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Variable-Rate Linear Network Coding
Silas L. Fong and Raymond W. Yeung
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Abstract

We introduce variable-rate linear network coding for single-source finite acyclic network. In this problem, the source

of a network transmits messages at different rates in different time sessions and every non-source node in the network

decodes the messages if possible. We propose two efficient algorithms for implementing variable-rate linear network coding

under different circumstances.

Index Terms

Network coding, variable-rate, linear broadcast, static network codes.

1 INTRODUCTION

Network coding, first studied by Yeung and Zhang [1] and Ahlswede et al. [2], reveals that if coding is

applied at the nodes in a network, rather than routing alone, the network capacity can be increased. Li et

al. [3] and subsequently Koetter and Medard [4] proved that linear network coding is sufficient to achieve

the maximum capacity in a single-source finite acyclic network. Consequently, linear network coding for

single-source finite acyclic networks has been a subject of much research interest. We refer the reader to

[5] (see also [6]) for a tutorial on the subject. In this work, they classify linear network codes for single-

source finite acyclic networks into four classes: (a) generic; (b) linear dispersion; (c) linear broadcast; (d)

linear multicast. These four classes of linear network codes possess properties of decreasing strength.

Although there has been much investigation into various properties of linear network codes with a

fixed rate, little research has been undertaken to investigate into the possible relationships among codes

with different rates. In our previous work [7], the linkage among linear broadcasts of different rates

was studied and the concept has been adopted by J. Goseling and J. H. Weber [8] for minimum-cost

multicasting. This paper is an extension of [7], and variable-rate linear network coding with link failure

is studied for the first time.

Silas L. Fong and Raymond W. Yeung are with the Department of Information Engineering, The Chinese University of Hong Kong, N.T.,

Hong Kong (e-mail: lhfong5@ie.cuhk.edu.hk; whyeung@ie.cuhk.edu.hk).
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This paper is organized as follows. Section 2 presents various classes of linear network code, including

linear broadcast. Section 3 presents the concept of variable-rate linear network coding and provides

algorithms for efficient implementations of variable-rate linear network coding. In Section 4, the results

in Section 3 are extended to the scenario with link failure. Section 5 concludes this paper.

2 PRELIMINARIES

2.1 Linear Network Code

A network is represented by a finite directed graph G = (E, V ) consisting of node set V and edge set E.

Nodes are denoted by upper case letters (X , Y , etc). Edges are denoted by lower case letters (e, i, etc) on

which a symbol from a finite field F , called the base field, can be transmitted. For simplicity, we assume

every transmission on a channel and every internal processing of any node incur no delay. The source

node is denoted by S which generates a message every unit time. The maximum flow from the source

S to a non-source node T is denoted by maxflow(T ). The set of incoming edges and outgoing edges of

node U are denoted by In(U) and Out(U) respectively. Let a pair of edges (d, e) be called an adjacent

pair when there exists a node T with d ∈ In(T ) and e ∈ Out(T ).

In a linear network code, all the information symbols are regarded as elements of a base field F . These

symbols include the symbols that comprise the information source as well as the symbols transmitted

on the channels. For example, F is taken to be the field GF (2) when the information unit is the bit.

Furthermore, encoding and decoding are based on linear algebra defined on the base field, so that efficient

algorithms for encoding and decoding as well as for code construction can be obtained. The global

description of a linear network code described in [5] is used in this paper.

Definition 1: Let F be a finite field and ω be a positive integer. An ω-dimensional F-valued linear network

code on an acyclic communication network consists of a scalar kd,e for every adjacent pair (d, e) in the

network as well as an ω-dimensional column vector fe for every edge e in the network such that:

(i) fe =
∑

d∈In(T ) kd,efd, where e ∈ Out(T );

(ii) The vectors fe for the ω imaginary channel e ∈ In(S) form the natural basis of the vector space

Fω.

The vector fe is called the global encoding kernel for edge e. The local encoding kernel at the node T refers

to the |In(T )| × |Out(T )| matrix KT = [kd,e]d∈In(T ),e∈Out(T ).

Let the source generate a message ~x in the form of an ω-dimensional row vector. A node T receives

the symbols ~x · fd, d ∈ In(T ), from which it calculates the symbol ~x · fe for sending onto each edge

e ∈ Out(T ) via the linear formula

~x · fe = ~x ·
∑

d∈In(T )

kd,efd =
∑

d∈In(T )

kd,e(~x · fd),
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where the first equality follows from (i).

Given the local encoding kernels at all the nodes in an acyclic network, the global encoding kernels can

be calculated recursively in any upstream-to-downstream order by (i), while (ii) provides the boundary

conditions. An ω-dimensional F -valued linear network code can be viewed as an F -valued linear network

code that enables the source to transmit a message consisting of ω data units.

Linear multicast and linear broadcast are described in [5] and their definitions are stated as follows:

Definition 2: Let vectors fe denote the global encoding kernels in an ω-dimensional F -valued linear

network code on a single-source finite acyclic network. Let

VT = span{fd : d ∈ In(T )}.

Then, the linear network code qualifies as a linear multicast and a linear broadcast respectively if the

following statements hold:

(i) dim(VT ) = ω for every non-source node T with maxflow(T ) ≥ ω;

(ii) dim(VT ) = min{ω, maxflow(T )} for every non-source node T .

Clearly, (ii) ⇒ (i). Thus, every linear broadcast is a linear multicast. Let p be the number of non-

source node T with maxflow(T ) ≥ ω in an acyclic network. Using the algorithm proposed in [9], we can

construct an ω-dimensional linear multicast on the network if the size of the base field is larger than p.

A slight modification of this algorithm proves the following theorem.

Theorem 1: Given a single-source finite acyclic network with n non-source nodes and a finite field F ,

an ω-dimensional F -valued linear broadcast can be constructed if |F | > n.

Proof: It is similar to the proof in [9] and therefore omitted.

Generally, a larger base field is required for constructing a linear broadcast than a linear multicast in

the same network because the algorithms for constructing a linear broadcast need to consider more nodes

compared with the algorithms for constructing a linear multicast.

2.2 Linear Network Code with Link Failure

In the discussion so far, a linear network code has been defined on a network with a fixed topology,

where all the channels are assumed to be available at all times. In real life, a communication network

often suffers from link failures or traffic congestions from time to time. In other words, the effective

configuration of a communication network may vary from time to time. Link failures need to be handled

efficiently because otherwise a large amount of data can be lost, especially when the data rate is high.

Consider the use of, for instance, an ω-dimensional multicast on an acyclic network for multicasting a

sequence of messages generated at the source node. When no channel failure occurs, a non-source node
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T with maxflow(T ) at least equal to ω would be able to decode the sequence of messages. In case of

link failures, if maxflow(T ) in the resulting network is at least ω, the sequence of messages in principle

can still be received at that node. However, the deployment of a network code for the new network

topology is involved, which not only is cumbersome but also may cause a significant loss of data during

the switchover. In order to develop an efficient scheme for handling link failures, a class of linear network

code called static network code described in [5] is studied in this paper, which can provide the network

with maximum robustness in case of channel failures. The configuration formally defined in [5] and the

global description of static network code in [5] are stated as follows:

Definition 3: A configuration ε of a network is a mapping from the set of channels in the network to

the set {0, 1}. Channels in ε−1(0) are idle channels with respect to this configuration, and the subnetwork

resulting from the deletion of idle channels will be called the ε-subnetwork. The maximum flow from

the source S to a non-source node T over the ε-subnetwork is denoted as maxflowε(T ).

Definition 4: Let F be a finite field and ω be a positive integer. Let kd,e be the local encoding kernel for

every adjacent pair (d, e) in an ω-dimensional F -valued linear network code on an acyclic communication

network. The ε-global encoding kernel for the channel e, denoted by fe,ε, is the ω-dimensional column

vector calculated recursively in an upstream-to-downstream order by:

(i) fe,ε = ε(e)
∑

d∈In(T ) kd,efd,ε, where e ∈ Out(T ).

(ii) The ε-global encoding kernel for the ω imaginary channels are independent of ε and form the

natural basis of the vector space Fω .

In the above definition, the local encoding kernels kd,e remain unchanged with ε. Let the source generate

a message ~x in the form of an ω-dimensional row vector. A node T receives the symbols ~x·fd,ε, d ∈ In(T ),

from which it calculates the symbol ~x · fe,ε for sending onto each edge e ∈ Out(T ) via the linear formula

~x · fe,ε = ε(e)
∑

d∈In(T )

kd,e(~x · fd,ε).

In particular, a channel e with ε(e) = 0 has fe,ε = ~0 according to (i) and transmits the symbol ~x · fe,ε = 0.

In a real network, whenever a symbol is not received on an input channel due to channel failures, the

symbol is regarded as being 0.

Static linear multicast and static linear broadcast are described in [5] and their definitions are stated

as follows:

Definition 5: Following the notation of Definition 4 and letting

VT,ε = span{fd,ε : d ∈ In(T )},

an ω-dimensional F -valued linear network code on a single-source finite acyclic network qualifies as a

static linear multicast and a static linear broadcast respectively if the following statements hold:
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(i) dim(VT,ε) = ω for every configuration ε and every non-source node T with maxflowε(T ) ≥ ω;

(ii) dim(VT,ε) = min{ω, maxflowε(T )} for every configuration ε and every non-source node T .

While the configuration ε varies, the local encoding kernels remain unchanged. Therefore, the advantage

of using a static linear broadcast in case of link failures is that the local operation at any node in the

network is affected only at the minimal level. Each receiving node in the network, however, needs to

know the configuration ε before decoding the source message correctly.

Let p be the number of non-source node T with maxflow(T ) ≥ ω and m be the number of configurations

in an acyclic network. Using the algorithm proposed in [4], we can construct an ω-dimensional static

linear multicast on the network if the size of the base field is larger than mp. A slight modification of

this algorithm proves the following theorem.

Theorem 2: Given a single-source finite acyclic network with n non-source nodes, m configurations and

a finite field F , an ω-dimensional F -valued static linear broadcast can be constructed if |F | > mn.

Proof: It is similar to the proof of constructing a static linear multicast in [4] and therefore omitted.

3 VARIABLE-RATE LINEAR NETWORK CODING

In a single-source finite acyclic network, suppose the source wants to transmit messages at one of q

possible rates within a session. Let q̄ be the highest among the q rates. To avoid triviality, assume q̄ ≤
maxflow(T ) for at least one non-source node T . We are now required to design a linear network coding

system which enables every non-source node T to decode the message if maxflow(T ) is at least equal

to the transmission rate in that session. In this section, we assume that link failures do not occur in the

network; networks with link failure will be treated in Section 4.

The most effective solution based on existing results for the scenario described above is to use the

algorithm proposed by Jaggi et al. [9] to obtain q linear multicasts of different dimensions for the same

network. Consequently, every node is required to store q different copies of local encoding kernels in order

to be able to apply the suitable local encoding kernel for that session. This increases the complexity of

the system considerably if the system is implemented in hardware. Besides, changing the local encoding

kernels at the nodes consumes resources in the network.

As an attempt to alleviate the shortcomings in the solution above, we propose in this section a new

scheme based on linear broadcast for more efficient implementation of variable-rate linear network coding.

Throughout this paper, all the networks concerned are single-source finite acyclic networks and we let

Fω denote the vector space of all ω-dimensional column vectors.
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Lemma 1: An ω-dimensional F -valued linear network code is given on an acyclic network where ω ≥ 2.

Let fe be the global encoding kernel for all edge e ∈ E. Let Iω−1 denote the (ω − 1) × (ω − 1) identity

matrix and let ~b ∈ Fω−1 be any arbitrary (ω − 1)-dimensional column vector. Let

fω−1
e =

[
Iω−1

~b
]
fe (1)

for all non-imaginary channel e. Then, fω−1
e , e ∈ E constitute the global encoding kernels of an (ω − 1)-

dimensional F -valued linear network code in the same base field F . In particular, the local encoding

kernel of this (ω − 1)-dimensional linear network code at every non-source node is the same as that of

the original ω-dimensional linear network code.

Proof: Let kd,e be the local encoding kernel for every adjacent pair (d, e) of the given ω-dimensional

F -valued linear network code. We will show that fω−1
e , e ∈ E constitute the global encoding kernels of an

(ω − 1)-dimensional F -valued linear network code by demonstrating the existence of the corresponding

local encoding kernel kω−1
d,e for every adjacent pair (d, e).

By convention, we assume that the global encoding kernel for the ω − 1 imaginary channels form

the standard basis of Fω−1. For any channel e ∈ Out(S), since fω−1
e as specified in (1) is in Fω−1,

kω−1
d,e , d ∈ In(S) can always be chosen.

For all non-imaginary channel e 6∈ Out(S), let kω−1
d,e = kd,e. We now verify the relation

fω−1
e =

∑

d∈In(T )

kω−1
d,e fω−1

d (2)

by considering

fe =
∑

d∈In(T )

kd,efd.

Multiplying both sides by
[

Iω−1
~b

]
, we obtain

[
Iω−1

~b
]
fe =

∑

d∈In(T )

kd,e

[
Iω−1

~b
]
fd.

Then (2) immediately follows from (1), since kω−1
d,e = kd,e for all non-imaginary channel e 6∈ Out(S).

This shows that fω−1
e , e ∈ E constitute the global encoding kernels of an (ω − 1)-dimensional F -valued

linear network code with the local encoding kernels kω−1
d,e . In particular, kω−1

d,e = kd,e for every adjacent

pair (d, e) for e 6∈ Out(S). In other words, the local encoding kernel at every non-source node of the

(ω − 1)-dimensional linear network code specified by fω−1
e , e ∈ E is the same as that of the original

ω-dimensional linear network code.

Definition 6: Let an ω-dimensional F -valued linear broadcast on an acyclic network where ω ≥ 2 and

~b ∈ Fω−1, an (ω − 1)-dimensional column vector, be given. Define

fω−1
e =

[
Iω−1

~b
]
fe
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for all non-imaginary channel e, where fe is the global encoding kernel for channel e. Then, ~b is called

a reduction vector for the given linear broadcast if fω−1
e , e ∈ E specify an (ω − 1)-dimensional F -valued

linear broadcast.

Lemma 2: Let F be a finite field, and ω and m be integers such that ω ≥ 2 and 1 ≤ m ≤ ω − 1. Let

~c1,~c2, . . . ,~cm ∈ Fω be m linearly independent vectors, and let

~di =
[

Iω−1
~b

]
~ci (3)

for i = 1, 2, . . . , m, where

~b =
[

b1 b2 · · · bω−1

]T

and b1, b2, . . . , bω−1 are indeterminates in F . Then, there exists a nonzero polynomial

p(b1, b2, . . . , bω−1) = a0 + a1b1 + a2b2 + . . . + aω−1bω−1

where aj ’s are constants in F such that ~d1, ~d2, . . . , ~dm are linearly independent whenever

p(b1, b2, . . . , bω−1) 6= 0.

Proof: Construct the matrix

Dm =
[

~d1
~d2 · · · ~dm

]
.

We will show that there exists an m ×m submatrix A of Dm whose determinant is equal to a nonzero

polynomial in b1, b2, . . . , bω−1. We will further show that det(A) has the form

a0 + a1b1 + a2b2 + . . . + aω−1bω−1

where aj ’s are constants in F . Then by letting

p(b1, b2, . . . , bω−1) = det(A),

since A is a submatrix of Dm, it follows that ~d1, ~d2, . . . , ~dm are linearly independent whenever p(b1, b2, . . . , bω−1)

is evaluated to a nonzero value in F .

To facilitate our discussion, we write

~ci =


 ~hi

ki


, (4)

where ~hi ∈ Fω−1 and ki ∈ F for i = 1, 2, . . . ,m. It is readily seen from (3) that

~di = ~hi + ki
~b

for i = 1, 2, . . . , m, which implies

Dm =
[

~h1 + k1
~b ~h2 + k2

~b · · · ~hm + km
~b

]
. (5)
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We first show that there exists some ~b ∈ Fω−1 such that ~d1, ~d2, . . . , ~dm are linearly independent.

Assume the contrary, i.e., ~d1, ~d2, . . . , ~dm are linearly dependent for all ~b. We will show that this leads

to a contradiction.

Case 1 : |span{~h1,~h2, . . . ,~hm}| < ω − 1

Since |span{~h1,~h2, . . . ,~hm}| is at most ω − 2, a vector ~z ∈ Fω−1 can always be found such that ~z /∈
span{~h1,~h2, . . . ,~hm}. Then, by our assumption, {~di} are linearly dependent for all ~b, in particular for ~b

equals ~z. In other words, {~di + ki~z} are linearly dependent, i.e.,

t1(~h1 + k1~z) + t2(~h2 + k2~z)

+ . . . + tm(~hm + km~z) = ~0

for some t1, t2, . . . tm ∈ F where not all ti’s are equal to 0. Regrouping the terms, we have

(t1~h1 + t2~h2 + . . . + tm~hm)

+ (t1k1 + t2k2 + . . . + tmkm)~z = ~0.

Since ~z /∈ span{~h1,~h2, . . . ,~hm}, this implies




t1k1 + t2k2 + . . . + tmkm = 0

t1~h1 + t2~h2 + . . . + tm~hm = ~0.

Consequently,

t1~c1 + t2~c2 + . . . tm~cm = ~0

(cf.(4)), which contradicts the linear independence among ~c1,~c2, . . . ,~cm.

Case 2 : |span{~h1,~h2, . . . ,~hm}| = ω − 1

Since m is at most ω − 1 and |span{~h1,~h2, . . . ,~hm}| equals ω − 1, m equals ω − 1 and ~h1,~h2, . . . ,~hm are

linearly independent. However, for ~b equals ~0,

~di = ~hi

for i = 1, 2, . . . , m. Then, {~di} are linearly independent for ~b equals ~0, which contradicts our assumption.

Combining the two cases, we have shown that ~d1, ~d2, . . . , ~dm are linearly independent for some ~b. For

this choice of ~b, there exists a submatrix A of Dm such that det(A) is evaluated to a nonzero value.

Since det(A) is a polynomial in the indeterminates b1, b2, . . . , bω−1, this implies that det(A) is a nonzero

polynomial in these indeterminates. Since Dm is (ω − 1) ×m and A is an m ×m submatrix of Dm, we

see from (5) that

A =
[

~r1 + k1
~b
′

~r2 + k2
~b
′ · · · ~rm + km

~b
′

]
,
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where ~r1, ~r2, . . . , ~rm,~b
′ ∈ Fm are the corresponding subvectors of ~h1,~h2, . . . ,~hm and ~b respectively. If

k1 = . . . = km = 0, then det(A) = a0 where a0 ∈ F . Otherwise, assume without loss of generality that

k1 6= 0. Then, by means of column operations on A, we see that det(A) can be expressed in the form

C
∣∣∣
[

~l1 + τ~b
′ ~l2 · · · ~lm

]∣∣∣

where C, τ ∈ F and ~li ∈ Fm. It then follows that in det(A), the power of each component of ~b is at most

one. Therefore,

det(A) = a0 + a1b1 + a2b2 + . . . + aω−1bω−1

where aj ’s are constants in F for j = 0, 1, . . . , ω − 1. Let

p(b1, b2, . . . , bω−1) = det(A)

and this completes the proof of the lemma.

Lemma 3: Let n be the total number of non-source nodes in an acyclic network, and an ω-dimensional

F -valued linear broadcast be given, where ω ≥ 2. Then a reduction vector can be found if |F | > n.

Proof: Let fe be the global encoding kernel of the given linear broadcast for all edge e ∈ E. Let

~b =
[

b1 b2 · · · bω−1

]T

be an (ω − 1)-dimensional column vector where all bξ’s are indeterminates in F , and let

fω−1
e =

[
Iω−1

~b
]
fe

for all non-imaginary channel e. The existence of a reduction vector is proved by showing that by suitably

choosing ~b, fω−1
e , e ∈ E specify an (ω − 1)-dimensional F -valued linear broadcast.

For each non-source node T , let

m = min{ω − 1,maxflow(T )}.

Then, m linearly independent vectors fe can always be chosen from the set of incoming edge e ∈ In(T )

since the given linear network code is a linear broadcast. Denote these m vectors by ~c1,~c2, . . . ,~cm and let

~c ω−1
i =

[
Iω−1

~b
]
~ci

for i = 1, 2, . . . ,m, where ~c ω−1
i is an (ω − 1)-dimensional column vectors. Note that m as well as the

vectors ~c1,~c2, . . . ,~cm and ~c ω−1
1 ,~c ω−1

2 , . . . ,~c ω−1
m depend on node T although this is not explicitly indicated

in order to keep the notation simple. Let gT be the nonzero polynomial p(b1, b2, . . . , bω−1) in Lemma 2,

which exists because ~c1,~c2, . . . ,~cm are linearly independent. Let NT denote the solution space of

gT (b1, b2, . . . , bω−1) = 0.
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Since gT is a nonzero polynomial in ω − 1 variables, |NT | ≤ |F |ω−2. We now consider
∣∣∣∣∣ Fω−1 ∩ (

⋃

T

NT )

∣∣∣∣∣
in order to find a reduction vector

~v =
[

v1 v2 · · · vω−1

]T

.

By the union bound, ∣∣∣∣∣ Fω−1 ∩ (
⋃

T

NT )

∣∣∣∣∣ ≤
∑

T

∣∣( Fω−1 ∩NT )
∣∣ .

Since |NT | ≤ |F |ω−2 and n < |F |, this implies

∑

T

∣∣( Fω−1 ∩NT )
∣∣ ≤

∑

T

| F |ω−2

= n | F |ω−2

< | F |ω−1
.

Therefore, ∣∣∣∣∣ Fω−1 ∩ (
⋃

T

NT )

∣∣∣∣∣ <
∣∣ Fω−1

∣∣

and we can find ~v ∈ Fω−1 such that ~v /∈ ⋃
T NT . In other words, ~v can be obtained such that

gT (v1, v2, . . . , vω−1) 6= 0

for each non-source node T , which implies ~c ω−1
1 ,~c ω−1

2 , . . . ,~c ω−1
m are linearly independent for each non-

source node T when ~b = ~v by Lemma 2. Consequently, fω−1
e , e ∈ E specify an (ω − 1)-dimensional

F -valued linear network code that

dim(VT ) = m

= min{ω − 1,maxflow(T )}

for each non-source node T when ~b = ~v. Therefore, fω−1
e , e ∈ E specify an (ω− 1)-dimensional F -valued

linear broadcast for ~b = ~v. It then follows from Definition 6 that ~v is a reduction vector for the given

linear broadcast.

Lemma 3 provides an algorithm to find a reduction vector and an application of Lemma 3 is illustrated

by the following simple example.

Example 1: An acyclic network with 7 non-source nodes and a 3-dimensional GF (11) linear broadcast

on the network are shown in Fig. 1. The local encoding kernels at the non-source nodes of the linear

broadcast are shown in Fig. 2. Since |GF (11)| > 7, a reduction vector can be found by Lemma 3 and[
1 2

]T

is found to be a reduction vector. The corresponding 2-dimensional GF (11) linear broadcast
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Fig. 1. A 3-dimensional GF (11) linear broadcast

KAKRKQKP

11111 111
1

2

Fig. 2. The local encoding kernels at the non-source nodes

constructed by the reduction vector is shown in Fig. 3. It can be easily observed that the two linear

broadcasts have the same local encoding kernels at all the non-source nodes.

Theorem 3: Let n be the total number of non-source nodes in an acyclic network. An ω-dimensional

F -valued linear broadcast is given on the network where ω ≥ 2 and |F | > n. Then, for every h =

1, 2, . . . , ω − 1, an h-dimensional F -valued linear broadcast can be constructed such that these linear

broadcasts have the same local encoding kernels at all the non-source nodes.

Proof: Using Lemma 3, a reduction vector for the given linear broadcast can be found and an (ω −
1)-dimensional linear broadcast is obtained. By Lemma 1, the local encoding kernel of this (ω − 1)-

dimensional linear broadcast at every non-source node is the same as that of the original ω-dimensional

linear broadcast. By repeating this procedure, each time reducing the dimension of the linear broadcast
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Fig. 3. A 2-dimensional GF (11) linear broadcast

by one, the desired set of linear broadcasts can be obtained.

Theorem 1 and Theorem 3 together render an efficient implementation of linear broadcasts of different

dimensions on the same network. In particular, they provide a solution to the scenario described at the

beginning of this section. This solution, which has the advantage that each non-source node is required

to store only one copy of the local encoding kernel, is summarized by the following two steps:

Step 1 : Let n be the number of non-source node in the network and a q̄-dimensional F -valued linear

broadcast where |F | > n is constructed by Theorem 1.

Step 2 : Lower-dimension linear broadcasts are obtained from the q̄-dimensional broadcast by Theorem 3.

4 VARIABLE-RATE LINEAR NETWORK CODING WITH LINK FAILURE

In a single-source finite acyclic network with 2|E| possible configurations, suppose the source wants to

transmit messages at one of q possible rates within a session. Let q̄ be the highest among the q rates. Let

εΩ denote the configuration (cf. Definition 3) with no link failure, i.e., εΩ(e) = 1 for all non-imaginary

channel e ∈ E. To avoid triviality, assume q̄ ≤ maxflowεΩ(T ) for at least one non-source node T . We

are now required to design a linear network coding system which enables every non-source node T

to decode the message if maxflowε(T ) is at least equal to the transmission rate in that session with ε
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being the configuration. If we want to minimize the complexity of the local operation at all the nodes,

an effective solution based on existing results is to use the algorithm proposed in [4] to construct q static

linear multicasts of different dimensions for the same network. Consequently, every node is required to

store q different copies of local encoding kernels in order to be able to apply the suitable local encoding

kernel for that session.

As an attempt to alleviate the shortcomings in the solution above, we extend the scheme developed

in the previous section in order to implement variable-rate linear network coding with link failure more

efficiently.

Lemma 4: An ω-dimensional F -valued linear network code is given on an acyclic network. Let fe,ε

be the ε-global encoding kernel for all edge e ∈ E and every configuration ε. Let Iω−1 denote the

(ω − 1) × (ω − 1) identity matrix and let ~b ∈ Fω−1 be any arbitrary (ω − 1)-dimensional column vector.

Let

fω−1
e,ε =

[
Iω−1

~b
]
fe,ε (6)

for all non-imaginary channel e and every configuration ε. Then, fω−1
e,ε , e ∈ E constitute the ε-global

encoding kernels of an (ω − 1)-dimensional F -valued linear network code in the same base field F . In

particular, the local encoding kernel of this (ω− 1)-dimensional linear network code at every non-source

node is the same as that of the original ω-dimensional linear network code.

Proof: It is similar to the proof in Lemma 1 and therefore omitted.

Definition 7: Let an ω-dimensional F -valued static linear broadcast on an acyclic network where ω ≥ 2,

and ~b ∈ Fω−1, an (ω − 1)-dimensional column vector, be given. Define

fω−1
e,ε =

[
Iω−1

~b
]
fe,ε

for all non-imaginary channel e and every configuration ε, where fe,ε is the global encoding kernel for

channel e under configuration ε. Then, ~b is called a static reduction vector for the given static linear

broadcast if fω−1
e,ε , e ∈ E specify an (ω−1)-dimensional F -valued linear broadcast for every configuration

ε.

Lemma 5: Let n be the total number of non-source nodes in an acyclic network and m be the total

number of configurations ε in the network. For any ω-dimensional F -valued static linear broadcast where

ω ≥ 2, a static reduction vector can be found if |F | > mn.

Proof: Let fe,ε be the global encoding kernel of the given static linear broadcast for all edge e ∈ E

and every possible configuration ε. Let

~b =
[

b1 b2 · · · bω−1

]T
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be an (ω − 1)-dimensional column vector where all bξ’s are indeterminates in F , and let

fω−1
e,ε =

[
Iω−1

~b
]
fe,ε

for all non-imaginary channel e and every configuration ε. The existence of a static reduction vector is

proved by showing that by suitably choosing ~b, fω−1
e,ε , e ∈ E specify an (ω − 1)-dimensional F -valued

linear broadcast for every configuration ε.

For each configuration ε, the network code on the ε-subnetwork is a linear broadcast. Therefore, we

let a nonzero polynomial gT,ε(b1, b2, . . . , bω−1) be gT in the proof of Lemma 3 for each non-source node

T under each ε. Let NT,ε denote the solution space of

gT,ε(b1, b2, . . . , bω−1) = 0.

Since gT,ε is a nonzero polynomial in ω − 1 variables, |NT,ε| ≤ |F |ω−2. We now consider
∣∣∣∣∣ Fω−1 ∩ (

⋃
ε

(
⋃

T

NT,ε ))

∣∣∣∣∣
in order to find a static reduction vector

~v =
[

v1 v2 · · · vω−1

]T

.

By the union bound, ∣∣∣∣∣ Fω−1 ∩ (
⋃
ε

(
⋃

T

NT,ε ))

∣∣∣∣∣ ≤
∑

ε

(
∑

T

∣∣( Fω−1 ∩NT,ε )
∣∣ ).

Since |NT | ≤ |F |ω−2 and mn < |F |, this implies
∑

ε

(
∑

T

∣∣( Fω−1 ∩NT,ε )
∣∣ ) ≤

∑
ε

(
∑

T

| F |ω−2)

= mn | F |ω−2

< | F |ω−1
.

Therefore, ∣∣∣∣∣ Fω−1 ∩ (
⋃
ε

(
⋃

T

NT,ε ) )

∣∣∣∣∣ <
∣∣ Fω−1

∣∣

and we can find ~v ∈ Fω−1 such that ~v /∈ ⋃
ε(

⋃
T NT,ε). In other words, ~v can be obtained such that

gT,ε(v1, v2, . . . , vω−1) 6= 0

for each non-source node T under every configuration ε. By the similar arguments as the proof in Lemma

3, fω−1
e,ε , e ∈ E specify an (ω−1)-dimensional F -valued linear broadcast for~b = ~v under every configuration

ε. It then follows from Definition 7 that ~v is a static reduction vector.

Theorem 4: Let n be the total number of non-source nodes in an acyclic network and m be the total

number of configurations. An ω-dimensional F -valued static linear broadcast is given on the network
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where ω ≥ 2 and |F | > mn. Then, for every h = 1, 2, . . . , ω − 1, an h-dimensional F -valued static linear

broadcast can be constructed such that these static linear broadcasts have the same local encoding kernels

at all the non-source nodes.

Proof: Using Lemma 5, a static reduction vector for the given static linear broadcast can be found and

an (ω− 1)-dimensional static linear broadcast is obtained. By Lemma 4, the local encoding kernel of this

(ω − 1)-dimensional static linear broadcast at every non-source node is the same as that of the original

ω-dimensional static linear broadcast. By repeating this procedure, each time reducing the dimension of

the static linear broadcast by one, the desired set of static linear broadcasts can be obtained.

Theorem 2 and Theorem 4 together render an efficient implementation of static linear broadcasts of

different dimensions on the same network. In particular, they provide a solution to the scenario described

at the beginning of this section. This solution, which has the advantage that each non-source node is

required to store only one copy of the local encoding kernel, is summarized by the following two steps:

Step 1 : Let n be the number of non-source nodes in the network and a q̄-dimensional F -valued static

linear broadcast where |F | > 2|E|n is constructed by Theorem 2.

Step 2 : Lower-dimension static linear broadcasts are obtained from the q̄-dimensional static linear broad-

cast by Theorem 4.

We assume that all the 2|E| possible configurations may occur in the network at the beginning of this

section. Conceivably, a practical application may deal with only a certain collection {ε1, ε2, . . . , εk} of

configurations in order to provide link contingency, network security, network expandability, transmis-

sion redundancy, alternate routing upon congestion, etc. If the possible configurations in the network

are reduced to ε1, ε2, . . . , εk, Theorem 2 and Theorem 4 can still be applied to construct static linear

broadcasts that have the same local encoding kernels at all the non-source nodes. However, the number

of configurations considered in Theorem 2 and Theorem 4 is reduced from 2|E| to k. Consequently, the

threshold on the sufficient size of the base field as well as the computational complexity in Theorem 2

and Theorem 4 will be lower.

5 CONCLUSION

A scheme that enables efficient implementation of variable-rate linear network coding in a single-source

finite acyclic network is developed. In our scheme, the same local encoding kernel at every non-source

node can be used for different transmission rates. In addition, two efficient algorithms are proposed for

implementing variable-rate linear network coding in different situations. Compared with solutions based

on existing results, our algorithms are simpler and require less storage space.

Further research includes the complexity analysis of our algorithms that enable efficient implementation

of variable-rate linear network coding. The performance analysis of randomly designed codes for variable-

rate linear network coding is also interesting for future research.
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