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Abstract—In the paradigm of network coding, the
nodes in a network are allowed to encode the infor-
mation received from the input links. With network
coding, the full capacity of the network can be utilized.
In this paper, we propose a model, call the wiretap
network, that incorporates information security with
network coding. In this model, a collection of subsets of
the channels in the network is given, and a wiretapper
is allowed to access any one (but not more than one)
of these subsets without being able to obtain any
information about the message transmitted. Our model
includes secret sharing in classical cryptography as
a special case. We present a construction of secure
linear network codes that can be used provided a
certain graph-theoretic condition is satisfied. We also
prove the necessity of this condition for the special
case that the wiretapper may choose to access any
subset of channels of a fixed size. The optimality of
our code construction is established for this special
case. Finally, we extend our results to the scenario
when the wiretapper is allowed to obtain a controlled
amount of information about the message.

Index Terms—Algebraic coding, cryptography, mul-
ticast, network coding, secret sharing, wiretap channel.

I. INTRODUCTION

The first information-theoretically secure commu-
nication system, the so-called Shannon cipher sys-
tem studied by Shannon in his celebrated paper [25],
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is formulated as follows. Suppose a sender wants to
send the output of a random source message M with
alphabet M = {0, 1, . . . , p − 1} to a receiver. The
sender can send information via a “public” channel,
whose output can be accessed by the receiver as well
as a wiretapper who tries to obtain some information
about M , or the sender can send information via
a “secure” channel, whose output can be accessed
only by the receiver. The usual way to protect M
from the wiretapper is that the sender generates a
“secret key” K independent of the source message
M according to the uniform distribution over M.
Let m be the outcome of M , and let k be the
outcome of K. Then the sender sends the key k to
the receiver via the secure channel, and sends m+k
(mod p) via the public channel. Upon receiving
both k and m + k, the receiver as the legal user
can recover m because m = (m + k) − k. On
the other hand, the wiretapper cannot obtain any
information about m by knowing m + k alone
because what he/she knows is a total randomization
of the message m. In other words, M and K are
statistically independent. This notion of security is
often referred to as information-theoretic security in
the literature. In this work, we will refer to it as
perfect security so as to distinguish from a few other
notions of security to be discussed.

The main idea in the above scheme is that the
sender has to randomize the message in order to
protect it from the wiretapper, where in this case the
alphabets of the random key and of the information
source have the same size (the two alphabets are the
same). Shannon showed in [25] that this protocol is
optimal in the sense of minimizing the size of the
random key. This result, known as the perfect se-
crecy theorem, has been generalized to the imperfect
secrecy theorem by Yeung [27] (p. 116).

In the above scheme, if another wiretapper ob-
serves k but cannot observe m + k, he/she again
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cannot obtain any information about M . Thus the
only thing we have to do for security is to ensure
that an illegal user cannot obtain the outputs of both
the public and the secure channels. This observation
tells us that there is logically no difference between
the public channel and the secure channel. The
Shannon cipher system can be regarded as a secure
code defined for the simple network in Fig. 1 with
two nodes, a source and a sink nodes, connected
by two channels, such that a wiretapper can obtain
no information about the “secure message” M by
accessing any single channel. Based on this obser-
vation, in the conference version of the current paper
[5], we proposed a model for secure network coding
called the wiretap network. A wiretap network con-
sists of a communication network and a collection
of subsets of wiretap channels in the network. A
network code is secure for a wiretap network if
a wiretapper can obtain no information about the
secure message by accessing any wiretap subset,
while all the sink nodes in the network as legal
users can decode the secure message with zero error.
In particular, a wiretap network is called an r-WN
(WN stands for “wiretap network”) if the collection
of wiretap subsets are all subsets of channels with
cardinalities not larger than r. A network code is
r-secure if it is secure for an r-WN. That is, for an
r-secure network code, a wiretapper can obtain no
information about the secure message by accessing
any r channels. The Shannon cipher system is the
simplest 1-secure network code.

Obviously, for the existence of r-secure network
codes, it is necessary that r is strictly smaller than
the value of maximum flow from the source node
to every sink node, because otherwise a wiretapper
accessing all the channels at a minimum cut be-
tween the source node and a sink node would have
all the information received by the sink node and
therefore can correctly decode the secure message.
This reveals the fact that for security, a legal user
must know more than an illegal one.

Another well-known model of a cipher system
is the secret sharing model proposed independently
by Blakley [3] and Shamir [24] (see also Ozarow
and Wyner’s wire-tap channel II [22], a special
case of secret sharing). This model subsumes the
Shannon cipher system. We will show in Section II
that our model subsumes secret sharing and in fact,

the threshold secret sharing scheme is a special r-
secure network code.

One of the main results in [5] was a construc-
tion of linear secure network codes, which will be
presented in Section III. In the construction, we use
a special matrix to transform a non-secure linear
network code into a secure network code. The opti-
mality of this construction (discussed in Section IV)
was presented in [30]. Subsequent to [5], Feldman
et al. [11] pointed out that the condition required
for the special matrix is equivalent to a Hamming
distance property of a certain type of codes. They
also derived a tradeoff between the size of the
message set M and the size of the transmission
alphabet F . In [10], El Rouayheb and Soljanin
presented a construction of secure network codes
by using secure codes for wiretap channel II [22].
They first encode the source message by a secure
code based on an MDS code for a wiretap channel
II and then send the resulting codeword by a linear
network code through the network. They derived a
secure condition for the described coding schemes
and accordingly proposed a code construction. Their
bound on the alphabet size for the construction is
smaller than ours. Moreover, they showed that their
construction is actually equivalent to ours.

Bhattad and Narayanan [2] introduced weakly
secure network coding, where security is defined
as wiretappers not being able to decode any part
of source messages correctly. They showed that
one can use a weakly secure network code without
trading off the throughput.

The r-secure linear network code was strength-
ened to the strongly r-secure linear network code
by Harada and Yamamoto [14]. For a strongly r-
secure network code, a wiretapper can obtain no
information about any s components of the source
message by accessing n − s channels provided
that the maximum flows to all the sink nodes are
at least n, where s ≤ n − r. They presented
a polynomial-time algorithm to construct strongly
secure linear network codes. They pointed out that
strong security in fact contains weak security in [2]
as a special case. In [4], Cai showed that a random
linear network code [15] is strongly secure with high
probablity, provided that the order of coding field is
sufficiently large.

In a recent paper by Ngai et al. [20], the gener-
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alized Hamming weight for linear error correction
codes, introduced by Wei [26], was generalized to
linear network codes. They called it the network
generalized Hamming weight and studied its basic
properties. Using these properties, they obtained a
complete a characterization of the security perfor-
mance of a linear block code when it is used in
conjunction with a given linear network code.

The model of wiretap network was extended
to multiple sources by the authors [6], where the
randomness for protecting the source messages can
be generated at a set of nodes instead of one node.
A necessary and sufficient condition for the security
of a linear network code was derived by the authors
in this work for the case that all the source messages
have positive probability and then by Zhang and
Yeung [32] for the general case.

Perhaps the most general model of multi-source
secure network coding was due to Chan and Grant
[8]. They considered the case of multiple sources
and multiple wiretappers. Each wiretapper is inter-
ested in a particular subset of the source messages
and can access an arbitrary subset of channels in
his/her own collection of wiretap subsets. Again
the security they considered is perfect security, i.e.,
a wiretapper can obtain no information about the
messages he/she is interested in. They obtained a
lower bound and an upper bound on the capacity
region in term of Γ∗, the region of all entropy
functions [28]. In the sequel, we will refer to the
model as the general wiretap network.

There have been several alternative models for
secure network coding. Among them, Jain [17] fo-
cused on the relation between security and network
topology. In their model, there is a single source
node and a single sink node in the network, and
all the nodes may generate randomness to help the
secure transmission. They asked when messages can
be transmitted with perfect security and did not
consider the cost incurred. A necessary and suffi-
ciently condition was derived. The tradeoff between
security and the cost of network coding was studied
by Tan and Médard [23]. In their model, with certain
probability, each channel may be accessed by a
wiretapper and the wiretapper is interested in the
messages from a subset of sources. Their criterion
of security is the probability for the wiretapper to
be able to decode the message of interest correctly.

They proposed two heuristic solutions and com-
pared their performances with traditional routing
by simulation. Their results showed that coding
may be more effective for both reducing the cost
and increasing the security. In the above literature,
security is measured by information quantities (mu-
tual information or entropy) or decoding probability,
whereas Lima et al. [19] proposed an algebraic
secure criterion. They considered the security of
random linear network codes and assume that all
intermediate nodes are potentially wiretappers who
completely comply with the communication proto-
cols in random coding but want to decode the source
message transmitted over the network. To measure
security they used the number of symbols that an
intermediate node has to guess in order to be able
to decode one of the transmitted symbols in terms of
the rank of the partial global encoding matrix. With
this security measure, they analyzed the security of
random linear network codes over complete directed
acyclic graphs.

Network coding for error correction was studied
by [29], [7], where the fundamental coding bounds
were obtained. Secure network coding with error
correction was studied by Ngai and Yeung [21]. In
this work, they presented a construction of secure
error-correcting (SEC) network codes that can pro-
tect the source message from wiretapping, random
errors, and errors injected by the wiretapper. They
also proved the optimality of their construction.

In the next section, we present our model of a
wiretap network and define a secure network code,
which in our terminology is called an admissible
code. The difference between our model and some
other models are explained in two examples. In
Section 3, we first construct a class of linear codes
based on the work of Li et al. [18] on linear net-
work coding. Then we present a sufficient condition
for the construction to be admissible. The proof
of the sufficiency of this condition is deferred to
Section 5. In Section 4, we prove the optimality of
our construction in Section 3 for r-secure network
codes. In Section 6, we extend our results to the
scenario when the wiretapper is allowed to obtain a
controlled amount of information about the message.
The paper is concluded in Section 7.
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II. COMMUNICATION SYSTEM ON A WIRETAP
NETWORK

In this section, we first present our model of
the wiretap network. Then we define secure or
admissible network codes for a wiretap network.

A wiretap network consists of the following com-
ponents:

1) Directed multigraph G: The pair G = (V, E)
is called a directed multigraph1, where V and E are
the node set and the edge set of G, respectively. In
our model, we assume that G is acyclic, i.e., it does
not contain a directed cycle.

2) Source node s: The node set V contains a node
s, called the source node, where a random message
M taking values in an alphabet M is generated.

3) Set of user nodes U : A user node is a node
in V which is fully accessed by a legal user who
is required to receive the random message M with
zero error. There is generally more than one user
node in a network. The set of user nodes is denoted
by U .

4) Collection of sets of wiretap edges A: A is a
collection of subsets of the edge set E . Each member
of A may be fully accessed by a wiretapper, but no
wiretapper may access more than one member of A.

We refer to the quadruple (G, s,U ,A) as a wiretap
network. We also refer to the multigraph G as a
network and the edges in E as channels. The random
message M is generated at the source node s
according to an arbitrary distribution on an alphabet
M, called the message set. On each channel in
E , an index taken from an alphabet F called the
transmission alphabet can be transmitted. We are
interested in the maximum value of |M| for which
the message M can be multicast from the source
node s to the set of user nodes U while being
protected from a wiretapper who can access any
set of channels in A.

The system has been extended to multiple sources
and multiple wiretapper in [8], where each wire-
tapper is interested in the messages from a subset
of the multiple sources and has his/her own col-
lection of wiretap subsets. In other words, different
wiretappers may be interested in different subsets

1In a multigraph, there can be more than one edge from one
node to another node.

of the sources and may have different collections of
wiretap subsets.

The current work is a generalization of the work
by Ahlswede et al. [1] and Li et al. [18] on network
coding. In the paradigm of network coding, the
nodes in a communication network are allowed
to encode the information received from the input
links before it is transmitted on the output links.
The advantage of network coding is that it can
utilize the full capacity of a network for multicasting
information.

In the model we study in the current paper, in the
absence of a wiretapper, i.e., A = ∅, the wiretap
network is reduced to the model studied in [1] and
[18]. It was proved in [1] that information can be
multicast from the source node s to all the user
nodes in U at rate τ if and only if the value of
a maximum flow from s to each user node is at
least τ in the graph G. In general, information can
be multicast from the source node to the user nodes
at a higher rate with network coding than without
network coding when there are at least two user
nodes (see the example in [1], called the butterfly
network). Subsequently, it was proved in [18] by
an explicit construction that this can be achieved by
linear network codes. For a comprehensive treatment
of network coding, we refer the reader to [28].

As we have discussed earlier, it is necessary to
randomize the message in order to protect it from
the wiretapper. This can be explained as follows. If
there is no randomness in the network, the index
transmitted on any channel is a function of the
message M and hence is not independent of M
unless the index takes a constant value. If this is the
case, the channel becomes degenerate as it transmits
no useful information. Thus for a wiretap network,
without randomness, a wiretapper would be able to
obtain some knowledge about the source message
by accessing any single “non-degenerate” channel.

Introducing randomness in the network to protect
the source message inevitably reduces the through-
put because additional bandwidth is needed to trans-
mit different randomized versions of the source
message. Note that our secure criterion is that the
wiretappers may obtain absolutely no information
about the whole source message. In the case of
the general wiretap network in [8] where there are
multiple sources and multiple wiretappers interested
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in different subsets of the sources, or in the case
that the secure criterion is relaxed, it is not always
necessary to reduce the throughput for security. This
will be shown in Example 2 at end of the section.
But first let us define an admissible code for a
wiretap network.

Let K be an independent random variable, called
the key, that takes values in an alphabet K according
to the uniform distribution. To facilitate our discus-
sion, we denote the sets of input and output channels
of a given node a ∈ V by In(a) and Out(a),
respectively. A code for a wiretap network consists
of a set of local encoding mappings {φe : e ∈ E}
such that for all e, φe is a function from M× K
to F if e ∈ Out(s), and is a function from F |In(t)|

to F if e ∈ Out(t) for t 6= s. For e ∈ E , let Ye be
the random symbol in F transmitted on channel e,
i.e., the value of φe. For a subset B of E , denote
(Ye : e ∈ B) by YB .

To complete the description of a code, we have
to specify the order in which the channels send
the indices, called the encoding order. Since the
graph G is acyclic, it defines a partial order on the
node set V . Then the nodes in V can be indexed
in a way such that for two nodes t and t′, if
there is a channel from node t to node t′, then
t < t′. According to this indexing, node t sends
indices in its output channels before node t′ if and
only if t < t′. The order in which the channels
within the set of output channels of a node send
the indices is immaterial. The important point here
is that whenever a channel sends an index, all the
indices necessary for encoding have already been
received. A code defined as such induces a function
Φu fromM×K to F |In(u)| for all user nodes u ∈ U ,
where the value of Φu denotes the indices received
by the user node u in its input channels.

A code {φe : e ∈ E} is admissible for a wiretap
network (G, s,U ,A) if the following conditions are
satisfied:

1) For all user nodes u ∈ U and all m,m′ ∈ M
with m 6= m′,

Φu(m,k) 6= Φu(m′,k′)

for all k,k′ ∈ K, where k, and k′ may or may
not be the same. This guarantees that any two
messages are distinguishable at every user node
because the formula ensures that for every user node

u ∈ U , there exist no k,k′ ∈ K, be they the same
or different, that can produce from two different
messages m and m′ the same set of indices at the
input channels of the user node u. This is referred
to as the decodable condition.

2) For all A ∈ A

H(M |YA) = H(M).

Here H(·|·) and H(·) denote conditional entropy

and entropy, respectively. In other words, M and
YA are independent. This is referred to as the secure
condition.

We call a wiretap network an r-WN if A is the
collection of all subsets of channels with cardinal-
ities not exceeding r. An admissible code for an
r-WN is called an r-secure network code. For an r-
secure network code, a wiretapper can obtain abso-
lutely no information about the source messages by
accessing any r channels in the network. Obviously,
the Shannon cipher system is a 1-secure network
code for the network with a source node s and a
user u and two parallel channels from s to u.

In a secret sharing scheme, a random secret
message M taken from a finite set M is shared
among n participants in [n] := {1, 2, . . . , n} in such
a way that only the so-called qualified subsets of [n]
are able to reconstruct M , whereas any other subsets
of [n] should know absolutely nothing about M . To
share the secret M , a dealer with full access to the
secret source sends a random “share” Yi to every
participant i ∈ [n] according to the value m of the
secret message M . A basic problem in secret sharing
is

(*) at most how many bits of secret can be
shared if each participant i receives at most
ri bits of share, where the non-negative
real vector (r1, r2, . . . , rn) is given.

We can easily see that this is equivalent to asking
whether there exists an admissible code for the wire-
tap network to be described in the next paragraph,
and an admissible code for this particular wiretap
network is exactly a secret sharing scheme. In this
sense, secure network coding contains secret sharing
as a special case.

Let a secret sharing scheme be given. Denote
by Q the collection of qualified subsets in [n] and
let Q0 be its minimal sets (i.e., Q ∈ Q0 if and
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only if Q ∈ Q and no other subset of Q is in
Q). We now construct a wiretap network which
has three layers of nodes: top, middle, and bottom.
The only node on the top layer is the source node
s and it corresponds to the dealer in the secret
sharing scheme. There are n intermediate nodes on
the middle layer, each of them corresponding to a
participant in the secret sharing scheme. For every
i ∈ [n], the source node s is connected to the
intermediate node i by a channel (s, i) with capacity
ri. There are |Q0| user nodes labelled by Q0 on the
bottom layer. An intermediate node i is connected
to a user node Q ∈ Q0 if and only if i ∈ Q.
Finally, the collection of wiretap subsets is defined
as A = {{(s, i), i ∈ A} : A ∈ 2[n] \ Q}, where
2[n] is the power set of [n]. Obviously, for the given
secret sharing scheme, the network code sending the
random share Yi to the intermediate node i for all
i ∈ [n] is admissible, because each user node on
the bottom layer can decode the secret message by
virtue of the secret sharing scheme. On the other
hand, an admissible code for the network defines a
secret sharing scheme.

An (r, n)-threshold secret sharing scheme [3][24],
where r ≤ n, is a secret sharing scheme such that
any r of the n participants can correctly recover the
secret message but any r−1 or less participants can
have no information about the secret message. Then
obviously an (r, n)-threshold secret sharing scheme
is equivalent to an (r − 1)-secure network code for
the network described in the last paragraph. As in
general the problem (*) is extremely hard, to find
optimal admissible codes for an arbitrary wiretap
network is a very difficult problem.

Example 1 (Secret Sharing): Consider the wire-
tap network shown in Fig. 1 with

U = {u1, u2, u3}

and

A = {{(s, a1)}, {(s, a2)}, {(s, a3)}}.

This wiretap network represents the (2, 3)-threshold
secret sharing scheme.

In the definition of our admissible code, we use
perfect security as the secure condition. To achieve
this level of security, however, a relatively high
price needs to be paid in terms of the throughput
as well as the amount of randomness used in the

 

s 

a1 a2 a3 

u1 u2 u3 

Fig. 1. A wiretap network representing the (2, 3)-threshold
secret sharing scheme.
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m1-k1 

m1-k1 

m1-k1 m1+k1 

m1+k1 

m1+k1 

k1 k1 

k1 

Fig. 2. An example of an admissible code for a wiretap network.

scheme. As such, some weaker secure conditions
have been proposed. The following example gives
a comparison between perfect secrecy and these
secure conditions.

Example 2: Consider the wiretap network shown
in the Fig. 2 with

U = {u1, u2}

and
A = {{e} : e ∈ E}.

That is, the wiretap network is obtained by adding
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a collection A of subsets of wiretap channels to
the well-known butterfly network in [1], where the
wiretapper can access any single channel in the
network. To simplify our discussion, we assume that
the source message M is generated according to the
uniform distribution on M. In the wiretap network,
there are exactly two disjoint paths from the source
node s to each of the user nodes u1 and u2. For each
A ∈ A, which contains exactly one channel, there
is one path that starts at the source node s and has
that channel in A as the last channel on the path.
Such a path will be called a path from the source
node s to A. For example,

(s, a1), (a1, a0), (a0, b)

is a path from the source node s to A = {(a0, b)}.
We now describe a linear network code for this

wiretap network over GF (3). Let M be a ternary
source taking values in GF (3). At the source node
s, an independent random key K is also generated
according to the uniform distribution on GF (3).
Denote the values taken by M and K by m1 and k1,
respectively. Then Figure 2 shows a linear network
code on the wiretap network. It is easy to check that
such a code satisfies the decodable condition and the
secure condition, and is therefore admissible. In fact,
as we will see, the existence of such an admissible
code is guaranteed by Theorem 3.

Weak security introduced by Bhattad and
Narayanan [2] is defined as that a wiretapper can-
not decode any component of the source message
correctly. It was shown that there is no extra cost
for weak security provided that the coding field
is sufficiently large and that the wiretapper is not
allowed to obtain all the information received by
any single user. This can be done over GF (q) with
q ≥ 4 in the butterfly network as follows. Let
M = (M1,M2) be generated at the source node
s, where M1 and M2 are two independent random
symbols taking values in GF (q) according to the
uniform distribution. Denote by mi the value of
Mi, i = 1, 2. Let α0, α1, and α2 be three distinct
non-zero elements in GF (q). The source node s
sends m1 + α1m2 to u1 and a0 through a1, and
sends m2 + α2m2 to u2 and a0 through a2. Upon
receiving m1+α1m2 and m1+α2m2, a0 then sends
m1 + α0m2 to u1 and u2 through b. Obviously,
the code is weakly secure if the wiretapper cannot

access any two channels transmitting linearly inde-
pendent information simultaneously. In this scheme,
the number of symbols that can be sent to the
users is equal to the maximum flow from the source
node to the each of the user node, so that there is
no sacrifice in throughput. Also, no randomness is
needed for protecting the message.

Let us again assume that a wiretapper can assess
at most one channel in the butterfly network. Then
the same code is also secure for the following
general wiretap network [8]. In this general wiretap
network, we assume that M1 and M2 are generated
from different sources, and two wiretappers, who are
able to access any single channel, are interested in
M1 and M2, respectively. Then the code in last para-
graph is secure for this general wiretap network. To
see this, we note that H(M1|Y ) = H(M1) = log q
for the random output Y of any single channel.
Thus for this general wiretap network, the required
security can be achieved at no extra cost. The
reason is quite clear, because M2 serves as the
“randomness” to protect M1, and vice versa. The
same phenomenon can also be found in the analysis
of the strongly r-secure code in [4].

However, for this network code, we have
I(M1;M2|Y ) = log q > 0. This yields that a wire-
tapper interested in the whole message (M1,M2)
can gain log q bits of information upon accessing
any single channel if we use mutual information
as the security measure. Following [27, Example
6.15], we call this imperfect secrecy. We will see
in Section VI that this is indeed the best possible
security that can be achieved if one does not pay
extra for security.

Recall that the original linear code on the but-
terfly network in [1] is over GF (2). Here we let
M = (M1,M2) be two independent random bits
taking values in GF (2) according to the uniform
distribution. In their coding scheme, the source node
s sends m1 to u1 and a0 through a1, and sends
m2 to u2 and a0 through a2. Upon receiving m1

and m2, a0 sends m1 + m2 to u1 and u2 through
b. Lima et al. in [19] partitioned V \ {s, u1, u2}
into three subsets, V0 = {b}, V1 = {a1, a2}, and
V2 = {a0}, and observed that a node in Vi is able
to decode exactly i bit(s) in m = (m1,m2). Thus
from the wiretapper’s point of view, node a0 is the
best node and node b is the worst node to access in
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the sense of the number of bits the wiretapper can
correctly decode. In the same sense, it is better for
the wiretapper to access (a1, u1) or (a2, u2) than
(a0, b).

The discussion in [19] is based on the assumption
that the wiretapper is interested in decoding as
many symbols in the message as possible. How-
ever, if security is measured by the mutual infor-
mation I(M ;YA) (or equivalently H(M |YA) since
I(M ;YA) = H(M) − H(M |YA)), it makes no
difference for the wiretapper to access any one of
the channels (a1, u1), (a2, u2), and (a0, b). In any
of these cases, the remaining uncertainty to the
wiretapper about M is equal to 1 bit. In the case
that the wiretapper is interested in the parity of the
two bits m1 and m2, then it is of course better
for him/her to access (a0, b) than any other single
channel.

III. CONSTRUCTION OF A CLASS OF
ADMISSIBLE LINEAR CODES FOR

COMMUNICATION SYSTEMS ON A WIRETAP
NETWORK

In this section, we propose a class of admissible
linear codes for a wiretap network. In defining a lin-
ear network code, we let the transmission alphabet
F be a finite field GF (q), where q is a sufficiently
large power of a prime. In other words, a symbol
in GF (q) can be transmitted on each channel in the
network.

In the rest of the paper, we adopt the terminology
for linear network codes in [31]. In defining an n-
dimensional linear network code on G, we let In(s)
consist of n imaginary channels terminating at the
source node s.

Definition 1: (Global description of a linear net-
work code) An n-dimensional linear network code
on G = (V, E) consists of a column n-vector fe for
every channel e ∈ E ∪ In(s) such that:

1) for e ∈ Out(t), fe is a linear combination of
fd, d ∈ In(t).

2) fe, e ∈ In(s), form the standard basis of the
vector space Fn.

The vector fe is called the global encoding kernel
for channel e.

We use 〈·〉 to denote the linear span of a set of
vectors. For t ∈ V , let

Vt = 〈{fe : e ∈ In(t)}〉.

For T ⊂ V , let

VT = 〈{∪t∈TVt}〉,

and for B ∈ E , let

VB = 〈{fe : e ∈ B}〉.

For a node t ∈ V where t 6= s, let maxflow(t)
denote the value of a maximum flow from the source
node s to node t.

The following existence theorem of a linear net-
work code with the prescribed property is due to
Jaggi et al. [16], who proposed a polynomial-time
algorithm for constructing such a code.

Theorem 1: If maxflow(u) ≥ n for all u ∈ U ,
then there exists an n-dimensional linear network
code on G over GF (q) for q > |U| such that
dim(Vu) = n for all u ∈ U .

We now define a class of linear codes for a
wiretap network by the following construction.

Construction 1
1) Choose suitable positive integers n and r,

where r < n. The message M is randomly chosen
from GF (n−r)(q) (not necessarily uniformly dis-
tributed), while the independent random key K is
distributed uniformly on GF r(q). Let the outcome
m of M be a row vector in GF (n−r)(q) and the
outcome k of K be a row vector in GF r(q). Let
X = (M,K).

2) Choose a suitable n-dimensional linear net-
work code on G.

3) Encode the vector X by transmitting in each
channel e the value X fe.

We will show later how n, r and the linear
network code can be chosen to make the code
admissible, i.e., decodable and secure.

Theorem 2 in below states that if a certain con-
dition is satisfied, then it is possible to obtain an
admissible code by Construction 1. The proof of
this theorem is deferred to Section V. The sufficient
condition in Theorem 2 depends on a linear network
code satisfying certain properties whose existence
is hard to verify. Nevertheless, a more explicit
sufficient condition will be obtained.

Theorem 2: There exists an admissible code on
G over GF (q) for q > |A| by Construction 1 if
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there exists an n-dimensional linear network code
over GF (q) such that for all user nodes u ∈ U ,

dim(Vu) = n, (1)

and for all wiretap sets of channels A ∈ A,

dim(VA) ≤ r. (2)

In the directed graph G, a path is a sequence of
channels e1, e2, . . . , el such that for 1 ≤ i ≤ l −
1, there exists ti ∈ V such that ei ∈ In(ti) and
ei+1 ∈ Out(ti). Two paths are disjoint if they do
not share a common channel (but they may share a
common node). For a collection of channel A ⊂ E ,
a path from the source node s to the channels in A
refers a path that starts at the source node s and has
one of the channels in A as the last channel on the
path. The following theorem is similar to Theorem 2
except that the condition therein depends only on the
graph G and the collection of wiretap channels A.
This condition is easy to check and is more explicit
than the condition in Theorem 2.

Theorem 3: Let G∗ = (V, E∗), where E∗ ⊂ E , be
a subgraph of G satisfying the following:

i) For any u ∈ U , there are n disjoint paths in G∗
from the source node s to the user node u.

ii) For any A ∈ A, there are at most r disjoint
paths in E∗ from the source node s to the channels
in A.
If such a subgraph G∗ exists, then there exists an
admissible code on G over GF (q) by Construction 1
for q > max{|U|, |A|}.

This theorem is a simple consequence of The-
orems 1 and 2 and the following lemma ([28,
Theorem 19.10]).

Lemma 1: For any A ∈ A, let maxflow(A)
denote the maximum number of disjoint paths from
the source node s to the channels in A. For any
linear network code defined on G, dim(VA) ≤
maxflow(A).

Proof of Theorem 3 Assume the existence
of the subgraph G∗ as prescribed and let q >
max{|U|, |A|}. We will confine our discussion to
G∗. The condition i) in the theorem implies that
maxflow(u) ≥ n for all u ∈ U , and the condition
ii) in the theorem implies that maxflow(A) ≤ r for
all A ∈ A. Since q > |U|, by Theorem 1, there
exists an n-dimensional linear network code on G∗

such that dim(Vu) = n for all u ∈ U . Now for
this network code, for any A ∈ A, by Lemma 1,
dim(VA) ≤ maxflow(A) ≤ r. Since q > |A|,
by invoking Theorem 2, we see the existence of
an admissible code on G∗ by Construction 1. The
theorem is proved. ut

By applying Theorem 3 to an r-WN, we have
Corollary 1: There exists an r-secure network

code on any G over GF (q) by Construction 1
for q > max

{
|U|,

(|E|
r

)}
if r is smaller than the

minimum value of a maximum flow from the source
node to a user node.

An immediately consequence of the corollary is
the main result in [3][24] that for r ≤ n, an (r, n)-
threshold secret sharing scheme always exists when
ri = c for all 1 ≤ i ≤ n, where c is a sufficiently
large constant.

IV. OPTIMALITY OF r-SECURE NETWORK
CODES

By Corollary 1 at the end of last section, we have
that for all G and all r < n, one can obtain an r-
secure network code over GF (q) by Construction 1
by taking q to be a sufficiently large power of any
prime number. We note that the code constructed by
Construction 1 can transmit a message M consisting
of n− r symbols in GF (q) to all user nodes u ∈ U
securely. To achieve this, a key consisting of r
symbols in GF (q) is used. In this section, we will
establish the optimality of the code so constructed
by proving two fundamental performance bounds
and showing that the tightness of these bounds are
achieved by the code.

Consider any r-secure network code for a given
network G. Let u ∈ U be such that maxflow(u) = n
and (W,W c) be a minimum cut between the source
node s and node u. Denote the set of channels
on (W,W c) by EW . Then |EW | = n. Since the
message M can be decoded at node u and the
symbols received at node u are functions of YEW ,
we have

H(M |YEW ) = 0. (3)

On the other hand, for any subset J of EW with
cardinality r, since the code is secure, we have

H(M |YJ) = H(M). (4)
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It follows that

H(M) = H(M |YJ)−H(M |YEW )
= I(M ;YEW \J |YJ)
≤ H(YEW \J |YJ)
≤ H(YEW \J)
≤ (n− r) log q.

This tightness of this upper bound on H(M) is
achieved by the r-secure network code constructed
by Construction 1 when M is distributed uniformly
on GF (n−r)(q). In other words, the code multicasts
the maximum possible amount of information to the
user nodes securely.

In the rest of the section, we will prove that the
code uses the minimum amount of randomness to
achieve the required security when the message M
is distributed uniformly. In establishing this result,
we need a set of inequalities stated in the next
lemma due to Han [13] (see also [9], Theorem
17.6.3).

Lemma 2: For a subset α of N = {1, 2, . . . , n},
let α = N\α and denote (Xi, i ∈ α) by Xα. For
1 ≤ r ≤ n, let

hr =
1(
n−1
r−1

) ∑
α:|α|=r

H(Xα|Xα). (5)

Then

h1 ≤ h2 ≤ · · · ≤ hn.

Let u ∈ U be any user node and consider any cut
(W,W c) between the source node s and node u.
Let |EW | = n′ ≥ n. For any J ⊂ EW such that
|J | = r, consider

H(M) = H(M |YEW ) + I(YEW ;M)
= I(YJ ;M) + I(YEW \J ;M |YJ) (6)
= I(YEW \J ;M |YJ),

where the second and the third equalities follow
from (3) and (4), respectively. Summing over all J ,

we have(
n′

r

)
H(M)

=
∑
J

I(YEW \J ;M |YJ)

≤
(

n′ − 1
n′ − r − 1

)[
1(

n′−1
n′−r−1

) ∑
J

H(YEW \J |YJ)

]

≤
(

n′ − 1
n′ − r − 1

)
H(YEW ),

where the last inequality follows from Lemma 2.
Hence,

H(YEW ) ≥ n′

n′ − r
H(M). (7)

Finally,

H(M) +H(K) ≥ H(M,K) (8)
= H(M,K, YEW ) (9)
≥ H(YEW )

≥ n′

n′ − r
H(M),

where (9) follows from

H(YEW |M,K) = 0, (10)

or YEW is a function of M and K. This implies

H(K) ≥ r

n′ − r
H(M). (11)

This lower bound on H(K) applies to every cut
between the source node s and any user node u, in
particular to a cut with size equal to n. Therefore,
we conclude that

H(K) ≥ r

n− r
H(M). (12)

The tightness of this lower bound on H(K) is
achieved by the code constructed by Construction 1
when both M and K are uniformly distributed, i.e.,
H(M) = (n− r) log q and H(K) = r log q. Under
this condition, the code uses the minimum amount
of randomness to achieve the required security. In
Appendix A, we prove that

H(K) ≥ H(YJ).

This lower bound on H(K) gives further insight
into the problem.

We note that the inequality in (8) holds regardless
of whether the message M and the key K are
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independent. In fact, toward establishing (12), this
assumption in Construction 1 has not been invoked.
Hence, (12) is valid even when M and K are not
independent.

In obtaining (9) in the above, we have used
the fact YEW is a function of M and K. Close
examination of the steps in our proof reveals that K
can be more generally interpreted as the randomness
introduced into the network at the “upstream” of the
set of channels EW . When n′ > n, (11) is a looser
lower bound on H(K) than (12). This means that
it is not necessary for all the randomness K to be
generated at the source node s as in Construction 1.
As long as all the randomness K is generated at
the “upstream” of any cut of size n between the
source node s and any user node u, it is already
good enough. This observation would be useful if
the source node s does not have enough resource to
generate all the required randomness.

Hence, we have proved that when the message
is uniformly distributed, the code obtained by Con-
struction 1 is optimal in terms of both the amount
information that can be multicast in the network
securely and the amount of randomness used for
achieving the required security. In this case, by (12),
K has to be uniformly distributed if we want the size
of the size of the alphabet of K to be minimal, i.e.,
|K| = r log q.

V. PROOF OF THEOREM 2

Assume the existence of the n-dimensional linear
network code as prescribed in the theorem. Denote
the code by C and let fe, e ∈ E be the global encod-
ing kernels. For all A ∈ A, let dim(VA) = rA, and
let {a1(A),a2(A), . . . ,arA(A)} be a maximally
independent set of vectors in {fe, e ∈ A}. Note that
rA ≤ r by (2).

Lemma 3: If q > |A|, there exist column n-
vectors b1,b2, . . . ,bn−r such that for all A ∈ A,

b1,b2, . . . ,bn−r,a1(A),a2(A), . . . ,arA(A)

are linearly independent.
Proof If suffices to show that for 1 ≤ i ≤ n − r,
if b1,b2, . . . ,bi−1 have been chosen such that for
all A ∈ A,

b1,b2, . . . ,bi−1,a1(A),a2(A), . . . ,arA(A) (13)

are linearly independent, then it is possible to choose
bi such that for all A ∈ A,

b1,b2, . . . ,bi−1,bi,a1(A),a2(A), . . . ,arA(A)
(14)

are linearly independent. Specifically, bi is chosen
such that it is linearly independent of the set of
vectors in (13) for all A ∈ A, i.e., we require that

bi ∈ GFn(q)\
⋃
A∈A〈b1,b2, . . . ,bi−1,a1(A),

a2(A), . . . ,arA(A)〉.

Thus we need to show that the set above is
nonempty. Since the vectors in (13) are linearly
independent,∣∣∣∣∣ ⋃
A∈A
〈b1,b2, . . . ,bi−1,a1(A),a2(A), . . . ,arA(A)〉

∣∣∣∣∣
≤

∑
A∈A
|〈b1,b2, . . . ,bi−1,a1(A),a2(A),

. . . ,arA(A)〉|
=

∑
A∈A

qrA+i−1

≤
∑
A∈A

qr+i−1

= |A|qr+i−1.

Therefore,∣∣∣∣∣GFn(q)\
⋃
A∈A
〈b1,b2, . . . ,bi−1,a1(A),a2(A),

. . . ,arA(A)〉
∣∣∣∣

≥ qn − |A|qr+i−1

= qr−i+1(qn−r−i+1 − |A|)
≥ qr−i+1(q − |A|)
> 0

since i ≤ n − r and q > |A|. Hence, bi can be
chosen for all 1 ≤ i ≤ n− r. utSubsequent to [5],

Feldman et al. [11] pointed out that the condition
for b1,b2, . . . ,bn−r in Lemma 3 is equivalent to
a Hamming distance property of a certain type of
codes. They also derived a tradeoff between the
size of the message set M and the size of the
transmission alphabet F . Specifically, they showed
that it is sufficient to take q > |A|

1
rε+1 if we want to
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send a message consisting of bn− r(1 + ε)c instead
of (n − r) q-ary symbols through the network. We
note that this tradeoff can readily be obtained by
replacing i ≤ n−r and q > |A| by i ≤ n−r(1+ ε)
and qrε+1 > |A|, respectively in the above proof.

Let b1,b2, . . . ,bn−r be chosen according to the
above lemma. Extend b1,b2, . . . ,bn−r to a basis
b1,b2, . . . ,bn−r,bn−r+1, . . . ,bn for GFn(q), and
define the n× n matrix

Q = [ b1 b2 . . . bn ] . (15)

Evidently, Q is nonsingular.
Let T : GFn(q) → GFn(q) be the linear

transformation represented by the matrix Q−1. Now
transform the linear network code C into another
linear network code C′ with global encoding kernels
f ′e, e ∈ E by T , i.e., f ′e = Q−1fe for all e ∈ E . For
u ∈ U and A ∈ A, the vector spaces Vu and VA
for the linear network code C become V ′u = T Vu
and V ′A = T VA for the linear network code C′,
respectively. Since Q is invertible, by (1) and (2),

dim(V ′u) = dim(Vu) = n (16)

and
dim(V ′A) = dim(VA) ≤ r. (17)

With the global encoding kernels f ′e, e ∈ E ,
we obtain a linear network code Cs for a wiretap
network by Construction 1. It follows from (16)
by a straightforward argument that Cs is decodable
because at each user node u ∈ U , both m and k
can be decoded with zero error.

To complete the proof, we only have to check
that Cs is secure. For 1 ≤ j ≤ rA, let a′j(A) =
Q−1aj(A). Let FA and F ′A be n × rA matrices
whose jth columns are aj(A) and a′j(A), respec-
tively. Then

F ′A = Q−1FA. (18)

Let YA be the vector of symbols transmitted on the
channels in the wiretap set A. Let yA be the value
of YA when X = x, i.e.,

yA = xF ′A. (19)

In other words, upon observing yA, the knowledge
of the wiretapper is that x is a solution of the above
equation. For a row rA-vector y ∈ GF rA(q), let

C(y) = {x : x ∈ GFn(q),y = xF ′A}. (20)

Then the solution set of (19) is given by C(yA),
which is seen to be a coset of the null space C(0)
under the linear transformation represented by F ′A.
Therefore, GFn(q) is partitioned into {C(y) : y ∈
GF rA(q)}.

For m ∈ GF (n−r)(q), let

D(m) = {(m,k) : k ∈ GF r(q)}.

We now show that for all m ∈ GF (n−r)(q) and
y ∈ GF rA(q),

|D(m) ∩ C(y)| = qr−rA , (21)

which does not depend on m. Let

GA = [ e1 e2 · · · en−r F ′A ] ,

where ej is the column n-vector whose jth compo-
nent is 1 and all other components are 0. If follows
from the definition of D(m) and C(y) that if a
vector x is in their intersection, then

xGA = [ m y ]. (22)

Therefore, by (15) and (18), we have

QGA = [ b1 b2 · · ·bn−r a1(A) a2(A) · · · arA(A) ].

By construction, the columns of QGA are lin-
early independent, so that rank(QGA) = n −
r + rA. Since Q is nonsingular, rank(GA) =
rank(QGA) = n − r + rA. It follows that for any
(m,y) ∈ GF (n−r+rA)(q), the solution set of (22) is
nonempty and is an affine subspace with cardinality

qn

qn−r+rA
= qr−rA .

This proves (21). In other words, for each y ∈
GF rA(q) observed by the wiretapper, every message
m ∈ GF (n−r)(q) is possible, and for each m, the
total number of keys k ∈ GF r(q) that can produce
y is equal to qr−rA .

For all A ∈ A, y ∈ GF rA(q), and m ∈
GF (n−r)(q) with Pr{M = m} > 0,

Pr{YA = y|M = m}
= Pr{(m,K) ∈ D(m) ∩ C(y)|M = m}
= Pr{(m,K) ∈ D(m) ∩ C(y)},

because for any fixed m, YA = y if and only if
(m,K) ∈ D(m) ∩ C(y), and K is independent of
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M . Since K is uniformly distributed, by (21), we
obtain

Pr{YA = y|M = m} = q−rqr−rA = q−rA ,

which does not depend on m. Hence, YA is inde-
pendent of M , and so the linear network code Cs
we have constructed by Construction 1 is secure.

We end this section with two remarks.
Remark 1: Since GA has full rank, each col-

umn of F ′A cannot be a linear combination of
e1, e2, . . . , en−r, or equivalently, the lower r com-
ponents cannot be all zero. In other words, the key
K is involved in each of the symbols transmitted on
the channels of a wiretap set. In fact, if F ′A contains
a column such that the lower r components are all
zero, then the wiretapper receives a symbol which
is a known linear combination of the symbols in the
message M , making the code not secure.

Remark 2: In Construction 1, we obtain a secure
network code by taking a linear transformation
represented by the matrix Q−1 of any given non-
secure network code. An advantage of this technique
is that in the course of making the network code
secure, we do not need to change the local encoding
kernels. Rather, we only need to pre-encode the
input of the network x = (m,k) by the matrix
Q−1 and then send the codeword xQ−1 through
the network. This is very convenient in practice
because once a (non-secure) linear network code is
in place, the decision on the level of security to be
used can be deferred. Subsequent to [5], the same
idea was used in [10], where they obtained a secure
network code by taking a linear transformation of
a secure linear code for wiretap channel II. The
validity of this technique hinges on the assumption
that all the randomness for protecting the source
message is generated at the source node. In gen-
eral, this randomness may be generated at a set
of nodes instead of the source node as discussed
in [6] and [32]. Finally, we remark that this paper
and almost all other papers in the same direction
consider only acyclic networks. In principle, secure
network coding can also be discussed for cyclic
networks, but the formulation would be considerably
more complicated because convolutional network
code instead of block network code is involved.

VI. IMPERFECT SECRECY

In this section, we extend our results in the
previous sections for the special case that the col-
lection A of wiretap sets consists of all the r-
subsets of E by allowing the wiretapper to obtain a
controlled amount of information about the message.
Specifically, the secure condition is replaced by the
condition that for all A ∈ A,

I(M ;YA) ≤ i log q, (23)

where i is a fixed integer satisfying 0 ≤ i ≤ r. We
will refer to this as the imperfectly secure condition.
The integer i specifies how much information can
be leaked to the wiretapper. When i = 0, the
imperfectly secure condition reduces to the secure
condition.

The study of imperfect secrecy can be motivated
in more than one way. First, it is a natural gen-
eralization of perfect secrecy from the information
theory point of view. Second, the mutual information
I(M ;YA) is a useful measure of the amount of
information leaked to the wiretapper. For a linear
network code, when I(M ;YA) = i log q, where
0 < i ≤ r, the size of the set of all possible values
that can be taken by M according to the wiretapper
is reduced by a factor of qi. For some applications,
such security can be regarded as sufficient as long
as the size of the set is not too small. As we will
see, the benefit of accepting a lower level of security
is that a larger source message can be transmitted.
This will be made precise in the sequel.

We first show that under the imperfectly secure
condition, the message M can consist of at most
(n − r + i) q-ary symbols. Consider any code on
a wiretap network satisfying both the decodable
condition and the imperfectly secure condition. Let
u ∈ U be such that maxflow(u) = n and (W,W c)
be a minimum cut between the source node s and
node u. Consider

H(M) = I(YJ ;M) + I(YEW \J ;M |YJ) (24)
≤ I(YJ ;M) +H(YEW \J) (25)
≤ (n− r + i) log q, (26)

where (24) follows from (6), and (26) follows from
(23) and |EW \J | = n − r, proving the claim.
Note that (25) is equivalent to the imperfect secrecy
theorem in [27] (p. 116).
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Next, we show that tightness in (26) can be
achieved by an “imperfectly secure” code obtained
via Construction 1. In Construction 1, let K =
(M∗,K ′), where M∗ is chosen randomly from
GF i(q), and K ′ is independent of (M,M∗) and
distributed uniformly on GF r−i(q). The input pair
(M,K) in Construction 1 now becomes the triple
(M,M∗,K ′), where M ′ = (M,M∗) is regarded as
the message of our imperfectly secure code which
consists of (n − r + i) q-ary symbols, and K ′ is
regarded as the key of the code which consists of
(r − i) q-ary symbols. Since the code obtained by
Construction 1 is secure when the input pair is
(M,K), we have

I(M ;YA) = 0

for all A ∈ A. Thus

I(M ′;YA) = I(M ;YA) + I(M∗;YA|M)
≤ H(M∗)
= i log q,

i.e., the imperfectly secure condition is satisfied by
the code we have constructed. Evidently, node u
can decode the message M ′ = (M,M∗) because
in the code obtained by Construction 1, the pair
(M,K) can be recovered. Hence, we have obtained
a code that multicasts the maximum possible amount
of information while satisfying the imperfect secure
condition with the prescribed i.

Finally, we prove that the imperfectly secure
code we have constructed above uses the mini-
mum amount of randomness to achieve the required
level of security when the message M ′ is uni-
formly distributed. The proof is a generalization of
the corresponding proof in Section 4, so we only
present the sketch here. Let u ∈ U be such that
maxflow(u) = n and (W,W c) be a minimum cut
between the source node s and node u. For any
J ⊂ EW such that |J | = r, by (6) and (23) with M
replaced by M ′, we have

H(M ′) ≤ i log q + I(YEW \J ;M ′|YJ).

Summing over all J , we have(
n

r

)
H(M ′) ≤

(
n

r

)
i log q+

(
n− 1

n− r − 1

)
H(YEW ),

which implies

H(YEW ) ≥ n

n− r
(H(M ′)− i log q).

It follows that

H(M ′) +H(K ′)
≥ H(YEW )

≥ n

n− r
(H(M ′)− i log q),

or

H(K ′) ≥ r

n− r
H(M ′)− n

n− r
(i log q).

When the message M ′ is uniformly distributed,
H(M ′) = (n − r + i) log q and H(K ′) = (r −
i) log q, and it can readily be checked that the
inequality above is tight. This completes the proof.

VII. CONCLUSION

In this paper, we have introduced the wiretap
network as a model for multicasting on a network
with information-theoretic security. Our model sub-
sumes secret sharing in classical cryptography. We
have proposed a construction of a secure linear
network code for a wiretap network. The optimality
of our construction is proved for the special case
that the wiretapper may choose to access any subset
of channels of a fixed size. Moreover, we have
extended this construction to the scenario when the
wiretapper is allowed to obtain a controlled amount
of information about the message. This extended
construction is also shown to be optimal.

APPENDIX A
A LOWER BOUND ON H(K)

Assume that the collection A of wiretap sets
consists of all the r-subsets of E . Let u ∈ U be any
user node and consider any cut (W,W c) between
the source node s and node u. Let |EW | = n′ ≥ n.
We will prove that

H(K) ≥ H(YJ). (27)

for any J ⊂ EW such that |J | = r. Consider

H(YJ |M,K) ≤ H(YEW |M,K) = 0,

which implies

H(YJ |M,K) = 0.
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Together with

H(YJ) = H(YJ |M)

from the secure condition, we have

H(YJ) = H(YJ |M)−H(YJ |M,K)
= I(YJ ;K|M)
≤ H(K|M)
= H(K),

proving (27).

ACKNOWLEDGMENT

Raymond Yeung would like to thank Prof. Ueli
Maurer for the useful discussion. Both authors
would like to thank Prof. Te Sun Han for pointing
out the references for his inequalities and for his
comments on the draft.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung,
“Network information flow,” IEEE Trans. Info. Theory, IT-
46: 1204-1216, 2000.

[2] K. Bhattad and K. R. Narayanan, Weakly secure network
coding, First Workshop on Network Coding, Theory, and
Applications (NetCod05), Apr. 2005.

[3] G. R. Blakley, “Safeguarding cryptographic keys,” in Pro-
ceedings of the National Computer Conference, 48: 313-
317, 1979.

[4] N. Cai, “Valuable Messages and Random Outputs of Chan-
nels in Linear Network Coding,” IEEE International Sym-
posium on Information Theory 2009, Seoul, Korea, June
28-July 3, 2009.

[5] N. Cai and R. W. Yeung, “Secure network coding,” IEEE
International Symposium on Information Theory, Lausanne,
Switzerland, Jun 30-Jul 5, 2002.

[6] N. Cai and R. W. Yeung, “A Security Condition for Multi-
Source Linear Network Coding,” IEEE International Sym-
posium on Information Theory, Nice, France, June 24-29,
2007.

[7] N. Cai and R. W. Yeung, “Network error correction, Part
II: Lower bounds,” Comm. Info. and Syst., 6: 37-54, 2006
(http://www.ims.cuhk.edu.hk/˜cis/).

[8] T. Chan and A. Grant, “Capacity Bounds for Secure
Network Coding,” Australian Commun. Theory Workshop,
(Christchurch, NZ), 30 Jan - 1 Feb, 2008.

[9] T. M. Cover and J. A. Thomas, Elements of Information
Theory, 2nd ed., Wiley, 2006.

[10] S. Y. El Rouayheb and E. Soljanin On wiretap networks
II, IEEE International Symposium on Information Theory,
Nice, France, June 24 C June 29, 2007.

[11] J. Feldman, T. Malkin, C. Stein, and R. A. Servedio,
“On the capacity of secure network coding,” 42nd Annual
Allerton Conference on Communication, Control, and Com-
puting, Monticello, IL, Sept 29-Oct 1, 2004.

[12] L. K. Ford, Jr. and D. K. Fulkerson, Flows in Networks,
Princeton University Press, Princeton, New Jersey, 1962.

[13] T. S. Han, “Nonnegative entropy measures of multivariate
symmetric correlations,” Info. Contr., 36: 133-156, 1978.

[14] K. Harada and H. Yamamoto, “Strongly Secure Linear
Network Coding,” EICE Transactions on Fundamentals,
vol. E91-A, No.10, pp.2720-2728, Oct. 2008.

[15] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi,
and B. Leong, A random linear network coding approach
to multicast, IEEE Trans. on Inform. Theory, vol. 52, pp.
4413-4430, Oct. 2006.

[16] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K.
Jain, and L. Tolhuizen, “Polynomial time algorithms for
multicast network code construction,” IEEE Trans. Info.
Theory, IT-51: 1973-1982, 2005.

[17] K. Jain, Security based on network topology against the
wiretapping attack, IEEE Wireless Communications, pp.
68C71, Feb. 2004.

[18] S.-Y. R. Li, R. W. Yeung and N. Cai, “Linear network
coding,” IEEE Trans. Info. Theory, IT-49: 371-381, 2003.

[19] L. Lima, M. Médard, and J. Barros, “Random Linear
Network Coding: A free cipher?” IEEE International Sym-
posium on Information Theory, Nice, France, June 24 C
June 29, 2007.

[20] C.-K. Ngai, R. W. Yeung, and Z. Zhang, “Network Gen-
eralized Hamming Weight,” 2009 Workshop on Network
Coding, Theory and Applications, Lausanne, Switzerland,
2009.

[21] C.-K. Ngai and R. W. Yeung, “Secure error-correcting
(SEC) network codes,” 2009 Workshop on Network Coding,
Theory and Applications, Lausanne, Switzerland, 2009.

[22] L. H. Ozarow and A. D. Wyner, “Wire-tap Channel II,”
AT&T Bell Labs. Tech. J., 63: 2135-2157, 1984.

[23] J. Tan and M. Médard, “Secure Network Coding with a
Cost Criterion,”

[24] A. Shamir, “How to share a secret,” Comm. ACM, 22: 612-
613, 1979.

[25] C. E. Shannon, “Communication theory of secrecy sys-
tems”, Bell Sys. Tech. Journal 28, pp. 656-715,1949,

[26] V. K. Wei, “Generalized Hamming Weight for Linear
Codes,” IEEE Trans. Inform. Theory, vol. 37 , no. 5, pp
1412-1418, Sep.1991.

[27] R. W. Yeung, A First Course in Information Theory, Kluwer
Academic/Plenum Publishers, 2002.

[28] R. W. Yeung, Information Theory and Network Coding,
Springer 2008.

[29] R. W. Yeung and N. Cai, “Network error correction, Part I:
Basic concepts and upper bounds,” Comm. Info. and Syst.,
6: 19-36, 2006 (http://www.ims.cuhk.edu.hk/˜cis/).

[30] R. W. Yeung and N. Cai, “On the Optimality of a Con-
struction of Secure Network Codes”, IEEE International
Symposium on Information Theory, Toronto, Canada, July
6 - 11, 2008.

[31] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, “Network
coding Theory,” Foundations and Trends in Comm. and
Info. Theory, vol. 2, nos. 4 and 5, 241-381, 2005.

[32] Z. Zhang and R. W. Yeung, “A General Security Condition
for Multi-Source Linear Network Coding,” IEEE Inter-
national Symposium on Information Theory 2009, Seoul,
Korea, June 28-July 3, 2009.



IEEE TRANSACTIONS ON INFORMATION THEORY 16

Ning Cai (M’08-SM’09) received the B.S. degree in mathematics
from the Normal College of Beijing, Beijing, China in 1982,
the M.S. degree in mathematics from Academia Sinica, Beijing,
China, in 1984, and the Dr. degree in mathematics from the
University of Bielefeld, Bielefeld, Germany, in 1988.

During 1984-1986, he worked in the Institute of Systems
Sciences, Academia Sinica, Beijing, China. During 1988-1989,
he was with the Department of Mathematics, Statistics and
Computer Science, the University of Illinois, Chicago, USA.
From 1989 to 1998, he was a Miss. Mitarbeiter in the Department
of Mathematics, the University of Bielefeld, Germany and from
1998 to 1999, he was with the School of Computing, the National
University of Singapore, Singapore. From 2000 to 2001, he was
with the Department of Information Engineering, The Chinese
University of Hong Kong. From 2002 to 2004 he was with the
Department of Mathematics, the University of Bielefeld, Ger-
many. In 2005 he visited Department of Information Engineering,
The Chinese University of Hong Kong. Since 2006, he has been
a distinguished professor of the State Key Lab. of Integrated
Services Networks (ISN), Xidian University, China.

Dr. Cai is a recipient of the 2005 IEEE Information Theory
Society Paper Award (for his paper “Linear network coding” co-
authored with S.-Y. R. Li and R. W. Yeung).

He has served on the committees of a number of information
theory symposiums and workshops. His research interests include
network coding and information theory.

Raymond W. Yeung (S’85-M’88-SM’92-F’03) was born in
Hong Kong on June 3, 1962. He received the B.S., M.Eng., and
Ph.D. degrees in electrical engineering from Cornell University,
Ithaca, NY, in 1984, 1985, and 1988, respectively.

He was on leave at Ecole Nationale Supérieure des
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