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Abstract—Coherent network error correction is the error-
control problem in network coding with the knowledge of the
network codes at the source and sink nodes. With respect to
a given set of local encoding kernels defining a linear network
code, we obtain refined versions of the Hamming bound, the
Singleton bound and the Gilbert-Varshamov bound for coherent
network error correction. Similar to its classical counterpart,
this refined Singleton bound is tight for linear network codes.
The tightness of this refined bound is shown by two construction
algorithms of linear network codes achieving this bound. These
two algorithms illustrate different design methods: one makes use
of existing network coding algorithms for error-free transmission
and the other makes use of classical error-correcting codes. The
implication of the tightness of the refined Singleton bound is that
sink nodes with higher maximum flow values can have higher
error correction capabilities.

Index Terms—Network error correction, network coding,
Hamming bound, Singleton bound, Gilbert-Varshamov bound,
network code construction.

I. INTRODUCTION

Network coding has been extensively studied for multicas-
ting information in a directed communication network when
the communication links in the network are error free. It was
shown by Ahlswede et al. [1] that the network capacity for
multicast satisfies the max-flow min-cut theorem, and this
capacity can be achieved by network coding. Li, Yeung, and
Cai [2] further showed that it is sufficient to consider linear
network codes only. Subsequently, Koetter and Médard [3]
developed a matrix framework for network coding. Jaggi et
al. [4] proposed a deterministic polynomial-time algorithm
to construct linear network codes. Ho et al. [5] showed that
optimal linear network codes can be efficiently constructed
by a randomized algorithm with an exponentially decreasing
probability of failure.

A. Network Error Correction

Researchers also studied how to achieve reliable commu-
nication by network coding when links are not perfect. For
example, network transmission may suffer from link failures
[3], random errors [6] and maliciously injected errors [7]. We
refer to these distortions in network transmission collectively
as errors, and the network coding techniques for combating
errors as network error correction.
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Fig. 1. This is a classical error correction example, where s is the source
node and t is the sink node. This model is extensively studied by algebraic
coding.

Fig. 1 shows one special case of network error correction
with two nodes, one source node and one sink node, which
are connected by parallel links. This is the model studied in
classical algebraic coding theory [8], [9], a very rich research
field for the past 50 years.

Cai and Yeung [6], [10], [11] have extended the study
of algebraic coding from classical error correction to net-
work error correction. They generalized the Hamming bound
(sphere-packing bound), the Singleton bound and the Gilbert-
Varshamov bound (sphere-covering bound) in classical error
correction coding to network coding. Network error correction
in packet networks has been studied by Zhang [12], [13],
where they introduced an algebraic definition of the minimum
distance for linear network codes and studied the decoding
problem. The relation between network coding and maximum
distance separation (MDS) codes in classical algebraic coding
[14] was clarified in [15].

In [6], [10], [11], the common assumption is that the sink
nodes know the network topology as well as the network code
used in transmission. This class of works are referred to as
coherent network error correction. By constract, network error
correction without this assumption is referred to as noncoher-
ent network error correction.1 When using the deterministic
construction of linear network codes [2], [4], the network
transmission is usually regarded as “coherent”. For random
network coding, the network transmission is usually regarded
as “noncoherent”. However, it is possible to use noncoherent
transmission for deterministicly constructed network codes and
use coherent transmission for randomly constructed network
codes.

In [16], Yang et al. developed a framework for char-
acterizing error correction/detection capabilities of network
codes for coherent network error correction. Their findings
are summarized as follows. First, the error correction/detection
capabilities of a network code is completely characterized

1Coherent and noncoherent transmissions for network coding are analogous
to coherent and noncoherent transmissions for multiple antenna channels in
wireless communications.
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by a two-dimensional region of parameters which reduce to
the minimum Hamming distance when 1) the network code
is linear, and 2) the weight measure on the error vectors
is the Hamming weight. For a nonlinear network code, two
different minimum distances are needed for characterizing the
capabilities of the code for error correction and for error
detection. This leads to the discovery that for a nonlinear
network code, the number of correctable errors can be more
than half of the number of detectable errors. (For classical
algebraic codes, the number of correctable errors is always the
largest integer not greater than half of the number of detectable
errors.) Further, for the general case, an equivalence relation
on weight measures is defined and it is shown that weight
measures belonging to the same equivalence class lead to the
same minimum weight decoder. In the special case of network
coding, four weight measures, including the Hamming weight
and others that have been used by various authors [7], [12],
[17], are proved to be in the same equivalent class for linear
network codes.

Network error detection by random network coding has
been studied by Ho et al. [18]. Jaggi et al. [7], [19], [20] have
developed random algorithms for network error correction
with various assumptions on the adversaries. Parts of the
works of Zhang [12], [13] consider packet network error
correction when the network code is not known by receivers.
They studied decoding algorithms that can correct different
kinds of errors and gave a sufficient condition for correct
decoding in terms of the minimum distance. The distribution
of the minimum distance when applying random network
coding is bounded by Balli, Yan and Zhang [21]. They also
studied decoding network error-correcting codes beyond the
error correction capability [22].

Koetter and Kschischang [23] introduced a general frame-
work for noncoherent network error correction. In their frame-
work, messages are modulated as subspaces, so a code for
noncoherent network error correction is also called a subspace
code. They proved a Singleton bound, a sphere-packing bound
and a sphere-covering bound for subspace codes. Using rank-
metric codes, Silva and Kschischang [24] constructed subop-
timal subspace codes and studied the decoding algorithms.

B. Paper Outline

In this paper, we follow the framework in [16] to study
the design of linear network codes for coherent network error
correction.

The coding bounds for coherent network error correction
obtained in [6], [10], [11] take only one sink node with
the smallest maximum flow from the source node into con-
sideration. We observe that each sink node can be consid-
ered individually and the sink node with larger maximum
flow can potentially have higher error correction/detection
capability. These observations lead to the refined versions of
the Hamming bound, the Singleton bound and the Gilbert-
Varshamov bound for network error correction to be proved
in this work. By way of the weight properties of network
coding, the proof of these bounds are as transparent as
the their classical counterparts for linear network codes. By

contrast, the proofs of the original versions of these bounds
(not necessarily for linear network codes) in [10], [11] are
considerably more complicated. The refined Singleton bound
is also implicitly obtained by Zhang [12] independently. When
applying to classical error correction, these bounds reduce to
the classical Hamming bound, the classical Singleton bound
and the classical Gilbert-Varshamov bound, respectively.

Similar to its classical counterpart, this refined Singleton
bound is tight for linear network codes. The tightness of this
refined bound is shown by two construction algorithms of
linear network codes achieving the bound. A linear network
code consists of two parts, a codebook and a set of local
encoding kernels (defined in Section II). Our first algorithm
finds a codebook based on a given set of local encoding
kernels. The set of local encoding kernels that meets our
requirement can be found by the polynomial-time construction
in [4]. The second algorithm finds a set of of local encoding
kernels based on a given classical error-correcting code satisfy-
ing a certain minimum distance requirement as the codebook.
These two algorithms illustrate different design methods: one
makes use of existing network coding algorithms for error-
free transmission and the other makes use of classical error-
correcting codes.

Various parts of this paper have appeared in [25], [26].
Subsequent to [25], based on the idea of static network codes
[3], Matsumoto [27] proposed an algorithm for constructing
linear network codes achieving the refined Singleton bound.
In contrast to ours, their algorithm designs the codebook and
the local encoding kernels together. All these three algorithms
are shown in this paper to have similar time complexity and
similar field size requirements.

This paper is organized as follows. In Section II, we
formulate the network error correction problem and review
some previous works. The refined coding bounds for coherent
network error correction are proved in Section III. In Section
IV, the tightness of the refined Singleton bound is proved,
and the first construction algorithm is given. In Section V, we
introduce another construction algorithm that can achieve the
refined Singleton bound. In the last section, we summarize our
work and discuss future work.

II. NETWORK ERROR-CORRECTING PROBLEM

A. Problem Formulation

A communication network is represented by a directed
acyclic graph G = (V, E), where V is the set of nodes and
E is the set of edges in the graph. There can be multiple
edges between a pair of nodes, and each edge represents a
communication link with unit capacity, i.e., it can transmit
one symbol in a finite field F. We assume all edges are delay
free, for which the network is still stable since the network
is acyclic. We assume an order on the edge set E which is
consistent with the associated partial order of the directed
acyclic network G. We call node a (node b) the tail (head) of
edge e = (a, b), denoted by tail(e) (head(e)). Let In(a) =
{e ∈ E : head(e) = a} and Out(a) = {e ∈ E : tail(e) = a}
be the sets of incoming edges and outgoing edges of node a,
respectively.
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A multicast network (G, s, T ) is a triple that includes a
network G, a source node s ∈ V , which can inject symbols
on its outging edges, and a set of sink nodes T ⊂ V , each
of which can receive symbols on its incoming edges. Without
loss of generality, we assume In(s) = ∅. Let ns = |Out(s)|.
The source node observes a message vector consisting of ω
symbols taken from F. The source node s encodes the message
vector into a row vector x = [xe, e ∈ Out(s)] ∈ Fns ,
called the codeword. The set of all codewords is the codebook,
denoted by C. Note that we do not require C to be a linear
space. The source node s transmits the codeword by mapping
its ns components onto the edges in Out(s).

An error vector z is an |E|-dimensional row vector over the
field F with the ith component representing the error on the
ith edge in E . An error pattern is a subset of E . An error
vector is said to match an error pattern if all the errors occur
on the edges in the error pattern. The set of all error vectors
that match error pattern ρ is denoted by ρ∗. Let ρz be the error
pattern corresponding to the non-zero components of an error
vector z.

Let F̄e and Fe be the input and output of edge e, respec-
tively, and the error on the edge be ze. The following relation
holds:

Fe = F̄e + ze. (1)

For any set of edges ρ, form two row vectors

Fρ = [Fe, e ∈ ρ], (2)

and
F̄ρ = [F̄e, e ∈ ρ]. (3)

A network code on network G is a codebook C ⊆ Fns and
a family of local encoding functions {β̄e : e ∈ E \ Out(s)},
where β̄e : F|In(tail(e))| → F, such that

F̄e = β̄e(FIn(tail(e))). (4)

Communication over the network with the code defined
above is in an upstream-to-downstream order consistent with
the partial order of the edges. For a codeword x and an error
vector z, once the network code is specified by (1) and (4),
the symbol F̄e can be determined inductively for all e ∈ E
with the boundary condition F̄Out(s) = x. When we want to
indicate the dependence of F̄e and Fe on x and z explicitly,
we will write them as F̄e(x, z) and Fe(x, z), respectively.

If β̄e is a linear function for all e ∈ E \Out(s), i.e.,

F̄e =
∑
e′∈E

βe′,eFe′ , (5)

we say that the network code is linear, where βe′,e is called
the local encoding kernel from edge e′ to edge e. The local
encoding kernel βe′,e can be non-zero only if e′ ∈ In(tail(e)).
Define the |E|×|E| one-step transformation matrix K = [Ki,j ]
in network G as Ki,j = βei,ej

. For an acyclic network, KN =
0 for some positive integer N . Define the transfer matrix of
the network by F = (I−K)−1 [3].

For a set of edges ρ, define a |ρ| × |E| matrix Aρ = [Ai,j ]
by

Ai,j =

{
1 ej is the ith edge in ρ,

0 otherwise.
(6)

By applying the order on E to ρ, the |ρ| nonzero columns of
Aρ form an identity matrix. To simplify notation, we write
Fρ,ρ′ = AρFA>ρ′ . For input x and error vector z, the output
of the edges in ρ is

Fρ(x, z) = (xAOut(s) + z)FA>ρ (7)

= xFOut(s),ρ + zFA>ρ . (8)

Writing Fv(x, z) = FIn(v)(x, z) for a node v, the received
vector for a sink node t is

Ft(x, z) = xFs,t + zFt, (9)

where Fs,t = FOut(s),In(t), and Ft = FA>In(t). Here Fs,t
and Ft are the transfer matrices for message transmission and
error transmission, respectively, for sink node t.

For coherent network error correction, Fs,t and Ft are
known by the sink nodes for decoding. In the network shown
in Fig. 1, Fs,t and Ft are the identity matrix, and the problem
becomes that of classical error correction.

B. Existing Results

In [16], Yang et al. developed a framework for character-
izing error correction/detection capabilities of linear network
codes for coherent network error correction. Further, equiva-
lence classes of weight measures on error vectors are defined.
Weight measures in the same equivalence class have the same
characterizations of error correction/detection capabilities and
induce the same minimum weight decoder. Four weight mea-
sures, including the Hamming weight and others that have
been used by various authors [7], [12], [17], are proved to be
in the same equivalent class for linear network codes. Hence
they are all equivalent for error correction and detection.

In the rest of this paper, we only consider the Hamming
weight on error vectors. For sink node t, define

Φt(c) = {zFt : z ∈ F|E|, wH(z) ≤ c}, (10)

where wH(z) is the Hamming weight of an error vector z.
Definition 1: Consider a linear network code with code-

book C. For each sink node t, define the distance measure

Dt(x1,x2) = min{c : (x1 − x2)Fs,t ∈ Φt(c)}, (11)

and define the minimum distance of the codebook

dmin,t = min
x1,x2∈C

Dt(x1,x2). (12)

Definition 2: Minimum Weight Decoder I at a sink node t
with respect to wH , denoted by MWDI

t , decodes a received
vector y as follows: First, find all the solutions of the equation

Ft(x, z) = y (13)

with x ∈ C and z ∈ F|E| as variables. A pair (x, z), consisting
of the message part x and the error part z, is said to be
a solution if it satisfies (13), and furthermore a minimum
weight solution if wH(z) achieves the minimum among all
the solutions. If there exists at least one solution and all the
minimum weight solutions have identical message parts, then
the decoder outputs the common message part as the decoded
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message. Otherwise, the decoder outputs a warning that errors
have occurred.

A code is c-error-correcting at sink node t if all error
vectors z with wH(z) ≤ c are correctable by MWDI

t .
Theorem 1 ( [16]): A linear network code is c-error-

correcting at sink node t if and only if dmin,t ≥ 2c+ 1.
For two subsets V1, V2 ⊂ Fns , their sum is the set defined

by
V1 + V2 = {v1 + v2 : v1 ∈ V1,v2 ∈ V2}. (14)

For v ∈ Fns and V ⊂ Fns , we also write {v}+ V as v + V .
With respect to the Hamming weight, define the decoding

sphere of a codeword x as

Φt(x, c) = {Ft(x, z) : z ∈ F|E|, wH(z) ≤ c} (15)
= xFs,t + Φt(c) (16)

for a sink node t and a nonnegative integer c.
Definition 3: If Φt(x, c) for all x ∈ C are nonempty and

disjoint, Minimum Weight Decoder II at sink node t, denoted
by MWDII

t (c), decodes a received vector y as follows: if
y ∈ Φt(x, c) for some x ∈ C, the decoder outputs x as the
decoded message. If y is not in any of the decoding spheres,
the decoder outputs a warning that errors have occurred.

A code is c-error-detecting at sink node t if MWDII
t (0)

exists and all error vector z with 0 < wH(z) ≤ c are detectable
by MWDII

t (0).
Theorem 2 ( [16]): A code is c-error-detecting at sink node

t if and only if dmin,t ≥ c+ 1.
Erasure correction is error correction with the potential

positions of the errors in the network known by the decoder.
We can similarly characterize the erasure correction capability
of linear network codes by dmin,t. Readers are referred to [16]
for the details about erasure correction.

The coding bounds on network codes that corresponding to
the classical Hamming bound, Singleton bound and Gilbert-
Varshamov bound have been proved in [6], [10], [11]. Some
of these results are reviewed in the following. Let

dmin = min
t∈T

dmin,t, (17)

and
n = min

t∈T
maxflow(s, t), (18)

where maxflow(s, t) is the maximum flow value from the node
s to node t. In terms of the notion of minimum distance, the
Hamming bound and the Singleton bound for network codes
obtained in [10] can be restated as

|C| ≤ qn∑τ
i=0

(
n
i

)
(q − 1)i

, (19)

where τ = bdmin−1
2 c, and

|C| ≤ qn−dmin+1. (20)

The tightness of (20) has been proved in [11].

III. REFINED CODING BOUNDS

In this section, we present refined versions of the coding
bounds in [6], [10], [11] for linear network codes. In terms of
the distance measures developed in [16], the proofs of these
bounds are as transparent as the their classical counterparts.

A. Hamming Bound and Singleton Bound

Theorem 3: Consider a linear network code with codebook
C, rank(Fs,t) = rt and dmin,t > 0. Then |C| satisfies the

1) refined Hamming bound

|C| ≤ min
t∈T

qrt∑τt

i=0

(
rt

i

)
(q − 1)i

, (21)

where τt = bdmin,t−1
2 c, and the

2) refined Singleton bound

|C| ≤ qrt−dmin,t+1, (22)

for all sink node t.
Remark: The refined Singleton bound can be rewritten as

dmin,t ≤ rt−logq |C|+1 ≤ maxflow(s, t)−logq |C|+1, (23)

for all sink node t. Thus the refined Singleton bound suggests
that the sink nodes with larger maximum flow values can po-
tentially have higher error correction capabilities. We present
algorithms that can achieve this bound in Section IV and V.

Proof: Fix a sink node t. Find rt linearly independent
rows of Fs,t and let ρt be the set of edges in Out(s) that
corresponds to these rt linearly independent rows. Note that
ρt ⊂ Out(s) ⊂ E , so that ρt can be regarded as an error
pattern. Define the set

Ct = {x′ ∈ Fns : x′AOut(s) ∈ ρ∗t , x′Fs,t = xFs,t,

for some x ∈ C}, (24)

where the matrix AOut(s) is defined as (6). Define a mapping

φt : C → Ct (25)

by φt(x) = x′ if x′Fs,t = xFs,t. Since the rows of Fs,t
indexed by ρt form a basis for the row space of Fs,t, φt is
well-defined. The mapping φt is onto by the definition of Ct.
The mapping φt is also one-to-one because otherwise there
exists x′ ∈ Ct such that x′Fs,t = x1Fs,t = x2Fs,t for distinct
x1,x2 ∈ C, a contradiction to the assumption that dmin,t > 0.
Thus the mapping φt is a one-to-one and onto mapping, which
implies that |Ct| = |C|.

Let
Zt = {z ∈ ρ∗t : wH(z) ≤ τt}. (26)

By Theorem 1, the network code with C being the codebook
that can correct all the errors in Zt at sink node t. Since sink
node t has the same reception for the transmission of either
x ∈ C or φt(x) ∈ C′t for the same error vector, the network
code with C′t being the codebook can also correct all the errors
in Zt at sink node t.

Consider the problem of finding a subset of ρ∗t as an error-
correcting code that can correct all the errors in Zt. This
problem is equivalent to the problem in classical algebraic
coding of finding a block code with codeword length rt that
can correct τt errors. The vectors in the set

C′t = {xAOut(s) : x ∈ Ct} (27)

must form such a code, otherwise the network code with
C′t being the codebook cannot possibly correct all the error
vectors in Zt at sink node t. Applying the Hamming bound
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and the Singleton bound for classical error-correcting codes to
C′t, we have

|C′t| ≤
qrt∑τt

i=0

(
rt

i

)
(q − 1)i

, (28)

and
|C′t| ≤ qrt−dmin,t+1. (29)

The proof is completed by noting that |C| = |Ct| = |C′t|.
Lemma 4:

qm∑τ
i=0

(
m
i

)
(q − 1)i

<
qm+1∑τ

i=0

(
m+1
i

)
(q − 1)i

(30)

for τ ≤ m/2.
Proof: This inequality can be established by considering

qm∑τ
i=0

(
m
i

)
(q − 1)i

=
qm+1∑τ

i=0
q(m−i+1)
m+1

(
m+1
i

)
(q − 1)i

(31)

<
qm+1∑τ

i=0

(
m+1
i

)
(q − 1)i

, (32)

where (32) holds because q(m−i+1)
m+1 > 1 given that q ≥ 2 and

i ≤ τ ≤ m/2.
The refined Hamming bound and the refined Singleton

bound, as we will show, imply the bounds shown in (19) and
(20) but not vice versa.

The refined Hamming bound implies

|C| ≤ qrt∑τt

i=0

(
rt

i

)
(q − 1)i

(33)

≤ qrt∑τ
i=0

(
rt

i

)
(q − 1)i

(34)

≤ qmaxflow(s,t)∑τ
i=0

(
maxflow(s,t)

i

)
(q − 1)i

(35)

for all sink nodes t, where (34) follows from τ ≤ τt, and (35)
follows from rt ≤ maxflow(s, t) and the inequality proved in
Lemma 4. By the same inequality, upon minimizing over all
sink nodes t ∈ T , we obtain (19).

Toward verifying the condition for applying the inequality
in Lemma 4 in the above, we consider the refined Singleton
bound, and obtain

1 ≤ |C| ≤ qrt−dmin,t+1 (36)

or
dmin,t − 1 ≤ rt (37)

for all t ∈ T . Then

τ =
⌊
dmin − 1

2

⌋
≤
⌊
dmin,t − 1

2

⌋
≤ dmin,t − 1

2
≤ rt

2
(38)

for all t ∈ T .
For the refined Singleton bound, we first note that it is

maximized when rt = maxflow(s, t) for all t ∈ T . This can
be achieved by a linear broadcast whose existence was proved
in [2], [15]. To show that the refined Singleton bound implies
(20), consider

|C| ≤ qrt−dmin,t+1 (39)

≤ qrt−dmin+1 (40)

≤ qmaxflow(s,t)−dmin+1 (41)

for all sink nodes t. Then (20) is obtained upon minimizing
over all t ∈ T .

B. Sphere-Packing Bound

Let
∆t(x, d) = {x′ ∈ Fns : Dt(x′,x) ≤ d}. (42)

Here Dt(·, ·) is defined as in Definition 1. Since Dt is a trans-
lation invariant metric [16], we have ∆t(x, d) = x+∆t(0, d),
which implies |∆t(x, d)| = |∆t(0, d)|. Another fact is that
∆t(0, d) is closed under scalar multiplication, i.e.,

α∆t(0, d) = {αx : x ∈ ∆t(0, d)} = ∆t(d), (43)

where α ∈ F and α 6= 0.
Lemma 5:(
|E|
d

)
qd ≥ |∆t(0, d)|q−(ns−rt) ≥

d∑
i=0

(
rt
i

)
(q − 1)i, (44)

where rt = rank(Fs,t) and d ≤ rt.
Proof: Applying the definition of Dt in Definition 1,

∆t(0, d) can be rewrited as

∆t(0, d) = {x′ ∈ Fns : x′Fs,t ∈ Φt(d)}, (45)

where Φt is defined in (10). Since in (45), x′ is an ns-
dimensional row vector and the rank of Fs,t is rt, we have

|∆t(0, d)| = qns−rt |Φt(d)|, (46)

i.e.,
|∆t(0, d)|q−(ns−rt) = |Φt(d)|. (47)

In the case of linear network coding,

Φt(d) = {zFt : wH(z) ≤ d}. (48)

Since z is an |E|-dimensional row vector,

|Φt(d)| ≤
(
|E|
d

)
qd, (49)

so that from (47), we obtain the first inequality in (44).
Recall that Fs,t is a submatrix of Ft containing the rows

of Ft which correspond to the outgoing edges of the source
node s. Thus,

Φt(d) = {zFt : wH(z) ≤ d} ⊃ {xFs,t : wH(x) ≤ d}. (50)

Since the rank of Fs,t is rt, we can lower bound |{xFs,t :
wH(x) ≤ d}| by

|{xFs,t : wH(x) ≤ d}| ≥
d∑
i=0

(
rt
i

)
(q − 1)i, (51)

where the RHS is the number of rt-dimensional row vectors
with the Hamming weight less than or equal to d. Hence

|Φt(d)| ≥ |{xFs,t : wH(x) ≤ d}| ≥
d∑
i=0

(
rt
i

)
(q − 1)i.

(52)

Again by (47), we obtain the second inequality in (44). The
lemma is proved.
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Using the idea of sphere packing, we have the following
stronger version of the refined Hamming bound in Theorem 3.

Theorem 6 (Sphere-packing bound): A linear network code
with codebook C and positive minimum distance dmin,t for all
sink node t satisfies

|C| ≤ qns/|∆t(0, τt)|, (53)

where τt = bdmin,t−1
2 c, for all sink node t.

Proof: For different codewords x1 and x2, if there exists

x ∈ ∆t(x1, τt) ∩∆t(x2, τt), (54)

from (42), we have

Dt(x1,x2) ≤ Dt(x1,x) +Dt(x2,x) (55)
≤ 2τt (56)
≤ dmin,t − 1, (57)

which is a contradiction to the definition of dmin,t. Thus,
∆t(x1, τt) and ∆t(x2, τt) are disjoint for different code-
words x1 and x2. Therefore, qns ≥

∑
x∈C |∆t(x, τt)| =

|C||∆t(0, τt)|.
Applying the second inequality in Lemma 5, Theorem 6

implies the refined Hamming bound in Theorem 3. Thus
Theorem 6 gives a potentially tighter upper bound on |C| than
the refined Hamming bound, although the former is not as
explicit as the latter.

C. Gilbert Bound and Varshamov Bound

We have the following sphere-covering type bounds for
linear network codes.

Theorem 7 (Gilbert bound): Given a set of local encoding
kernels, let |C|max be the maximum possible size of the
codebook such that the network code has positive minimum
distance dmin,t for each sink node t. Then,

|C|max ≥
qns

|∆(0)|
, (58)

where
∆(0) = ∪t∈T∆t(0, dmin,t − 1). (59)

Proof: Let C be the codebook with the maximum possible
size. Then for any x ∈ Fns , there exists a codeword c ∈ C
and a sink node t such that

Dt(x, c) ≤ dmin,t − 1, (60)

since otherwise we could add x to the codebook while keeping
the minimum distance larger than or equal to dmin,t for each
sink node t, which is a contradiction to the maximality of |C|.

Let
∆(c) = ∪t∈T∆t(c, dmin,t − 1). (61)

Hence, the whole space Fns is contained in the union of ∆(c)
over all codewords c ∈ C, i.e.,

Fns = ∪c∈C∆(c). (62)

Since ∆(c) = c + ∆(0), we have |∆(c)| = |∆(0)|. So we
deduce that qns ≤ |C||∆(0)|, that is

|C| ≥ qns

|∆(0)|
. (63)

Theorem 8 (Varshamov bound): Given a set of local encod-
ing kernels, let ωmax be the maximum possible dimension of
the linear codebook such that the network code has positive
minimum distance dmin,t for each sink node t. Then,

ωmax ≥ ns − log |∆(0)|, (64)

where ∆(0) is defined in (59).
Proof: Let C be the linear codebook with the maximum

possible dimension. We claim that

Fns = ∆(0) + C. (65)

If the claim is true, then

qns = |∆(0) + C| ≤ |∆(0)||C| = |∆(0)|qωmax , (66)

proving (64).
It is obviously that Fns ⊃ ∆(0) + C. So we prove Fns ⊂

∆(0) + C by contradiction. Assume there exists

g ∈ Fns \ (∆(0) + C). (67)

Let C′ = C + 〈g〉. Then C′ is a subspace with dimension
ωmax + 1. If C′ ∩ ∆(0) 6= {0}, then there exists a non-zero
vector

c + αg ∈ ∆(0), (68)

where c ∈ C and α ∈ F. Here, α 6= 0, otherwise we have
c = 0 because C ∩ ∆(0) = {0}. Since ∆t(0, dmin,t − 1) is
closed under scalar multiplication for all t ∈ T , see from (59)
that the same holds for ∆(0). Thus from (68),

g ∈ ∆(0)− α−1c ⊂ ∆(0) + C, (69)

which is a contradiction to (67). Therefore, C′ ∩∆(0) = {0},
i.e., C′ is a codebook such that the network code has unicast
minimum distance larger than or equal to dmin,t, which is a
contradiction on the maximality of C. The proof is completed.

IV. TIGHTNESS OF THE SINGLETON BOUND AND CODE
CONSTRUCTION

For an (ω, (rt : t ∈ T ), (dt : t ∈ T )) linear network code,
we refer to one for which the codebook C is an ω-dimensional
subspace of Fns , the rank of the transfer matrix Fs,t is rt, and
the minimum distance for sink node t is at least dt, t ∈ T .

In this section, two algorithms are proposed to construct
an (ω, (rt : t ∈ T ), (dt : t ∈ T )) linear network code. In the
first algorithm, a codebook is constructed after finding a set of
local encoding kernels. In the second algorithm, a set of local
encoding kernels is found after specifying a codebook. Over
sufficiently large finite fields, both algorithms can achieve the
refined Singleton bound.
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A. Tightness of the Singleton Bound

Theorem 9: Given a set of local encoding kernels with rt =
rank(Fs,t) over a finite field with size q, for every

0 ≤ ω ≤ min
t∈T

rt, (70)

there exists a codebook C with |C| = qω such that

dmin,t = rt − ω + 1 (71)

for all sink nodes t, provided that q is sufficiently large.
Proof: We start with any given set of local encoding

kernels, which determines rt for all sink nodes t. Fix an ω
which satisfies (70). We will then construct an ω-dimensional
linear codebook which together with the given set of local
encoding kernels constitutes a linear network code that satisfy
(71) for all t. Note that (70) and (71) imply

dmin,t ≥ 1. (72)

We now construct the codebook C. Let g1, · · · ,gω ∈ Fns

be a sequence of vectors obtained as follows. For each i, 1 ≤
i ≤ ω, choose gi such that

gi /∈ ∆t(0, rt − ω) + 〈g1, · · · ,gi−1〉 (73)

for each sink node t. As we will show, this implies

∆t(0, rt − ω) ∩ 〈g1, · · · ,gi〉 = {0} (74)

for each sink node t. If such g1, · · · ,gω exist, then we
claim that C = 〈g1, · · · ,gω〉 is a codebook with the desired
properties. To verify this claim, first, we see that g1, · · · ,gω
are linearly independent since (73) holds for i = 1, · · · , ω;
second, we have dmin,t ≥ rt − ω + 1 since (74) holds for
i = ω. Note that by (22), the refined Singleton bound, we
indeed have dmin,t = rt − ω + 1, namely (71) for any sink
node t.

Now we show that gi satisfying (73) exists if the field size
q is sufficiently large. Observe that

|∆t(0, rt − ω) + 〈g1, · · · ,gi−1〉|
≤ |∆t(0, rt − ω)|qi−1 (75)

≤
(
|E|

rt − ω

)
qrt−ωqns−rtqi−1 (76)

=
(
|E|

rt − ω

)
qns−ω+i−1, (77)

where (76) follows from Lemma 5. Considering all sink nodes,
we have at most ∑

t∈T

(
|E|

rt − ω

)
qns−ω+i−1 (78)

vectors that cannot be chosen as gi. Thus, if

q >
∑
t∈T

(
|E|

rt − ω

)
, (79)

then there exists a vector that can be chosen as gi for i =
1, · · · , ω.

Fix g1, · · · ,gi that satisfy (73). We now prove by induction
that (74) holds for g1, · · · ,gi. If (74) does not hold for i = 1,
then there exists a non-zero vector αg1 ∈ ∆t(0, rt − ω),

where α ∈ F. Since ∆t(0, rt − ω) is closed under scalar
multiplication and α 6= 0, we have g1 ∈ ∆t(0, rt − ω),
a contradiction to (73) for i = 1. Assume (74) holds for
i ≤ k − 1. If (74) does not hold for i = k, then there exists a
non-zero vector

k∑
i=1

αigi ∈ ∆t(0, rt − ω), (80)

where αi ∈ F. If αk = 0,
k−1∑
i=1

αigi ∈ ∆t(0, rt − ω), (81)

a contradiction to the assumption that (74) holds for i = k−1.
Thus αk 6= 0. Again, by ∆t(0, rt − ω) being closed under
scalar multiplication, we have

gk ∈ ∆t(0, rt − ω)− α−1
k

k−1∑
i=1

αigi (82)

⊂ ∆t(0, rt − ω) + 〈g1, · · · ,gk−1〉, (83)

a contradiction to gk satisfying (73). The proof is completed.

B. The First Construction Algorithm

The proof of Theorem 9 gives a constrution algorithm for an
(ω, (rt : t ∈ T ), (dt : t ∈ T )) linear network code for a given
set of local encoding kernels such that rank(Fs,t) = rt for
all t ∈ T and it also verifies the correctness of the algorithm
when the field size is sufficiently large. The pseudo code for
the algorithm is shown below.

Algorithm 1: Construct network codes that achieve the
refined Singleton bound.
input : (G, s, T ), (rt : t ∈ T ), ω, (dt : t ∈ T ) with

rt ≤ maxflow(s, t) ∀t ∈ T
output: local encoding kernels, and C
begin1

for i← 1, ω do2

find gi such that3

gi /∈ ∪t∆t(0, dt − 1) + 〈g1, · · · ,gi−1〉 ;
end4

end5

The analysis of the complexity of the algorithm requires the
following lemma implied by Lemmas 5 and 8 in [4].

Lemma 10: Suppose m ≤ q, the field size, and Bk ⊂ Fn,
k = 1, · · · ,m, are subspaces with dim(Bk) < n. A vector
u ∈ Fn \ ∪mk=1Bk can be found in time O(n3m+ nm2).

Proof: For each Bk find a vector ak ∈ Fn such that
akb> = 0, ∀b ∈ Bk. This vector ak can be obtained by
solving the system of linear equations

Bka>k = 0, (84)

where Bk is formed by juxtaposing a set of vectors that form
a basis of Bk. The complexity of solving this system of linear
equations is O(n3).
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We inductively construct u1,u2, · · · ,um such that uia>k 6=
0 for all 1 ≤ k ≤ i ≤ m. If such a construction is feasible,
then um /∈ Bk, ∀k ≤ m. Thus, u = um /∈ ∪mk=1Bk is the
desired vector.

Let u1 be any vector such that u1a>1 6= 0. For 1 ≤ i ≤
m − 1, if uia>i+1 6= 0, we set ui+1 = ui. Otherwise, find
bi+1 such that bi+1a>i+1 6= 0. We choose

α ∈ F \ {−(bi+1a>j )/(uia>j ) : 1 ≤ j ≤ i}, (85)

and define
ui+1 = αui + bi+1. (86)

The existence of such an α follows from q ≥ m > i.
By construction, we know that

ui+1a>i+1 = αuia>i+1 + bi+1a>i+1 (87)

= bi+1a>i+1 (88)
6= 0. (89)

If ui+1a>j = αuia>j + bi+1a>j = 0 for some 1 ≤ j ≤ i, we
have α = −(bi+1a>j )/(uia>j ), a contradiction to (85). So,
ui+1a>j 6= 0 for all j such that 1 ≤ j ≤ i+ 1.

Similar to the analysis in [4, Lemma 8], the construction of
u takes time O(nm2). Therefore, the overall time complexity
is O(n3m+ nm2).

We now analyze the time complexity of the algorithm for
the representative special case that rt = r and dt = d for all
t ∈ T , where r ≤ mint∈T maxflow(s, t) and d ≤ r − ω + 1.

In the algorithm, Line 3 can be realized using the algorithm
in the proof of Lemma 10. Consider ∆t(0, d − 1) as the
union of

( |E|
d−1

)
subspaces of Fr. Line 3 can be realized in

time O(n3
s|T |

( |E|
d−1

)
+ ns(|T |

( |E|
d−1

)
)2) as proved in Lemma

10, and this line is repeated ω times. Thus the complexity of
this algorithm with deterministic realization is

O(ωn3
s|T |ξ + ωns|T |2ξ2), (90)

where ξ =
( |E|
d−1

)
. The deterministic algorithm to construct

local encoding kernels by Jaggi et al. [4] has complexity
O(|E||T |m(m + |T |)), where m = mint∈T maxflow(s, t).
Comparing the complexities for constructing the local encod-
ing kernels and finding the codebook (this algorithm), the latter
dominates.

For the existence of the code, we require the field size to
be sufficiently large. From (79) in the proof of Theorem 9,
all finite fields with size larger than |T |

( |E|
r−ω
)

are sufficient.
It is straightforward to show that this algorithm can also be
realized randomly with high success probability if the field
size is much larger than necessary.

V. THE SECOND CONSTRUCTION ALGORITHM

In this section, we consider another algorithm that constructs
an (ω, (rt : t ∈ T ), (dt : t ∈ T )) linear network code.
At the beginning, the algorithm finds rt edge-disjoint paths
from the source node s to each sink node t using a maximum
flow algorithm (for example, finding augmenting paths). We
assume that every edge in the network is on at least one of
the

∑
t∈T rt paths we have found. Otherwise, we delete the

edges and nodes that are not on any such path, and consider the

s

a
e1

b

e2

c
e4

e3

d

e5

t
e6

e7

u

e8

e9

(a) The network G

s

a
e1

b

e2

t u

(b) The network G0

s

a
e1

b

e2

c

e3

t u

(c) The network G1

Fig. 2. An example of G0 and G1. The dashed lines are not new edges but
indicate the incoming edges of t and u. In G0, both t and u have e1 and e2
as their incoming edges. In G1, In(t) = {e1, e2} and In(u) = {e3, e2}.

coding problem for the new network. Note that a network code
for the new network can be extended to the original network
without changing the minimum distances by assigning zeros
to all the local encoding kernels associated with the deleted
edges.

Before describing the algorithm formally, we first introduce
a set of notations that facilitate the description of the algo-
rithm. We construct a series of graphs Gi, i = 0, 1, · · · , |E|−ns
as follows. First, G0 consists of a subgraph of G containing
only the edges in Out(s) (and the associated nodes) and all
the sink nodes. Following the order on E , in the ith step,
Gi−1 is expanded into Gi by appending the next edge (and the
associated node) in E . This step is repeated until Gi eventually
becomes G. Note that Gi contains ns + i edges. A sink node
t has rt incoming edges in Gi, where the jth edge is the
most downstream edge in the truncation in Gi of the jth edge-
disjoint path from the source node s to sink node t in G. With
a slight abuse of notation, we denote the set of incoming edges
of the sink node t in Gi as In(t), when Gi is implied by the
context. Fig. 2 illustrates G0 and G1 when G is the butterfly
network.

A. Iterative Formulation of Network Coding

The network Gi is a multicast network with the source node
s and the set of sinks T . The algorithm chooses a proper
codebook, and then constructs local encoding kernels starting
with G0. Except for the new edge, all the local encoding
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kernels in Gi+1 are inherited from Gi.
We define Ki, Fi, F iρ, zi and Ai

ρ for Gi in view of K, F,
Fρ, z and Aρ defined for G in Section II, respectively. Writing
F it = F iIn(t), Ai

s = Ai
Out(s) and Ai

t = Ai
In(t), we have

F it (x, z
i) = (xAi

s + zi)Fi(Ai
t)
>, (91)

in view of (7). Further, we can define the minimum distance
dimin,t corresponding to the sink node t at the ith step as
in (12).

Let M be a matrix and L be any subset of the column index
set of M . Let (M)j be the jth column of M , and M\L be the
matrix obtained by deleting the columns of M indexed by L.
Let zi+1 be any error vector in the (i+ 1)th step. Let (zi+1)e
be the component of zi+1 corresponding to edge e, and zi+1\e

be an error vector in the ith step obtained by removing the
component of zi+1 corresponding to edge e.

Let e be the new edge in Gi+1, i.e., the local encoding
kernels associated with e are to be determined in the (i+ 1)th
step. Let ke = [βe′,e : e′ ∈ Ei] be an (ns + i)-dimensional
column vector containing the local encoding kernels associated
with e. Then

Fi+1 =
(
I−Ki+1

)−1
(92)

=

(
I−

[
Ki ke
0 0

])−1

(93)

=

[
I−Ki −ke

0 1

]−1

(94)

=

[
(I−Ki)−1 (I−Ki)−1ke

0 1

]
(95)

=

[
Fi Fike
0 1

]
. (96)

The matrix Ai+1
s has one more column with zero components

than Ai
s, i.e.,

Ai+1
s =

[
Ai
s 0

]
. (97)

If the edge e is not on any path from the source node s to
sink node t, we only need to append a column with zero
components to Ai

t to form Ai+1
t , i.e.,

Ai+1
t =

[
Ai
t 0

]
. (98)

For this case, we can readily obtain from (91) (with i+ 1 in
place of i), (96), (97) and (98) that

F i+1
t (x, zi+1) = (xAi+1

s + zi+1)Fi+1(Ai+1
t )>, (99)

= (xAi
s + (zi+1)\e)Fi(Ai

t)
>, (100)

= F it (x, (z
i+1)\e). (101)

If edge e is on the jth edge-disjoint path from the source
node s to sink node t, to form Ai+1

t , we need to first append
a column with zero components to Ai

t, and then move the ‘1’
in the jth row to the last component of that row. That is, if
(Ai

t)
> =

[
b>1 b>2 · · · b>rt

]
, then

(Ai+1
t )> =

[
b>1 · · · b>j−1 0 b>j+1 · · · b>rt

0 · · · 0 1 0 · · · 0

]
.

(102)

We can then obtain F i+1
t (x, zi+1) from (91) (with i + 1 in

place of i), (96), (97) and (102) as

(F i+1
t (x, zi+1))j = (xAi+1

s + zi+1)Fi+1((Ai+1
t )>)j (103)

= (xAi
s + zi+1\e)Fike + (zi+1)e,

(104)

and

(F i+1
t (x, zi+1))\{j}

= (xAi+1
s + zi+1)Fi+1((Ai+1

t )>)\{j} (105)

= (F it (x, z
i+1\e))\{j}. (106)

B. The Weight Preserving Algorithm

Algorithm 2 shows the pseudo code for our second algo-
rithm which at the beginning finds rt edge disjoint paths from
the source node to each sink node t, and initializes F, As,
and At, t ∈ T by F0, A0

s, and A0
t , t ∈ T , respectively. The

algorithm takes a linear codebook C, such that d0
min,t ≥ dt for

all sink node t. Such a codebook can be effectively constructed
by using Reed-Solomon codes.

The main part of this algorithm is a loop starting at Line 7
for updating the local encoding kernels for the edges in E \
Out(s) in an upstream-to-downstream order. Let e be the edge
appended to the graph in the ith step. The choice of ke is
realized by the pseudo codes between Line 7 and Line 24.

For a fixed i, we choose ke such that the following feasible
condition is satisfied:

(F it (x,−zi))\L 6= 0 (107)

for all the combinations of
C1) t ∈ T ,
C2) L ⊂ {1, 2, . . . , rt} with 0 ≤ |L| ≤ dt − 1,
C3) non-zero x ∈ C, and
C4) error vector zi with wH(zi) ≤ dt − 1− |L|.

The feasible condition is sufficient for dimin,t ≥ dt, t ∈ T ,
which is equivalent to (107) with L = ∅ holding for all
t ∈ T , for all non-zero x ∈ C, and all error vector zi with
wH(zi) ≤ dt− 1. So when the algorithm terminates, the code
constructed for G satisfies dmin,t ≥ dt for all t ∈ T . Even
though the feasible condition is stronger than necessary for
dimin,t ≥ dt, t ∈ T , as we will see, it is needed for the
existence of the local encoding kernels for k > i such that
dkmin,t ≥ dt for all t ∈ T .

Theorem 11: Given a linear codebook with d0
min,t ≥ dt for

all t ∈ T , there exist local encoding kernels such that the
feasible condition is satisfied for i = 0, · · · , |E|−ns when the
field size is larger than

∑
t∈T

(
rt+|E|−2
dt−1

)
.

Proof: See Section V-C.
Again, we analyze the time complexity of the algorithm for

the representative special case that rt = r and dt = d for all
t ∈ T , where r ≤ mint∈T maxflow(s, t) and d ≤ r − ω + 1.
For Line 3, the augmenting paths for all the sinks can be
found in time O(|T ||E|r) [4]. Line 15 and 17 can be realized
by solving a system of linear equations which take time O(r3)
and O(1), respectively, and each of these two lines is repeated
O(d|E||T |

( |E|
d−1

)
) times. Line 25 can be solved by the method
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Algorithm 2: A pseudo code of the proposed algorithm.
The superscripts of F, As, At, z, and Ft are omitted.
input : (G, s, T ), (rt : t ∈ T ), ω, (dt:t ∈ T ), a linear

codebook C with d0
min,t ≥ dt, ∀t ∈ T

output: local encoding kernels, and C
begin1

for each sink node t do2

choose rt edge disjoint paths from s to t;3

initialize At;4

end5

F← I, As ← I;6

for each e ∈ E \Out(s) in an upstream to7

downstream order do
Γ← ∅;8

for each sink node t do9

if no chosen path from s to t crosses e then10

At ←
[
At 0

]
;11

else e is on the jth path from s to t12

for each L with |L| ≤ dt − 1 and j /∈ L13

do
for each ρ with |ρ| = dt − 1− |L| do14

find x0 6= 0 and z0 matching ρ15

such that
(Ft(x0,−z0))\(L∪{j}) = 0;
if exist x0 and z0 then16

Γ← Γ ∪ {k:17

(x0A− z0)Fk = 0};
end18

end19

end20

end21

update At using (102);22

end23

choose a vector ke in F|In(tail(e))|
q \ Γ;24

F←

[
F Fke
0 1

]
;

25

end26

end27

in Lemma 10 in time O(δ|T |
(
r+|E|−2
d−1

)
(δ2 + |T |

(
r+|E|−2
d−1

)
)),

where δ is the maximum incoming degree of G, and this line
is repeated O(|E|) times. Under the assumption that each edge
is on some chosen path from the source to the sinks, δ ≤ r|T |.
Summing up all the parts, we obtain the complexity

O(δ|E||T |ξ′(δ2 + |T |ξ′) + r3d|E||T |ξ), (108)

where ξ′ =
(
r+|E|−2
d−1

)
.

In Table I, we compare these two algorithms with another
algorithm subsequently proposed by Matsumoto [27] for the
same purpose. As we can see, all these algorithms have similar
complexities.

C. Algorithm Verification

In this section, Theorem 11 is proved by induction on i.
After the initialization, for each sink node t, it follows from

TABLE I
COMPARISON OF DETERMINISTIC CONSTRUCTION ALGORITHMS FOR

NETWORK ERROR-CORRECTING CODES. ξ =
( |E|
d−1

)
AND ξ′ =

(r+|E|−2
d−1

)
.

field size Time complexity

Algorithm 1 |T |ξ O(ns|T |ωξ(n2
s + |T |ξ))

Algorithm 2 |T |ξ′ O(δ|E||T |ξ′(δ2 + |T |ξ′) + r3d|E||T |ξ)
[27, Fig. 2] |T |ξ O(r|E||T |ξ(|T |ξ + r + d))

d0
min,t ≥ dt that (107) holds for i = 0, all L satisfying C2),

all x satisfying C3) and all z0 satisfying C4). This verifies the
feasible condition for i = 0.

Assume that up to the kth step, where 0 ≤ k < |E|−ns, we
can find local encoding kernels such that the feasible condition
is satisfied for all i ≤ k. In the (k + 1)th step, let e be the
edge appended to Gk to form Gk+1. We will show that there
exists ke such that the feasible condition continues to hold for
i = k + 1.

We first consider a sink node t (which does not necessarily
exist) for which edge e is not on any path from the source
node s to t. For all L satisfying C2), all x satisfying C3) and
all zk+1 satisfying C4) with k + 1 in place of i, we have

(F k+1
t (x,−zk+1))\L = (F kt (x,−(zk+1)\e))\L (109)

6= 0, (110)

where (109) follows from (101), and (110) follows from
wH(zk+1\e) ≤ wH(zk+1) ≤ dt − 1 − |L| and the feasible
condition (107) is satisfied for i = k by the induction
hypothesis. Therefore, (107) holds for i = k + 1 regardless
of the choice of ke.

For a sink node t such that edge e is on the jth edge-disjoint
path from the source node s to t, we consider two scenarios
for L, namely j ∈ L and j /∈ L. For all L satisfying C2) and
j ∈ L, all x satisfying C3) and all zk+1 satisfying C4) for
i = k + 1,

(F k+1
t (x,−zk+1))\L = (F kt (x,−(zk+1)\e))\L (111)

6= 0, (112)

where (111) follows from (106) and (112) follows from the
same argument as the previous case. Therefore, (107) again
holds for i = k + 1 regardless of the choice of ke.

For all L satisfying C2) and j 6∈ L, all x satisfying C3)
and all zk+1 satisfying C4) with i = k + 1, (107) holds for
i = k + 1 if and only if either

(F k+1
t (x,−zk+1))\L∪{j} 6= 0 (113)

or
(F k+1
t (x,−zk+1))j 6= 0.eq : 22rpo (114)

By (106) and (103), (113) and (114) are equivalent to

(F kt (x,−zk+1\e))\L∪{j} 6= 0, (115)

and
(xAk

s − zk+1\e)Fkke − (zk+1)e 6= 0, (116)

respectively. Note that ke is involved in (116) but not in (115).
For an index set L satisfying C2) and j 6∈ L, let Σk+1

L
be the set of all (x, zk+1) that do not satisfy (115), where
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x satisfies C3) and zk+1 satisfies C4) for i = k + 1. We
need to find a proper ke such that for any (x, zk+1) ∈ Σk+1

L ,
(x, zk+1) satisfies (116). In the following technical lemmas,
we first prove some properties of Σk+1

L .
Lemma 12: If the feasible condition holds for i = k, then

for any (x, zk+1) ∈ Σk+1
L , wH(zk+1) = dt − 1 − |L| and

(zk+1)e = 0.
Proof: Fix (x, zk+1) ∈ Σk+1

L . If |L| = dt − 1, since
wH(zk+1) ≤ dt − 1 − |L| = 0, the lemma is true. If 0 ≤
|L| < dt − 1, we now prove that wH(zk+1\e) > dt − 2− |L|.
If wH(zk+1\e) ≤ dt − 2 − |L|, by the assumption that the
feasible condition holds for i = k,

(F kt (x,−zi+1\e))L∪{j} 6= 0, (117)

i.e., (x, zk+1) satisfies (115), a contradiction to (x, zk+1) ∈
Σk+1
L . Therefore

dt − 1− |L| ≤ wH(zk+1\e) (118)

≤ wH(zk+1) (119)
≤ dt − 1− |L|. (120)

Hence, wH(zk+1\e) = wH(zk+1) = dt − 1 − |L|. This also
implies that (zk+1)e = 0.

Lemma 13: Let M be a matrix, x be a row vector, and j be
a column index of M . If a system of linear equations xM = 0
has only the zero solution, then xM\{j} = 0 has at most a
one-dimensional solution space.

Proof: The lemma is proved by contradiction. Assume
xM\{j} = 0 has a solution space with more than one
dimension. Then there exist nonzero, linearly independent
x1 and x2 as its solutions. Since xM = 0 has only the
zero solution, we have x1(M)j 6= 0 and x2(M)j 6= 0.
Let α = −x1(M)j/x2(M)j . Then, x1 + αx2 6= 0 and
(x1 + αx2)(M)j = 0. Together with (x1 + αx2)M\{j} = 0,
we have a contradiction to the assumption that xM = 0 has
only the zero solution.

Lemma 14: Let ρ be an error pattern with |ρ| = dt−1−|L|,
where 0 ≤ |L| ≤ dt − 1. If the feasible condition holds for
i = k, the span of all (x, zk+1) ∈ Σk+1

L with zk+1 ∈ ρ∗ is
either empty or a one-dimensional linear space.

Proof: Consider the equation

(F kt (x,−zk+1\e))\L = 0 (121)

with x ∈ C and zk+1 ∈ ρ∗ as variables. Since C and ρ∗ are
both vector spaces, (121) is a system of linear equations. By
the assumption that the feasible condition holds for i = k,
(121) has only the zero solution. By Lemma 13, the system
of linear equations

(F kt (x,−zk+1\e))\L∪{j} = 0, (122)

with x ∈ C and zk+1 ∈ ρ∗ as variables, has at most a one-
dimensional solution space.

Lemma 15: If the feasible condition holds for i = k, there
exist at most

(
ns+k

dt−1−|L|
)
q|In(tail(e))|−1 values of ke such that

(116) does not hold for some (x, zk+1) ∈ Σk+1
L .

Proof: For (x0, zk+1
0 ) ∈ Σk+1

L , by Lemma 12, (zk+1
0 )e =

0. Thus, all the ke satisfying

(x0Ak
s − zk+1\e

0 )Fkke = 0 (123)

do not satisfy (116) for (x0, zk+1
0 ) ∈ Σk+1

L .
To count the number of solutions of (123), we notice that

(F kt (x0,−zk+1\e
0 ))\L 6= 0, (124)

by the feasible condition holding for i = k, and

(F kt (x0,−zk+1\e
0 ))\L∪{j} = 0, (125)

since (x0, zk+1
0 ) ∈ Σk+1

L . Thus,

(F kt (x0,−zk+1\e
0 ))j = ((x0Ak

s − zk+1\e
0 )Fk(Ak

t )>)j 6= 0.
(126)

This nonzero component of (x0Ak
s − zk+1\e

0 )Fk corresponds
to the edge that precedes edge e on the jth path from s to
t. This shows that the components of (x0Ak

s − zk+1\e
0 )Fk in

(126) corresponding to the edges in In(tail(e)) are not all
zero. On the other hand, a component of ke can possibly
be nonzero if and only if it corresponds to an edge in
In(tail(e)). Therefore, the solution space of ke in (123) is
an F|In(tail(e))|−1

q -dimensional subspace.
By Lemma 12, for each (x, zk+1) ∈ Σk+1

L , zk+1 must
match an error pattern ρ with |ρ| = dt − 1 − |L| and e /∈ ρ.
Since there are totally ns+k edges in Gk+1 excluding e, there
are
(

ns+k
dt−1−|L|

)
error patterns with size dt − 1− |L|.

Consider an error pattern ρ with |ρ| = dt − 1 − |L| and
e /∈ ρ. By Lemma 14, if (x0, zk+1

0 ) ∈ Σk+1
L with zk+1

0 ∈ ρ∗,
all (x, zk+1) ∈ Σk+1

L with zk+1 ∈ ρ∗ can be expressed as
(αx0, αzk+1

0 ) with nonzero α ∈ F. Since we obtain the same
solutions of ke in (123) when x0 and zk+1

0 are replaced by
αx0 and αzk+1

0 , respectively, for a particular pattern ρ, we
only need to consider any (x0, zk+1

0 ) ∈ Σk+1
L with zk+1

0 ∈ ρ∗.
Upon considering all error patterns ρ with |ρ| = dt −

1 − |L| and e /∈ ρ, we conclude that there exist at most(
ns+k

dt−1−|L|
)
q|In(tail(e))|−1 values of ke not satisfying (116) for

some (x, zk+1) ∈ Σk+1
L .

Considering the worst case that for all t ∈ T , edge e is on
an edge-disjoint path from the source node s to sink node t,
and considering all the index set L with 0 ≤ |L| ≤ dt−1 and
j /∈ L for each sink node t, we have at most

∑
t∈T

dt−1∑
l=0

(
rt − 1
l

)(
ns + k

dt − 1− l

)
q|In(tail(e))|−1

=
∑
t∈T

(
rt + ns + k − 1

dt − 1

)
q|In(tail(e))|−1 (127)

≤
∑
t∈T

(
rt + |E| − 2
dt − 1

)
q|In(tail(e))|−1 (128)

vectors that cannot be chosen as ke. Note that (128) is justified
because 0 ≤ k ≤ |E| − ns − 1. Since q >

∑
t∈T

(
rt+|E|−2
dt−1

)
,

there exists a choice of ke such that for all L satisfying C2)
and j 6∈ L, all x satisfying C3), and all zk+1 satisfying C4)
for i = k + 1, (107) holds for i = k + 1. Together with the
other cases (where the choice of ke is immaterial), we have
proved the existence of a ke such that the feasible condition
holds for i = k + 1.
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VI. CONCLUDING REMARKS

This work, together with the previous work [16], gives
a framework for coherent network error correction. In [16],
they showed how to characterize the error correction/detection
capability of a general transmission system with network
coding being a special case. The problems concerned here are
what the best a network code can do for error correction is and
how to construct an optimal network code for this purpose.

Toward the first goal, refined versions of the Hamming
bound, the Singleton bound and the Gilbert-Varshamov bound
for network error correction have been presented with simple
proofs based on the distance measures developed in [16].
These bounds are improvements over the ones in [6], [10],
[11] in the linear network coding case. Even though these
bounds are stated based on the Hamming weight as the weight
measure on the error vectors, they can also be applied to the
weight measures in [7], [12], [17] because of the equivalence
relation among all these weight measures (See [16], [28]).

Like the original version of the Singleton bound [6], [10],
the refined Singleton bound for linear network codes proved
in this paper continues to be tight. Two different construc-
tion algorithms have been presented and both of them can
achieve the refined Singleton bound. The first algorithm finds
a codebook based on a given set of local encoding kernels,
which simply constructs an MDS code when the problem
setting is the classical case. The second algorithm constructs
a set of of local encoding kernels based on a given classical
error-correcting code satisfying a certain minimum distance
requirement by recursively choosing the local encoding kernels
that preserves certain minimum distance properties.
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