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SUMMARY

In this paper, we first study the error correction and detection capability of codes for a general transmission
system inspired by network error correction. For a given weight measure on the error vectors, we define a
corresponding minimum weight decoder. Then we obtain a complete characterization of the capability of
a code for 1) error correction; 2) error detection; and 3) joint error correction and detection. Our results
show that if the weight measure on the error vectors is the Hamming weight, the capability of a linear
code is fully characterized by a single minimum distance. By contrast, for a nonlinear code, two different
minimum distances are needed for characterizing the capabilities of the code for error correction and for
error detection. This leads to the surprising discovery that for a nonlinear code, the number of correctable
errors can be more than half of the number of detectable errors. We also present a framework that captures
joint error correction and detection. We further define equivalence classes of weight measures with respect
to a channel. Specifically, for any given code, the minimum weight decoders for two different weight
measures are equivalent if the two weight measures belong to the same equivalence class. In the special case
of linear network coding, we study three weight measures, and show that they are in the same equivalence
class of the Hamming weight and induce the same minimum distance as the Hamming weight. Copyright
c© 0000 AEIT

1. INTRODUCTION

Consider multicasting information transmission in a
directed acyclic communication network, where a source
node transmits the same information to a set of sink
nodes. It was shown by Ahlswede et al. [1] that the
network capacity for multicast satisfies the max-flow
min-cut theorem, and this capacity can be achieved by
network coding. Li, Yeung, and Cai [2] further showed
that it is sufficient to consider linear network codes only.
Subsequently, Koetter and Médard [3] developed a matrix
framework for network coding. Jaggi et al. [4] proposed
a deterministic polynomial-time algorithm to construct
network codes. Ho et al. [5] showed that linear network
codes can be effectively constructed by a randomized
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algorithm with an exponentially decreasing probability of
error.

In practical communication networks, transmission
suffers from errors due to link failure, traffic congestion,
malicious modifications, etc. The concept of network error
correction, introduced by Cai and Yeung [6, 7, 8], is to
correct the errors in the network by means of network
coding. In this work, they generalized the Hamming bound,
the Singleton bound and the Gilbert-Varshamov bound in
classical error correction coding to network coding. The
relation between network coding and maximum distance
separation (MDS) codes in classical algebraic coding has
been clarified in [9].

Network coding in the presence of link failure has
been considered by Koetter and Médard [3], where
they introduced the static network code. Network error
detection by random network coding has been studied by
Ho et al. [10]. Jaggi et al. [11, 12, 13] have developed
random network coding algorithms for network error
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correction with various assumptions on the adversaries.
Network error correction in packet networks has been
studied in [14, 15] by Zhang, where he introduced
an algebraic definition of minimum distance for linear
network codes and studied the decoding problem. By
contrast, Yang and Yeung [16] introduced a geometric
definition of minimum distance, and they showed that
it is equivalent to the definition of minimum distance
in [14, 15]. Recently, Koetter and Kschischang [17]
have introduced a general framework for network error
correction over an underlying network that performs
random network coding.

Except for the works of Cai and Yeung [6, 8],
all prior works on network error correction focused
on linear network codes. In this work, we first study
a general transmission system which includes network
error correction, hence, classical error correction, as a
special case. We focus on how to characterize error
correction and error detection as well as joint error
correction and detection when applying minimum weight
decoding. Such characterizations are more complicated
than their classical counterparts where only the minimum
distance is sufficient, because here different “minimum
distances” may need to be employed for error correction
and error detection. Specifically, this will be illustrated
by an example of a nonlinear network code for which
the number of correctable errors is more than half of
the number of detectable errors. We also obtain a new
parameter which can completely characterize both the error
correction and error detection capabilities as well as the
joint error correction and detection capability of a code.
This parameter reduces to the minimum distance when the
channel is linear and the weight measure is the Hamming
weight.

Our characterization of the capability of a code for error
correction and/or error detection depends on the weight
measure, or equivalently, the minimum weight decoder
chosen for the problem. Even though the definition of
the weight measure we give is general, the actual choice
of the weight measure affects the performance of the
corresponding minimum weight decoder. For example,
the original purpose of introducing the Hamming weight
measure for error vectors is to capture the probabilistic
property of a channel by assuming that an error vector
with lower weight occurs with higher probability, so
that minimum Hamming weight decoding is optimal, i.e.,
equivalent to maximum a priori decoding, when the point-
to-point channel is a discrete memoryless channel and the
codeword x is chosen uniformly from the codebook C.

How to find a good weight measure is rather problem
specific. Nevertheless, we obtain for the general case an
equivalence relation on weight measures and show that
weight measures belonging to the same equivalence class
lead to the same minimum weight decoder. We show that
all the four weight measures for linear network codes that
have appeared in the network error correction literature are
in fact equivalent for error correction and detection.

This paper is organized as follows. In the next section,
we formulate the network error correction problem in a
general setting. In Section 2, we study the error correction,
error detection, and joint error correction and detection for
a general transmission system, and define an equivalence
relation for weight measures. Specifically, if two weight
measures are in the same equivalence class, they induce the
same minimum weight decoder. In Section 3, we formulate
the network error correction problem and illustrate an
example of nonlinear network codes. We further show
that two weight measures, the Hamming weight and a
minimum cut induced by the error vector, are in the
same equivalence class for general network codes. In
Section 4, we discuss two more weight measures for
linear network codes, the rank and the network Hamming
weight, and show that all the four weight measures are
in the same equivalence class for linear network codes
and they induce the same minimum distance for error
correction/detection and erasure correction. Two of these
weight measures, namely the minimum cut and the rank,
have previously been discussed in [14, 15]. In the last
section, we summarize our work and discuss topics for
further research.

2. ERROR CORRECTION AND DETECTION
CAPABILITY

In this section, we study a general transmission system
that includes network error correction as a special case.
We are given a codebook C, a set Σ whose elements
are called error vectors, and a set Φ whose elements are
called received vectors. For any x ∈ C and z ∈ Σ, the
received vector is F (x, z) where F : C × Σ→ Φ is called
the transfer function. The transfer function F models the
communication channel. A weight measure of the error
vectors is a mapping

w : Σ→ Z∗, (1)

where Z∗ is the set of nonnegative integers.

Copyright c© 0000 AEIT
Prepared using ettauth.cls

Euro. Trans. Telecomms. 00: 1–14 (0000)
DOI: 10.1002/ett



WEIGHT PROPERTIES OF NETWORK CODING 3

2.1. Error Correction Capability

With respect to a weight measure w, define

Φw(x, c) = {F (x, z) : z ∈ Σ, w(z) ≤ c}, (2)

for a codeword x and a nonnegative integer c. This induces
a distance-like measure between x1, x2 ∈ C defined as

D0
w(x1,x2) = min{c1 + c2 : |c1 − c2| ≤ 1,

Φw(x1, c1) ∩ Φw(x2, c2) 6= ∅}. (3)

By adopting the convention that the minimum of the empty
set is∞, D0

w(x1,x2) is well defined.
Note that D0

w is not necessarily a metric even though it
is symmetric. With respect to D0

w, we define the minimum
distance for the code C as

d0
min,w = min{D0

w(x1,x2) : x1 6= x2 ∈ C}. (4)

Here, we call d0
min,w the minimum distance because it

is a generalization of the notion of minimum distance in
classical coding theory, although D0

w is not necessarily a
metric.

The minimum weight decoder with respect tow, denoted
by MWDw, decodes a received vector y as follows: First,
find all the solutions of equation

F (x, z) = y (5)

with x ∈ C and z ∈ Σ as variables. A pair (x, z), x ∈ C
and z ∈ Σ, is said to be a solution if it satisfies (5), and
furthermore a minimum weight solution if w(z) achieves
the minimum among all the solutions. If for all minimum
weight solutions (x, z), the message part x are identical,
then we say that the error is correctable and claim that the
identical message part is the decoded message. Otherwise,
we claim an uncorrectable error.

We also define another decoder related to MWDw if
we can find a collection of disjoint decoding spheres
{Φw(x, c) : x ∈ C} with integer parameter c. For any
received vector y ∈ Φ, if y ∈ Φw(x, c) for only one x ∈ C,
we say the error is correctable and claim x to be the
decoded message. If y is not in any of the decoding
spheres, we claim an uncorrectable error, or we say the
error is detected. Such a decoder is denoted by MWD′w(c).

Definition 1 A code is c-error-correcting if MWDw can
correct all error vectors z with w(z) ≤ c.

Lemma 1 A code is c-error-correcting if and only if
MWD′w(c) exists.

Proof First, consider a code and assume MWD′w(c)
exists. Let x be the transmitted codeword and z be the
error vector occurred with w(z) ≤ c, and y = F (x, z) be
the received vector. Let (x∗, z∗) be a minimum weight
solution of (5). Since the decoding spheres in MWD′w(c)
are disjoint, for any codeword x′ 6= x, and z′ with w(z′) ≤
c, F (x′, z′) 6= y. That is, for any z′ such that w(z′) ≤ c, if
F (x′, z′) = y, than x′ = x. In particular, this applies to z∗

since w(z∗) ≤ w(z) ≤ c. Therefore, the message part of
any minimum weight solution of (5) is x, implying that the
code is c-error-correcting.

Conversely, if MWD′w(c) does not exist, then we can
find x1 6= x2 ∈ C, z1 and z2 with w(z1) ≤ c and w(z2) ≤
c such that F (x1, z1) = F (x2, z2). If y = F (x1, z1) =
F (x2, z2) is received, then MWDw cannot always decode
correctly. Hence, the code is not c-error-correcting.

Theorem 1 A code is c-error correcting if and only if
d0

min,w ≥ 2c+ 1.

Proof We will prove the theorem by showing the
equivalence of the following statements:

1) The existence of MWD′w(c), i.e., for any x1 6= x2 ∈
C, Φw(x1, c) ∩ Φw(x2, c) = ∅.

2) For any x1 6= x2 ∈ C, any c1 and c2 such that
Φw(x1, c1) ∩ Φw(x2, c2) 6= ∅, satisfy either c1 > c
or c2 > c.

3) For any x1 6= x2 ∈ C, any c1 and c2 such that |c1 −
c2| ≤ 1 and Φw(x1, c1) ∩ Φw(x2, c2) 6= ∅, satisfy
max{c1, c2} > c.

4) For any x1 6= x2 ∈ C, any c′ such that Φw(x1, c
′) ∩

Φw(x2, c
′) 6= ∅, satisfies c′ > c.

5) d0
min,w ≥ 2c+ 1.

Specifically, this will be done by showing that 1) ⇔ 2)
⇒ 3)⇒ 4)⇒ 2) and 3)⇔ 5).

We show 1) ⇔ 2) by contradiction. If 2) is not true,
there exist x1 6= x2 ∈ C, c1 ≤ c and c2 ≤ c such that
Φw(x1, c1) ∩ Φw(x2, c2) 6= ∅, i.e., 1) is false. This shows
that 1) ⇒ 2). The converse can be proved by similar
contradiction.

3) is a special case of 2) with the additional constraint
|c1 − c2| ≤ 1 and 4) is a special case of 3) with the
constraint c1 = c2. We prove 4) ⇒ 2) by contradiction.
Assume 2) does not hold, i.e., there exist c1 ≤ c
and c2 ≤ c such that Φw(x1, c1) ∩ Φw(x2, c2) 6= ∅. Then
we have c′ = max{c1, c2} ≤ c such that Φw(x1, c

′) ∩
Φw(x2, c

′) 6= ∅, i.e., 4) does not hold.
Finally, 3) ⇔ 5) simply follows from the definition of

d0
min,w.
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Theorem 1 says that d0
min,w can fully characterize the

error correction capability of C. In the special setting
of classical error correction, d0

min,w corresponds to the
minimum distance of a classical error-correcting block
code, which characterizes not only the error correction
capability but also the error detection and erasure
correction capabilities of the code. However, the situation
is more complicated in the general setting.

2.2. Error Detection Capability

Within the discussion of this paper, we assume that there
exists z0 such that w(z0) = 0. For general cases, we
can replace w by the weight measure w′(z) = w(z)−
minz′ w(z′) without changing the problem. A justification
is given in [18].

For two vectors x1, x2 ∈ C, define another distance-like
measure

D1
w(x1,x2) = min{c : Φw(x1, 0) ∩ Φw(x2, c) 6= ∅}.

(6)
Again,D1

w(x1,x2) is well defined with the convention that
the minimum of the empty set is∞.

We note that D1
w is in general not symmetric. Even

though we could have defined an alternative symmetric
form for D1

w, it is not necessary for D1
w to possess this

property for the purpose of our discussion. With respect to
D1
w, define minimum distance of the code C as

d1
min,w = min{D1

w(x1,x2) : x1 6= x2 ∈ C}. (7)

Definition 2 A code is c-error-detecting if MWD′w(0)
exists and detects all error vector z with 0 < w(z) ≤ c.

Theorem 2 A code is c-error detecting if and only if
d1

min,w ≥ c+ 1.

Proof The theorem can be proved by showing the
equivalence of the following statements:

1) A code is c-error detecting.
2) For any x1 6= x2 ∈ C, F (x2, 0) /∈ Φw(x1, c) .
3) For any x1 6= x2 ∈ C, any c′ such that F (x2, 0) ∈

Φw(x1, c
′), we have c′ > c.

4) d1
min,w ≥ c+ 1.

It is straightforward from the definitions that 1)⇔ 2)⇔
3)⇔ 4).

Now we have two different minimum distances for
error correction and error detection, namely d0

min,w and

d1
min,w, respectively. Subsection 3.2 gives an example of

a nonlinear network code with d0
min,w = 3 and d1

min,w =
2 > 1

2d
0
min,w, where w is the Hamming weight. This

example shows that the minimum distances defined here
are not exactly the same as that in classical coding theory,
which is defined as the minimum of a distance between two
distinct codewords in the code. Nevertheless, we will show
in Subsection 2.6 and Section 4 that d0

min,w and d1
min,w

coincide for some cases.

2.3. A Unified Framework For Minimum Distances

We now develop a framework that captures the notions of
the minimum distances d0

min,w and d1
min,w as special cases.

Define the set

Ψw(x1,x2) = {(c1, c2) ∈ (Z∗)2 :
Φw(x1, c1) ∩ Φw(x2, c2) 6= ∅}, (8)

for x1, x2 ∈ C.

Lemma 2 For c′1 ≥ c1 and c′2 ≥ c2, if (c1, c2) ∈
Ψw(x1,x2), then (c′1, c

′
2) ∈ Ψw(x1,x2).

Proof By the property that Φw(x, c) ⊂ Φw(x, c′) for
c ≤ c′, under the condition of the lemma, Φw(x1, c

′
1) ∩

Φw(x2, c
′
2) ⊃ Φw(x1, c1) ∩ Φw(x2, c2) 6= ∅.

In terms of the set Ψw(x1,x2), we can rewrite the
definitions of D0

w and D1
w as:

D0
w(x1,x2) = min

(c1,c2)∈Ψw(x1,x2):|c1−c2|≤1
(c1 + c2), (9)

and

D1
w(x1,x2) = min

(c1,c2)∈Ψw(x1,x2):c1=0
(c1 + c2). (10)

Define
Ψw = ∪x1 6=x2∈CΨw(x1,x2). (11)

The set Ψw is symmetric in c1 and c2 because if (c1, c2) ∈
Ψw, then (c2, c1) ∈ Ψw. Thus for c′1 ≥ c1 and c′2 ≥ c2, if
(c1, c2) ∈ Ψw, then (c′1, c

′
2) ∈ Ψw.

In terms of the set Ψw, we can rewrite the definitions of
d0

min,w and d1
min,w as:

d0
min,w = min

(c1,c2)∈Ψw:|c1−c2|≤1
(c1 + c2), (12)

and
d1

min,w = min
(c1,c2)∈Ψw:c1=0

(c1 + c2). (13)
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For a set S ⊂ (Z∗)2, let S̄ be the complementary of S
defined as

S̄ = (Z∗)2 \ S. (14)

Then for c′1 ≤ c1 and c′2 ≤ c2, if (c1, c2) ∈ Ψ̄w, then
(c′1, c

′
2) ∈ Ψ̄w.

For a set S ⊂ (Z∗)2, let ∂(S) be the lower boundary of
S defined as

∂(S) = {(c1, c2) ∈ S : (c1 − 1, c2) or (c1, c2 − 1) ∈ S̄}.
(15)

Lemma 3 The following statements hold:

1) either„‰
D0

w(x1,x2)

2

ı
,

—
D0

w(x1,x2)

2

�«
∈ ∂(Ψw(x1,x2))

or„—
D0

w(x1,x2)

2

�
,

‰
D0

w(x1,x2)

2

ı«
∈ ∂(Ψw(x1,x2));

2) (0, D1
w(x1,x2)) ∈ ∂(Ψw(x1,x2));

3) (bd0
min,w/2c, dd0

min,w/2e) ∈ ∂(Ψw);
4) (0, d1

min,w) ∈ ∂(Ψw).

Proof By the definition of D0
w(x1,x2), either

(D0
w(x1,x2)/2, D0

w(x1,x2)/2) ∈ Ψw(x1,x2)

or

(bD0
w(x1,x2)/2c, dD0

w(x1,x2)/2e) ∈ Ψw(x1,x2),

but both

(dD0
w(x1,x2)/2e − 1, bD0

w(x1,x2)/2c) /∈ Ψw(x1,x2)

and

(bD0
w(x1,x2)/2c, dD0

w(x1,x2)/2e − 1) /∈ Ψw(x1,x2).

Thus 1) holds. Similar reasoning gives 2), 3) and 4).

For each (c1, c2) ∈ ∂(Ψw(x1,x2)), we can define a
distance-like measure for x1 and x2 given by c1 + c2.
Accordingly, for each (c1, c2) ∈ ∂(Ψw), we can define
a minimum distance given by c1 + c2. In general, these
minimum distances defined for different (c1, c2) ∈ ∂(Ψw)
are not equal.

2.4. Joint Error Correction and Detection Capability

For classical block codes, it is well-known that a code
can correct c errors and detect additional c′ errors as
long as dmin ≥ 2c+ c′ + 1. Now we consider such a
characterization for our general transmission system.

Definition 3 A code is joint (c, c′)-error-correcting if
MWD′w(c) exists (cf. Lemma 1) and detects all error
vector z with c < w(z) ≤ c+ c′.

Theorem 3 For a given weight measure w, a code is joint
(c, c′)-error-correcting if and only if (c, c+ c′) ∈ Ψ̄w.

Proof We first prove that (c, c+ c′) ∈ Ψ̄w is sufficient
for the code to be joint (c, c′)-error-correcting. If (c, c+
c′) ∈ Ψ̄w, we have (c, c) ∈ Ψ̄w, which implies d0

min,w >
2c. Thus the code is c-error-correcting by Theorem 1, and
hence MWD′w(c) exists by Lemma 1.

We further need to show that for such a code,
MWD′w(c) can detect correctly all error vectors z
with c < w(z) ≤ c+ c′. Let x ∈ C be transmitted and
suppose an error vector z with c < w(z) ≤ c+ c′ has
occurred. Obviously, the received vector y = F (x, z) /∈
Φw(x, c). Then for any x′ 6= x ∈ C, since (c, c+ c′) ∈
Ψ̄w, Φw(x′, c) ∩ Φw(x, c+ c′) = ∅. Thus, y /∈ Φw(x′, c).
This means that the received vector y is not in any of the
decoding spheres of MWD′w(c), and hence the error vector
z is detected.

We prove that (c, c+ c′) ∈ Ψ̄w is necessary for the code
to be joint (c, c′)-error-correcting. Assume (c, c+ c′) ∈
Ψw. If (c, c) ∈ Ψw, the MWD′w(c) decoder does not exist,
and hence the code is not joint (c, c′)-error-correcting. If
(c, c) /∈ Ψw, the MWD′w(c) decoder exists. Since (c, c+
c′) ∈ Ψw, there exist x1, x2, z1, and z2 with w(z1) ≤ c
and c < w(z2) ≤ c+ c′ such that F (x1, z1) = F (x2, z2).
If y = F (x1, z1) = F (x2, z2) is received, MWD′w(c)
always decodes y to x1 because y ∈ Φw(x1, c). If x2 is
transmitted and z2 has occurred, MWD′w(c) cannot detect
this error vector z2 with c < w(z2) ≤ c+ c′.

The set Ψ̄w fully characterizes the capability of a code
for joint error correction and detection with respect to the
weight measure w. In fact, Theorem 1 and Theorem 2
are special cases of Theorem 3 with c′ = 0 and c = 0,
respectively.

2.5. Equivalent Weight Measures

Definition 4 Two weight measures w1 and w2 on Σ are
equivalent with respect to F , denoted as w1

F∼ w2, if for
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any x ∈ C and any nonnegative integer c,

Φw1(x, c) = Φw2(x,c). (16)

Lemma 4 The relation “F∼” is an equivalence relation.

Proof It is easy to check that 1) w F∼ w; 2) if w1
F∼ w2,

thenw2
F∼ w1; and 3) ifw1

F∼ w2 andw2
F∼ w3, thenw1

F∼
w3.

Forw1 andw2 in the same equivalence class with respect
to F , when there is no ambiguity, we just say that w1 and
w2 are equivalent.

Lemma 5 If two weight measures w1 and w2 are
equivalent, then

Ψw1(x1,x2) = Ψw2(x1,x2) (17)

for any x1, x2 ∈ Fm.

Proof

Ψw1(x1,x2)
= {(c1, c2) : Φw1(x1, c1) ∩ Φw1(x2, c2) 6= ∅}, (18)
= {(c1, c2) : Φw2(x1, c1) ∩ Φw2(x2, c2) 6= ∅}, (19)
= Ψw2(x1,x2). (20)

The following theorem says that a code has the
same error correction/detection capability with respect to
equivalent weight measures.

Theorem 4 If two weight measures w1 and w2 are
equivalent, then

Ψ̄w1 = Ψ̄w2 . (21)

Proof

Ψw1 = ∪x1 6=x2∈CΨw1(x1,x2) (22)
= ∪x1 6=x2∈CΨw2(x1,x2) (23)
= Ψw2 . (24)

Theorem 5 For two equivalent weight measures w1 and
w2, MWDw1 is equivalent to MWDw2 in the sense that
they generate the same output for the same received vector.

Proof Let y be a received vector. Let (x1, z1) be
a minimum weight solution of MWDw1 . Then y ∈
Φw1(x1, w1(z1)) = Φw2(x1, w1(z1)), which means that
there exists z′1 with w2(z′1) ≤ w1(z1) such that (x1, z′1)
is a solution of MWDw2 . We show that (x1, z′1) is
also the minimum weight solution of MWDw2 by
contradiction. Assume (x2, z2) is a minimum weight
solution of MWDw2 and w2(z2) < w2(z′1). Then y ∈
Φw2(x2, w2(z2)) = Φw1(x2, w2(z2)). Since w2(z2) <
w1(z1), y ∈ Φw1(x2, w2(z2)) is a contradiction to that
(x1, z1) is a minimum weight solution of MWDw1 .

For two equivalent weight measures w1 and w2, the
equivalence of MWD′w1

(c) and MWD′w2
(c) comes from

the fact that MWD′w1
(c) and MWD′w2

(c) depend only on
Φw1(x, c) = Φw2(x, c) for all codeword x.

2.6. Linear Channels and the Hamming Weight

Let F be any finite field with q elements, and let m, n
and l be positive integers. In this subsection, we consider
C ⊂ Fm and Σ = Fn. We say a channel is linear if

F (x, z) = xF + zF′ (25)

for all x ∈ C and all z ∈ Σ, where F is an m× l matrix
and F′ is an n× l matrix.

The definition of Φw(x, c) in (2) can be applied for x ∈
Fm \ C, which in general is nonempty for linear channels.
Then we can regard Φw as a mapping from (Fm ×Z∗)
to 2Fl

. In the same way, we can extend all the definitions
related to Φw(x, c), and the discussion from Subsections
2.1 to 2.5 continues to hold for linear channels.

For two subsets V1, V2 ⊂ Fk, their sum is the set defined
by

V1 + V2 = {v1 + v2 : v1 ∈ V1,v2 ∈ V2}. (26)

For v ∈ Fk and V ⊂ Fk, we also write {v}+ V as v + V .
For linear channel,

Φw(x, c) = xF + {zF′ : z ∈ Σ, w(z) ≤ c}, (27)
= xF + Φw(0, c) (28)

The Hamming weight w is a weight measure with w(z)
equal to the non-zero components of z.

Lemma 6 If the channel is linear and the weight measure
w is the Hamming weight, then

∂(Ψw(x1,x2)) = {(c1, c2) ∈ (Z∗)2 :

c1 + c2 = D1
w(x1,x2)}. (29)
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Proof First we show that for any (c1, c2) ∈ Ψw(x1,x2),
we can find c′1 ≤ c1 and c′2 ≤ c2 such that c′1 + c′2 =
D1
w(x1,x2). Let (c1, c2) ∈ Ψw(x1,x2). There exist z1

and z2 with w(z1) = c1 and w(z2) = c2 such that x1F +
z1F′ = x2F + z2F′. Thus, x1F + 0F′ = x2F + (z2 −
z1)F′. Therefore, c1 + c2 = w(z1) + w(z2) ≥ w(z2 −
z1) = w(0) + w(z2 − z1) ≥ D1

w(x1,x2).
Then we need to prove that (c1, c2) ∈ Ψw(x1,x2) if

c1 + c2 ≥ D1
w(x1,x2). Find c′1 ≤ c1 and c′2 ≤ c2 such

that c′1 + c′2 = D1
w(x1,x2). Since there exists z with

w(z) = D1
w(x1,x2) such that x1F = x2F + zF′, we

can find z1 and z2 such that z2 − z1 = z, w(z1) =
c′1, and w(z2) = c′2. Thus, x1F + z1F′ = x2F + z2F′,
which implies (c′1, c

′
2) ∈ Ψw(x1,x2). Hence, by Lemma 2,

(c1, c2) ∈ Ψw(x1,x2).

Corollary 1 If the channel is linear and the weight
measure w is the Hamming weight, then, for any (c1, c2) ∈
∂(Φw), c1 + c2 = d1

min,w.

Thus by Theorem 3, a code for linear channel is (c, c′)-
error-correcting if and only if dmin,w ≥ 2c+ c′ + 1 when
the weight measure w is the Hamming weight.

Lemma 7 If the channel is linear and the weight measure
w is the Hamming weight, then D1

w is a translation-
invariant metric.

Proof Using the definition of D1
w in (6), we have

D1
w(x1,x2) = min{c : x1F ∈ x2F + Φw(0, c)} (30)

= min{c : (x1 − x2)F ∈ Φw(0, c)}. (31)

First, it is clear from (31) thatD1
w is translation invariant,

i.e.,
D1
w(x1 + x,x2 + bx) = D1

w(x1,x2). (32)

Then we show that D1
w satisfies the triangle inequality.

Find z and z′ such that (x1 − x2)Fs,t = zFt,
D1
w(x1,x2) = w(z), (x2 − x3)Fs,t = z′Ft and

D1
w(x2,x3) = w(z′). The existence of such z and z′

follows from (31). Thus (x1 − x3)F = (z + z′)F′.
Hence, from (31),

D1
w(x1,x3) ≤ w(z + z′) (33)

≤ w(z) + w(z′) (34)

= D1
w(x1,x2) +D1

w(x2,x3). (35)

3. NETWORK ERROR CORRECTION

3.1. Formulation of Network Coding

A directed acyclic communication network is represented
by G = (V, E), where V is the set of nodes and E is the
set of edges in the network. We assume an order on the
edge set E which is consistent with the associated partial
order of the directed acyclic network G. An edge from
node a to node b, say edge e, represents a communication
channel from node a to node b. We call node a (node b) the
tail (head) of edge e, denoted by tail(e) (head(e)). Let
In(a) = {e ∈ E : head(e) = a} and Out(a) = {e ∈ E :
tail(e) = a} be the sets of incoming edges and outgoing
edges of node a, respectively. There can be multiple edges
between a pair of nodes, and each edge can transmit one
symbol in a finite field F.

Without loss of generality, we assume In(s) = ∅. Let
ns = |Out(s)|. The source node s encodes the information
to be multicast into a row vector x ∈ Fns , called the
codeword. We will write x = [xe, e ∈ Out(s)]. The set of
all codewords is the codebook, denoted by C. Note that
we do not require C to be a linear space. The source node
s transmits the codeword by mapping its ns components
onto the edges in Out(s).

An error vector z is an |E|-dimensional row vector over
the field F with the ith component representing the error
on the ith edge in E . An error pattern is a subset of E .
An error vector is said to match an error pattern if all the
errors occur on the edges in the error pattern. The set of all
error vectors that match error pattern ρ is denoted by ρ∗.
Let ρz be the error pattern corresponding to the non-zero
components of an error vector z.

Consider the codeword x and the error vector z. If the
input to an edge e is F̄e(x, z) and the error on the edge is
ze, the output of the edge Fe(x, z) is

Fe(x, z) = F̄e(x, z) + ze. (36)

For any set of edges ρ, form two row vectors

Fρ(x, z) = [Fe(x, z), e ∈ ρ], (37)

and
F̄ρ(x, z) = [F̄e(x, z), e ∈ ρ]. (38)

A network code on network G is a codebook C ⊆ Fns

and a family of local encoding functions {β̄e : e ∈ E \
Out(s)}, where β̄e : F|In(tail(e))| → F, such that

F̄e = β̄e(FIn(tail(e))). (39)
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Communication over the network with the code defined
above is in an upstream-to-downstream order consistent
with the partial order of the edges. The family of local
encoding functions induces global transfer functions F̄e
and Fe for each edge e by the iterative functions (36) and
(39) with boundary condition

F̄Out(s)(x, z) = x. (40)

This is the general form of the network error correction
problem [6].

If β̄e is a linear function for all e ∈ E \Out(s), i.e.,

F̄e =
∑
e′∈E

βe′,eFe′ (41)

we say the network code is linear, where βe′,e is called
local encoding kernel. The local encoding kernel βe′,e can
be non-zero only if e′ ∈ In(tail(e)). Define the |E| × |E|
one-step transformation matrix K = [Ki,j ] in network G
as Ki,j = βei,ej

. For an acyclic network, KN = 0 for
some positive integer N . Define the transfer matrix of the
network by F = (I−K)−1 [3].

For a set of edges ρ, define a |ρ| × |E| matrix Aρ =
[Ai,j ] by

Ai,j =
{

1 ej is the ith edge in ρ,
0 otherwise. (42)

By applying the order on E to ρ, the |ρ| nonzero columns
of Aρ form an identity matrix. To simplify notation, we
write AρFAT

ρ′ = Fρ,ρ′ . For input x and error vector z, the
output of the edges in ρ is

Fρ(x, z) = (xAOut(s) + z)FAT
ρ . (43)

Writing Fv(x, z) = FIn(v)(x, z) for a node v, the
received vector for a sink node t is

Ft(x, z) = (xAOut(s) + z)FAT
In(t), (44)

= xFs,t + zFt, (45)

where Fs,t = FOut(s),In(t), and Ft = FAT
In(t). Here Fs,t

and Ft are the transfer matrices for message transmission
and error transmission, respectively, for sink node t.

When there is only one sink node t and both Fs,t
and Ft are the identity matrix, the problem becomes
that of classical error correction. Therefore, classical error
correction is a special case of the linear network error
correction problem.

a
b c

d

s

t
(a)

1

1

2

2

(b)

Figure 1. (a) is an example of non-linear network code with
d1
min,w 6= d0

min,w. In (b), the black points are in Ψ̄w.

3.2. An Example of Nonlinear Network Code

Consider a network coding problem over the network
shown in Fig. 1(a), where s is the source node and t is the
sink node. The network code is over the finite field F3 =
{0, 1, 2}. Define the codebook C = {x0 = (0, 0, 0),x1 =
(1, 1, 1)}. The network code is specified as follows:
F̄(a,t) = F(s,a), F̄(a,b) = F(s,a), F̄(c,t) = F(s,c), F̄(c,d) =
F(s,c) and the local encoding functions β̄(b,d) and β̄(d,t)

are given in Tables 1 and 2, respectively. For this network,
Σ = F9

3. The weight measure w on Σ is the Hamming
weight.

For this problem, first we can calculate that

Φw(x0, 1) = {(0, 0, 0), (1, 0, 0)(0, 1, 0),
(0, 0, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2)}, (46)

and

Φw(x1, 1) = {(0, 1, 1), (1, 0, 1), (1, 1, 0),
(1, 1, 1), (1, 0, 2), (2, 0, 1),

(2, 1, 1), (1, 2, 1), (1, 1, 2)}. (47)

Thus
Φw(x0, 1) ∩ Φw(x1, 1) = ∅, (48)

which gives Φw(x0, 0) ∩ Φw(x1, 1) = ∅ and Φw(x0, 1) ∩
Φw(x1, 0) = ∅.

Let z be an error vector such that z(s,a) = z(s,c) = 2
and all other components are equal to 0. Then, Ft(x1, z) =
(0, 0, 0) = Ft(x0,0). Thus

Φw(x0, 0) ∩ Φw(x1, 2) 6= ∅. (49)

Fig. 1(b) shows ∂(Ψw). We see that for this code, d1
min,w =

2 and d0
min,w = 3, i.e., the code C can correct and detect

one error in this network. This is rather surprising that the
number of correctable errors can be more than half of the
number of detectable errors.
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Table 1. Local encoding function of node b

F(s,b) 0 0 0 1 1 1 2 2 2

F(a,b) 0 1 2 0 1 2 0 1 2

F̄(b,d) 0 0 0 2 1 0 0 0 0

Table 2. Local encoding function of node c

F(b,d) 0 0 0 1 1 1 2 2 2

F(c,d) 0 1 2 0 1 2 0 1 2

F̄(d,t) 0 0 0 1 1 0 0 1 0

3.3. Weight Measures for General Network Codes

In this section, we consider the network coding problem
with the codebook C ⊂ Fns and the set of error vectors
Σ = F|E|. For any t ∈ T , the transfer function Ft induced
by local encoding functions gives an instance of the general
transmission system studied in Section 2.

To apply the general results in Section 2 to network error
correction, we need to specify the weight measure on Σ.
One natural such weight measure is the Hamming weight,
the number of non-zero components in an error vector z,
denoted by wH(z). With respect to the Hamming weight
wH , for a sink node t, define the set

ΦtwH
(x, c) = {Ft(x, z) : wH(z) ≤ c} (50)

in view of (2).
An error pattern, which is a set of edges, can be

measured using the concept of minimum cut (min-cut)
which has been used in [12, 15]. We say a set of edges ρ is
a cut-set separating node u and node v if any directed path
from u to v crosses ρ. Since each edge has unit capacity, the
capacity of a cut-set is just its cardinality. Further, define a
cut-set and the associated cut-set capacity between a set of
edges ρ and a node v by introducing an auxiliary node uρ
and the auxiliary edges (uρ, head(e)) for all e ∈ ρ. A cut-
set between ρ and v is then a cut-set between uρ and v. It
follows that the min-cut between source node s (a set of
edges ρ) and a sink node t is the minimum cut-set capacity
among all cut sets that separates s (ρ) and t, denoted by
mincutt(s) (mincutt(ρ)).

Recall that ρz is the error pattern corresponding to the
non-zero components of an error vector z. In terms of
the min-cut of an error pattern, we define another weight
measure with respect to sink node t as

wtc(z) = mincutt(ρz). (51)

Lemma 8 For any error vector z and sink node t,

wH(z) ≥ wtc(z). (52)

Proof The lemma holds since wtc(z) = mincutt(ρz) ≤
|ρz| = wH(z).

Recall that ρ∗ is the set of all error vectors that match an
error pattern ρ.

Lemma 9 If ρ′ is a cut-set between ρ and t with |ρ′| =
mincutt(ρ), then for any x ∈ Fns and z ∈ ρ∗, there exists
z′ ∈ (ρ′)∗ such that Ft(x, z) = Ft(x, z′).

Proof
Find a cut-set ρ′′ separating s and t as follows. At the

beginning, let ρ′′ = Out(s) ∪ ρ′. Then, for an edge e in
ρ′′ \ ρ′, if ρ′′ \ {e} is a cut-set separating s and t, we
remove e from ρ′′ and reassign ρ′′ to be the remaining
set. Repeat this procedure until no edge in ρ′′ \ ρ′ can be
removed.

It is easy to check that (ρ′′ \ ρ′) ∩ ρ = ∅, so that the
outputs of the edges in ρ′′ \ ρ′ are not affected by the errors
on ρ. Thus for any z ∈ ρ∗, we have

Fρ′′\ρ′(x, z) = Fρ′′\ρ′(x,0). (53)

Find an error vector z′ ∈ (ρ′)∗ such that Fρ′(x, z) =
Fρ′(x, z′) as follows. Apply the order on E to ρ′ and label
the edges in ρ′ as e′1, e

′
2, · · · , e′|ρ′|. Let error vector z0 =

0. From i = 1 to |ρ′|, let z′i = Fe′i(x, z)− Fe′i(x, z
i−1),

and zi be zi−1 except the value of the component
corresponding to e′i is z′i. At the end of the process, let
z′ = z|ρ

′|.
Now we verify that z′ as constructed meets our

requirement. Since for zi−1, the error on e′i is zero,
Fe′i(x, z

i−1) = F̄e′i(x, z
i−1). Together with the fact that

F̄e′i(x, z
i−1) = F̄e′i(x, z

i), we obtain

Fe′i(x, z) = Fe′i(x, z
i−1) + z′i (54)

= F̄e′i(x, z
i) + z′i (55)

= Fe′i(x, z
i). (56)

Further, the error on e′j for j > i does not affect the output
of e′i, i.e., Fe′i(x, z

i) = Fe′i(x, z
|ρ′|), thus

Fe′i(x, z) = Fe′i(x, z
|ρ′|), (57)

for all 1 ≤ i ≤ |ρ′|.

Copyright c© 0000 AEIT
Prepared using ettauth.cls

Euro. Trans. Telecomms. 00: 1–14 (0000)
DOI: 10.1002/ett



10 S. YANG, R. W. YEUNG, Z. ZHANG

Since the output of the edges in ρ′′ \ ρ′ are not affected
by the errors on ρ′, we have

Fρ′′\ρ′(x, z′) = Fρ′′\ρ′(x,0). (58)

Then,

Fρ′′(x, z) =
[
Fρ′′\ρ′(x, z) Fρ′(x, z)

]
(59)

=
[
Fρ′′\ρ′(x,0) Fρ′(x, z)

]
(60)

=
[
Fρ′′\ρ′(x, z′) Fρ′(x, z′)

]
(61)

= Fρ′′(x, z′). (62)

Since ρ′′ is a cut-set separating Out(s) ∪ ρ and t, Ft
is a function on the outputs of the edges in ρ′′. Thus,
Ft(x, z) = Ft(x, z′).

For a sink t, with respect to wtc, define the set

Φtwt
c
(x, c) = {Ft(x, z) : wtc(z) ≤ c} (63)

in view of (2).

Lemma 10 For any network code,

wH
Ft∼ wtc, (64)

where t ∈ T .

Proof First, for any y ∈ ΦtwH
(c), find x ∈ Fns and

any z ∈ Σ with wH(z) ≤ c such that y = Ft(x, z). Since
wtc(z) ≤ wH(z) = c, we have y = Ft(x, z) ∈ Φwt

c
(c).

Thus, ΦtwH
(c) ⊂ Φtwt

c
(c).

On the other hand, for any y ∈ Φtwt
c
(c), find x ∈ Fns

and any z ∈ Σ with wtc(z) ≤ c such that y = Ft(x, z). By
Lemma 9, if ρ′ is a cut-set between ρz and t with |ρ′| =
mincutt(ρz), there exists z′ ∈ ρ′ such that Ft(x, z′′) =
Ft(x, z) = y. Further, wH(z′) ≤ |ρ′| = mincutt(ρz) =
wtc(z) ≤ c. Therefore, y ∈ ΦwH

(c). Hence, Φtwt
c
(c) ⊂

ΦtwH
(c).

4. WEIGHT MEASURES FOR LINEAR NETWORK
CODES

4.1. Rank of Error Vectors

For linear network codes, the rank of an error pattern ρ
with respect to a sink node t [14] is

rankt(ρ) = rank(Fρ,In(t)). (65)

In terms of the rank of an error pattern, we define a weight
measure for the error vectors as

wtr(z) = rankt(ρz), (66)

for z ∈ Σ.
For an error pattern ρ and an error vector z, let zρ ∈ F|ρ|

be the vector formed by the components of z corresponding
to the edges in ρ. If z ∈ ρ∗, zρ contains all the components
in z that can be non-zero. Note that Fρ,In(t) is a submatrix
of Ft given by the rows corresponding to the edges in ρ.
Thus, for z ∈ ρ∗,

zFt = zρFρ,In(t). (67)

Lemma 11 Let ρ′ be any cut-set between an error pattern
ρ and a sink node t. Then, rankt(ρ) ≤ rankt(ρ′).

Proof By Lemma 9, for x = 0 and any z ∈ ρ∗, there
exists z′ ∈ (ρ′)∗ such that zFt = z′Ft (cf. (45)), which
together with (67) implies

zρFρ,In(t) = z′ρ′Fρ′,In(t). (68)

Since (68) holds for all z ∈ ρ∗, the subspace spanned
by the row vectors of Fρ,In(t) is a subset of the
subspace spanned by the row vectors of Fρ′,In(t). Thus,
rank(Fρ,In(t)) ≤ rank(Fρ′,In(t)).

Lemma 12 For any error vector z and sink node t,

wtr(z) ≤ wtc(z). (69)

Proof Let ρ′ be any cut-set between ρz and sink node
t. Then, wtr(z) = rankt(ρz) ≤ rankt(ρ′) ≤ |ρ′|. Minimize
over all ρ′, we obtain wtr(z) ≤ mincutt(ρz) = wtc(z).

Lemma 13 If the network code is linear,

1) for any error pattern ρ, there exists a subset ρ′ ⊂ ρ
such that |ρ′| = rankt(ρ); and

2) for any z ∈ ρ∗, there exists z′ ∈ (ρ′)∗ such that
zFt = z′Ft.

Proof Find a maximal linearly independent subset of
the row vectors of Fρ,In(t). Let ρ′ be the corresponding
edges in that linearly independent subset. Thus ρ′ ⊂ ρ and
|ρ′| = rankt(ρ).

The second part of the lemma follows from the fact that
the row vectors of Fρ,In(t) and Fρ′,In(t) span the same
vector space.
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For a sink t, with respect to wtr, define the set

Φtwt
r
(x, c) = {Ft(x, z) : wtr(z) ≤ c} (70)

in view of (2).

Lemma 14 For any linear network code,

wtc
Ft∼ wtr, (71)

where t ∈ T .

Proof
First, for any y ∈ Φtwt

c
(c), find x ∈ Fns and any

z ∈ Σ with wtc(z) ≤ c such that y = Ft(x, z). Since
wtr(z) ≤ wtc(z) = c, we have y = Ft(x, z) ∈ Φwt

c
(c).

Thus, Φtwt
c
(c) ⊂ Φtwt

r
(c).

On the other hand, for any y ∈ Φtwt
r
(c), find x ∈

Fns and any z ∈ Σ with wtr(z) ≤ c such that y =
Ft(x, z). By Lemma 13, there exists ρ′ ⊂ ρz such
that |ρ′| = rankt(ρz) and z′ ∈ (ρ′)∗ such that zFt =
z′Ft. So y = Ft(x, z) = xFs,t + zFt = xFs,t + z′Ft =
Ft(x, z′). Further, wtc(z

′) ≤ |ρ′| = rankt(ρz) = wtr(z) ≤
c. Therefore, y ∈ Φwt

c
(c). Hence, Φtwt

c
(c) ⊂ Φtwt

r
(c).

4.2. Network Hamming Weight

Network Hamming weight is a generalization of the
Hamming weight for network codes [16]. For any t ∈
T , let Υt(y) = {z : zFt = y} for a received vector y ∈
Im(Ft), the image space of Ft. For any sink t, the network
Hamming weight of an error vector z is defined by

wtn(z) = min
z′∈Υt(zFt)

wH(z′), (72)

In other words, wtn(z) is the minimum Hamming weight of
any error vector that incurs the same input at sink node t
as the error vector z when the transmitted codeword is 0.
For any vector z ∈ Υt(0), wtn(z) = minz∈Υt(0) wH(z) =
wH(0) = 0. Evidently, if error vectors z1 and z2 satisfy
z1 − z2 ∈ Υt(0), then wtn(z1) = wtn(z2). When Ft =
Fs,t = I, the definition reduces to the usual Hamming
weight.

Lemma 15 For any error vector z and sink node t,

wtn(z) ≤ wtr(z). (73)

Proof Find an error vector z′ ∈ (ρ′)∗ as in Lemma 13
where ρ′ ⊂ ρz, such that wtr(z) = |ρ′| ≥ wH(z′) and
zFt = z′Ft. Thus, wtn(z) ≤ wH(z′) ≤ wtr(z).

For a sink t, with respect to wtn, define the set

Φtwt
n
(x, c) = {Ft(x, z) : wtn(z) ≤ c} (74)

in view of (2).

Lemma 16 For any linear network code,

wH
Ft∼ wtn, (75)

where t ∈ T .

Proof First, for any y ∈ ΦtwH
(c), find x ∈ Fns and

any z ∈ Σ with wH(z) ≤ c such that y = Ft(x, z). Since
wtn(z) ≤ wH(z) = c, we have y = Ft(x, z) ∈ Φwt

n
(c).

Thus, ΦtwH
(c) ⊂ Φtwt

n
(c).

On the other hand, for any y ∈ Φtwt
n
(c), find x ∈ Fns

and any z ∈ Σ with wtn(z) ≤ c such that y = Ft(x, z).
By the definition of wtn, there exist z′ with wH(z′) =
wtn(z) ≤ c such that z′Ft = zFt. So y = Ft(x, z) =
xFs,t + zFt = xFs,t + z′Ft = Ft(x, z′). Therefore, y ∈
ΦwH

(c). Hence, Φtwt
n
(c) ⊂ ΦtwH

(c).

4.3. Minimum Distance of Linear Network Codes

The results we have obtained regarding linear network
codes can be summarized by the following theorem.

Theorem 6 For any linear network code,

1)
wH(z) ≥ wtc(z) ≥ wtr(z) ≥ wtn(z), (76)

and
2)

wH
Ft∼ wtc

Ft∼ wtr
Ft∼ wtn, (77)

where t ∈ T .

Proof The first part of the theorem follows from
Lemmas 8, 12 and 15. The second part follows from
Lemmas 10, 14 and 16.
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4.4. Network Erasure Correction

In classical algebraic coding, erasure correction is error
correction with the potential positions of the errors in the
codewords known by the decoder. Here, we extend this
theme to linear network coding by assuming that the set
of channels in each of which an error may have occurred
during the transmission is known by the sink nodes, and we
refer this set of channels as the erasure pattern.

With respect to any weight measure w for the error
vectors, define a weight measure for the erasure patterns
as

w(ρ) = max
z∈ρ∗

w(z). (78)

Thus, for linear network codes, each of the four weight
measures on the error vectors we have discussed gives
a weight measure on the erasure patterns defined by
replacing w in (78) accordingly, namely

wH(ρ) = |ρ|, (79)

wtc(ρ) = mincutt(ρ), (80)

wtr(ρ) = rankt(ρ), (81)

and
wtn(ρ) = max

z∈ρ∗
wtn(z). (82)

Lemma 17 For any error vector z and any sink node t,

wH(ρ) ≥ wtc(ρ) ≥ wtr(ρ) ≥ wtn(ρ). (83)

Proof This is a direct result of the definitions and
Theorem 6.

A code can correct an erasure pattern ρ if there exists a
decoding algorithm such that no matter which error vector
matching ρ occurred, the algorithm can decode correctly.

Theorem 7 At a sink node t, the following properties of a
linear network code with codebook C are equivalent:

1) The code can correct all erasure pattern ρ with
wH(ρ) ≤ c;

2) The code can correct all erasure pattern ρ with
wtc(ρ) ≤ c;

3) The code can correct all erasure pattern ρ with
wtr(ρ) ≤ c;

4) The code can correct all erasure pattern ρ with
wtn(ρ) ≤ c;

5) dmin,t ≥ c+ 1.

Proof Fix a sink node t. To prove 5)⇒4), assume
dmin,t ≥ c+ 1. Let ρ be an erasure pattern with wtn(ρ) ≤
c. To decode a received vector y, we try to find a codeword
x ∈ C and an error vector z ∈ ρ∗ that satisfy the equation

y = xFs,t + zFρ,t. (84)

We call such a (x, z) pair a solution. If there exists only
one x ∈ C such that this equation is solvable, we claim
that x is the decoded codeword. If this equation has two
solutions (x1, z1) and (x2, z2), where x1 6= x2, we have
x1Fs,t = x2Fs,t + (z2 − z1)Ft. Thus, dmin,t ≤ wtn(z2 −
z1) ≤ wtn(ρ) ≤ c. This a contradiction to dmin,t ≥ c+ 1.
Hence, the code can correct all erasure pattern ρ with
wtn(ρ) ≤ c, i.e., 4) holds.

Since wH(ρ) ≥ wtc(ρ) ≥ wtr(ρ) ≥ wtn(ρ), it is immedi-
ate that 4)⇒3)⇒2)⇒1).

We prove 1)⇒5) by contradiction. Assume a code
has dmin,t ≤ c. We will find an erasure pattern ρ with
wH(ρ) ≤ c that cannot be corrected. Since dmin,t ≤ c,
there exists an error vector z with wH(z) ≤ c such that
x1Fs,t = x2Fs,t + zFt, where x1 6= x2 ∈ C. Then we
can construct z1, z2 ∈ ρz such that z2 − z1 = z. If y =
x1Fs,u + z1Ft = x2Fs,u + z2Ft is received, the equation
(84) has two solutions. Thus we see that sink node t
cannot correct the erasure pattern ρz with wH(ρz) ≤ c.
This completes the proof.

5. CONCLUDING REMARKS

This paper is a thorough study of error correction and
error detection in a general transmission system with
network coding as a special case. Our characterization
of the capability of a code for joint error correction and
detection is in terms of the weight measure on the error
vectors. Our work reveals the surprising fact that for a
nonlinear network code, the number of correctable errors
and the number of detectable errors are not related in a
simple manner. In particular, for a nonlinear network code,
the number of correctable errors can be more than half
of the number of detectable errors, as illustrated by an
example.

Together with the works by Yeung, Cai, and Zhang
[7, 8, 14], we have shown that classical algebraic coding
theory can naturally be generalized to networks. Therefore,
any question that may be raised in classical algebraic
coding can be raised in the more general setting of network
coding.
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