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Abstract — We investigate transmission of infor-

mation in a network in the presence of an adversary

that can eavesdrop k channels and inject d errors into

the network at the same time. We propose a de-

terministic construction of a secure error-correcting

(SEC) network codes which can transmit information

at rate m− 2d− k to all the sink nodes which protect-

ing the information from eavesdropping and contam-

ination by the adversary, where m is the minimum

maxflow among all the sink nodes. We also show that

this rate is optimal.

I. Introduction

In a real network, data transmission may suffer from
two kinds of adversaries: contamination and eavesdrop-
ping. Here contamination refers to the distortion on the
transmission, such as random errors, link failures, traffic
congestion and malicious modifications. Network coding
for combating these two kinds of adversaries have been
studied in the literature.

The concept of network error correction coding, a gen-
eralization of classical error correction coding, was in-
troduced by Cai and Yeung [3–5]. They generalized the
Hamming bound, the Singleton bound and the Gilbert-
Varshamov bound in classical error correction coding to
network coding. A refined version of these bounds are
proved by [10] and [11]. Zhang [6] introduced the min-
imum rank for linear network codes, which plays a role
similar to that of the minimum distance in decoding clas-
sical error-correcting codes. Recently, network general-
izations of the Hamming weight, the Hamming distance,
and the minimum distance of network codes have been
obtained by Yang and Yeung [9]. In terms of the mini-
mum distance, the capability of a network code for error
correction, error detection, and erasure correction can be
fully characterized.

The eavesdropping problem has been addressed by Cai
and Yeung [2]. They introduced a communication system
on a wiretap network (CSWN), which consists of a col-
lection W of subsets of channels. A eavesdropper can
arbitrarily choose one but only one subset W ∈ W and
fully access all the channels in the subset W . The com-
municators over a CSWN know the collection W but do
not know which subset W is chosen by the eavesdrop-
per. They proposed in [2] a secure network coding scheme
based on a given decodable linear network code.

In this paper, we consider an adversary that can:

i) eavesdrop a subset of at most k channels;

ii) contaminate the transmission on a subset of at most
d channels.

The main contribution of this paper is to propose a
construction of deterministic network codes which can
transmit information to all the sink nodes at rate m −
2d−k with complete reliability and information-theoretic
security. We also shown that the rate m−2d−k is optimal
in the presence of such an adversary. We call the codes so
constructed secure error-correcting (SEC) network codes.
The security of the code is rigorously established based on
a very general model in which the adversary can use the
information obtained through eavesdropping in a causal
manner. The details will be explained later.

A similar problem was studied in [7,8] with the inaction
assumption, i.e., the adversary contaminates the same
subset of channels for a long period of time.

II. Code Construction

In this section, we present a code construction by cascad-
ing an error-correcting network code construction with a
secure network code construction. The existence of such a
code will also be shown while the error-correcting capabil-
ity and the secure issue of the result network code will be
analyzed in the next section. The construction consists of
four parts. Part 1 is to utilize a given linear multicast as
an error-correcting network code with distance achieving
the refined Singleton bound [4] by choosing a suitable in-
put subspace at the source node. The technique involved
can also be found in [4]. Parts 2 to 4 involve the steps
of transforming the constructed error-correcting network
code into a SEC code. This idea is originated in the
work [12]. Most of the techniques involved in construct-
ing a secure network code can be found in [2].

For two subsets V1, V2 ⊂ Fω+k
q , their sum is the set

defined by

V1 + V2 = {v1 + v2 : v1 ∈ V1,v2 ∈ V2}, (1)

where ω is an integer whose value is to be specified. De-
note by W a collection of subsets W of the edge set E
such that |W | ≤ k.
Construction 1:

i) Let an m-dimensional linear multicast with global
encoding kernels {fe} be given, and let ω+k < m+1.
In [4], it was shown that by choosing a suitable (ω+



k)-dimensional subspace of Fm, specified by an (ω+
k)×m generator matrix G, the linear multicast can
be converted into a linear network code with dmin =
m− ω − k + 1 > 0.

ii) For all W ∈ W, define LW = 〈{Gfe, e ∈W}〉 where
〈·〉 is the conventional notation for the linear span
of a set of vectors. Then we choose ω linearly in-
dependent vectors b1, b2, ..., bω from Fω+k such that
∀W ∈ W,

〈{b1, b2, ..., bω}〉 ∩ LW = ∅. (2)

The existence of such a set of vectors will be jus-
tified later on. We can extend b1, b2, ..., bω to a
linearly independent set with ω + k vectors, say
b1, b2, ..., bω, bω+1, ..., bω+k, and denote

Q =
[
b1 b2 . . . bω+k

]
, (3)

which is non-singular.

iii) The information source X takes values in Fω while
the independent randomness R takes values in Fk ac-
cording to the uniform distribution. Let the message
x be a row vector in Fω, and let the outcome r of
R be a row vector in Fk. Let X ′ = (X,R) and the
outcome of X ′ be x′ = (x, r).

iv) Encode the vector x′ by Q−1G and transmit the en-
coded vector x′Q−1G by utilizing the given linear
multicast. Therefore the symbol transmitted on each
channel e is equal to x′Q−1Gfe.

The existence of Q can be justified by standard tech-
niques. See for example [13].

III. Security and Error-correction Capability

In this section, we show that the code constructed in the
previous section can transmit at rate m−2d−k with reli-
ability and information-theoretic security in the presence
of an adversary that can eavesdrop any set of k channels
and can inject up to d errors in the network.

Theorem 1. Given a set of local encoding kernels over
a finite field with size q where q is sufficiently large, there
exists a message set C with |C| = qm−2d−k such that in-
formation can be transmitted to all the sink nodes t at the
rate m−2d−k in the presence of d channels with errors,
and the network code can prevent eavesdroppings on any
set of k channels in the network.

Proof. In Construction 1, by letting dmin = 2d + 1, we
obtain a linear network code that transmits information
at rate ω = m − 2d − k. All we have to show is that
the code satisfies the error correcting condition and the
security condition. We first verify the error correcting
condition. By the result in [9], every sink node can decode

x′Q−1 in the presence of up to d errors. Therefore, the
sink nodes can recover x′ and hence x.

Now, let us check the security condition. We first as-
sume that no error is injected into the network. We first
fix an arbitrary set W of k′ ≤ k channels, e1, e2, ..., ek′

such that {fe1 , fe2 , ..., fek′} forms a set of linear indepen-
dent vectors and assume that it is the set of eavesdropped
channels. Then the information transmitted on the k′

channels will be x′Q−1Gfe1 ,x
′Q−1Gfe2 , ...,x

′Q−1Gfek′ ,
respectively. Or equivalently,

x′Q−1f ′e1 , x
′Q−1f ′e2 , ..., x

′Q−1f ′ek
, (4)

where f ′el
= Gfel

,∀1 ≤ l ≤ k′. Next, we are going to show
by contradiction that all the symbols the eavesdropper
obtains from the channels are a mixture of the symbols
from X and R, and that the eavesdropper cannot recover
any information about X, either completely or partially.
To extract any kind of information consisting only sym-
bols from X, there must exist at least one vector f in the
vector space

〈
f ′e1 , f

′
e2 , ..., f

′
ek′

〉
such that

Q−1f ∈ V ′, (5)

where V ′ is the vector space consisting of all (ω + k)-
dimensional column vectors which contain only zeros
starting from the (ω + 1)st position. If such a vector
f exists, then

f ∈ V ′′, (6)

where V ′′ = {Qv : v ∈ V ′}. Furthermore,

V ′′ = {Qv : v ∈ V ′} (7)
= 〈{Qδ1, Qδ2, . . . , Qδω}〉 (8)
= 〈{b1, b2, ..., bω}〉 , (9)

where δi, 1 ≤ i ≤ ω denotes the (ω + k)-dimensional col-
umn vector which contains only zeros except in the ith
position which is equal to 1. Therefore,

f ∈ 〈{b1, b2, ..., bω}〉 . (10)

This contradicts (2). Hence, such a vector f does not
exist, and all the symbols that the eavesdropper obtains
from the channels are a mixture of the symbols from X
and R.

Let YW be the vector of symbols transmitted on the
k′ eavesdropped channels. Let yW be the value of YW
when X = (x, r). The information transmitted on the k′

eavesdropped channels are

YW =(x, r)
[
Q−1f ′e1 Q−1f ′e2 . . . Q−1f ′ek′

]
(11)

=(x, r)
[
G1

G2

]
(12)

=xG1 + rG2, (13)

where G1 and G2 are matrices with dimensions ω × k′

and k× k′, respectively. Next, we are going to show that
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Figure 1: Error components and wiretapping of a channel.

the rank of G2 must be k′, the number of columns of G2.
Assume that the rank of G2 is less than k′. There must
exist a k′-dimensional non-zero column vector v such that

G2v = 0. (14)

Then

YW v = (x, r)
[
G1

G2

]
v (15)

= (x, r)
[
G1v

0

]
(16)

= xG1v. (17)

This contradicts the fact that all symbols obtained by the
eavesdropper are mixture of the symbols from X and R.
Therefore, the rank of G2 must be k′.

For all subset W of k′ channels, yW ∈ Fk′
and x ∈ Fω,

Pr{YW = y|X = x} (18)
=Pr{xG1 +RG2 = y} (19)
=Pr{RG2 = y − xG1} (20)

=|F|−k
′
, (21)

which is independent of x. Therefore,

I(X;YW ) = 0. (22)

From now on, we assume that errors can occur on all
the edges in the network and we will prove that under
this assumption, the eavesdropper still cannot obtain any
useful information. Let E = {1, 2, . . . , |E|}, where the
indexing is consistent with the partial order of edges in
the network.

Assume that on each edge i ∈ E , the error is an addi-
tion of two components, as illustrated in Figure 1. One
of the component is called random error Zrani which is
not under the control of the adversary and satisfies

I(X,R;Zran) = 0, (23)

where Zran = (Zrani , 1 ≤ i ≤ |E|). And we assume that
the adversary is powerful enough to know all the random
errors Zran injected though the value of the random er-
rors are out of adversary’s control. The other component
of the error is called injection error Zini which is a possibly

probabilistic injection of errors based on both the infor-
mation obtained so far by the adversary and the random
errors Zran, and is under the control of the adversary.
We will show that the code we constructed in the last
section is indeed secure under this highly advantageous
assumption for the eavesdropper.

Let {σ(1), σ(2), . . . , σ(k)} be the set of k channels that
the adversary chooses to eavesdrop where the indexing
is consistent with the partial order of the edges in the
network. In order words, σ(i) ≤ σ(j),∀i < j. Assume
that ∀1 ≤ j ≤ |E|, there exists 1 ≤ ij ≤ k such that
either σ(ij) < j and j ≤ σ(ij + 1), or σ(i) < j, ∀1 ≤ i ≤
k. And we assume that the adversary has the ability to
decide what errors to be injected into the downstream of
the network based on the information it obtained in the
upstream.

Let Yj , 1 ≤ j ≤ k, be the symbols transmitted on the
edge σ(j) when there is no error injected into the network
and let Y ′j , 1 ≤ j ≤ k, be the symbols transmitted on the
edge σ(j) when there are errors in the network (either
random or injected). We further assume that for every
channel chosen, the eavesdropper always eavesdrops at
the receiving end of the channel, that is, after the errors
are injected if there is any. This assumption can be justi-
fied because in our model, the adversary are assumed to
know not only the injected errors, but also the random
errors that are happening on every channels. The infor-
mation that the adversary can obtain by eavesdropping
the receiving end of the channels allows it to calculate
the information at the transmitting end of the channels.
Therefore ∀j, 1 ≤ j ≤ k,

Y ′j = Yj + g′j(Z
in
i , Z

ran
i ,∀i ≤ σ(j)), (24)

where g′e(·)s are deterministic functions depend only on
the local encoding kernels of the network.

Then ∀j, 1 ≤ j ≤ k,

I(Zinj ;Yij+1, . . . , Yk|Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran)

=I(Zinj ;Yij+1, . . . , Yk|Y ′1 , . . . , Y ′ij , Z
in
1 , . . . , Zinj−1, Z

ran)
(25)

≤I(Zinj ;X,R|Y ′1 , . . . , Y ′ij , Z
in
1 , . . . , Zinj−1, Z

ran) (26)

=0, (27)

where the first equality is valid because when
(Zin1 , . . . , Zinj−1, Z

ran) are all known, the values of
Y1, . . . , Yij can always be calculated from Y ′1 , . . . , Y

′
ij

by
using (24) and vice versa, the first inequality follows from
the fact that Yij+1, . . . , Yk are all functions of X,R and
the last equality is true by the construction of our model.
Therefore, ∀j, 1 ≤ j ≤ k,

I(Zinj ;Yij+1, . . . , Yk|Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran) = 0.
(28)



Furthermore, ∀j, 1 ≤ j ≤ k,

I(Zinj ;Yij+1, . . . , Yk|X,R, Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran)

≤I(Zinj ;X,R|X,R, Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran)
(29)

=0. (30)

Therefore, ∀j, 1 ≤ j ≤ k,

I(Zinj ;Yij+1, . . . , Yk|X,R, Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran)

=0. (31)

Then ∀j, 1 ≤ j ≤ k,

I(X,R;Zinj |Y1, . . . , Yij , Yij+1, . . . , Yk, Z
in
1 , . . . , Zinj−1, Z

ran)

=I(X,R;Zinj |Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran)−
I(X,R;Zinj ;Yij+1, . . . , Yk|Y1, . . . , Yij , Z

in
1 , . . . , Zinj−1, Z

ran)
(32)

=I(X,R;Zinj |Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran)−
I(X,R;Zinj ;Yij+1, . . . , Yk|Y1, . . . , Yij , Z

in
1 , . . . , Zinj−1, Z

ran)−
I(Zinj ;Yij+1, . . . , Yk|X,R, Y1, . . . , Yij , Z

in
1 , . . . , Zinj−1, Z

ran)
(33)

=I(X,R;Zinj |Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran)−
I(Zinj ;Yij+1, . . . , Yk|Y1, . . . , Yij , Z

in
1 , . . . , Zinj−1, Z

ran)
(34)

=I(X,R;Zinj |Y1, . . . , Yij , Z
in
1 , . . . , Zinj−1, Z

ran) (35)

=0, (36)

where (32) follows from

I(A;B;C) = I(A;C)− I(A;B|C)1, (37)

(33) follows from (31), (35) follows from (28), and the last
equality is valid by the construction of our model. Since
YW = (Y1, . . . , Yk), it follows from (36) that

I(X,R;Zinj |YW, Z
in
1 , . . . , Zinj−1, Z

ran) = 0. (38)

Summing over all j and applying the chain rule for mutual
information, we get

I(X,R;Zin|YW, Z
ran)

=
∑
j

I(X,R;Zinj |YW, Z1, . . . , Zj−1, Z
ran) (39)

=0, (40)

where Zin = (Zini , 1 ≤ i ≤ |E|).

1See [13], Ch. 3.

On the other hand,

I(X;YW|Zran)
=I(X;YW)− I(X;YW;Zran) (41)
=− I(X;YW;Zran) (42)
=I(X;Zran|YW)− I(X;Zran) (43)
=I(X;Zran|YW) (44)
≤I(X,R;Zran|YW) (45)
=I(X,R;Zran)− I(XR;Zran;YW) (46)
=− I(X,R;Zran;YW) (47)
≤I(Zran;YW|X,R) (48)
≤H(YW|X;R) (49)
=0, (50)

where (42) follows from (22), both (44) and (47) follow
from (23) and (48) follows from

0 ≤ I(Zran;YW) (51)
= I(X,R;Zran;YW) + I(Zran;YW|X,R). (52)

Since I(X;YW|Zran) ≥ 0, (50) implies

I(X;YW|Zran) = 0. (53)

Therefore,

I(X;YW, Z
in, Zran)

=I(X;Zran) + I(X;YW|Zran) + I(X;Zin|YW, Z
ran)

(54)

=I(X;YW|Zran) + I(X;Zin|YW, Z
ran) (55)

=I(X;Zin|YW, Z
ran) (56)

=0, (57)

where (55) follows from (23), (56) follows from (53), and
(57) follows from (40).

Finally,

I(X;Y ′W)

≤I(X;Y ′W, Z
in, Zran) (58)

=I(X;YW, Z
in, Zran) (59)

=0. (60)

Therefore,

I(X;Y ′W) = 0. (61)

That is, the code we constructed in the last section is
indeed secure.

Next, we prove that m − 2d − k is an upper bound
on the rate of a SEC network code in the presence of
an adversary that can eavesdrop k channels and inject d
errors. The proof here is an extension of the one in [14].
In establishing this result, we need a set of inequalities
due to Han [1] stated in the next lemma.



Lemma 1. For a subset α of N = {1, 2, . . . ,m}, let ᾱ =
N\α and (Xi, i ∈ α) by Xα. For 1 ≤ k ≤ m, let

H ′k =
1(

m−1
k−1

) ∑
α:|α|=k

H(Xα|Xᾱ). (62)

Then

H ′1 ≤ H ′2 ≤ · · · ≤ H ′m. (63)

Theorem 2. The maximum rate at which information
can be transmitted from the source node to all the sink
nodes with linear network code in the presence of adver-
sary that can eavesdrop k channels and inject d errors at
the same time is m− 2d− k.

Proof. Let t be the sink node such that there exists a cut
U between s and t such that the there are exactly m edges
across the cut U . Let Et = {e1, e2, . . . , em} be the set of
edges across the cut U . Assume that the source node
transmits ω units of information, x = {x1, x2, . . . , xω},
to the sink nodes and k′ symbols of randomness are in-
troduced.

Consider a fixed linear network code in which all the
node will transmit a linear combination of the informa-
tion that it received from the incoming edges onto the
outgoing edges according to the local encoding kernels.
Then the information transmitting across the cut is

xGM + rGR, (64)

whereGM is a ω×m generator matrix for the message and
GR is a k′×m matrix and the exact value of GM and GR
depend on the local encoding kernels of the linear network
code considered. The rank of GM must be ω for the
message to be decodable at the sink nodes. Furthermore,

〈GM 〉 ∩ 〈GR〉 = {0}, (65)

where 〈GM 〉 and 〈GR〉 are the row vector spaces of GM
and GR, respectively. Otherwise, there exist x,x′ ∈
Fω,x 6= x′, r, r′ ∈ Fk, r 6= r′ such that

(x− x′)GM = (r− r′)GR. (66)

This implies

xGM + r′GR = x′GM + rGR. (67)

Then, the sink node t would not be able to decode the
message correctly.

Assume information is transmitting at the rate of L−a
and a units of randomness, r = {r1, r2, . . . ra}, are intro-
duced where L > a. Next we are going to show that at
least k symbols of randomness are required for the code
to be secured.

We first deal with the case when L ≥ k + 1. Let
YE′ , E ′ ⊂ E , be the vector of symbols transmitted on the
edge in E ′. We first assume that GR is a full rank matrix,

since 〈GM 〉 ∩ 〈GR〉 = {0},
[
GM
GR

]
is a full rank matrix.

Therefore, ∃ an L×L submatrix which is invertible. This
implies there exists a subset E ′t ⊂ Et, |E ′t| = L such that

H(X,R|YE′
t
) = 0, (68)

which further implies

H(X|YE′
t
) = 0. (69)

For the case in which rank(GR) = b < a, there exists
a matrix ĜR that consists of b rows of GR such that
∀x ∈ FL−a, r ∈ Fa, ∃r′ ∈ Fb such that

(x, r)
[
GM
GR

]
= (x, r′)

[
GM
ĜR

]
, (70)

where the components of r′ is a linear combination of
components of r. Since 〈GM 〉 ∩ 〈GR〉 = {0}, ∃ an (L −
a + b) × (L − a + b) submatrix which is invertible. This
implies there exists a subset E ′t ⊂ Et, |E ′t| = L such that

H(X,R′|YE′
t
) = 0, (71)

where r′ is the outcome of the random variable R′. This
further implies

H(X|YE′
t
) = 0. (72)

For any I ⊂ E ′t, |I| = k, consider

H(X) = H(X|YE′
t
) + I(YE′

t
;X) (73)

= I(YI ;X) + I(YE′
t\I ;X|YI) (74)

= I(YE′
t\I ;X|YI), (75)

where the second equality follows from (69) and the last
equality follows from the requirement for the code to be
secured. Summing over all I, we have(

L
k

)
H(X)

=
∑
I
I(YE′

t\I ;X|YI) (76)

≤
(

L− 1
L− k − 1

)[
1(

L−1
L−k−1

) ∑
I
H(YE′

t\I |YI)

]
(77)

≤
(

L− 1
L− k − 1

)
H(YE′

t
), (78)

where the last inequality follows from Lemman 1. Hence,

H(YE′
t
) ≥ L

L− k
H(X). (79)

Finally,

H(X) +H(R) ≥ H(X,R) (80)
= H(X,R, YE′

t
) (81)

≥ H(YE′
t
) (82)

≥ L

L− k
H(X), (83)



where (81) follows from

H(YE′
t
|X,R) = 0. (84)

This implies

H(R) ≥ k

L− k
H(X) ≥ k, (85)

where X is uniformly distributed. Therefore, at least k
symbols of randomness need to be introduced.

On the other hand, when L ≤ k, there exists a subset
E ′t ⊂ Et, |E ′t| = k such that

H(X,R|YE′
t
) = 0. (86)

That is, the code is insecure. Therefore, at least k sym-
bols of randomness again need to be introduced.

Now, assume that k symbols of randomness are in-
troduced. For the network code to correct any d errors
injected into Et, ∀x1,x2 ∈ Fω,x1 6= x2, r1, r2 ∈ Fk, and
∀z1, z2 ∈ Fm, |z1| ≤ d, |z2| ≤ d,

x1GM + r1GR + z1 6= x2GM + r2GR + z2, (87)

or equivalently, ∀x ∈ Fω,x 6= 0,

xGM /∈ {rGR + z : r ∈ Fk, z ∈ Fm, |z| ≤ 2d}. (88)

Let

G′R =


gr,1
gr,2

...
gr,k

 (89)

be the row-echelon form of GR. We can always find 2d
vectors, namely v1, v2, . . . , v2d, from the set of standard
basis of Fm such that

gr,1, gr,2, . . . , gr,k, v1, v2, . . . , v2d (90)

form a set of k+2d linear independent vectors. Therefore,∣∣{rGR + z : r ∈ Fk, z ∈ Fm, |z| ≤ 2d}
∣∣ (91)

≥ |〈{gr,1, gr,2, . . . , gr,k, v1, v2, . . . , v2d}〉| (92)

= |F|k+2d
, (93)

where (92) follows from the fact that

∀y ∈ 〈{gr,i, 1 ≤ i ≤ k, vj , 1 ≤ j ≤ 2d}〉 ,∃r ∈ Fk,
z ∈ Fm, |z| ≤ 2d such that y = rGR + z.

By (88), the rank of GM must be less than m−2d−k+1.
Otherwise, the sink node cannot decode the information
successfully. Therefore, the maximum rate at which in-
formation can be transmitted from the source node to all
the sink nodes is at most m− 2d− k.

IV. Conclusion

In this paper, an algorithm in constructing a determin-
istic secure error-correcting (SEC) network code is pro-
posed. We have shown that in the presence of malicious
parties, by combining the idea of secure network code
and error-correcting network code, information still can
be multicast with complete secrecy and error tolerabil-
ity at rate m− 2d− k, where k and d are the maximum
number of channels the adversary can eavesdrop and con-
taminate, respectively.
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