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Abstract— We obtain a necessary and sufficient condition for
the security of multi-source linear network codes by studying
the algebraic structure of such codes. This condition is useful for
analyzing the security of such linear network codes, and it applies
in cases when the random keys do not necessarily have uniform
distributions. This condition also shows that the security of a
linear network code does not depend on the source distribution.

I. INTRODUCTION

A network is specified by a directed graph G = (V,E)
whose nodes stand for communication units and whose edges
stand for channels in a point-to-point communication network.
In this paper, we assume that all the channels in the network
are noiseless and have unit capacity. Messages are generated at
nodes referred to as the source nodes, while subsets of these
messages are decoded perfectly at nodes referred to as the
sink nodes. Linear network coding introduced by Li et al [1]
are provably optimal for single-source networks in the sense
of achieving the maximum flow upper bound. Owing to their
simple structures and other desirable properties, linear network
codes have been widely studied and are regarded as the most
important class of network codes. In this paper, we confine
our discussion to linear network codes.

Motivated by security considerations in network communi-
cations, we introduced the communication system on a wiretap
network (CSWN) in [2]. A CSWN consists of a network and
a collection W of subsets of channels, whose members are
called wiretap subsets of channels. A wiretapper can arbitrarily
choose one but only one wiretap subset W ∈ W and fully
access (the output of) all the channels in the wiretap subset
W . The communicators over a CSWN know the collection
W of wiretap subsets but do not know which subset W is
chosen by the wiretapper. The goal of the communicators is
that the wiretapper can obtain absolutely no information about
the messages transmitted through the network. Obviously, the
transmission in the network has to be randomized because
otherwise the output of a channel would be either a function
depending on the messages or simply a constant. In the former
case the wiretapper would be able to obtain useful information
about the messages by accessing the channel, and in the latter
case the channel would be completely useless and can be
deleted. We assume that the wiretapper knows the coding

scheme and may choose a wiretap subset according to his/her
knowledge. A code for CSWN is said to be secure if the
wiretapper can obtain no information about the transmitted
messages no matter how the wiretap subset is chosen. To
randomize the transmission, randomness (also referred to as
random key(s)) has to be generated at some node(s) within the
network. We studied in [2] the model in which the randomness
is generated at the unique source node. This model contains
Shannon’s cipher system [3] and the secrete sharing schemes
introduced independently by Blakley [4] and Shamir [5] as
special cases.

For this model, we proposed in [2] a secure network coding
scheme based on a given decodable linear network code over a
sufficiently large field. Specifically, we first construct a matrix
with certain properties according to a given linear network
code and the collection of wiretap subsets. Then we treat
the random key as “part of the message” and pre-encode the
whole message by the above matrix at the source node. This
is equivalent to linearly transforming the given linear network
code to a new linear network code. It was proved that under
suitable condition, one can find a matrix such that the new code
is secure. This coding scheme works when both the message
and the randomness are generated at source node. Such secure
network codes have been further studied in [6].

In this paper, we consider the more general model in which
randomness can be generated at an arbitrarily given subset of
nodes, and there can be more than one source nodes in the
network. In the next section, we present necessary definitions
and notation. In Section III, we formulate the problem and
obtain a necessary and sufficient condition for the security of
a linear network code. This condition shows that the security
of a network code does not depend on the source distributions.
To illustrate the applications of the condition, we present an
example in Section IV. The paper is concluded in Section V.

II. DEFINITIONS AND NOTATION

In this paper we follow the notation and terminology in [7].
A communication network, or in short a network, consists of
the following components:
(a) a finite directed graph G = (V,E) with multiple edges,
whose vertices v ∈ V are called nodes and whose edges
e = (u, v) ∈ E are called channels, where we assume that



each channel transmits one unit of information per unit time
noiselessly;
(b) a subset S := {s1, s2, . . . , s|S|} of nodes, whose members
are called source nodes at each of which a message is
generated independently and uniformly over a given finite
alphabet;
(c) a subset T of nodes whose members are called sinks, each
of which has to recover the messages generated by a given
subset of sources.

A communication system on a wiretap network (CSWN)
consists of a communication network specified by the compo-
nents (a)-(c) together with
(d) a collectionW of subsets of channels, whose members are
called wiretap subsets (of channels), each of which may be
fully accessed by a wiretapper but no wiretapper may access
more than one wiretap subset.

As we pointed out in the previous section, in order to
protect the messages from the wiretapper, randomness has
to be generated somewhere in the network. Let U :=
{u1, u2, . . . , u|U |} ⊂ V be a subset of nodes such that at most
ri units of randomness can be generated at node ui per unit
time independent of the source messages.

For simplicity, we assume the network is acyclic or there
exits a well-defined encoding order for the channels. A code
is decodable if it is uniquely decodable at all the sinks. For a
given network code, let Z be the messages generated by the
information sources and Y (e) be the symbol transmitted on a
channel e. Thus for all e ∈ E, Y (e) is a function of Z and the
randomness. Denote by Y(A) = {Y (e) : e ∈ A} for A ⊂ E.
Then a code is secure if and only if for all wiretap subsets
W ∈ W

H(Z|Y(W )) = H(Z). (1)

A network code is linear if the symbols transmitted in the
network are linear in the source messages and the randomness.
The secure condition (1) implies that the wiretapper knows the
topological structure of the network and the coding scheme
so that he/she may choose the wiretap subset he/she wants.
Throughout this paper, we separate the issue of security from
the issue of decodability of a linear network code. This way,
we can treat ui ∈ U as a source node and the randomness
generated there as a message. Then we can define the global
and local encoding kernels of a linear network code over a
ground field as in [7].

III. A NECESSARY AND SUFFICIENT CONDITION FOR
SECURITY

Let the unit of information be a symbol in a given finite
field F . Consider a CSWN in which the message generated
at source node sj consists of mj units, and ni ≤ ri units of
randomness are generated at node ui ∈ U . We will study
the condition for a linear code to satisfy (1). Denote the
messages generated by source node sj by an mj-dimensional
row vector zj over F and the outcome of the randomness
generated at node ui ∈ U by an ni-dimensional row vector
ki over the same field. Write z := (z1, z2, . . . , z|S|), k :=

(k1,k2, . . . ,k|U |), x := (z,k), m := m1 +m2 + . . .+m|S|,
n := n1 + n2 + . . . + n|U |, and ω := m + n. To simplify
our discussion, throughout the paper we assume that all the
sources messages (randomness) z (k) have positive probability.
Therefore, all x have positive probability. The output of
channel e ∈ E is a linear function of x if the code is
linear. Thus for a linear network code, we may define its
local encoding kernels kd,e, d, e ∈ E, where d ∈ In(v) and
e ∈ Out(v) for some v ∈ V , and global encoding kernels
fe, e ∈ E (where fe is an ω-dimensional column vector for
all channels e ∈ E) as in [7] such that channel e outputs
xfe if z and k are the message and randomness generated,
respectively. For a subset A ⊂ E of channels, denote by
F (A) the matrix whose columns are the global encoding
kernels of channels e ∈ A (according to an arbitrary but fixed
indexing). Let m-dimensional random row vector Z be the
random messages, n-dimensional random row vector K be
the randomness, and X := (Z,K). Then the random output
accessed by a wiretapper from a wiretap subset W ∈ W of
channels is Y(W ) := XF (W ). Thus by (1) a linear network
code is secure if and only if Y(W ) is statistically independent
of Z for all W ∈ W .

It was proved in [2] that when S = U = {s} i.e., the
CSWN has a single source node where all the randomness is
generated, a linear network code can be linearly transformed
into a linear secure network code by a properly chosen full
rank matrix, and the matrix can always be found under
suitable conditions. The secure network code, namely the
image of the linear transformation, has the following property:
If {f1, f2, . . . , fw} is a maximal subset of linearly independent
vectors in {fd : d ∈ W}, where fe is the global encoding
kernel of channel e in the image code, W is a wiretap subset
of channels in W , and εj is the ω-dimensional column vector
whose jth component is 1 and all other components are 0,
then

ε1, ε2, . . . , εm, f1, f2, . . . , fw, are linearly independent. (2)

It can readily be seen by invoking Theorem 7.3 in [7] that
(2) is the necessary and sufficient condition for the network
code to be secure when both the source messages and the
randomness have uniform distributions. By the assumption
in (2), rank(F (W )) = w. Let F ∗(W ) be the submatrix of
matrix F (W ) consisting of the maximal linearly independent
set {fj , j = 1, 2, . . . w} in (2). Then condition (2) is equivalent
to that G := (ε1, ε2, . . . , εm, F ∗(W )) has rank m+ w. Write

G =
(
I F ∗1 (W )
0 F ∗2 (W )

)
,

where F ∗1 (W ) and F ∗2 (W ) are submatrices of F ∗(W ) con-
sisting of its first m rows and last n rows, respectively, and I
is the m×m identity matrix. By multiplying suitable values
to the first m columns of G and adding them to the last n
columns, we can obtain

G′ =
(
I 0
0 F ∗2 (W )

)



with the same rank as G. Thus we have

rank(F ∗2 (W )) = w = rank(F ∗(W )) = rank(F (W )).

Let F1(W ) and F2(W ) be the submatrices of F (W ) con-
sisting of its first m rows and last n rows, respectively. Follow-
ing the above discussion, the next lemma gives a necessary and
sufficient condition for the security of a linear network code.
Note that this condition does not depend on the assumption
that the sources messages have uniform distribution.

Lemma 3.1: (Security Lemma) Suppose X := (Z,K) is the
input to the CSWN so that channel e ∈ E outputs xfe.
i) The wiretapper can obtain no information about z from the
outputs of W if rank(F2(W )) = rank(F (W )) and K has
uniform distribution on the n-dimensional row space.
ii) The wiretapper can obtain information about z from the
outputs of W if rank(F2(W )) < rank(F (W )).

Proof: Let Y := XF (W ), Y1 := ZF1(W ), and Y2 :=
KF2(W ). Then

Y = Y1 + Y2. (3)

Let T , T1 and T2 be the linear transformations sending
an ω-dimensional row vector x to xF (W ), sending an m-
dimensional row vector z to zF1(W ), and sending an-n
dimensional row vector k to kF2(W ), and denote their image
spaces by L, L1, and L2, respectively. Obviously, L1 ⊂ L and
L2 ⊂ L. We now prove i) and ii).
i) Suppose rank(F2(W )) = rank(F (W )) := r and K has
uniform distribution. Then L2 = L and the common image
space L2 = L of T2 and T has dimension r. Therefore, for all
y2 ∈ L, Pr(Y2 = y2) = q−n+(n−r) = q−r, where q := |F |
is the order of the ground field, because T2 sends exactly
qn−r n-dimensional column vectors to each vector in the r-
dimensional linear subspace L. Moreover, for all y1 ∈ L1 and
y ∈ L, y − y1 ∈ L because L1 ⊂ L. Thus by (3), for all y1

with Pr(Y1 = y1) 6= 0, we have

Pr(Y = y|Y1 = y1) = Pr(Y2 = y − y1|Y1 = y1)
= Pr(Y2 = y − y1)
= q−r

for all y ∈ L, where the second equality above holds because
Y1 and Y2 are respectively functions of Z and K, which
are independent of each other. This shows that Y and Y1 are
independent. Finally, by observing that Z→ Y1 → Y forms a
Markov chain, we see that Z and Y are independent, proving
part i).
ii) Suppose rank(F2(W )) < rank(F (W )). Then there exists
a y ∈ L\L2. By our assumption that all z and k have positive
probabilities, we have Pr(Z = 0) 6= 0 and Pr(Y = y) 6= 0,
whereas Pr(Y = y|Z = 0) = Pr(Y2 = y) = 0. Thus
Pr(Y = y|Z = 0) 6= Pr(Y = y). Consequently, Z and Y
are dependent, proving part ii).

Corollary 3.2: Suppose K has uniform distribution. Then
the following are equivalent necessary and sufficient condi-
tions for the wiretapper not being able to obtain any informa-
tion about z from the outputs of W :

i) the condition in (2) is satisfied;
ii) rank(F2(W )) = rank(F (W )).

Proof: By Lemma 3.1, ii) implies that the wiretapper
can obtain no information about z from the outputs of W
for any source distributions, in particular for the uniform
source distributions. The latter is equivalent to i) from the
discussion following (2). Therefore, the wiretapper not being
able to obtain any information about z from the outputs of W
implies i). Finally, the condition in (2) holds if and only if
rank(F ∗2 (W )) = rank(F (W )). Since

rank(F ∗2 (W )) ≤ rank(F2(W )) ≤ rank(F (W )),

this implies rank(F2(W )) = rank(F (W )). Thus i) implies
ii), completing the proof.

Next we seek a necessary and sufficient condition for the
general case where K may not have uniform distribution. It is
sufficient for us to study the condition for an arbitrarily chosen
wiretap subset W of channels. To this end, let us consider the
subspaces L and L1 in the proof of Lemma 3.1 for a fixed
wiretap subset W of channels, i.e., L := {xF (W ) : x ∈ Fω}
and L1 := {zF1(W ) : z ∈ Fm}. As we have seen in the proof
of Lemma 3.1, L1 is a linear subspace of L. Let dim(L) = r
and dim(L1) = r1. Then r1 ≤ r, and L is partitioned into
qr−r1 cosets of L1 say, J0, J1, J2, . . . , Jqr−r1−1 with |Ji| =
qr1 , i = 0, 1, 2, . . . , qr−r1 − 1, where J0 = L1.

Theorem 3.3: For W ∈ W , let Y2 := KF2(W ). Then the
wiretapper can obtain no information about z from the outputs
of W if and only if for i = 0, 1, 2, . . . , qr−r1 − 1 and all
y2 ∈ Ji,

Pr(Y2 = y2) = q−r1Pr(Y2 ∈ Ji), (4)

or equivalently

Pr(Y2 = y2|Y2 ∈ Ji) = q−r1 (5)

provided that K has a strictly positive distribution.

Proof: The wiretapper can obtain no information about z
from the outputs of W if and only if

Pr(Y = y|Z = z) = Pr(Y = y),

for all y ∈ L and all m-dimensional row vectors z. On the
other hand, it follows from (3) and the independence of Z and
K that

Pr(Y = y|Z = z) = Pr(Y2 = y − zF1(W )).

Therefore, the wiretapper can obtain no information about z
from the outputs of W if and only if

Pr(Y2 = y − zF1(W )) = Pr(Y = y). (6)

Let y be fixed. Then Pr(Y = y) is a constant that does not
depend on z. Now observe that {y − z′F1(W ) : z′ ∈ Fm}
is precisely the coset of L1 in L, say Ji, that contains y. So
we see from (6) that for all y2 ∈ Ji, Pr(Y2 = y2) does not
depend on y2. Then (4) follows because |Ji| = qr1 .



Conversely, if (4) holds, then for all y ∈ L and all m-
dimensional row vectors z, we have

Pr(Y = y|Z = z) = Pr(Y2 = y − zF1(W ))
= q−r1Pr(Y2 ∈ Ji)

which does not depend on z, showing that Y and Z are
independent, or the wiretapper can obtain no information about
z from the outputs of W .

We now prove that if K has a strictly positive distribution,
then Pr(Y2 ∈ Ji) > 0, so that Pr(Y2 = y2|Y2 ∈ Ji) in
(5) is properly defined. Toward this end, consider any y ∈ Ji.
Since y ∈ L, y = zF1(W ) + kF2(W ) for some z ∈ Fm and
k ∈ Fn. Then kF2(W ) = y − zF1(W ) ∈ {y − z′F1(W ) :
z′ ∈ Fm} = Ji. Since we assume that each k has positive
probability, it follows that

Pr(Y2 ∈ Ji) ≥ Pr(K = k) > 0. (7)

Then (5) are (4) equivalent, completing the proof.

Remark: It is easy to see the condition in (5) yields
rank(F2(W )) = rank(F (W )). Since Pr(Y2 ∈ Ji) > 0
for all i from (7), we see from (4) that Pr(Y2 = y) > 0 for
all y ∈ L. It then follows immediately that L2 = L (because
L2 ⊂ L), or rank(F2(W )) = rank(F (W )).

An immediately consequence of Theorem 3.3 is that the
security of a linear network code is independent of the source
distributions provided they are strictly positive.

Corollary 3.4: Let Z and Z′ be two arbitrary random
sources for the same CSWN with strictly positive probability
distributions over the m-dimensional space Fm. Then a linear
network code with randomness K for the CSWN is secure for
source Z if and only if it is secure for source Z′.

Proof: This corollary follows immediately because the se-
curity condition for a linear network code in Theorem 3.3 does
not dependent the source distributions.

With Corollary 3.4, in studying the security of a linear net-
work code, we may always assume without loss of generality
that the sources have uniform distributions.

IV. AN EXAMPLE

In this section, we present an example to illustrate the
applications of Corollary 3.2. Consider the CSWN shown in
Figure 1. There are two source nodes s1 and s2, and random
messages Z1 and Z2 are generated uniformly and indepen-
dently at unit rate at s1 and s2, respectively. We want to send
the messages Z1 and Z2 to the sinks t1 and t2, respectively.
Assume that all channels have unit capacity, and let GF (5)
be the ground field. Then Z1 and Z2 are uniformly distributed
over GF (5) and each channel can carry a symbol in GF (5).
Let E0 = {(u1, t2), (w1, v1), (u2, v0), (w2, v2), (w3, t1)} and
W =

(
E0
2

)
, the collection of all 2-subsets of E0. That is, a

wiretapper can arbitrarily choose two channels in E0 to access.
From Figure 1, we see that both source nodes have out-degree
one. Thus we may not send any randomness from the source
nodes even in the case that they are qualified to generate

randomness. In the other words, the randomness has to be
generated somewhere else in the network. Let U = {u1, u2},
and let a unit of uniform randomness Ki be generated at node
ui for i = 1, 2.

Denote the output of channel e by y(e) and the realizations
of random variables Zi and Kj by zi and kj , respectively for
i, j = 1, 2 . The encoding functions are defined as follows.

y((s1, u1)) = z1

y((s2, w3)) = z2

y((u1, t2)) = y((s1, u1)) + k1

y((u1, u2)) = y((s1, u1)) + k1

y((u2, w3)) = k2

y((u2, v0)) = y((u1, u2)) + 2k2

y((u1, w1)) = 2y((s1, u1)) + k1

y((w3, w1)) = y((u2, w3))
y((w1, v1)) = y((u1, w1)) + y((w3, w1))
y((u1, w2)) = y((s1, u1)) + 2k1

y((w3, w2)) = y((s2, w3)) + y((u2, w3))
y((w2, v2)) = y((u1, w2)) + y((w3, w2))
y((w3, t1)) = 2y((s2, w3)) + y((u2, w3))
y((v1, t2)) = y((w1, v1))
y((v1, t1)) = y((w1, v1))
y((v2, t2)) = y((w2, v2))
y((v2, t1)) = y((w2, v2))
y((v0, t2)) = y((u2, v0))
y((v0, t1)) = y((u2, v0)).

These encoding functions yield

y((u1, t2)) = z1 + k1

y((v1, t2)) = y((v1, t1)) = y((w1, v1)) = 2z1 + k1 + k2

y((v0, t2)) = y((v0, t1)) = y((u2, v0)) = z1 + k1 + 2k2

y((v2, t2)) = y((v2, t1)) = y((w2, v2)) = z1 + z2 + 2k1 + k2

y((w3, t1)) = 2z2 + k2.

In other words, the global encoding kernels of the channels
in set E0 are

f(u1,t2) =


1
0
1
0

 , f(w1,v1) =


2
0
1
1

 , f(u2,v0) =


1
0
1
2



f(w2,v2) =


1
1
2
1

 , f(w3,t1) =


0
2
0
1

 ,

and the matrices formed by the global encoding kernels of



1u 2u

1w

3w

2w

1s 2s

1v 2v

0v 1t2t

1Z 2Z

2K

1K

1Ẑ 2Ẑ
Fig. 1. An example of a secure code for a CSWN.

channels in In(t1) and In(t2) are

M1 =


2 1 1 0
0 0 1 2
1 1 2 0
1 2 1 1


and

M2 =


1 2 1 1
0 0 0 1
1 1 1 2
0 1 2 1

 .

Since any pair of vectors taken from{(
0
1

)
,

(
1
1

)
,

(
1
2

)
,

(
2
1

)
,

(
1
0

)}
are linearly independent, for all W ∈ W , we have
rank(F2(W )) = 2. Thus the security of the network code
follows from Corollary 3.2. Finally, we can easily verify that
M1 and M2 are full rank, and therefore the network code is
decodable.

V. CONCLUSION

In this paper, we obtain a necessary and sufficient condition
for a linear network code to be secure. Our results apply to
networks in which there can be more than one source nodes,
and randomness can be generated at more than one node in the
network. Shannon’s cipher system and secret-sharing schemes
are special cases of such networks. We also show that the
security of a linear network code does not depend on the

source distributions. This finding greatly simply the design
of secure linear network codes.
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