε

2(M −N)

}}
≥ ε

2(M −N)
,
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and

max

{
max
i∈S2

pi,
ε

2(M −N)

}
≤ ε

2(M −N)

≤ min

{
ε

2(M −N)
,min
i∈S3

pi

}
.

Case 3: |S2| > 0 and pN < ε
2(M−N)

. Then |S2| = M −N . The R.H.S. of (34) becomes∑
i∈S2

f

(
ε

2(M −N)
,− ε

2(M −N)
+ pi + di

)
+
∑
i∈S3

f(pi, di)−
∑
i∈S2

f (0, pi) .

We have

min

{
ε

2(M −N)
,min
i∈S3

pi

}
≥ min

{
ε

2(M −N)
,min

{
pN ,

ε

2(M −N)

}}
= pN

≥ pN+1

= max
i∈S2

{pi}.

Therefore, (8) is checked in all possible cases and we can apply Lemma 5 to (34) and show that∑
i:di>0

f(pi, di) ≤ (M −N)f

(
0,

ε

2(M −N)

)
. (35)

By putting (33) and (35) into (30), we have

H(Q)−H(P) ≤ Nf
(
a,−aε

2

)
+ (M −N)f

(
0,

ε

2(M −N)

)
= max

Q′∈ΓM
(H(Q′)−H(γ)),

where the last equality follows from (27).

In the previous part of this proof, we have assumed V (P ,Q) = ε. If V (P ,Q) = η < ε, the

previous part of this proof tells

H(Q)−H(P) ≤ Nf
(
a,−aη

2

)
+ (M −N)f

(
0,

η

2(M −N)

)
= max

Q′′∈ΓM
(H(Q′′)−H(γ)),

where Q′′ is obtained from Theorem 6 subject to V (γ,Q′′) ≤ η. By Corollary 7, it is readily

seen that

H(Q)−H(P) ≤ max
Q′′∈ΓM

(H(Q′′)−H(γ))

≤ max
Q′∈ΓM

(H(Q′)−H(γ)).
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The theorem is proved when we can find an upper bound on H(P)−H(Q) for any P ∈ ΓL

and Q ∈ ΓM with M ≥ L such that V (P ,Q) ≤ ε. By putting P = Q′′ and ε = 2
∑M

i=L+1 q
′′
i into

Theorem 8, we obtain Q∗ where H(Q∗) < H(Q). Then Q∗ = {q1 +
∑M

i=L+1 qi, q2, q3, . . . , qL}

has at most L positive probability masses and the variational distance

V (P ,Q∗) =
L∑
i=1

|pi − q∗i |

= |p1 − q∗1|+
L∑
i=2

|pi − q∗i |

≤ |p1 − q1|+
M∑

i=L+1

qi +
L∑
i=2

|pi − qi|

= V (P ,Q)

≤ ε.

Since P and Q∗ have the same number of positive probability masses, we can apply the results

in the previous part and see that

max
P ′∈ΓL:V (P ′,γ)≤ε

(H(P ′)−H(γ)) ≥ H(P)−H(Q∗)

≥ H(P)−H(Q),

where the last inequality follows from H(Q∗) < H(Q). Since M ≥ L, it is readily checked that

max
P ′∈ΓL:V (P ′,γ)≤ε

(H(P ′)−H(γ)) ≤ max
Q′∈ΓM :V (Q′,γ)≤ε

(H(Q′)−H(γ))

As a whole, for all P and Q,

|H(Q)−H(P)| ≤ max
Q′∈ΓM :V (Q′,γ)

(H(Q′)−H(γ))

= Nf
(
a,−aε

2

)
+ (M −N)f

(
0,

ε

2(M −N)

)

=

 H
(
{ ε

2
, 1− ε

2
}
)

+ ε
2

log M−N
N

0 < ε
2
< M−N

M

logM − logN ε
2
≥ M−N

M
.

When a = 1, we have the following important special case of Theorem 10.
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Theorem 11: If P ∈ ΓL and Q ∈ ΓM with M ≥ L being two probability distributions such

that V (P ,Q) ≤ ε, then

|H(Q)−H(P)|

≤

 H
(
{ ε

2
, 1− ε

2
}
)

+ ε
2

log(M − 1) 0 < ε
2
< M−1

M

logM ε
2
≥ M−1

M
.

Thus for any fixed finite L and finite M , we have

0 ≤ lim
ε→0

sup
Q
|H(Q)−H(P)|

≤ lim
ε→0

[
H
({ ε

2
, 1− ε

2

})
+
ε

2
log(max(L,M)− 1)

]
= 0.

This can be interpreted as the Shannon entropy being continuous when the alphabet size is

bounded and known.

We now compare the bound given in Theorem 11 with similar results in some literatures. For

P ∈ ΓL and Q ∈ ΓM , we let N = max(L,M) ≥ 2 and V (P ,Q) = ε (c.f. (3)). Then (55) and

(56) in [3] can be combined to become

|H(Q)−H(P)| ≤ g′(ε,N),

where

g′(ε,N) =

 ε logN − ε log ε ε ≤ 1
3

ε(1 + logN)− ε log ε ε > 1
3
.

By Lemma 2.7 in [2], the bound g′(ε,N) can be improved to become

g(ε,N) =

 ε logN − ε log ε ε ≤ 1
2

ε(1 + logN)− ε log ε ε > 1
2
.

In order to compare g(ε,N) with the upper bound in Theorem 11, we consider two cases. We

first consider that 0 < ε ≤ 2(N−1)
N

and let

φ(ε,N) = g(ε,N)−H
( ε

2
, 1− ε

2

)
− ε

2
log(N − 1).
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Fig. 6. A plotting of φ(ε, 2) where the logarithms in φ are in base 2

Then our bound is tighter than g(ε,N) if we can show that φ ≥ 0 for all N and 0 < ε <

2(N−1)
N
≤ 2. Note that

dφ(ε,N)

dN
=

ε

N ln 2
− ε

2(N − 1) ln 2

=
2Nε− 2ε− εN
2N(N − 1) ln 2

=
ε(N − 2)

2N(N − 1) ln 2

≥ 0

for N ≥ 2. Therefore,

φ(ε,N) ≥ φ(ε, 2).

Fig. 6 shows that φ(ε, 2) ≥ 0 for 0 < ε ≤ 2.

On the other hand, for 1 ≤ 2(N−1)
N

< ε ≤ 2, we consider

g(ε,N)− logN = ε(1 + logN)− ε log ε− logN

= ε− ε log ε+ ε logN − logN

≥ ε− ε log ε

≥ ε− ε log 2

= 0.
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Finally, we note that the condition V (P ,Q) = ε in [3] is a special case of the condition

V (P ,Q) ≤ ε used in Theorem 11. The above calculations, however, show that our bounds

are still smaller than g(ε,N). Therefore, some tighter bounds are obtained in this paper.

Note that the condition V (P ,Q) = ε in [3] is a special case of the condition V (P ,Q) ≤ ε

used in Theorem 11. However, our bounds are still smaller than g(ε,N). Therefore, some tighter

bounds are shown in this paper. The bound given in Theorem 11 is, in fact, the tightest. Let

P = {1, 0, 0, . . . , 0}

and

Q =


{

1− ε
2
, ε

2(M−1)
, . . . , ε

2(M−1)

}
0 < ε

2
< M−1

M{
1
M
, 1
M
, . . . , 1

M

}
ε
2
≥ M−1

M
.

We have V (P ,Q) ≤ ε and |H(Q)−H(P)| attaining the upper bound in Theorem 11.

Furthermore, Theorem 11 can be generalized to describe some distributions which have not

been normalized. This result was used in [6]. We extend the definition of entropy to distribution

which is not normalized.

Definition 1: For an unnormalized distribution P̃ = (p̃1, p̃2, . . . , p̃L) which can be normalized

by a positive constant α ≤ 1 so that (α−1p̃1, α
−1p̃2, . . . , α

−1p̃L) ∈ ΓL, let

H(P̃) = −
L∑
i=1

p̃i log p̃i.

Theorem 12: Let P̃ = (p̃1, p̃2, . . . , p̃L) and Q̃ = (q̃1, q̃2, . . . , q̃M) be two unnormalized

distributions which can be normalized by two positive constants α ≤ 1 and β ≤ 1 so that

(α−1p̃1, α
−1p̃2, . . . , α

−1p̃L) ∈ ΓL and (β−1q̃1, β
−1q̃2, . . . , β

−1q̃M) ∈ ΓM with M ≥ L. If

V (P̃ , Q̃) ≤ ε,

then

|H(Q̃)−H(P̃)| ≤

 −ε log ε+ ε logM ε < 1

logM ε ≥ 1.

Proof: For any P̃ = (p̃1, p̃2, . . . , p̃L) and Q̃ = (q̃1, q̃2, . . . , q̃L) such that V (P ,Q) ≤ ε, let

d̃i’s be some real values such that

(q̃1, q̃2, . . . , q̃M) = (p̃1 + d̃1, p̃2 + d̃2, . . . , p̃L + d̃L, d̃L+1, . . . , d̃M).
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It is obvious that

|H(Q̃)−H(P̃)| ≤ | logM − 0| = logM.

Suppose ε < 1 in the following. For d̃i < 0, by Lemma 3,

−(p̃i + d̃i) log(p̃i + d̃i) + p̃i log p̃i ≤ −(1 + d̃i) log(1 + d̃i) + 1 log 1

= −(1 + d̃i) log(1 + d̃i). (36)

We now consider two cases. If −1 < d̃i < −0.5, let

d∗i = 1 + d̃i < 0.5 ≤ |d̃i|,

which gives d∗i > 0. Then by (36)

−(p̃i + d̃i) log(p̃i + d̃i) + p̃i log p̃i ≤ −(1 + d̃i) log(1 + d̃i)

= −d∗i log d∗i .

If −0.5 ≤ d̃i < 0, let

d∗i = −d̃i = |d̃i|,

which again gives d∗i > 0. Then by

−(1− x) log(1− x) ≤ −x log x

for 0 ≤ x ≤ 0.5 and (36), we have

−(p̃i + d̃i) log(p̃i + d̃i) + p̃i log p̃i ≤ −(1 + d̃i) log(1 + d̃i)

≤ −(1− d∗i ) log(1− d∗i )

≤ −d∗i log d∗i .

Furthermore, for d̃i ≥ 0, let d∗i = d̃i. Then we have

−(p̃i + d̃i) log(p̃i + d̃i) + p̃i log p̃i = f(p̃i, d̃i)

≤ f(0, d̃i)

= f(0, d∗i )

= −d∗i log d∗i ,
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where the inequality follows from Lemma 2. Therefore, d∗i ≥ 0 for all i and∑
i

d∗i ≤
∑
i

|d̃i| ≤ ε,

but

|H(Q̃)−H(P̃)| =

∣∣∣∣∣−∑
i

(p̃i + d̃i) log(p̃i + d̃i) +
∑
i

p̃i log p̃i

∣∣∣∣∣
≤

∑
i

| − (p̃i + d̃i) log(p̃i + d̃i) + p̃i log p̃i|

≤
∑
i

| − d∗i log d∗i |

= −
∑
i

d∗i log d∗i

≤ −M · ε
M

log
ε

M

= −ε log ε+ ε logM.

As a whole, we have

|H(Q̃)−H(P̃)| ≤

 −ε log ε+ ε logM ε < 1

logM ε ≥ 1.

The bound given in Theorem 12 is, in fact, the tightest. Let

P̃ = {δ, 0, 0, . . . , 0}

and

Q̃ =


{
ε
M
, ε
M
, . . . , ε

M

}
0 < ε < 1{

1
M
, 1
M
, . . . , 1

M

}
ε ≥ 1,

where δ ≈ 0. We have V (P̃ , Q̃) ≤ ε and |H(Q̃) − H(P̃)| attaining the upper bound in

Theorem 12.

Note that Theorem 12 is the same as Lemma 2.7 in [2] for ε ≤ 0.5 because the proof of

Lemma 2.7 in [2] has not used the fact that probability distributions are normalized although it is

implicitly assumed. This explains why their bound is not tight and looks similar with Theorem 12.

Moreover, Lemma 2.7 in [2] requires that ε ≤ 0.5 which is not required in Theorem 12.
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In Theorem 11 and Theorem 12, upper bounds on supQ |H(Q)−H(P)| have been obtained.

For the sake of completeness, a lower bound on supQ |H(Q)−H(P)| is given after the proof

of the following theorem which is a refinement of Theorem 1.

Theorem 13: If P ∈ ΓL and Q ∈ ΓM with M ≥ L being two probability distributions such

that

V (P ,Q) ≤ ε,

then

inf
P

sup
Q

(H(Q)−H(P)) =

 H
(
ε
2
, 1− ε

2

)
+ ε

2
log
(
M
L
− 1
)

0 < ε
2
< M−L

M

logM − logL ε
2
≥ M−L

M
.

(37)

Proof: It is not obvious that a lower bound on

sup
Q

(H(Q)−H(P)) (38)

is given by taking P to be the uniform distribution, but it will be seen to be true. Let P ∈ ΓL

and Q ∈ ΓM be any two distributions where Q is obtained from P according to Theorem 6

subject to V (P ,Q) ≤ ε. We use the notations in (1) and (2) for P and Q, respectively, and we

assume that pi’s are sorted in descending order. Furthermore, let

P ′ =
(

1

L
,

1

L
, . . . ,

1

L

)
be the uniform distribution in ΓL, and

Q′ =
(

1

L
+ d′1,

1

L
+ d′2, . . . ,

1

L
+ d′L, d

′
L+1, . . . , d

′
M

)
be the distribution in ΓM obtained by Theorem 6 subject to V (P ′,Q′) ≤ ε. We will show that

inf
P

sup
Q:V (P,Q)≤ε

(H(Q)−H(P)) = H(Q′)−H(P ′) (39)

by considering three cases.

We first consider the case that V (P ,Q) < ε. Let µ and ν satisfy (9) and (10) where Q is

obtained from P in Theorem 6. If µ > ν, then V (P ,Q) = ε from the construction of Q. By

contradiction, we have shown that

Q =

(
1

M
,

1

M
, . . . ,

1

M

)
.
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Note that

ε > V (P ,Q)

=
L∑
i=1

∣∣∣∣pi − 1

M

∣∣∣∣+ (M − L) · 1

M

=
∑

i:pi≥ 1
M

(
pi −

1

M

)
+
∑

i:pi<
1
M

(
1

M
− pi

)
+ (M − L) · 1

M

=
∑

i:p∗i≥
1
M

(
p∗i −

1

M

)
−
∑

i:p∗i<
1
M

(
1

M
− p∗i

)
+ 2 ·

∑
i:p∗i<

1
M

(
1

M
− p∗i

)
+ 1− L

M

=
L∑
i=1

(
pi −

1

M

)
+ 2 ·

∑
i:pi<

1
M

(
1

M
− pi

)
+ 1− L

M

≥
(

1− L

M

)
+ 0 + 1− L

M

= 2 ·
(

1− L

M

)
.

Then

V (P ′,Q) = L ·
(

1

L
− 1

M

)
+ (M − L) · 1

M
= 2 ·

(
1− L

M

)
< ε.

Therefore, logM = H(Q) ≤ H(Q′) so that H(Q′) = logM and hence Q′ is the uniform

distribution. Since V (P ′,Q′) = V (P ′,Q) < ε and H(P ′) ≥ H(P), (38) is minimized when

P = P ′ in this case.

Now we assume that V (P ,Q) = ε and V (P ′,Q′) = ε. By construction of Q,

d′1 = d′2 = · · · = d′L = − ε

2L

and

d′L+1 = d′L+2 = · · · = d′M =
ε

2(M − L)
.

Note that ∑
i:di>0

di =
∑
i:d′i>0

d′i =
ε

2
.

We claim that ∑
i:di>0

f(pi, di) ≥
∑
i:d′i>0

f (0, d′i) . (40)
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Otherwise, consider the example in Fig. 2 and let Q′ = {µ, µ, µ, p4, p5, p6, p7,
ε
4
, ε

4
}. If (40) is

false, then H(Q′) ≥ H(Q∗) in Theorem 6 which causes contradiction. We now use Lemma 4

to show that ∑
i:di<0

f(pi, di)− Lf
(

1

L
,− ε

2L

)
(41)

is nonnegative. It is easily to check that µ ≥ 1
L
− ε

2L
. Assume µ ≥ 1

L
. We have

min
i:di<0
{pi + di} = µ ≥ 1

L
.

Then, we can apply Lemma 4 to show that (41) is nonnegative. Assume µ ≤ 1
L

. Define two sets

of positive integers

S0 =

{
i : di < 0 and pi >

1

L

}
and

S1 = {i : di < 0 and i 6∈ S0}.

Then∑
i:di<0

f(pi, di)− Lf
(

1

L
,− ε

2L

)

=
∑
i∈S0

(
f(pi, di)− f

(
1

L
,− ε

2L

))
+
∑
i∈S1

(
f(pi, di)− f

(
1

L
,− ε

2L

))
−(L− |S0| − |S1|)f

(
1

L
,− ε

2L

)
=

∑
i∈S0

(
f

(
pi,−pi +

1

L

)
+ f

(
1

L
,− 1

L
+ µ

)
− f

(
1

L
,− 1

L
+ µ

)
− f

(
µ,−µ+

1

L
− ε

2L

))
+
∑
i∈S1

(
f(pi, di)− f

(
1

L
,− 1

L
+ pi

)
− f (pi, di)− f

(
µ,−µ+

1

L
− ε

2L

))
−(L− |S0| − |S1|)f

(
1

L
,− ε

2L

)
=

∑
i∈S0

f

(
pi,−pi +

1

L

)
− |S0|f

(
µ,−µ+

1

L
− ε

2L

)
−
∑
i∈S1

f

(
1

L
,− 1

L
+ pi

)
− |S1|f

(
µ,−µ+

1

L
− ε

2L

)
− (L− |S0| − |S1|)f

(
1

L
,− ε

2L

)
.(42)
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Note that the canceled terms in the above calculation do not affect that (42) still satisfies the

requirement in (5). Furthermore,

min
i∈S0

{
pi − pi +

1

L

}
=

1

L
= max

{
1

L
, µ

}
.

Then, we can apply Lemma 4 to show that (41) is nonnegative. Hence,∑
i:di<0

f(pi, di)−
∑
i:d′i<0

f

(
1

L
, d′i

)
=
∑
i:di<0

f(pi, di)− Lf
(

1

L
,− ε

2L

)
≥ 0.

Therefore, ∑
i:di<0

f(pi, di) ≥
∑
i:d′i<0

f

(
1

L
, d′i

)
.

Together with (40), we can conclude that

H(Q)−H(P) =
∑
i

f(pi, di)

≥
∑
i:d′i>0

f (0, d′i) +
∑
i:d′i<0

f

(
1

L
, d′i

)
= H(Q′)−H(P ′).

Finally we assume that V (P ,Q) = ε but V (P ′,Q′) = δ < ε. This means that Q′ is the

uniform distribution. Then a Q∗ can be obtained from P according to Theorem 6 subject to

V (P ,Q∗) = δ. Therefore, we have

H(Q)−H(P) ≥ H(Q∗)−H(P)

≥ H(Q′)−H(P ′),

where the first inequality follows from δ < ε and Corollary 7 and the second inequality follows

from the result in the last paragraph.

Thus we have proved (39) in all possible cases. The value of d′i and Q′ can be obtained from

Theorem 6. Therefore,

inf
P

sup
Q

(H(Q)−H(P)) = H(Q′)−H(P ′)

=

 H
(
ε
2
, 1− ε

2

)
+ ε

2
log
(
M
L
− 1
)

0 < ε
2
< M−L

M

logM − logL ε
2
≥ M−L

M
.
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Note that

inf
P

sup
Q
|H(Q)−H(P)| ≥ inf

P
sup
Q

(H(Q)−H(P)) (43)

=

 H
(
ε
2
, 1− ε

2

)
+ ε

2
log
(
M
L
− 1
)

0 < ε
2
< M−L

M

logM − logL ε
2
≥ M−L

M

(44)

from Theorem 13. Although the bound in (43) is not tight, Theorem 13 is strong enough to

subsume Theorem 1 because for any fixed ε > 0, the R.H.S. of (44) tends to infinity as M →∞.

III. CONCLUSION

We have introduced the way to find the distribution which attains the minimum or the

maximum entropy within a given variational distance from a given probability distribution. For

any two probability distributions, we have obtained the tightest upper bound on the difference

of their entropies in terms of their alphabet sizes and variational distance. The lower bound of

the difference has also been obtained. These bounds have related the continuity/discontinuity of

entropy and the alphabet size of a distribution. The applications of these results will be shown

in Part II of this paper.
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