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Abstract

The Shannon information measures are well known to be continuous functions of the probability

distribution for a given finite alphabet. In this paper, however, we show that these measures are

discontinuous with respect to almost all commonly used “distance” measures when the alphabet is

countably infinite. Such “distance” measures include the Kullback-Leibler divergence and the variational

distance. Specifically, we show that all the Shannon information measures are in fact discontinuous at

all probability distributions. The proofs are based on a probability distribution which can be realized

by a discrete-time Markov chain with countably infinite number of states. Our findings reveal that the

limiting probability distribution may not fully characterize the asymptotic behavior of a Markov chain.

These results explain why certain existing information theoretical tools are restricted to finite alphabets,

and provide hints on how these tools can be extended to countably infinite alphabet.

I. INTRODUCTION

The study of infinity is, as Georg Cantor realized, a form of soul’s quest for God [1] and it has

provided us many intellectual property including Gödel’s Incompleteness Theorem [2]. In this

paper, we will discuss an interesting concept brought by infinity and the concept can be illustrated

through this statement: We can be more and more sure that a particular event will happen as

time goes, but at the same time, the uncertainty of the whole picture keeps on increasing. If one

finds the above statement counter-intuitive, he/she may have the preconception that entropy is
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continuous. But we will show that not only entropy but all the Shannon information measures

are indeed discontinuous so that the above statement is possible. One implication in information

theory, as we will see, is that we can now easily explain why certain theories or results are

restricted to finite alphabets. Benefited from this observation, we can readily determine exactly

what assumptions are necessary when we generalize these theories to countably infinite alphabets.

In particular, we have already generalized the strong typicality of i.i.d. sequences and Fano’s

inequality to countably infinite alphabets in [3] and [4], respectively. Before getting into the

details, we first review some basic facts about the continuity of entropy.

The Shannon information measures are functions mapping a probability distribution to a real

value. If the input probability distribution is restricted to a given finite alphabet, then it is

well-known that the Shannon information measures are continuous functions. Shannon, in fact,

assumed the entropy function H(p1, p2, ..., pn) to be continuous in pi when he introduced the

definition of entropy in his seminal work [5]. Together with two other assumptions on entropy,

he showed that the entropy function must take the form

H(P) = −
n∑

i=1

pi log pi (1)

for a probability distribution P = {p1, p2, . . . , pn} with the base of the logarithm unspecified.

The derivation of (1) is discussed in an exercise in [6, P.43] and the continuity of (1) has been

discussed in [7]. Although the above definition is for probability distributions with finite alphabet,

(1) is usually extended to

H(P) = −
∞∑
i=1

pi log pi, (2)

where H is applied to probability distributions with countably infinite alphabet. Since there is an

ambiguity in (1) and (2) when pi = 0 for some i, the convention (e.g., [6]) 0 log 0 = 0 is usually

adopted due to the fact that x log x → 0 as x → 0. McEliece [8, Problem 1.1] further shows that

H(X) being a continuous function for probability distributions with countably infinite alphabet

is a necessary assumption for the convention 0 log 0 = 0. In this paper, however, we will adopt

the definition [9]

H(P) = −
∑
i∈S

pi log pi,
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where S is the support of P . This definition avoids the ambiguity when pi = 0 for some i

and it is essentially the same as (1) and (2) with the convention 0 log 0 = 0. Note that all the

Shannon information measures can be expressed as linear combinations of entropy. Therefore,

the continuity of the Shannon information measures immediately follows from the continuity of

entropy.

However when the alphabet is countably infinite, it is not clear whether the Shannon

information measures are continuous or not. The situation can be even more complicated.

Consider random variables X and Y where X takes value from a finite alphabet while Y takes

value from a countably infinite alphabet. Then it is also not clear whether the mutual information

I(X; Y ) is continuous or not. These would be trivial problems if entropy is always continuous.

Unfortunately, there are certain results regarding the discontinuity of entropy on countably infinite

alphabet. Consider a sequence of probability distributions Pn and a fixed probability distribution

Q. We want to know under what conditions

H(Pn) → H(Q). (3)

Suppose the Kullback-Leibler divergence [10] D(Pn||Q) is used. If D(Pn||Q) → 0, then

H(Pn) → H(Q) if Q is power dominated but H(Pn) can tend to a value strictly greater

than H(Q) if Q is hyperbolic [11]. However, it is not clear whether entropy is continuous if

D(Q||Pn) instead is used to define convergence. Although entropy is discontinuous, note that

it is lower-semi continuous [12], i.e., lim infn→∞ H(Pn) ≥ H(Q) if Pn pointwise converges to

Q.

The solutions for the above puzzles are organized in this paper as follows. In Section II, we

will discuss some of the many well-known information divergence measures including the χ2-

divergence which will be used to define the continuity of a function of a probability distribution.

If a function is discontinuous with respect to convergence in χ2(Q||Pn), the function is also

discontinuous with respect to convergence in most other common divergence measures, including

the variational distance and the Kullback-Leibler divergence D(Q||Pn). In Section III, we will

give a sequence of probability distributions which converges to the deterministic distribution

{1, 0, 0, ...}, while the entropy of the sequence may converge to any real number or tend to

infinity. Then the result will be extended beyond the deterministic distribution to all probability

distributions with finite entropy and countably infinite alphabet. After that, mutual information
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will be shown to be discontinuous in Section IV by using two different approaches. Then all the

Shannon information measures will be shown to be discontinuous at all probability distributions

with countably infinite alphabet. In Section V, we will examine some constraints on the input

distributions. For example, we will consider the set of joint distributions for random variables

X and Y where X takes values in a finite alphabet but Y takes values in a countably infinity

alphabet. Here, we will show that mutual information remains continuous, which can be viewed

as an extension of the continuity of the Shannon information measures for finite alphabets. In

Section VI, we will see that the discontinuity of entropy can provide satisfactory explanations

to why certain theories or results, like strong typicality and Fano’s inequality (see e.g., [6][9]),

are restricted to finite alphabets. More importantly, this observation leads to some hints on how

we can generalize these theoretical tools. In Section VII, we will show that the probability

distribution which is used extensively in this paper to show the discontinuity of the Shannon

information measures can be realized by a discrete-time Markov chain with a countably infinite

number of states. This implies that the entropy of a Markov chain with infinite states may not

tend to the entropy of its limiting probability distribution. As a result, the limiting probability

distribution of a Markov chain may not fully characterize its asymptotic behavior. To conclude

the paper, we give a mathematical proof of the statement in italics in the beginning paragraph

of this introductory section.

II. DEFINITIONS

All the logarithms denoted by log in this paper are in the base 2. Consider probability

distributions P = {p1, p2, p3, . . .} and Q = {q1, q2, q3, . . .} with countably infinite alphabet.

Let SP and SQ be the support of P and Q, respectively. The distance between P and Q can be

measured by various divergence measures:

χ2-Divergence

χ2(P||Q) =
∑
i∈SP

p2
i

qi

− 1,

where we adopt the convention χ2(P||Q) = ∞ if qi = 0 but pi > 0 for some i. Here, χ2-

divergence was due to Pearson [13] and it can be reexpressed as

χ2(P||Q) =
∑

i∈SP∪SQ

(pi − qi)
2

qi

. (4)
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Kullback-Leibler Divergence

D(P||Q) =
∑
i∈SP

pilog
pi

qi

,

where we adopt the convention D(P||Q) = ∞ if q(x) = 0 but p(x) > 0 for some x.

Variational Distance

V (P ,Q) =
∞∑
i=1

|pi − qi|,

which is also known as the L1-Norm. Note that

χ2(P||Q) ≥ D(P||Q) ≥ 1

2 ln 2
V (P ,Q), (5)

where the first inequality can be verified by using ln x ≤ x−1 and the second inequality follows

from Pinsker’s inequality [9].

In order to define the continuity of a function, a metric, like variational distance, should be

used to define the convergence of a sequence of probability distributions. However, we will show

that the χ2-divergence alone can be used to obtain very general results.

Definition 1: Let A be a subset of all probability distributions and let Q ∈ A. Then a function

f : A → R is continuous at Q if, given any ε > 0, there exists δ > 0 such that if P is any

distribution in A satisfying χ2(Q||P) < δ, then |f(P)− f(Q)| < ε.

If f fails to be continuous at Q, then we say that f is discontinuous at Q. The following

definition, which is an alternative form of Definition 1, will be used to verify the discontinuity

of a function.

Definition 2: Let A be a subset of all probability distributions and let Q ∈ A. Then a function

f : A → R is discontinuous at Q if there exists a sequence Pn ∈ A such that

lim
n→∞

χ2(Q||Pn) = 0,

but f(Pn) does not converge to f(Q), i.e.,

lim
n→∞

f(Pn) 6= f(Q).

Two characteristics of χ2-convergence are noteworthy: a) Due to (5), if Pn converges to Q

with respect to the χ2-divergence, then Pn also converges to Q with respect to the Kullback-

Leibler divergence and variational distance. Therefore, if a function is discontinuous with respect

to convergence in the χ2-divergence, then it is also discontinuous with respect to convergence
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in the Kullback-Leibler divergence or variational distance. Furthermore, the function is also

discontinuous with respect to convergence in many other divergence measures as discussed in

[14]. b) Following (5), χ2(Q||Pn) → 0 implies D(Q||Pn) → 0 instead of D(Pn||Q) → 0. Our

results are, therefore, different from the results obtained in [11].

III. THE DISCONTINUITY OF ENTROPY

We first consider a probability distribution P = {p1, p2, . . . , pL} with L probability masses.

For 0 < α < 1, let Q = {αp1, αp2, . . . , αpL, 1−α
M

, . . . , 1−α
M
} be a probability distribution with

L + M probability masses. Then

χ2(P||Q) =
L∑

i=1

p2
i

αpi

− 1 =
1

α
− 1,

regardless of the value of M , and χ2(P||Q) → 0 as α → 1. On the other hand, for any fixed

α < 1,

H(Q) ≥ αH(P) + (1− α) log M,

which tends to infinity as M tends to infinity. The above observation is summarized in the

following proposition and a closer look in this case is given in [15].

Proposition 1: Suppose δ > 0 and ε > 0 are given. For any probability distribution P with

L probability masses, there exists a sufficient large integer M ≥ L and a probability distribution

Q with M probability masses such that χ2(P||Q) < ε but H(Q)−H(P) > δ.

Now, we show that entropy is discontinuous at all probability distributions with countably

infinite alphabet. In the following, let

Dn =

{
1− α

log n
,

α

n log n
,

α

n log n
, ..., 0, 0, ...

}
(6)

for α > 0 and n ≥ 2α. Let ν = {1, 0, 0, . . .} be a deterministic distribution. Note that when

n →∞, χ2(ν||Dn) → 0 and

H(Dn) → α. (7)

Theorem 2: For any probability distribution P0 = {p0, p1, ...} with countably infinite alphabet

such that H(P0) < ∞ and any positive real number c including infinity, there exists a sequence of

probability distributions Pn such that limn→∞ χ2(P0||Pn) = 0 but limn→∞ H(Pn) = H(P0)+c.
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The proof of this theorem is given in Appendix A, where the sequence of probability distributions

Pn is constructed explicitly. Note that we can still have the same conclusion if we restrict Pn

to have a finite number of probability masses for all n.

IV. THE DISCONTINUITY OF THE SHANNON INFORMATION MEASURES

We will first show the discontinuity of mutual information before the discontinuity of all the

Shannon information measures will be discussed. Let P̃XY = {PXY (x, y)} be a joint probability

distribution for random variables X and Y where PXY (x, y) is the probability that X equals x

and Y equals y. The mutual information between X and Y with respect to P̃XY is defined as

IX;Y (P̃XY ) =
∑

xy:PXY (x,y)>0

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
.

We can assume without loss of generality that PXY (0, 0) > 0, because if PXY (0, 0) = 0, we can

always make PXY (0, 0) > 0 with an appropriate reindexing of the alphabets of X and Y . Let

q = 1− PXY (0, 0) and

P̃XY =


0 q−1PXY (1, 0) · · ·

q−1PXY (0, 1) q−1PXY (1, 1) · · ·
...

... . . .

 .

By letting D̃n be a diagonal matrix with diagonal equals to the distribution

D′
n =

{
1− 1√

log n
,

1

n
√

log n
,

1

n
√

log n
, ..., 0, 0, ...

}
, (8)

that is

D̃n =


1− 1√

log n
0 0 · · ·

0 1
n
√

log n
0 · · ·

0 0 1
n
√

log n
...

... . . .

 .

Let Z be a binary random variable such that Pr{Z = 0} = q and Pr{Z = 1} = 1 − q. Let

Q̃n
XY Z be the joint probability distribution of (X, Y, Z) for n ≥ 2 such that

Q̃n
XY |Z =

 P̃XY if Z = 0

D̃n if Z = 1.
(9)
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Therefore,

Q̃n
XY =


1− q − 1−q√

log n
PXY (1, 0) · · ·

PXY (0, 1) PXY (1, 1) + 1−q
n
√

log n
... . . .

 . (10)

Theorem 3: Let P̃XY be a joint probability distribution for random variables X and Y

with countably infinite alphabet for both of the marginal probability distributions such that

IX;Y (P̃XY ) < ∞. Then there exists a sequence of probability distributions P̃n
XY such that

IX;Y (P̃n
XY ) is finite for n ≥ 2 and limn→∞ χ2(P̃XY ||P̃n

XY ) = 0 but limn→∞ IX;Y (P̃n
XY ) = ∞.

Thus, IX;Y (·) is discontinuous at P̃XY .

Proof: By the same argument used in the proof of Theorem 2, we have

lim
n→0

χ2(P̃XY ||Q̃n
XY ) = 0.

On the other hand, it can readily be shown that

I(X; Y ) + I(X; Z|Y )

= Pr{Z = 0}I(X; Y |Z = 0) + Pr{Z = 1}I(X; Y |Z = 1) + I(X; Z). (11)

For the joint probability distribution Qn
XY Z , the summations in I(X; Z|Y ), I(X; Y |Z = 0) and

I(X; Z) are bounded by

I(X; Z|Y ) ≤ H(Z) ≤ log 2,

I(X; Z) ≥ 0,

Pr{Z = 0}IX;Y (Q̃n
XY |Z=0) = qIX;Y (P̃XY ) ≥ 0,

and

Pr{Z = 1}IX;Y (Q̃n
XY |Z=1) = (1− q)IX;Y (D̃n)

= (1− q)H(D′
n),

where Q̃n
XY |Z=0 = P̃XY and Q̃n

XY |Z=1 = D̃n follow from (9). Thus

IX;Y (Q̃n
XY ) ≥ 0 + (1− q)H(D′

n) + 0− log 2

= (1− q)H(D′
n)− log 2.
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Therefore

lim
n→∞

IX;Y (Q̃n
XY ) ≥ lim

n→∞
(1− q)H(D′

n)− log 2

= ∞.

By Definition 2, the function IX;Y (·) is discontinuous at the distribution P̃XY .

In Appendix B, we will show that IX;Y (Q̃n
XY ) is finite for all integers n.

In the above theorem, we have constructed a sequence of probability distributions whose mutual

information tends to infinity when n → ∞ but the mutual information of each distribution in

the sequence is finite. In the next theorem, we will resort to a different method to show that

mutual information is discontinuous.

Theorem 4: Let P̃XY be a joint probability distribution for random variables X and Y

with countably infinite alphabet for both of the marginal probability distributions such that

IX;Y (P̃XY ) < ∞. Then there exists a sequence of probability distributions P̃n
XY such that

limn→∞ χ2(P̃XY ||P̃n
XY ) = 0 but IX;Y (P̃n

XY ) = ∞ for all integers n. Thus IX;Y (·) is

discontinuous at P̃XY .

Proof: Let Φ̃XY be a joint probability distribution for random variables X and Y with

IX;Y (Φ̃XY ) = ∞. An example is a diagonal matrix with elements equal to the distribution given

in [9, Example 2.46].

Let Sn be a binary random variable such that Pr{Sn = 0} = 1− 1
n

and Pr{Sn = 1} = 1
n

. Let

Q̃n
XY Sn

be the joint probability distribution of (X, Y, Sn) for n ≥ 2 such that

Q̃n
XY |Sn

=

 P̃XY if Sn = 0

Φ̃XY if Sn = 1.
(12)

Therefore,

Q̃n
XY =

(
1− 1

n

)
P̃XY +

1

n
Φ̃XY .
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For any probability distributions P = {p1, p2, . . .} and Q = {q1, q2, . . .} with qi > 0 for all i,

we have

lim
n→∞

χ2

(
P||
(

1− 1

n

)
P +

1

n
Q
)

= lim
n→∞

∞∑
i=1

(
pi − (1− 1

n
)pi − 1

n
qi

)2
(1− 1

n
)pi + 1

n
qi

= lim
n→∞

1

n2

∞∑
i=1

(pi − qi)
2

pi − 1
n
(pi − qi)

= lim
n→∞

1

n2

∑
i:pi>qi

(pi − qi)
2

pi − 1
n
(pi − qi)

+ lim
n→∞

1

n2

∑
i:pi<qi

(pi − qi)
2

pi − 1
n
(pi − qi)

≤ lim
n→∞

1

n2

∑
i:pi>qi

(pi − qi)
2(

1− 1
n

)
(pi − qi)

+ lim
n→∞

1

n2

∑
i:pi<qi

(pi − qi)
2

1
n
(qi − pi)

≤ lim
n→∞

1

n(n− 1)

∑
i:pi>qi

|pi − qi|+ lim
n→∞

1

n

∑
i:pi<qi

|pi − qi|

= 0,

where the first equality follows from (4). Therefore,

lim
n→∞

χ2(P̃XY ||Q̃n
XY ) = 0.

On the other hand, it can be readily shown that

I(X; Y ) + I(X; Sn|Y ) = I(X; Y |Sn) + I(X; Sn).

For the joint probability distribution Q̃n
XY Sn

, the summations in I(X; Sn|Y ) and I(X; Sn) are

bounded by

I(X; Sn|Y ) ≤ H(Sn) ≤ log 2,

and

I(X; Sn) ≥ 0.

Follow from (12),

Pr{Sn = 0}IX;Y (Q̃n
XY |Sn=0) = Pr{Sn = 0}IX;Y (P̃XY )

and

Pr{Sn = 1}IX;Y (Q̃n
XY |Sn=1) = Pr{Sn = 1}IX;Y (φ̃XY ) = ∞.
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Hence for the joint distribution Q̃n
XY Sn

,

I(X; Y |Sn) = ∞.

Thus

IX;Y (Q̃n
XY ) ≥ ∞+ 0− log 2 = ∞, (13)

for all integers n. Therefore,

lim
n→∞

IX;Y (Q̃n
XY ) = ∞ 6= IX;Y (P̃XY ).

By Definition 2, the function IX;Y (·) is discontinuous at the distribution P̃XY .

By letting X = Y in Theorem 4, there exists a sequence of probability distributions Pn such

that limn→∞ χ2(PX ||Pn) = 0 but H(Pn) = ∞ for all integers n (cf. Theorem 2). Furthermore,

the results in Theorem 3 and Theorem 4 can easily be extended to show that the conditional

mutual information is discontinuous.

Theorem 5: For any Shannon information measure H(P) and any probability distribution

P0 with H(P0) < ∞, there exists a sequence of probability distributions Pn such that

limn→∞ χ2(P0||Pn) = 0 but limn→∞H(Pn) = ∞. Thus, H(P) is discontinuous at P0.

Furthermore, if χ2(P0||Pn) is replaced by V (P0,Pn) or D(P0||Pn), the theorem still holds due

to (5).

V. FINITE ALPHABETS FOR SOME OF THE MARGINAL DISTRIBUTIONS

In this section, we consider any Shannon information measure as a mapping from a set

of probability distribution A to the set of extended real numbers. We have already shown

the discontinuity of the Shannon information measures when A is the set of all probability

distributions. In the following, we will consider different restrictions on A. For any joint

distribution P̃XY = {PXY (x, y)}, define

HX|Y (P̃XY ) =
∑
xy∈S

PXY (x, y) log
1

PX|Y (x|y)
,

where S = {xy : PXY (x, y) > 0}.
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Theorem 6: Let A be a set of joint distributions for random variables X and Y with countably

infinite alphabet for X but finite alphabet for Y . Let P̃XY ∈ A with HX|Y (P̃XY ) < ∞. Then there

exists a sequence of probability distributions Q̃n
XY ∈ A such that limn→∞ χ2(P̃XY ||Q̃n

XY ) = 0

but limn→∞ HX|Y (Q̃n
XY ) = HX|Y (P̃XY ) + c for any positive real number c including infinity.

Thus HX|Y (·) defined on A is discontinuous at P̃XY .

Proof: Suppose a joint distribution P̃XY = {PXY (x, y)} is given for a pair of random vari-

ables X and Y . For those y with PY (y) > 0, a sequence of conditional probability distributions

Q̃n
X|Y =y = {Qn

X|Y =y(x)} such that limn→∞ χ2(P̃X|Y =y||Q̃n
X|Y =y) = 0 and limn→∞ H(Q̃n

X|Y =y) =

H(P̃X|Y =y) + c for any positive real number c including infinity can be found according to

Theorem 2. Let Q̃n
XY = {Qn

XY (x, y)} with

Qn
XY (x, y) =

 Qn
X|Y =y(x)PY (y) if PY (y) > 0

0 if PY (y) = 0.

Then

lim
n→∞

χ2(P̃XY ||Q̃n
XY ) = lim

n→∞

∑
xy

(PXY (x, y))2

Qn
X|Y =y(x)PY (y)

− 1

= lim
n→∞

∑
y

PY (y)

(∑
x

(
PX|Y =y(x)

)2
Qn

X|Y =y(x)
− 1

)
= lim

n→∞

∑
y

PY (y)χ2(P̃X|Y =y||Q̃n
X|Y =y)

= 0,

and

lim
n→∞

HX|Y (Q̃n
XY ) = lim

n→∞

∑
y

PY (y)H(Q̃n
X|Y =y)

= HX|Y (P̃XY ) + c.

Therefore, HX|Y (·) defined on A is discontinuous at P̃XY .

So far, we have proved various cases for which the Shannon information measures are

discontinuous. In the following, we will prove a case for which the Shannon information measures

are continuous.

Theorem 7: Let A be a set of joint distributions for random variables X and Y with countably

infinite alphabet for Y but alphabet with size M for X . For any P̃XY ∈ A and Q̃n
XY ∈ A such
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that limn→∞ χ2(P̃XY ||Q̃n
XY ) = 0, we have limn→∞ HX|Y (Q̃n

XY ) = HX|Y (P̃XY ). Thus HX|Y (·)

defined on A is continuous at P̃XY with respect to convergence in the χ2-divergence.

Proof: Without lost of generality, we assume PY (i) ≥ PY (j) for i < j. Suppose an arbitrary

ε > 0 is given. Since HX|Y (P̃) is finite and PY is a probability distribution, we can find the

smallest integer K such that
∞∑

y=K+1

PY (y)H(P̃X|Y =y) <
ε

2
, (14)

and
∞∑

y=K+1

PY (y) <
ε

4 log M
. (15)

Hence, PY (y) > 0 for 1 ≤ y ≤ K. In (14), we follow the convention that the summation is over

all y with PY (y) > 0. For any joint distributions P̃XY = {PXY (x, y)} and Q̃n
XY = {Qn

XY (x, y)}

such that limn→∞ χ2(P̃XY ||Q̃n
XY ) = 0,

lim
n→∞

V (P̃XY , Q̃n
XY ) = 0 (16)

from (5), and hence

lim
n→∞

V (P̃Y , Q̃n
Y ) = 0. (17)

Therefore, there exists an integer N1 such that for n ≥ N1,

Qn
Y (y) > 0 (18)

for 1 ≤ y ≤ k and ∣∣∣∣∣
∞∑

y=K+1

(PY (y)−Qn
Y (y))

∣∣∣∣∣ < ε

4 log M
. (19)

By combining (15) and (19), we have for n ≥ N1,
∞∑

y=K+1

Qn
Y (y) <

ε

2 log M
. (20)

On the other hand, follows from (16) and (18), for 1 ≤ y ≤ K,

lim
n→∞

V (P̃X|Y =y, Q̃n
X|Y =y) = 0
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and hence,

lim
n→∞

H(Q̃n
X|Y =y) = H(P̃X|Y =y) (21)

since P̃X|Y =y and Q̃n
X|Y =y are in A and entropy is continuous for finite alphabet. Together with

(17), there exists an integer N ≥ N1 such that for n ≥ N ,∣∣∣∣∣
K∑

y=1

PY (y)H(P̃X|Y =y)−
K∑

y=1

Qn
Y (y)H(Q̃n

X|Y =y)

∣∣∣∣∣ < ε

2
. (22)

Then for n ≥ N ,

|HX|Y (P̃XY )−HX|Y (Q̃n
XY )| ≤

∣∣∣∣∣
K∑

y=1

PY (y)H(P̃X|Y =y)−
K∑

y=1

Qn
Y (y)H(Q̃n

X|Y =y)

∣∣∣∣∣+∣∣∣∣∣
∞∑

y=K+1

PY (y)H(P̃X|Y =y)−
∞∑

y=K+1

Qn
Y (y)H(Q̃n

X|Y =y)

∣∣∣∣∣
<

ε

2
+ |J |, (23)

where

J =
∞∑

y=K+1

PY (y)H(P̃X|Y =y)−
∞∑

y=K+1

Qn
Y (y)H(Q̃n

X|Y =y),

and the last inequality follows from (22). For the second term of J , we follow the convention

that the summation is over all y with Qn
Y (y) > 0. Due to (14),

J ≤
∞∑

y=K+1

PY (y)H(P̃X|Y =y) <
ε

2
. (24)

On the other hand, for n ≥ N

J ≥ −
∞∑

y=K+1

Qn
Y (y)H(Q̃n

X|Y =y)

≥ −
∞∑

y=K+1

Qn
Y (y) log M

> −ε

2
, (25)

where the last inequality follows from (20). Therefore, |J | < ε
2
. Together with (23), we have

|HX|Y (P̃XY )−HX|Y (Q̃n
XY )| < ε

for n ≥ N . Since ε > 0 is arbitrary, |HX|Y (P̃XY ) −HX|Y (Q̃n
XY )| → 0 as n → ∞. Hence, the

theorem is proved.
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Corollary 8: Let A be a set of joint distributions for random variables X and Y with finite

alphabet for X but countably infinite alphabet for Y . For any P̃XY ∈ A and Q̃n
XY ∈ A such that

limn→∞ χ2(P̃XY ||Q̃n
XY ) = 0, we have limn→∞ IX;Y (Q̃n

XY ) = IX;Y (P̃XY ). Thus IX;Y (·) defined

on A is continuous at P̃XY with respect to convergence in the χ2-divergence.

Proof: Since X takes values in a finite alphabet, both H(X) and H(X|Y ) are bounded.

By observing that I(X; Y ) = H(X)−H(X|Y ) which is the difference between two continuous

and bounded functions, IX;Y (·) defined on A is continuous.

Remark If limn→∞ χ2(P̃XY ||Q̃n
XY ) = 0 in Theorem 7 is replaced by pointwise convergence,

the proof of Theorem 7 still goes through as (16) is still valid. Therefore, the continuity of

mutual information in Corollary 8 can also be shown with respect to pointwise convergence.

Furthermore, let A be a set of joint distributions for random variables X , Y and Z with finite

alphabet for X but countably infinite alphabet for both Y and Z. An argument similar to the

proof of Theorem 7 together with Corollary 8 can be used to show that the conditional mutual

information I(X; Y |Z) defined on A is continuous at any P̃XY Z ∈ A.

VI. A CONSEQUENCE OF THE DISCONTINUITY OF ENTROPY

The discontinuity of entropy on countably infinite alphabet can explain why certain information

theoretical tools can only be applied for finite alphabet. Two important such tools are strong

typicality for i.i.d. sequences and Fano’s inequality to be discussed in this section. More

importantly, this observation leads to some hints on how we can generalize these theoretical

tools to countably infinite alphabet.

Strong typicality is more powerful than weak typicality as a tool for theorem-proving for

finite alphabet memoryless systems. In fact, strong typicality is stronger than weak typicality.

Specifically, for any sequence x ∈ Xm, where X is finite, if x is inside a strongly typical set, then

x is also inside a weakly typical set with a suitable choice of parameters [9, p. 82]. Therefore,

the strongly typical set is a subset of the weakly typical set. More importantly, with the notion

of strong typicality, stronger coding results can often be proved. However, the strongly typical

set is not necessarily a subset of the weakly typical set when X is countably infinite.

The definitions of weak typicality and strong typicality can be expressed in term of different

divergence measures [3]. Specifically, let P be a probability distribution and let Q = {QX(x)}
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be the empirical distribution of the sequence x, where QX(x) = m−1N(x; x) and N(x; x) is the

number of occurrences of x in the sequence x. Then the weakly typical set is constructed by

requiring the divergence measure

|D(Q||P) + H(Q)−H(P)| (26)

to be small while the strongly typical set is constructed by requiring the variational distance

V (Q,P) to be small. By the discontinuity of the Shannon entropy proved in Theorem 2, there

exist probability distributions P andQ defined on a countably infinite alphabet such that |H(Q)−

H(P)| is large but χ2(Q||P) is small, and hence D(Q||P) and V (Q,P) are also small. This

implies that the value of (26) is large because

|D(Q||P) + H(Q)−H(P)| ≥ |D(Q||P)− |H(Q)−H(P)||.

Let x be a sequence in Xm whose empirical distribution is Q. Then x is strongly typical because

V (Q,P) is small, but x is not weakly typical because |D(Q||P)+H(Q)−H(P)| is large. Hence,

strong typicality does not imply weak typicality when the alphabet is countably infinite. Instead

of requiring V (P ,Q) to be small, if a set is defined by requiring χ2(Q||P) or D(Q||P) to be

small, the fact that this set may not be a subset of the weakly typical set can also be seen from the

above argument. So Theorem 2 shows that neither the χ2-divergence nor the Kullback-Leibler

divergence can be used to define a typicality stronger than weak typicality. Therefore, we need

a new divergence measure for this purpose.

Definition 3: An asymmetric divergence measure E between probability distributions P =

{pi} and Q = {qi} is defined by

E(Q||P) = D(Q||P) + |H(Q)−H(P)|.

It is obvious that

lim
n→∞

E(Q||Pn) = 0 ⇐⇒ lim
n→∞

D(Q||Pn) = 0 and lim
n→∞

H(Pn) = H(Q).

Furthermore,

E(Q||P) ≥ |D(Q||P) + H(Q)−H(P)|,

and

E(Q||P) ≥ D(Q||P) ≥ 1

2 ln 2
V (P ,Q)
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from Pinsker’s inequality. Based on the divergence E, we have developed in [3] a unified

typicality for finite or countably infinite alphabets which is stronger than both weak typicality and

strong typicality while possessing asymptotic properties similar to strong typicality. The latter

implies that many coding theorems proved by strong typicality for finite alphabet can readily be

extended to countably infinite alphabet.

Note that E is an asymmetric divergence measure. It is interesting if a metric which has

properties similar to E can be defined. In the following, a symmetric divergence measure with

a simple form is presented and it will be shown to be a metric.

Definition 4: A symmetric divergence measure Ψ is defined by

Ψ(P ,Q) = H

(
1

2
P +

1

2
Q
)
−
√

H(P)H(Q).

Note that the definition of Ψ is similar to the definition of Jensen-Shannon Divergence (JSD)

[16] given as

JSD(P ,Q) = H

(
1

2
P +

1

2
Q
)
− 1

2
(H(P) + H(Q)).

The proofs of the following theorems are given in Appendix C.

Theorem 9: For any probability distributions Pn and Q, the following two conditions are

equivalent:

1) limn→∞ Ψ(Pn,Q) = 0.

2) limn→∞ H(Pn) = H(Q) and limn→∞ V (Pn,Q) = 0.

Theorem 10: The function
√

Ψ(P ,Q) is a metric.

Another well-know result restricted to finite alphabet is Fano’s inequality which is crucial in

proving converse coding theorems in information theory. Suppose Y is an estimate of X and

both X and Y take values in the same alphabet X . Let Pe = Pr{X 6= Y }. Fano’s inequality

relates H(X|Y ) and Pe by

H(X|Y ) ≤ Pe log(|X | − 1) + H({Pe, 1− Pe}). (27)

If |X | < ∞, Fano’s inequality says that H(X|Y ) → 0 as Pe → 0. If |X | = ∞, Fano’s inequality

becomes useless because the RHS of (27) equals infinity. In fact, Pe → 0 does not imply
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H(X|Y ) → 0, which can be shown by the discontinuity of entropy as follows. Suppose Y is a

constant equal to 0 and the probability distribution of X is Dn in (6). Then

Pe = Pr{X 6= Y } = Pr{X 6= 0} =
α

log n
,

which tends to zero as n →∞. However,

H(X|Y ) = H(X, Y )−H(Y ) = H(X) = H(Dn),

which tends to a value depending on the choice of α as given in (7). Note that the distribution

of X is changing while Pe is approaching to zero in the above example. Motivated by this

observation, we have studied in [4] whether H(X|Y ) → 0 when X has a fixed distribution but

Y has a varying distribution such that Pe → 0. Toward this end, we have proved a generalized

Fano’s inequality which implies that for any X with a fixed probability distribution and finite

H(X), H(X|Y ) → 0 as Pe → 0.

VII. DISCONTINUITY OF ENTROPY IN MARKOV CHAINS

In the previous sections, we have used the probability distribution Dn to illustrate the

discontinuity of the Shannon information measures. We will show in this section that the sequence

of probability distributions Dn can be in fact realized by a discrete-time Markov chain with a

countably infinite number of states. This means that Dn can possibly be observed from a physical

system. Furthermore, this example shows that the entropy of a Markov chain with a countably

infinite number of states may not tend to the entropy of its limiting probability distribution, so

that the limiting probability distribution may not fully characterize the asymptotic behavior of a

Markov chain.

Figure 1 shows the transition diagram of the following system. State 0 is an absorbing state

on layer 0 and state 1 is the only state on layer 1. The state (3, γ), for example, is referred to as

the γ-th state on layer 3. The Markov chain at time 0 is in state 1 and it must make a transition

to either one of the γ states on layer 2. When the system is in a state on layer l where l > 1,

it may make a transition to state 0 with probability 1− ( l−1
l

)β and then be absorbed, otherwise

it can make a transition to any one of the γ states on layer (l + 1) with equal probability. It is

clear that at time l, l ≥ 2, the Markov chain is in either layer (l + 1) or state 0.
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Fig. 1. A Markov chain realization of Dn

Let Xm denote the system state at time m. Since the initial state X0 is equal to 1, the

probability distribution of X0 is a deterministic distribution and

Pr{X1 = (2, 1)|X0 = 1}

= Pr{X1 = (2, 2)|X0 = 1}

= · · ·

= Pr{X1 = (2, γ)|X0 = 1}

=
1

γ
.

For a state (l, i) belonging to layer l > 1, we have

1 ≤ i ≤ γ(l−1)

and transition probabilities are

Pr{Xm+1 = 0|Xm = (l, i)} = 1−
(

l − 1

l

)β

(28)
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and

Pr{Xm+1 = (l + 1, (i− 1)γ + 1)|Xm = (l, i)}

= Pr{Xm+1 = (l + 1, (i− 1)γ + 2)|Xm = (l, i)}

= · · ·

= Pr{Xm+1 = (l + 1, (i− 1)γ + γ)|Xm = (l, i)}

=
1

γ

(
l − 1

l

)β

, (29)

for all m ≥ 1. At time m− 1 ≥ 0, the system must be in either state 0 or on layer m. By (28),

Pr{Xm 6= 0|Xm−1 6= 0} = 1− Pr{Xm = 0|Xm−1 6= 0}

= 1−

(
1−

(
m− 1

m

)β
)

=

(
m− 1

m

)β

(30)

for m ≥ 2. Since Xm 6= 0 means that the system has never been in state 0, we have

Pr{Xm 6= 0}

= Pr{Xm 6= 0, Xm−1 6= 0}

= Pr{Xm 6= 0|Xm−1 6= 0}Pr{Xm−1 6= 0}

= Pr{Xm 6= 0|Xm−1 6= 0}Pr{Xm−1 6= 0|Xm−2 6= 0} · · ·

Pr{X2 6= 0|X1 6= 0}Pr{X1 6= 0}

=

(
m− 1

m

)β (
m− 2

m− 1

)β (
m− 3

m− 2

)β

· · ·
(

1

2

)β

· 1

=

(
1

m

)β

, (31)

and

Pr{Xm = 0} = 1−
(

1

m

)β

. (32)

Then

lim
m→∞

Pr{Xm = 0} = 1,
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which means that the limiting probability distribution exists and equals the deterministic

distribution. If Xm 6= 0, the system must be in one of the γm states on layer (m + 1) with

the same probability due to symmetry. Therefore, we can explicitly express the probability

distribution of Xm. This probability distribution, however, contains a lot of zeros when m is

large. Since we are only interested in the value of H(Xm), we can neglect all the zeros and let

F (γ,β)
m =

{
1− 1

mβ
,

1

γmmβ
, ...,

1

γmmβ

}
,

where the first element is 1 − 1
mβ and the other γm elements are 1

γmmβ . Here, the probability

mass 1− 1
mβ denotes the probability that Xm is in state 0, and each other probability mass 1

γmmβ

denotes the probability that Xm is in any particular state on layer m + 1. In fact, by letting

α = log γ and n = γm in (6), Dn is equivalent to F (γ,1)
m . On the other hand, by letting n = 2m

in (8), Dn is equivalent to F (2,0.5)
m . It can readily be verified that

lim
m→∞

H(Xm) = lim
m→∞

H(F (γ,β)
m )

=


0 β > 1,

log γ β = 1,

∞ 0 < β < 1.

(33)

Therefore, we see that limm→∞ H(Xm) and H(limm→∞ Xm) are not equal if 0 < β ≤ 1. When

0 < β < 1, Pr{Xm = 0} is increasing to 1 and H(Xm) is increasing without bound. This is a

mathematical proof of the seemingly counter-intuitive statement in the beginning paragraph in

Section I.

The Markov chain in Fig. 1 consists of one absorbing state and an infinite number of transient

states. In particular, all the states except for state 0 can be visited only once. For arbitrary state i

and state j where 0 < i < j, they may not communicate with each other. In the following,

we present another example of a Markov chain in which all the states except for the absorbing

state communicate with each other. This Markov chain is closely related to the gambler’s ruin

problem [17, P.184].

Consider the random walk as shown in Fig. 2. Let Zm be the state of the system in Fig. 2 at

time m. Here, State 0 is an absorbing state and for a state i > 0, we have

Pr

{
Zm+1 =

⌊
i

2

⌋ ∣∣∣∣Zm = i

}
=

1

2
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Fig. 2. A random walk on a tree structure

and

Pr{Zm+1 = 2i|Zm = i} = Pr{Zm+1 = 2i + 1|Zm = i} =
1

4
.

If we only consider the layers but not the states, the system is simply a one-dimensional

symmetric random walk within the layers together with an absorbing state at the top, and is

equivalent to the gambler’s ruin problem. Therefore, starting on layer l ≥ 0, the system will

eventually be absorbed in state 0 with probability 1. This implies that limm→∞ Pr{Zm = 0} = 1.

By numerically computing the first 50, 000 values of H(Zm), we obtain the plot in Fig. 3. At

the end of the computation, H(Z50000) ≈ 1.0595 and Pr{Z50000 = 0} ≈ 0.9964. It appears that

as m →∞, H(Zm) does not end to 0, the entropy of the limiting distribution.

For a discrete-time Markov chain with countably infinite states, we have seen in two examples

that the entropy of a Markov chain may not tend to the entropy of its limiting probability

distribution. Therefore, the limiting probability distribution may not fully characterize the

asymptotic behavior of a Markov chain. It is an interesting problem for future research to obtain

the conditions for the limiting entropy of a Markov chain to be equal to the entropy of the

limiting probability distribution of the Markov chain.

VIII. CONCLUSION

We have demonstrated different behaviors of the Shannon information measures on different

alphabet sizes. With respect to the convergence in χ2-divergence, all the Shannon information
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Fig. 3. Plotting of H(Zm) verses m

measures are discontinuous at every probability distribution when the alphabet is countably

infinite. Also, these measures are discontinuous with respect to the convergence in many

other divergence measures including variational distance and Kullback-Leibler divergence. These

findings explain why the applications of certain information theoretical tools are restricted to

finite alphabets. Perhaps more importantly, these discontinuity results have provided hints on

how the aforementioned tools can be extended to countably infinite alphabets. In particular, we

have formulated the notion of unified typicality of sequences in a related work [3], and Fano’s

inequality has been extended in [4]. Therefore, these information theoretical tools do not fail in

the general setting due to the discontinuity of entropy, but they have to assume a more refined

form. We expect that more information theoretical tools can be generalized along the same

direction. Furthermore, we have demonstrated in two examples that the discontinuity of entropy

can be exhibited in a discrete-time Markov chain with one of them being closely related to the

gambler’s ruin problem. As a whole, the results have enriched the understanding of uncertainty.

APPENDIX A

Proof of Theorem 2 We first assume c is finite. By letting Pn = Dn, the theorem is proved for

P0 = ν, so we assume P0 6= ν. Then without loss of generality, we can assume that 0 < p0 < 1.

Let q = 1− p0 and

P1 = {0, q−1p1, q
−1p2, q

−1p3, ...}, (34)
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which is seen to be a probability distribution. Let V and Wn be random variables with probability

distributions P1 and Dn, respectively. Let the probability distribution of an independent binary

random variable Z be such that Pr{Z = 0} = q and Pr{Z = 1} = 1− q. By letting

Xn =

 V if Z = 0

Wn if Z = 1,
(35)

the probability distribution of Xn for n ≥ 2 is given by

P2
n =

{
(1− q)− (1− q)α

log n
, p1 +

(1− q)α

n log n
,

p2 +
(1− q)α

n log n
, ..., pn +

(1− q)α

n log n
, pn+1, pn+2, ...

}
=

{
p0 −

αp0

log n
, p1 +

αp0

n log n
, p2 +

αp0

n log n
, . . . ,

pn +
αp0

n log n
, pn+1, pn+2, . . .

}
. (36)

Then follows from (4),

lim
n→∞

χ2(P0||P2
n) = lim

n→∞

(
αp0

log n

)2(
p0 −

αp0

log n

)−1

+ lim
n→∞

n∑
i=1

(
αp0

n log n

)2(
pi +

αp0

n log n

)−1

= lim
n→∞

n∑
i=1

(
αp0

n log n

)2(
pi +

αp0

n log n

)−1

≤ lim
n→∞

n∑
i=1

(
αp0

n log n

)2(
αp0

n log n

)−1

= 0.

Since χ2(P0||P2
n) is nonnegative, we have proved that limn→∞ χ2(P0||P2

n) = 0. Consider

H(P2
n) = H(Xn)

= H(Xn|Z) + I(Xn; Z)

= qH(Xn|Z = 0) + (1− q)H(Xn|Z = 1) + I(Xn; Z)

= qH(P1) + (1− q)H(Dn) + I(Xn; Z).
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Note that

qH(P1) = −q
∞∑
i=1

(q−1pi) log(q−1pi)

= −
∞∑
i=1

pi log q−1 −
∞∑
i=1

pi log pi

= q log q + H(P0) + p0 log p0

= H(P0)−H({p0, 1− p0}).

Hence,

H(P2
n) = H(P0)−H({p0, 1− p0}) + p0H(D(α,1)

n ) + I(Xn; Z)

= H(P0)−H(Z) + p0H(Dn) + I(Xn; Z)

= H(P0) + p0H(Dn)−H(Z|Xn). (37)

Toward finding limn→∞ H(Z|Xn), let

f(Xn) =

 0 if Xn = 0

1 if Xn > 0,

and consider

lim
n→∞

H(Z|Xn) = lim
n→∞

H(Z|f(Xn), Xn)

≤ lim
n→∞

H(Z|f(Xn))

= lim
n→∞

[(
p0 −

p0α

log n

)
H(Z|f(Xn) = 0)

+

(
1− p0 +

p0α

log n

)
H(Z|f(Xn) = 1)

]
= lim

n→∞

(
1− p0 +

p0α

log n

)
H(Z|f(Xn) = 1)

= (1− p0) lim
n→∞

H(Z|f(Xn) = 1),

where the inequality follows from conditioning does not increase entropy and H(Z|f(Xn) =

0) = 0 because f(Xn) = 0 implies Z = 1. Note that

Pr{Z = 0, f(Xn) = 1} = Pr{f(Xn) = 1|Z = 0}Pr{Z = 0}

= 1− p0,
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and

Pr{Z = 1, f(Xn) = 1} = Pr{f(Xn) = 1|Z = 1}Pr{Z = 1}

=
p0α

log n
.

Therefore

lim
n→∞

H(Z|f(Xn) = 1) = 0.

Together with

H(Z|Xn) ≥ 0,

we have

lim
n→∞

H(Z|Xn) = 0.

By taking n →∞ on the both sides of (37) and using (7), we have

lim
n→∞

H(P2
n) = H(P0) + p0α.

Finally, for any c > 0, by letting

α =
c

p0

,

the theorem is proved for the case that C is a positive real number. Now, consider the distribution

of W is D′
n in (8. We can repeat the above argument and show the theorem for C = ∞. Therefore,

the theorem is proved.

APPENDIX B

Proof of IX;Y (Q̃n
XY ) is finite.

Note that I(X; Z|Y ) ≥ 0. Together with (11), we have

I(X; Y ) ≤ I(X; Y ) + I(X; Z|Y ) = qI(X; Y |Z = 0) + (1− q)I(X; Y |Z = 1) + I(X; Z).

Thus

IX;Y (Q̃n
XY ) ≤ qIX;Y (P̃ ′XY ) + (1− q)H(Dn) + I(X; Z)

≤ qIX;Y (P̃ ′XY ) + (1− q) log(n + 1) + log 2. (38)
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The summation in IX;Y (P̃ ′XY ) can be broken into three parts which will be considered in the

following. Consider
∞∑

x=1

∞∑
y=1

q−1PXY (x, y) log
q−1PXY (x, y)

q−1PX(x)q−1PY (y)

=
∞∑

x=1

∞∑
y=1

q−1PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
+

∞∑
x=1

∞∑
y=1

q−1PXY (x, y) log q

≤ q−1

∞∑
x=1

∞∑
y=1

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
. (39)

On the other hand, let P ′
Y (0) =

∑∞
x=1 q−1PXY (x, 0) and it is readily checked that P ′

Y (0) ≤

PY (0) =
∑∞

x=0 PXY (x, 0). We temporary assume P ′
Y (0) > 0 which will not be required at the

end of this proof. We have
∞∑

x=1

q−1PXY (x, 0) log
q−1PXY (x, 0)

q−1PX(x)P ′
Y (0)

= q−1

∞∑
x=1

PXY (x, 0) log
PXY (x, 0)

PX(x)PY (0)
+ q−1

∞∑
x=1

PXY (x, 0) log
PY (0)

P ′
Y (0)

≤ q−1

∞∑
x=1

PXY (x, 0) log
PXY (x, 0)

PX(x)PY (0)
+ PY (0) log

PY (0)

P ′
Y (0)

. (40)

By a similar argument, we can see that
∞∑

y=1

q−1PXY (0, y) log
q−1PXY (0, y)

P ′
X(0)q−1PY (y)

≤ q−1

∞∑
y=1

PXY (0, y) log
PXY (0, y)

PX(0)PY (y)
+ PX(0) log

PX(0)

P ′
X(0)

, (41)

where P ′
X(0) =

∑∞
y=1 q−1PXY (0, y) and it is readily checked that P ′

X(0) ≤ PX(0) =∑∞
y=0 PXY (0, y). In the meantime, we have assumed P ′

X(0) > 0 which will not be required

at the end of this proof. By summing (39), (40) and (41) together, we get

IX;Y (P̃ ′XY )

≤ q−1IX;Y (P̃0)− q−1PXY (0, 0) log
PXY (0, 0)

PX(0)PY (0)
+ PY (0) log

PY (0)

P ′
Y (0)

+ PX(0) log
PX(0)

P ′
X(0)

,

which is finite. Together with (38), we have shown that IX;Y (Q̃n
XY ) is finite for all finite n.

In the above, we have assumed P ′
X(0) > 0 and P ′

Y (0) > 0. If P ′
Y (0) = 0, then PXY (x, 0) = 0

for x ≥ 1 and the L.H.S. of (40) does not appear in IX;Y (P̃ ′XY ). So the upper bound on
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IX;Y (P̃ ′XY ) is given by the summation of (39) and (41) and we can still show that IX;Y (P̃ ′XY )

is finite and hence IX;Y (Q̃n
XY ) is finite for all finite n. The same conclusion holds if P ′

X(0) = 0

or P ′
X(0) = P ′

Y (0) = 0. Therefore, the claim has been proved.

APPENDIX C

Proof of Theorem 9 Assume 2) holds. Since the proof of [16, Theorem 3] is valid for probability

distributions with countably infinite support, we have

lim
n→∞

2JSD(Pn,Q) ≤ lim
n→∞

V (Pn,Q) = 0.

Note that

Ψ(Pn,Q) = JSD(Pn,Q) +
1

2

(√
H(Pn)−

√
H(Q)

)2

. (42)

Therefore, 2) implies 1).

Now, assume 1) holds. Follows from (42),

lim
n→∞

H(Pn) = H(Q)

and

0 = lim
n→∞

JSD(Pn,Q) =
1

2
D

(
Pn

∣∣∣∣∣∣1
2
Pn +

1

2
Q
)

+
1

2
D

(
Q
∣∣∣∣∣∣1

2
Pn +

1

2
Q
)

.

Therefore,

lim
n→∞

V (Pn,Q) = lim
n→∞

2V

(
Pn,

1

2
Pn +

1

2
Q
)

≤ lim
n→∞

2

√
(2 ln 2)D

(
Pn

∣∣∣∣∣∣1
2
Pn +

1

2
Q
)

= 0,

where the inequality follows from Pinsker’s inequality. The theorem is proved.

Proof of Theorem 10 It is easy to show that Ψ has the properties of a metric except for the proof

of the triangle inequality which is shown here. We put

ξ1 =
√

JSD(P ,S),
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ξ2 =
1√
2
(
√

H(P)−
√

H(S)),

η1 =
√

JSD(S,Q),

η2 =
1√
2
(
√

H(S)−
√

H(Q))

and

ξk = ηk = 0

for k ≥ 3 into the Minkowski inequality(
∞∑

j=1

|ξj + ηj|p
) 1

p

≤

(
∞∑

k=1

|ξk|p
) 1

p

+

(
∞∑

m=1

|ηm|p
) 1

p

, (43)

and take p = 2, the right hand side of (43) becomes√
Ψ(P ,S) +

√
Ψ(S,Q)

and consideration of the L.H.S. gives(∣∣∣√JSD(P ,S) +
√

JSD(S,Q)
∣∣∣2

+

∣∣∣∣ 1√
2
(
√

H(P)−
√

H(S)) +
1√
2
(
√

H(S)−
√

H(Q))

∣∣∣∣2
) 1

2

=

(∣∣∣√JSD(P ,S) +
√

JSD(S,Q)
∣∣∣2 +

1

2

∣∣∣√H(P)−
√

H(Q)
∣∣∣2) 1

2

≥
(∣∣∣√JSD(P ,Q)

∣∣∣2 +
1

2

∣∣∣√H(P)−
√

H(Q)
∣∣∣2) 1

2

=
√

Ψ(P ,Q)

where the first inequality is due to the metric properties of
√

JSD [18]. Thus we have proved

the triangle inequality √
Ψ(P ,Q) ≤

√
Ψ(P ,S) +

√
Ψ(S,Q).
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