
1

Zero-Error Multichannel Source Coding
Hongyi Yao and Raymond W. Yeung, Fellow, IEEE

e1

s te2

Fig. 1. A two-channel communication system.

Abstract—We introduce the problem of zero-error multichannel source
coding, in which a transmitter needs to transmit an information source
to a receiver with zero error through possibly more than one error-free
channel. We present the basic results related to this problem.

I. INTRODUCTION

The traditional source coding problem concerns the transmission of
an information source through a single channel from the transmitter
to the receiver. When multiple channels are involved, the problem
may become more complicated. To illustrate the idea, we consider
the network in Fig. 1 discussed in [5]. In this network, the two edges
e1 and e2 represents error-free channels 1 and 2 from node s to
node t, respectively. Consider transmitting an information source X
from s to t through channels 1 and 2. Let the alphabet of X be
X = {1, 2, 3, 4, 5, 6}, and suppose the source symbols 1, 2, 3, 4, 5
and 6 are encoded by encoders dedicated to channels 1 and 2 into

0, 1, 00, 01, 10, 11, (1)

and
0, 0, 1, 1, 1, 1, (2)

respectively.
Let U1 and U2 be the random codewords sent on channels 1

and 2, respectively. Equation (1) gives the collection of values (not
necessarily distinct) that can be taken by U1, which do not form a
prefix-free set. Likewise, equation (2) gives the collection of values
that can be taken by U2, which again do not form a prefix-free set.
However, conditioning on the value of U2 which has length 1 with
probability 1, the values that can be taken by U1 form a prefix-free
set. For example, when U2 takes the value 1, the values that can be
taken by U1 are 00, 01, 10, 11, which form a prefix-free set. So at
node t, the information source X can be recovered with zero error.

In this paper, we formulate the problem of zero-error multichannel
source coding. The results presented here are generalizations of the
classical results in zero-error source coding (single-channel), of which
a comprehensive treatment can be found in [6, Ch. 4].

II. MULTICHANNEL SOURCE CODES

Let a symbol transmitted on a channel be taken from the q-ary
alphabet Q = {1, 2, . . . , q}. Let channels 1 to k be the channels

Hongyi Yao is with the Institute of Theoretical Computer Science of
Tsinghua University, Beijing, P.R China, 100084. The work of Hongyi Yao
was partially supported by the National Natural Science Foundation of China
Grant 60553001 and the National Basic Research Program of China Grants
2007CB807900 and 2007CB807901. Email: yaohongyi03@gmail.com

Raymond Yeung is with the Department of Information Engineering, The
Chinese University of Hong Kong. The work of Raymond Yeung was partially
supported by a grant from the Research Grant Committee of the Hong Kong
Special Administrative Region, China (RGC Ref. No. CUHK 2/06C). Email:
whyeung@ie.cuhk.edu.hk

connecting node s and node t. Denote the alphabet of the information
source X by X , and the q-ary entropy of X by Hq(X).

Definition 1 (Multichannel source code): A q-ary, k-channel
source code C for a source random variable X is a mapping
from X to (Q∗)k, where Q∗ is the set of all finite length
sequences of symbols taken from the q-ary code alphabet Q and
(Q∗)k = {(Y1, Y2, . . . , Yk) : Yi ∈ Q∗}. For x ∈ X , C(x) is called
the codeword for x, and the image of C is called the codebook.

Consider an information source sequence {Xi : i ≥ 1}, where Xi

are discrete random variables taking values in a common alphabet. We
apply a k-channel source code C to each Xi, where the codewords
are concatenated channelwise. Once the codewords transmitted on
the channels are concatenated, the boundaries of the codewords are
no longer explicit. In other words, when the code C is applied to
a source sequence, k sequences of code symbols are produced, and
the codewords may no longer be distinguishable. We are particularly
interested in uniquely decodable codes which are defined as follows.

Definition 2 (Uniquely decodable code): A k-channel code C is
uniquely decodable if for any finite source sequence, the k sequences
of code symbols corresponding to this source sequence is different
from the k sequences of code symbols corresponding to any other
(finite) source sequence.

Next, we define a class of uniquely decodable codes which has the
desirable property that a codeword can be recognized instantaneously
once its transmission on all the k channels is completed. In other
words, a codeword can be decoded without referring to the symbols
of any future codewords.

Definition 3 (Self-punctuating code): A k-channel code

C = {(Y (1)
1 , Y

(1)
2 , . . . , Y

(1)
k), (Y

(2)
1 , Y

(2)
2 , . . . , Y

(2)
k), . . .}

is self-punctuating if for any k sequences of symbols S1,S2, . . . ,Sk

generated by encoding a finite source sequence with the code C,
there exists exactly one sequence tuple (S ′1,S ′2, . . . ,S ′k) such that
(S ′1,S ′2, . . . ,S ′k) is a codeword in C and S ′i is a prefix of Si for all
i.

It’s well known that for the single channel case, a code C is self-
punctuating if and only if C is a prefix-free code. However, it is more
complicated for the multichannel case. We first introduce a stronger
notion of a self-punctuating code.

Definition 4 (Strongly self-punctuating code): A k-channel code

C = {(Y (1)
1 , Y

(1)
2 , . . . , Y

(1)
k), (Y

(2)
1 , Y

(2)
2 , . . . , Y

(2)
k), . . . , }

is strongly self-punctuating, if for any k finite sequences of sym-
bols S1,S2, . . . ,Sk (not necessarily generated by encoding a finite
source sequence), there exists no more than one sequence tuple
(S ′1,S ′2, . . . ,S ′k) such that (S ′1,S ′2, . . . ,S ′k) is a codeword and S ′i
is a prefix of Si for all i.

There exist codes which are self-punctuating but not strongly self-
punctuating. For example, let C = {(011, 10), (01, 100)}. Upon
considering all the four combinations when two codewords are
concatenated, we conclude that C is self-punctuating. However, for
the two symbol sequences S1 = 011 and S2 = 100, either (011, 10)
or (01, 100) can be the leading codeword in (S1,S2).

Definition 5 (Multichannel prefix-free code): Two k-channel
codewords (Y

(1)
1 , Y

(1)
2 , . . . , Y

(1)
k) and (Y

(2)
1 , Y

(2)
2 , . . . , Y

(2)
k) are

prefix-free if there exists j such that Y (1)
j is not a prefix of Y (2)

j

2

U0

U1

1

0

1 0

1

0

0

0 1

1

1 1

1

0 0

0 1

0 ...

...

2 5 1 4 6 1 3

Fig. 2. The codeword sequence for the source sequence 2514613 . . .

and Y (2)
j is not a prefix of Y (1)

j . A k-channel code C is a prefix-free
code if any two codewords in C are prefix-free.

For simplicity, we will refer to a prefix-free code as a prefix
code. Different from the single source case, there exist codes which
are self-punctuating but not prefix. For example, the code C =
{(011, 10), (01, 100)} which we have seen is self-punctuating but not
prefix. However, a strongly self-punctuating code is a multichannel
prefix code, and vice versa, as we prove in the next theorem.

Theorem 1: A k-channel code C is a strongly self-punctuating
code if and only if it is a prefix code.

Proof: We first prove the “if” part. If C is not a prefix code,
there exist two codewords (Y1, Y2, ..., Yk) and (Z1, Z2, ..., Zk) in C
such that Yi is a prefix of Zi or Zi is a prefix of Yi for all i. For all
i, let Si be the longer of Yi and Zi. Then by Definition 4, C is not
strongly self-punctuating.

We now prove the “only if” part. If C is not strongly self-
punctuating, then there exist two codewords (Y1, Y2, ..., Yk) and
(Z1, Z2, ..., Zk) in C and a sequence tuple (S1,S2, ...,Sk) such that
both Yi and Zi are prefices of Si for all i. Then for all i, either Yi

is a prefix of Zi or Zi is a prefix of Yi, i.e., (Y1, Y2, ..., Yk) and
(Z1, Z2, ..., Zk) are not prefix free. Hence, C is not a prefix code.
The proof is completed.

In the example in Section I, the source symbols 1, 2, 3, 4, 5,
and 6 are encoded into the codewords (0, 0), (1, 0), (00, 1), (01, 1),
(10, 1), and (11, 1), respectively. Obviously, these codewords form
a prefix code. For the source sequence 2514613..., Fig. 2 illustrates
the boundaries of the codewords after they have been concatenated.

In the following, we present a decoding scheme called the Self-
Punctuating Decoding Process (SPDP) for any self-punctuating code.
The input to SPDP are k sequences of symbols generated by encoding
a finite source sequence.
(i) For each channel, reset the pointer to the beginning of the next
codeword to be decoded. If there is no more codeword to be decoded,
STOP.
(ii) Set T1, T2, ..., Tk to be the empty sequence and set N to be the
set containing all the codewords in C.
(iii) For i from 1 to k, read a symbol, say xi, from channel i, move
the pointer one step forward, and append xi to Ti. If no more symbols
can be read on a channel, skip that channel.
(iv) We say a codeword (Y1, Y2, ..., Yk) is incompatible with
(T1, T2, ..., Tk) if and only if there exists i such that Yi is not a
prefix of Ti and Ti is not a prefix of Yi. Delete all incompatible
codewords in N .
(v) If only one codeword remains in N , output that codeword and
go back to (i); otherwise, go back to (iii).

Next, we prove the correctness of SPDP.
Theorem 2: Let (S1, S2, ..., Sk) be a sequence tuple obtained by

encoding a source sequence with a self-punctuating code C. Then
SPDP always decodes correctly.

Proof: Let Y be any codeword in C and suppose Y is the leading
codeword in (S1, S2, ..., Sk). Because of this, in the execution of (iv),
Y cannot be deleted from N . If the size of N is eventually reduced

to 1, then the codeword Y will be decoded correctly. Therefore, if
suffices to show that the size of N is always reduced to 1 after at
most s iterations of (iv), where s is the length of the longest sequence
among Yi, 1 ≤ i ≤ k.

If the size of N is reduced to 1 after t < s iterations of (iv), the
theorem is proved. If not, after s iterations of (iv), there exists another
codeword Y ′ = (Y ′1 , Y

′
2 , . . . , Y

′
k) ∈ N . Since C is self-punctuating,

there exists i such that Yi is not a prefix of Y ′i and Y ′i is not a prefix
of Yi. However, since Y ′ has not been deleted from N after |Yi| ≤ s
iterations of (iv), where |Yi| denotes the length of Yi, Yi is a prefix
of Y ′i or Y ′i is a prefix of Yi, which is a contradiction. Hence, the
size of N is always reduced to 1 after at most s iterations of (iv).
The theorem is proved.

III. KRAFT INEQUALITY AND ENTROPY BOUND

Similar to single source coding, the Kraft inequality gives a
necessary condition for a code C to be uniquely decodable.

Theorem 3: Let C be a q-ary k-channel source code with m
codewords. For the ith codeword (Y

(i)
1 , Y

(i)
2 , . . . , Y

(i)
k) ∈ C, denotes

its length tuple by [li1, l
i
2, . . . , l

i
k], where lij is the length of Y (i)

j . If
C is uniquely decodable, then its set of length tuples satisfies

mX
i=1

q−si ≤ 1, (3)

where
si = li1 + li2 + ...+ lik (4)

is the total length of the ith codeword over all the k channels.
Proof: Let N be an arbitrary positive integer. By collecting all

the terms in (
Pm

i=1 q
−si)N , we write
mX

i=1

q−si

!N

=

NsmX
j=1

Ajq
−j ,

where sm is the maximum of {si} and Aj is the coefficient of q−j

in (
Pm

i=1 q
−si)N . Now observe that Aj gives the total number of

sequences of N codewords with a total length of j code symbols.
Since the code is uniquely decodable, these code sequences must be
distinct, and therefore

Aj ≤ (j + k − 1)k−1qj ,

because there are qj distinct sequences of j symbols and at most
(j + k − 1)k−1 ways to divide them into k groups. Then we have

mX
i=1

q−si

!N

≤
NsmX
j=1

(j + k − 1)k−1

≤ (k +Nsm)kNsm,

or
mX

i=1

q−si ≤ ((k +Nsm)kNsm)1/N .

Since this inequality holds for any N , letting N →∞, we obtain (3).
This can be seen by taking logarithm of the right hand side above.
The theorem is proved.

Different from the single-channel case, the Kraft inequality is
not a sufficient condition for the existence of a prefix code, and
not even for the existence of a self-punctuating code. For example,
Λ = {[1, 1], [1, 1], [1, 1], [1, 2], [2, 1]} satisfies the Kraft inequality
but we will see that there exists no binary self-punctuating code with
such a set of length tuples.

We prove the nonexistence of a binary self-punctuating code with
the set of length tuples given by Λ by attempting to construct such

3

a code. There are four patterns for the first bits of the two channels,
namely (0, 0), (0, 1), (1, 0), and (1, 1). The three codewords with
length tuples [1, 1], [1, 1], [1, 1] use three of them, otherwise the code
cannot be self-punctuating, and we let (a, b) with a, b ∈ {0, 1} be the
one which has not been used. Then the codeword with length tuple
[1, 2] must have the form (a, bx) with x ∈ {0, 1}, otherwise, the code
cannot be self-punctuating. For the same reason, the codeword with
length tuple [2, 1] must have the form (ay, b) with y ∈ {0, 1}. Since a
valid pair of code sequences may begin with (ay, bx), we conclude
that the code cannot be self-punctuating because either (a, bx) or
(ay, b) can be the first codeword.

As discussed in Section I, in a k-channel self-punctuating code,
the set of codewords for an individual channel may not form a prefix
set. As such, the entropy bound may not apply to the expected coding
length for an individual channel. For instance, consider the example
in Section I (cf. Fig. 1) and let the probability mass function of X
be

p(1) = p(2) =
a

2
, (5)

p(3) = p(4) = p(5) = p(6) =
1− a

4
, (6)

where 0 < a < 1. Then the expected length of U1 is given by

L1 = 2
“

1 · a
2

”
+ 4

„
2 · 1− a

4

«
= 2− a,

while with q = 2, the entropy of U1 is given by

H2(U1) = 2
“
−a

2
log2

a

2

”
+ 4

„
−1− a

4
log2

1− a
4

«
= h2(a) + 2− a,

where h2(a) = −a log2(a)− (1− a) log2(1− a). Since h2(a) > 0,
we have H2(U1) > L1.

Nevertheless, since by Theorem 3, for any uniquely decodable
code, {si}, the set of total codeword lengths, satisfies the Kraft
inequality, it can be shown by standard techniques that the entropy
bound applies to the expected total codeword length. This result is
stated in the next theorem. We refer the reader to [6, Theorem 4.6],
for example, for the details of the proof.

Theorem 4 (Entropy bound): Let C be a q-ary, k-channel
uniquely decodable code for a source random variable X with
probability {p1, p2, . . . , pm} and entropy Hq(X). Then

L ≥ Hq(X), (7)

where L =
Pm

i=1 pisi. This lower bound is tight if and only if
si = − logq pi for all i.

IV. DECODING TREE

For the single-channel case, a prefix code can be uniquely repre-
sented by a tree with the leaves being the codewords. This represen-
tation not only is important for understanding the structure of a prefix
code but also is useful for decoding such a code. For this reason, the
tree representing a prefix code is also called the decoding tree of the
code. In fact, the existence of a decoding tree for a prefix code implies
that the code can be decoded sequentially, i.e., a codeword can be
decoded without referring to the symbols of any future codewords.

For the multichannel case, there is no natural tree representation of
a prefix code in general. This explains why the decoding algorithm
SPDP in Section II may need to refer to the symbols of future
codewords. In such situations, the algorithm also needs to backtrack
the pointers before decoding the next codeword.

In this section, we introduce a class of multichannel source codes
that can be decoded sequentially. Such a code, called a tree-decodable
code, is specified by a decoding tree for the code. Except for the

single channel case, a tree-decodable code can have more than one
decoding tree.

We now describe how a q-ary decoding tree T specifies a q-ary
k-channel source code C. Each internal node in T belongs to a class
ranging from 1 to k that corresponds to one of the k channels. For an
internal node u, denote its class by iu. The edges connecting each
internal node and its children are labeled from 1 to q, and if the
internal node belongs to class i, we say that these edges belong to
class i. The codeword Cl = (c1, c2, ..., ck) represented by a leaf l,
determined by the unique path P from the root r to l, is such that for
any i, ci is the sequence of labels of the edges along P that belong
to class i.

Later on, we will show that the code specified by a decoding
tree is a prefix code, so that it is also strongly self-punctuating (cf.
Theorem 1). We now describe the decoding scheme associated with
a decoding tree:
(i) Decoding starts at the root r of the decoding tree.
(ii) Check the next symbol on channel ir and go down the edge
labeled by that symbol.
(iii) Arrive at a node u;
(iv) If node u is not a leaf, check the next symbol on channel iu, go
down the edge labeled by that symbol, and repeat (iii).
(v) Otherwise, output the codeword represented by node u.

The probability that a node u in a decoding tree is reached during
the decoding process is called the reaching probability of u, denoted
by pu. If u is an internal node, then pu is equal to the total probability
of all the leaves (codewords) descending from u. If u is a leaf, then pu

is simply the probability of the corresponding codeword. The concept
of reaching probability has been used in the literature for obtaining
lower and upper bounds on the expected length of different classes
of tree codes [2], [3], [4].

As before, denote the expected coding length for channel i by
Li. The following theorem expresses Li in terms of the reaching
probabilities of the internal nodes of the decoding tree.

Theorem 5: For a tree-decodable code,

Li =
X

u∈class i

pu

for 1 ≤ i ≤ k.
Proof: Consider a leaf l and an internal node u. Let al

u be 1 if
l is a descendent of u, and be 0 otherwise. Let

sl
i =

X
u∈class i

al
u.

Recall that Cl = (c1, c2, . . . , ck) is the codeword represented by
leaf l. It is not difficult to see that sl

i is equal to the length of ci.
On the other hand, by denoting the set of all leaves by L, for each
internal node u, we have

pu =
X
l∈L

al
u pl,

It follows that

Li =
X
l∈L

pl s
l
i

=
X
l∈L

pl

X
u∈class i

al
u

=
X

u∈class i

X
l∈L

al
u pl

=
X

u∈class i

pu.

The theorem is proved.

4

When k = 1, Theorem 5 becomes Lemma 4.20 in [6], where L1

becomes the expected length of the prefix code.
The code in the example in Section I has a decoding tree as

shown in Fig. 3, where the leaves are labeled from 1 to 6. With
the probability mass function of the source X as given in (5) and
(6), the expected coding lengths for the two channels are

L1 =
1− a

2
+

1− a
2

+ (1− a) + a = 2− a.

and L2 = 1.
We say that a code is sequentially decodable if a codeword can

be decoded by reading the symbols transmitted on the channels in
sequence (i.e., without skipping symbols) and without referring to the
symbols of any future codewords. We prove in the following theorem
the equivalence between a tree-decodable code and a sequentially
decodable code. For the single channel case, this equivalence is
obvious.

Theorem 6: A code C is tree decodable if and only if it is
sequentially decodable.

Proof: The “only if” part is trivial, so we only prove the “if”
part. Let C be any q-ary k-channel sequentially decodable code and
S be a sequential decoding strategy for the code. Without loss of
generality, assume S reads one symbol on a particular channel at a
time.

In the following, we construct a decoding tree corresponding to S.
Initially, let the decoding tree contain only the root r and let N be
the empty set.
(i) Suppose the first symbol read by S is on channel ir . In the
decoding tree, let r belong to class ir , add q children to r, and
label the edges connecting r and its children from 1 to q. The lth
child of r corresponds to the state of S after reading the first symbol
if the value of the first symbol is l. Add all the children of r to N .
(ii) Take any node, say u, in N .

(ii.a) If S outputs a codeword at the state corresponding to node u,
make node u a leaf.

(ii.b) Otherwise, suppose the next symbol read by S is on channel
iu. Let u belong to class iu, add q children to u, and label the
edges connecting u and its children from 1 to q. The lth child of u
corresponds to the state of S after reading the next symbol at the
state corresponding to node u if the value of that symbol is l. Add
all the children of u to N and remove u from N .
(iii) Repeat (ii) until N is empty.

We now explain the one-to-one correspondence between the decod-
ing tree constructed above and the sequential decoding strategy S. In
the decoding tree, each node corresponds to a state of S. Suppose S
is at an internal node u belonging to class iu. Then upon reading the
next symbol on channel iu that takes the value l, S changes state to
the lth child of u.

Note that when the decoder goes down the decoding tree during
the decoding process, the path from the root r to the current state
uniquely specifies the sequences of symbols read on the k channels
so far. Since S decodes a codeword correctly without referring to
the symbols of any future codewords, once a codeword is completely
read, S must output that codeword immediately. Therefore, the above
construction of the decoding tree always stops in finite time. The
theorem is proved.

Theorem 7: A tree-decodable code is a prefix code, but the con-
verse is not true.

Proof: For any two leaves of a k-channel decoding tree T , where
the paths from the root to them are P1 and P2, there is a unique
common internal node u of P1 and P2 where P1 and P2 separate.
Assume u belongs to class i and the two leaves represent codewords
C1 and C2, then the ith component of C1 and C2 are not prefix of
each other. Therefore, a tree-decodable code is a prefix code.

0

0 0

0 0

11

1

1

1

1 2

3 4 5 6

Class 1

Class 2

Class 1 Class 1

Class 1

Fig. 3. The decoding tree for the example in Section I.

For the converse, a counterexample is C =
{(0, 0, B), (1, B, 0), (B, 1, 1)}, where B represents a blank. It
is trivial to see that C is a prefix code. If C has a decoding tree,
the root r must belong to some class ir . If ir = 1, then the first
component of all the codewords of C cannot be blank. Since this
is not the case for C, ir cannot be equal to 1. Similarly, it can be
shown that ir cannot be equal to 2 or 3 either. Thus we conclude
that C does not have a decoding tree.

V. OPTIMAL CODE CONSTRUCTION

Tree-decodable codes are easy to encode and decode. However,
it is not clear whether such codes are optimal. In this section, we
show that such codes are optimal with respect to the expected total
codeword length, and are also asymptotically optimal in the strongest
possible sense. Therefore, for most applications, it is sufficient to
consider tree-decodable codes.

For the single-channel case, a Huffman code [1] gives the shortest
expected codeword length among all uniquely decodable codes. In
the sequel, we present a construction of multichannel tree-decodable
codes based on a Huffman code.

For a given information source X , let LHuff be the expected length
of a Huffman code. Denote a vector β in the k-dimensional Euclidean
space <k by (β1, β2, ..., βk) and consider the following subset of <k:

H =

(
β ∈ <k :

X
i

βi = LHuff and ∀i, βi ≥ 0

)
.

The following theorem shows that for every β ∈ H, it is possible
to construct a tree-decodable code whose expected coding lengths
for the individual channels are close to β, while the expected total
codeword length is equal to LHuff .

Theorem 8: For any β ∈ H, there exists a q-ary k-channel tree-
decodable code C with expected coding lengths R1, R2, ..., Rk for
the individual channels such that

|Ri − βi| ≤ 1

for all i and R = (R1, R2, ..., Rk) ∈ H.
Proof: We first choose any q-ary Huffman code for the source

X and consider its decoding tree T . We now construct a decoding
tree for the required code as follows:
(i) Arbitrarily divide all the internal nodes in T into k classes.
(ii) Compute the expected coding lengths R1, R2, . . . , Rk for the
individual channels. By Theorem 5,X

i

Ri =
X

i

X
u∈class i

pu = LHuff ,

i.e., R ∈ H. Moreover,

R1 +R2 + ...+Rk = β1 + β2 + ...+ βk. (8)

(iii) If there exist i such that Ri − βi > 1, go to (iv); if there exist i
such that Ri − βi < −1, go to (v); if for all i, |Ri − βi| ≤ 1, stop
the construction.
(iv) Repeat the following procedure PP until Ri − βi ≤ 1.

5

PP: By (8), we find a j such that Rj−βj < 0. Since Ri−βi > 1,
we have Ri > 1+βi ≥ 1 > 0. Thus there exists at least one internal
node u in T belonging to class i. By reassigning u to class j, Ri is
decreased by pu while Rj is increased by pu. Since 0 < pu < 1,
after the reassignment, the new Ri continues to satisfy Ri−βi ≥ −1
and the new Rj continues to satisfy |Rj − βj | ≤ 1.

It’s easy to see when PP stops, we have |Ri − βi| ≤ 1. Then go
back to (iii).
(v) Repeat the following procedure NP until Ri − βi ≥ −1.

NP: By (8), we can find a j such that Rj − βj > 0, so that Rj >
βj ≥ 0. Thus there exists at least one internal node u in T belonging
to class j. Then reassign u to class i. After the reassignment, the new
Ri continues to satisfy Ri − βi ≤ 1 and the new Rj continues to
satisfy |Rj − βj | ≤ 1.

It’s easy to see when NP stops, we have |Ri − βi| ≤ 1. Then go
back to (iii).

We can see that each execution of (iv) (or (v)) requires no more
than |T | (the size of T) iterations of PP (or NP). Thus we conclude
that the construction will stop within O(k|T |) steps. At the end, T
becomes a decoding tree with the required properties. This completes
the proof of the theorem.

The k-channel tree-decodable code constructed in Theorem 8 has
expected total length equal to LHuff . We now show by contradiction
that there does not exist a k-channel tree-decodable code whose
expected total codeword length is less than LHuff . Assume such a
code exists. Then by reassigning all the internal nodes to class 1, the
code becomes a single-channel prefix code with expected codeword
length less than LHuff . This contradicts the optimality of a Huffman
code.

The next theorem asserts that the tree-decodable code constructed
in Theorem 8 not only is optimal among all tree-decodable codes but
is in fact optimal among all uniquely decodable codes.

Theorem 9: The tree-decodable code constructed in Theorem 8 is
an optimal uniquely decodable code in terms of the expected total
codeword length.

Proof: We have shown in Theorem 3 that the set of total
codeword lengths of any uniquely decodable code satisfies the Kraft
inequality. Since the Kraft inequality is a sufficient condition for
the existence of a single-channel prefix code, from any uniquely
decodable code, we can construct a single-channel prefix code with
expected codeword length the same as the expected total codeword
length of the uniquely decodable code. If follows from the optimality
of a Huffman code that the expected total codeword length of a
uniquely decodable code is lower bounded by LHuff . This proves
that the tree-decodable code constructed in Theorem 8 is optimal in
terms of the expected total codeword length.

The following corollary is a straightforward consequence of The-
orem 8.

Corollary 1: For an information source X and any nonnegative
real numbers α1, α2, ..., αk satisfying

α1 + α2 + ...+ αk = Hq(X), (9)

there exists a q-ary k-channel tree-decodable code with expected
coding lengths R1, R2, ..., Rk for the individual channels such that

|Ri − αi| < 1 +
1

k

for all i and

R1 +R2 + ...+Rk < Hq(X) + 1.

Proof: Let δ = LHuff −Hq(X), where δ < 1. For all i, let

βi = αi +
δ

k
. (10)

Then by (9), X
i

βi =
X

i

„
αi +

δ

k

«
= Hq(X) + δ

= LHuff .

Therefore, (β1, β2, . . . , βk) ∈ H. By Theorem 8, there exists a
q-ary k-channel tree-decodable code with expected coding lengths
R1, R2, ..., Rk such that |Ri−βi| ≤ 1 and

P
i Ri = LHuff . Finally,

|Ri − αi| ≤ |Ri − βi|+ |βi − αi|

≤ 1 +
δ

k

< 1 +
1

k
,

where the first inequality follows from (10), and

R1 +R2 + ...+Rk = LHuff < Hq(X) + 1.

The proof is accomplished.
Now suppose we use the code construction in Corollary 1 to encode

X1, X2, ..., Xn which are n i.i.d. copies of X . Let us denote the
expected coding length for channel i by Rn

i . Then we have

|Rn
i − nαi| < 1 +

1

k
.

Dividing by n, we obtain˛̨̨̨
Rn

i

n
− αi

˛̨̨̨
<

1

n
+

1

nk
.

As n→∞, the average expected coding length for channel i, namely
the rate of the code for channel i, approaches αi for all i. But of
course, as n becomes large, constructing such code becomes very
complicated.

Nevertheless, this result indicates that entropy continues to be a
fundamental measure of information in multichannel source coding.
Furthermore, we see from the proof of Theorem 9 that if a rate tuple
α = (α1, α2, . . . , αk) is achievable, then it satisfies

α1 + α2 + . . .+ αk ≥ Hq(X). (11)

Since the tree-decodable code constructed in Theorem 8 can asymp-
totically achieve any rate tuple α satisfying (11) with equality, it is
asymptotically optimal in the strongest possible sense.

VI. CONCLUSION

In this paper, we have generalized the classical notions of uniquely
decodable code, self-punctuating code, and prefix code to zero-error
multichannel source coding. In particular, we have studied a class of
prefix codes called tree-decodable codes and presented a construction
of such codes which shows the tightness of the entropy bound.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum redundancy
codes,” Proc. IRE, 40: 1098-1101, 1952.

[2] Y. Horibe, “An improved bound for weight-balanced tree,” Info. Contr.,
34: 148-151, 1977.

[3] R. W. Yeung, “Local redundancy and progressive bounds on the redun-
dancy of a Huffman code,” IEEE Trans. Info. Theory, IT-37: 687-691,
1991.

[4] R. W. Yeung, “On noiseless diagnosis,” IEEE Trans. Info. Theory, IT-24:
1074-1082, 1994.

[5] L. Song, R. W. Yeung and N. Cai, “Zero-error network coding for acyclic
networks,” IEEE Trans. Info. Theory, IT-49: 3129-3139, 2003.

[6] R. W. Yeung, Information Theory and Network Coding, Springer 2008.

