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Preface

This book is an evolution from my book A First Course in Information Theory
published in 2002 when network coding was still at its infancy. The last few
years have witnessed the rapid development of network coding into a research
field of its own in information science. With its root in information theory,
network coding not only has brought about a paradigm shift in network com-
munications at large, but also has had significant influence on such specific
research fields as coding theory, networking, switching, wireless communica-
tions, distributed data storage, cryptography, and optimization theory. While
new applications of network coding keep emerging, the fundamental results
that lay the foundation of the subject are more or less mature. One of the
main goals of this book therefore is to present these results in a unifying and
coherent manner.

While the previous book focused only on information theory for discrete
random variables, the current book contains two new chapters on information
theory for continuous random variables, namely the chapter on differential
entropy and the chapter on continuous-valued channels. With these topics
included, the book becomes more comprehensive and is more suitable to be
used as a textbook for a course in an electrical engineering department.

What is in this book

Out of the twenty-one chapters in this book, the first sixteen chapters
belong to Part I, Components of Information Theory, and the last five chapters
belong to Part II, Fundamentals of Network Coding. Part 1 covers the basic
topics in information theory and prepare the reader for the discussions in
Part II. A brief rundown of the chapters will give a better idea of what is in
this book.

Chapter 1 contains a high level introduction to the contents of this book.
First, there is a discussion on the nature of information theory and the main
results in Shannon’s original paper in 1948 which founded the field. There are
also pointers to Shannon’s biographies and his works.
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Chapter 2 introduces Shannon’s information measures for discrete random
variables and their basic properties. Useful identities and inequalities in in-
formation theory are derived and explained. Extra care is taken in handling
joint distributions with zero probability masses. There is a section devoted
to the discussion of maximum entropy distributions. The chapter ends with a
section on the entropy rate of a stationary information source.

Chapter 3 is an introduction to the theory of I-Measure which establishes
a one-to-one correspondence between Shannon’s information measures and
set theory. A number of examples are given to show how the use of informa-
tion diagrams can simplify the proofs of many results in information theory.
Such diagrams are becoming standard tools for solving information theory
problems.

Chapter 4 is a discussion of zero-error data compression by uniquely de-
codable codes, with prefix codes as a special case. A proof of the entropy
bound for prefix codes which involves neither the Kraft inequality nor the
fundamental inequality is given. This proof facilitates the discussion of the
redundancy of prefix codes.

Chapter 5 is a thorough treatment of weak typicality. The weak asymp-
totic equipartition property and the source coding theorem are discussed. An
explanation of the fact that a good data compression scheme produces almost
i.i.d. bits is given. There is also an introductory discussion of the Shannon-
McMillan-Breiman theorem. The concept of weak typicality will be further
developed in Chapter 10 for continuous random variables.

Chapter 6 contains a detailed discussion of strong typicality which applies
to random variables with finite alphabets. The results developed in this chap-
ter will be used for proving the channel coding theorem and the rate-distortion
theorem in the next two chapters.

The discussion in Chapter 7 of the discrete memoryless channel is an en-
hancement of the discussion in the previous book. In particular, the new def-
inition of the discrete memoryless channel enables rigorous formulation and
analysis of coding schemes for such channels with or without feedback. The
proof of the channel coding theorem uses a graphical model approach that
helps explain the conditional independence of the random variables.

Chapter 8 is an introduction to rate-distortion theory. The version of the
rate-distortion theorem here, proved by using strong typicality, is a stronger
version of the original theorem obtained by Shannon.

In Chapter 9, the Blahut-Arimoto algorithms for computing the channel
capacity and the rate-distortion function are discussed, and a simplified proof
for convergence is given. Great care is taken in handling distributions with
zero probability masses.

Chapter 10 and Chapter 11 are the two chapters devoted to the discus-
sion of information theory for continuous random variables. Chapter 10 intro-
duces differential entropy and related information measures, and their basic
properties are discussed. The asymptotic equipartion property for continuous
random variables is proved. The last section on maximum differential entropy
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distributions echos the section in Chapter 2 on maximum entropy distribu-
tions.

Chapter 11 discusses a variety of continuous-valued channels, with the
continuous memoryless channel being the basic building block. In proving the
capacity of the memoryless Gaussian channel, a careful justification is given
for the existence of the differential entropy of the output random variable.
Based on this result, the capacity of a system of parallel/correlated Gaus-
sian channels is obtained. Heuristic arguments leading to the formula for the
capacity of the bandlimited white/colored Gaussian channel are given. The
chapter ends with a proof of the fact that zero-mean Gaussian noise is the
worst additive noise.

Chapter 12 explores the structure of the I-Measure for Markov structures.
Set-theoretic characterizations of full conditional independence and Markov
random field are discussed. The treatment of Markov random field here maybe
too specialized for the average reader, but the structure of the I-Measure and
the simplicity of the information diagram for a Markov chain is best explained
as a special case of a Markov random field.

Information inequalities are sometimes called the laws of information the-
ory because they govern the impossibilities in information theory. In Chap-
ter 13, the geometrical meaning of information inequalities and the relation
between information inequalities and conditional independence are explained
in depth. The framework for information inequalities discussed here is the
basis of the next two chapters.

Chapter 14 explains how the problem of proving information inequalities
can be formulated as a linear programming problem. This leads to a complete
characterization of all information inequalities provable by conventional tech-
niques. These inequalities, called Shannon-type inequalities, can be proved by
the World Wide Web available software package ITIP. It is also shown how
Shannon-type inequalities can be used to tackle the implication problem of
conditional independence in probability theory.

Shannon-type inequalities are all the information inequalities known dur-
ing the first half century of information theory. In the late 1990’s, a few new
inequalities, called non-Shannon-type inequalities, were discovered. These in-
equalities imply the existence of laws in information theory beyond those laid
down by Shannon. In Chapter 15, we discuss these inequalities and their ap-
plications.

Chapter 16 explains an intriguing relation between information theory
and group theory. Specifically, for every information inequality satisfied by
any joint probability distribution, there is a corresponding group inequality
satisfied by any finite group and its subgroups, and vice versa. Inequalities
of the latter type govern the orders of any finite group and their subgroups.
Group-theoretic proofs of Shannon-type information inequalities are given. At
the end of the chapter, a group inequality is obtained from a non-Shannon-
type inequality discussed in Chapter 15. The meaning and the implication of
this inequality are yet to be understood.
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Chapter 17 starts Part II of the book with a discussion of the butterfly
network, the primary example in network coding. Variations of the butterfly
network are analyzed in detail. The advantage of network coding over store-
and-forward in wireless and satellite communications is explained through a
simple example. We also explain why network coding with multiple infor-
mation sources is substantially different from network coding with a single
information source.

In Chapter 18, the fundamental bound for single-source network coding,
called the max-flow bound, is explained in detail. The bound is established
for a general class of network codes.

In Chapter 19, we discuss various classes of linear network codes on acyclic
networks that achieve the max-flow bound to different extents. Static net-
work codes, a special class of linear network codes that achieves the max-flow
bound in the presence of channel failure, is also discussed. Polynomial-time
algorithms for constructing these codes are presented.

In Chapter 20, we formulate and analyze convolutional network codes on
cyclic networks. The existence of such codes that achieve the max-flow bound
is proved.

Network coding theory is further developed in Chapter 21. The scenario
when more than one information source are multicast in a point-to-point
acyclic network is discussed. An implicit characterization of the achievable
information rate region which involves the framework for information inequal-
ities developed in Part I is proved.
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Part I of this book by itself may be regarded as a comprehensive textbook
in information theory. The main reason why the book is in the present form
is because in my opinion, the discussion of network coding in Part II is in-
complete without Part I. Nevertheless, except for Chapter 21 on multi-source
network coding, Part II by itself may be used satisfactorily as a textbook on
single-source network coding.

An elementary course on probability theory and an elementary course
on linear algebra are prerequisites to Part I and Part II, respectively. For
Chapter 11, some background knowledge on digital communication systems
would be helpful, and for Chapter 20, some prior exposure to discrete-time
linear systems is necessary. The reader is recommended to read the chapters
according to the above chart. However, one will not have too much difficulty
jumping around in the book because there should be sufficient references to
the previous relevant sections.

This book inherits the writing style from the previous book, namely that all
the derivations are from the first principle. The book contains a large number
of examples, where important points are very often made. To facilitate the
use of the book, there is a summary at the end of each chapter.

This book can be used as a textbook or a reference book. As a textbook,
it is ideal for a two-semester course, with the first and second semesters cov-
ering selected topics from Part I and Part II, respectively. A comprehensive
instructor’s manual is available upon request. Please contact the author at
whyeung@ie.cuhk.edu.hk for information and access.

Just like any other lengthy document, this book for sure contains errors
and omissions. To alleviate the problem, an errata will be maintained at the
book homepage http://www.ie.cuhk.edu.hk/IT _book2/.

Hong Kong, China Raymond W. Yeung
December, 2007
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1

The Science of Information

In a communication system, we try to convey information from one point to
another, very often in a noisy environment. Consider the following scenario. A
secretary needs to send facsimiles regularly and she wants to convey as much
information as possible on each page. She has a choice of the font size, which
means that more characters can be squeezed onto a page if a smaller font size
is used. In principle, she can squeeze as many characters as desired on a page
by using a small enough font size. However, there are two factors in the system
which may cause errors. First, the fax machine has a finite resolution. Second,
the characters transmitted may be received incorrectly due to noise in the
telephone line. Therefore, if the font size is too small, the characters may not
be recognizable on the facsimile. On the other hand, although some characters
on the facsimile may not be recognizable, the recipient can still figure out the
words from the context provided that the number of such characters is not
excessive. In other words, it is not necessary to choose a font size such that
all the characters on the facsimile are recognizable almost surely. Then we are
motivated to ask: What is the maximum amount of meaningful information
which can be conveyed on one page of facsimile?

This question may not have a definite answer because it is not very well
posed. In particular, we do not have a precise measure of meaningful informa-
tion. Nevertheless, this question is an illustration of the kind of fundamental
questions we can ask about a communication system.

Information, which is not a physical entity but an abstract concept, is hard
to quantify in general. This is especially the case if human factors are involved
when the information is utilized. For example, when we play Beethoven’s
violin concerto from an audio compact disc, we receive the musical information
from the loudspeakers. We enjoy this information because it arouses certain
kinds of emotion within ourselves. While we receive the same information
every time we play the same piece of music, the kinds of emotions aroused
may be different from time to time because they depend on our mood at
that particular moment. In other words, we can derive utility from the same
information every time in a different way. For this reason, it is extremely
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difficult to devise a measure which can quantify the amount of information
contained in a piece of music.

In 1948, Bell Telephone Laboratories scientist Claude E. Shannon (1916-
2001) published a paper entitled “The Mathematical Theory of Communi-
cation” [322] which laid the foundation of an important field now known as
information theory. In his paper, the model of a point-to-point communication
system depicted in Figure 1.1 is considered. In this model, a message is gener-

INFORMATION
SOURCE  TRANSMITTER RECEIVER  DESTINATION
[]
SIGNAL RECEIVED
MESSAGE SIGNAL MESSAGE
NOISE
SOURCE

Fig. 1.1. Schematic diagram for a general point-to-point communication system.

ated by the information source. The message is converted by the transmitter
into a signal which is suitable for transmission. In the course of transmission,
the signal may be contaminated by a noise source, so that the received signal
may be different from the transmitted signal. Based on the received signal,
the receiver then makes an estimate on the message and deliver it to the
destination.

In this abstract model of a point-to-point communication system, one is
only concerned about whether the message generated by the source can be
delivered correctly to the receiver without worrying about how the message
is actually used by the receiver. In a way, Shannon’s model does not cover all
possible aspects of a communication system. However, in order to develop a
precise and useful theory of information, the scope of the theory has to be
restricted.

In [322], Shannon introduced two fundamental concepts about “informa-
tion” from the communication point of view. First, information is uncertainty.
More specifically, if a piece of information we are interested in is deterministic,
then it has no value at all because it is already known with no uncertainty.
From this point of view, for example, the continuous transmission of a still
picture on a television broadcast channel is superfluous. Consequently, an
information source is naturally modeled as a random variable or a random
process, and probability is employed to develop the theory of information.
Second, information to be transmitted is digital. This means that the infor-
mation source should first be converted into a stream of 0’s and 1’s called bits,
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and the remaining task is to deliver these bits to the receiver correctly with no
reference to their actual meaning. This is the foundation of all modern digital
communication systems. In fact, this work of Shannon appears to contain the
first published use of the term “bit,” which stands for binary digit.

In the same work, Shannon also proved two important theorems. The first
theorem, called the source coding theorem, introduces entropy as the funda-
mental measure of information which characterizes the minimum rate of a
source code representing an information source essentially free of error. The
source coding theorem is the theoretical basis for lossless data compression'.
The second theorem, called the channel coding theorem, concerns communica-
tion through a noisy channel. It was shown that associated with every noisy
channel is a parameter, called the capacity, which is strictly positive except
for very special channels, such that information can be communicated reliably
through the channel as long as the information rate is less than the capacity.
These two theorems, which give fundamental limits in point-to-point commu-
nication, are the two most important results in information theory.

In science, we study the laws of Nature which must be obeyed by any phys-
ical systems. These laws are used by engineers to design systems to achieve
specific goals. Therefore, science is the foundation of engineering. Without
science, engineering can only be done by trial and error.

In information theory, we study the fundamental limits in communica-
tion regardless of the technologies involved in the actual implementation of
the communication systems. These fundamental limits are not only used as
guidelines by communication engineers, but they also give insights into what
optimal coding schemes are like. Information theory is therefore the science
of information.

Since Shannon published his original paper in 1948, information theory
has been developed into a major research field in both communication theory
and applied probability.

For a non-technical introduction to information theory, we refer the reader
to Encyclopedia Britannica [49]. In fact, we strongly recommend the reader to
first read this excellent introduction before starting this book. For biographies
of Claude Shannon, a legend of the 20th Century who had made fundamental
contribution to the Information Age, we refer the readers to [56] and [340].
The latter is also a complete collection of Shannon’s papers.

Unlike most branches of applied mathematics in which physical systems are
studied, abstract systems of communication are studied in information theory.
In reading this book, it is not unusual for a beginner to be able to understand
all the steps in a proof but has no idea what the proof is leading to. The best
way to learn information theory is to study the materials first and come back
at a later time. Many results in information theory are rather subtle, to the
extent that an expert in the subject may from time to time realize that his/her

1 A data compression scheme is lossless if the data can be recovered with an arbi-
trarily small probability of error.
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understanding of certain basic results has been inadequate or even incorrect.
While a novice should expect to raise his/her level of understanding of the
subject by reading this book, he/she should not be discouraged to find after
finishing the book that there are actually more things yet to be understood.
In fact, this is exactly the challenge and the beauty of information theory.



Part 1

Components of Information Theory






2

Information Measures

Shannon’s information measures refer to entropy, conditional entropy, mutual
information, and conditional mutual information. They are the most impor-
tant measures of information in information theory. In this chapter, we in-
troduce these measures and establish some basic properties they possess. The
physical meanings of these measures will be discussed in depth in subsequent
chapters. We then introduce the informational divergence which measures
the “distance” between two probability distributions and prove some useful
inequalities in information theory. The chapter ends with a section on the
entropy rate of a stationary information source.

2.1 Independence and Markov Chains

We begin our discussion in this chapter by reviewing two basic concepts in
probability: independence of random variables and Markov chain. All the ran-
dom variables in this book except for Chapters 10 and 11 are assumed to be
discrete unless otherwise specified.

Let X be a random variable taking values in an alphabet X'. The probabil-
ity distribution for X is denoted as {px (x),z € X}, with px (z) = Pr{X = z}.
When there is no ambiguity, px (z) will be abbreviated as p(z), and {p(z)}
will be abbreviated as p(z). The support of X, denoted by Sx, is the set of
all z € X such that p(z) > 0. If Sx = X, we say that p is strictly positive.
Otherwise, we say that p is not strictly positive, or p contains zero probability
masses. All the above notations naturally extend to two or more random vari-
ables. As we will see, probability distributions with zero probability masses
are very delicate, and they need to be handled with great care.

Definition 2.1. Two random variables X andY are independent, denoted by
X 1Y, if

p(z,y) = p()p(y) (2.1)
for all x and y (i.e., for all (z,y) € X x V).
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For more than two random variables, we distinguish between two types of
independence.

Definition 2.2 (Mutual Independence). For n > 3, random wvariables
X1, Xo, -+, X, are mutually independent if

p(x1, @2, -+ an) = p(x1)p(22) - - p(an) (2.2)
for all x1,xo, -+, T,.
Definition 2.3 (Pairwise Independence). For n > 3, random variables

X1, X, -, Xy, are pairwise independent if X; and X; are independent for all
1<i<j<n.

Note that mutual independence implies pairwise independence. We leave
it as an exercise for the reader to show that the converse is not true.

Definition 2.4 (Conditional Independence). For random variables X,Y,
and Z, X is independent of Z conditioning on'Y, denoted by X L Z|Y, if

p(z,y,2)p(y) = p(, y)p(y, 2) (2.3)
for all x,y, and z, or equivalently,

p(w,y)p(y,z) — ;
p(l’,y, Z) _ 2(y) p(w, y)p(z|y) pr(y) > 0 (2.4)
0 otherwise.

The first definition of conditional independence above is sometimes more
convenient to use because it is not necessary to distinguish between the cases
p(y) > 0 and p(y) = 0. However, the physical meaning of conditional inde-
pendence is more explicit in the second definition.

Proposition 2.5. For random variables X,Y, and Z, X L Z|Y if and only
if
p(z,y,2) = alz,y)b(y, 2) (2.5)

for all x, y, and z such that p(y) > 0.

Proof. The ‘only if’ part follows immediately from the definition of conditional
independence in (2.4), so we will only prove the ‘if’ part. Assume

p(x,y,2) = a(z,y)b(y, 2) (2.6)

for all z, y, and z such that p(y) > 0. Then for such z, y, and z, we have

pley) = Y pley.2) = Y aley)b(y.2) = ale,y) Y bly.2)  (27)



2.1 Independence and Markov Chains 9

and
= Zp(xﬁ Y, Z) = Z (.13 y)b( ) - b(ya )Za(l‘vy) (28)
Furthermore,
y) =Y ply,2) = (Z a(fmy)) (Z b(y72)> > 0. (2.9)
Therefore,
( Zb ) <b ,z)Za(m,y))
p(@,y)p(y,2) _ - z (2.10)
ply) '
)5
= a(z,y)b(y, 2) (2.11)
= p(z,y, 2). (2.12)

For z, y, and z such that p(y) = 0, since

0 <p(x,y,2) <p(y) =0, (2.13)

we have
p(z,y,2) =0. (2.14)
Hence, X 1 Z|Y according to (2.4). The proof is accomplished. O

Definition 2.6 (Markov Chain). For random wvariables X1, Xa, -, X,
wheren > 3, X1 — X9 — -+ — X,, forms a Markov chain if

p(x1, T2, 20)p(22)p(23) - - - P(T0—1)
= p(x1,x2)p(x2, 23) - p(Tn—1,Zn) (2.15)

for all x1,xa,- -, x,, or equivalently,

p(mlax% T 7xn) =

{p($1,$2)]9($3|5€2) o p(xp|ra_1) if p(x2), p(23), -, p(Tn_1) >0 (2.16)
0 otherwise. ’

We note that X L Z|Y is equivalent to the Markov chain X — Y — Z.

Proposition 2.7. X; — X9 — -+ — X, forms a Markov chain if and only
if Xp, — X1 — -+ — Xy forms a Markov chain.
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Proof. This follows directly from the symmetry in the definition of a Markov
chain in (2.15). O

In the following, we state two basic properties of a Markov chain. The
proofs are left as an exercise.

Proposition 2.8. X; — Xy — -+ — X,, forms a Markov chain if and only

if

X1*>X24>X3

(X1,X2) = X3 — Xy
(2.17)

(X17X27 e aXTL—Q) - Xn—l - Xn
form Markov chains.

Proposition 2.9. X; — Xy — -+ — X, forms a Markov chain if and only
if
p(z1, @2, @) = fi(z1,22) f2(22,23) -+ fa—1(Tn—1, Tn) (2.18)

for all x1,29,- -+, 2, such that p(z2),p(x3), -, p(Xn_1) > 0.

Note that Proposition 2.9 is a generalization of Proposition 2.5. From
Proposition 2.9, one can prove the following important property of a Markov
chain. Again, the details are left as an exercise.

Proposition 2.10 (Markov subchains). Let N,, = {1,2,---,n} and let
X1 — Xy — -+ — X, form a Markov chain. For any subset a of N, denote
(Xi,t € a) by X,. Then for any disjoint subsets a1, aq, -+, am of Ny, such
that

k1 <ko<- - <km (2.19)

orallk; € aj, 7=1,2,---,m,
j j

Xao, = Xap, — - — Xo,, (2.20)
forms a Markov chain. That is, a subchain of X1 — Xo — --- — X, is also
a Markov chain.

Ezxample 2.11. Let X; — X3 — --- — Xj¢ form a Markov chain and

a; = {1,2}, as = {4}, ag = {6,8}, and ay = {10} be subsets of Njp. Then
Proposition 2.10 says that

(Xl,Xz) — X4 — (X(;,Xg) — XlO (221)

also forms a Markov chain.
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We have been very careful in handling probability distributions with zero
probability masses. In the rest of the section, we show that such distributions
are very delicate in general. We first prove the following property of a strictly
positive probability distribution involving four random variables'.

Proposition 2.12. Let X1, X5, X3, and X4 be random wvariables such that
p(x1, o, w3, 24) is strictly positive. Then

X1 L X4|(Xa, X3)

= Xy L (X, X4)|Xo. 2.92
XILX3|(X2,X4)} L L (X, X)X (2.22)

Proof. Tf X7 1L X4|(X2, X3), then

p(w1, T2, 23)p(T2, 23, 74)

= 2.23
p($1,$2,$37x4) p(.’I,'Q,I‘?,) ( )
On the other hand, if X1 1 X3|(X2,X4), then
_ p(xlv xo, x4)p($2» x3, "E4)
p(xl,xz,x37x4) - . (224)
p(r2,24)
Equating (2.23) and (2.24), we have
P, @, 25) = PERTIP@L T2, T4) (2.25)
p(T2, 1)
Therefore,
p(w1,72) = > pla1, w2, w3) (2.26)
T3
_ Z p(x2, 23)p(w1, T2, T4) (2.27)
- p(x2, z4)
_ p(z2)p(w1, 22, 74) (2.28)
p(z2,74) '
or
p(x1, T2, 74) _ p(x1,22) (2.20)
p(z2,24) p(z2)
Hence from (2.24),
p(@1, o, T3, 74) = p(@1, 2, 24)p(w2, 23, 24) _ p(21, 22)p(w2, T3, L4) (2.30)

p(x2,4) p(72)
for all 1, z9, x5, and x4, ie., X7 1 (X3, X4)|X2. O

! Proposition 2.12 is called the intersection axiom in Bayesian networks. See [287].
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If p(x1,29,23,24) = 0 for some x1,x2,x3, and x4, i.e., p is not strictly
positive, the arguments in the above proof are not valid. In fact, the propo-
sition may not hold in this case. For instance, let X; = Y, Xy = Z, and
X3 = X4 =(Y,Z), where Y and Z are independent random variables. Then
Xl 1 )(4|()(2,)(3>7 X1 1 X3|(X2,X4), but Xl ,K (X3,X4)‘X2. Note that
for this construction, p is not strictly positive because p(x1,xs,x3,x4) = 0 if
x3 # (x1,x2) or T4 # (X1, T2).

The above example is somewhat counter-intuitive because it appears that
Proposition 2.12 should hold for all probability distributions via a continuity
argument? which would go like this. For any distribution p, let {py} be a
sequence of strictly positive distributions such that py — p and pj satisfies
(2.23) and (2.24) for all k, i.e.,

(21, T2, 3, Ta)pr (T2, 23) = pr(x1, T2, T3)pK (T2, T3, T4) (2.31)

and

Pr(T1, T2, @3, T4)pr (T2, T4) = Dr(x1, T2, Ta)Dr(T2, T3, T4). (2.32)

Then by the proposition, pj also satisfies (2.30), i.e.,

(1,22, 3, T4)pr(T2) = Pr(x1, 22)pr (22, T3, T4). (2.33)

Letting £ — oo, we have

p(x1, x2, T3, xa)p(x2) = p(x1, T2)p(T2, T3, Ta) (2.34)

for all x1,z9, 23, and x4, ie., X; L (X3, X4)|X2. Such an argument would
be valid if there always exists a sequence {py} as prescribed. However, the
existence of the distribution p(xi, 2,23, 24) constructed immediately after
Proposition 2.12 simply says that it is not always possible to find such a
sequence {pg}.

Therefore, probability distributions which are not strictly positive can be
very delicate. For strictly positive distributions, we see from Proposition 2.5
that their conditional independence structures are closely related to the fac-
torization problem of such distributions, which has been investigated by Chan
[60].

2.2 Shannon’s Information Measures
We begin this section by introducing the entropy of a random variable. As

we will see shortly, all Shannon’s information measures can be expressed as
linear combinations of entropies.

2 See Section 2.3 for a more detailed discussion on continuous functionals.
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Definition 2.13. The entropy H(X) of a random variable X is defined as

H(X) = =3 p(a) log p(a). (2.35)

In the definitions of all information measures, we adopt the convention
that summation is taken over the corresponding support. Such a convention
is necessary because p(x)logp(z) in (2.35) is undefined if p(z) = 0.

The base of the logarithm in (2.35) can be chosen to be any convenient
real number greater than 1. We write H(X) as H,(X) when the base of the
logarithm is «. When the base of the logarithm is 2, the unit for entropy is
the bit. When the base of the logarithm is e, the unit for entropy is the nat.
When the base of the logarithm is an integer D > 2, the unit for entropy is
the D-it (D-ary digit). In the context of source coding, the base is usually
taken to be the size of the code alphabet. This will be discussed in Chapter 4.

In computer science, a bit means an entity which can take the value 0 or 1.
In information theory, the entropy of a random variable is measured in bits.
The reader should distinguish these two meanings of a bit from each other
carefully.

Let g(X) be any function of a random variable X. We will denote the
expectation of g(X) by Eg(X), i.e.,

Eg(X) =Y p(x)g(x), (2-36)

where the summation is over Sx. Then the definition of the entropy of a
random variable X can be written as

H(X)=—FElogp(X). (2.37)

Expressions of Shannon’s information measures in terms of expectations will
be useful in subsequent discussions.

The entropy H(X) of a random variable X is a functional of the prob-
ability distribution p(z) which measures the average amount of information
contained in X, or equivalently, the average amount of uncertainty removed
upon revealing the outcome of X. Note that H(X) depends only on p(x), not
on the actual values in X. Occasionally, we also denote H(X) by H(p).

For 0 < v <1, define

hy(v) = —vylogy — (1 —)log(1l — ) (2.38)

with the convention 0log0 = 0, so that hy(0) = hy(1) = 0. With this conven-
tion, hp(7y) is continuous at v = 0 and v = 1. hy is called the binary entropy
function. For a binary random variable X with distribution {v,1 —~},

H(X) = (7). (2.39)

Figure 2.1 is the plot of hy(y) versus v in the base 2. Note that hy(7) achieves
the maximum value 1 when v = %
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Fig. 2.1. hy(7) versus v in the base 2.

The definition of the joint entropy of two random variables is similar to
the definition of the entropy of a single random variable. Extension of this
definition to more than two random variables is straightforward.

Definition 2.14. The joint entropy H(X,Y) of a pair of random variables
X and Y is defined as

H(X,Y) ==Y p(z,y)logp(z,y) = ~Elogp(X,Y). (2.40)
z,y

For two random variables, we define in the following the conditional en-
tropy of one random variable when the other random variable is given.

Definition 2.15. For random variables X and Y, the conditional entropy of
Y given X is defined as

H(Y|X) ==Y p(x,y)logp(y|lr) = —Elogp(Y]X). (2.41)

T,y

From (2.41), we can write

H(Y|X) = Zp - p(yla) logp(y|z)| - (2.42)

Yy

The inner sum is the entropy of Y conditioning on a fixed x € Sx. Thus we
are motivated to express H(Y|X) as

H(Y|X) = Zp H(Y|X =2), (2.43)

where
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HY|X = 2) = = 3 plyl) log plyla). (2.44)

Observe that the right hand sides of (2.35) and (2.44) have exactly the same
form. Similarly, for H(Y|X, Z), we write

H(Y|X,Z) Zp H(Y|X,Z = z), (2.45)
where
H(Y|X,Z=2) ==Y plx,y|2) log p(y|z, 2). (2.46)
T,y
Proposition 2.16.
H(X,)Y)=H(X)+ HY|X) (2.47)
and
H(X,)Y)=H(Y)+ HX|Y). (2.48)

Proof. Consider

H(X,Y)=—-FElogp(X,Y) (2.49)
— — Flog[p(X)p(¥|X) (2.50)
= —FElogp(X) — Elogp(Y|X) (2.51)
= H(X) + H(Y|X). (2.52)

Note that (2.50) is justified because the summation of the expectation is over
Sxy, and we have used the linearity of expectation® to obtain (2.51). This
proves (2.47), and (2.48) follows by symmetry. 0O

This proposition has the following interpretation. Consider revealing the
outcome of a pair of random variables X and Y in two steps: first the outcome
of X and then the outcome of Y. Then the proposition says that the total
amount of uncertainty removed upon revealing both X and Y is equal to the
sum of the uncertainty removed upon revealing X (uncertainty removed in the
first step) and the uncertainty removed upon revealing Y once X is known
(uncertainty removed in the second step).

Definition 2.17. For random wvariables X and Y, the mutual information
between X and Y is defined as

p(X,Y)

mEe ik (2.53)

Y)=> plz,y) logm = Elog

3 See Problem 5 at the end of the chapter.
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Remark I(X;Y) is symmetrical in X and Y.

Proposition 2.18. The mutual information between a random variable X
and itself is equal to the entropy of X, i.e., I(X;X) = H(X).

Proof. This can be seen by considering

I(X;X) = Elog zf(())(())2 (2.54)
=_-F logp(X) (255)
= H(X). (2.56)

The proposition is proved. O

Remark The entropy of X is sometimes called the self-information of X.

Proposition 2.19.

I(X;Y)=H(X)- H(X|Y), (2.57)
I(X;Y)=H(Y)-H(Y|X), (2.58)

and
I(X;Y)=H(X)+H(Y)-H(X,Y), (2.59)

provided that all the entropies and conditional entropies are finite (see Exam-
ple 2.46 in Section 2.8).

The proof of this proposition is left as an exercise.

From (2.57), we can interpret I(X;Y) as the reduction in uncertainty
about X when Y is given, or equivalently, the amount of information about
X provided by Y. Since I(X;Y) is symmetrical in X and Y, from (2.58), we
can as well interpret I(X;Y) as the amount of information about ¥ provided
by X.

The relations between the (joint) entropies, conditional entropies, and mu-
tual information for two random variables X and Y are given in Propositions
2.16 and 2.19. These relations can be summarized by the diagram in Figure 2.2
which is a variation of the Venn diagram*. One can check that all the rela-
tions between Shannon’s information measures for X and Y which are shown
in Figure 2.2 are consistent with the relations given in Propositions 2.16 and
2.19. This one-to-one correspondence between Shannon’s information mea-
sures and set theory is not just a coincidence for two random variables. We
will discuss this in depth when we introduce the I-Measure in Chapter 3.

Analogous to entropy, there is a conditional version of mutual information
called conditional mutual information.

4 The rectangle representing the universal set in a usual Venn diagram is missing
in Figure 2.2.
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H(X.Y)

H(XIY) H(YIX )

H(X) LX) H(Y)

Fig. 2.2. Relationship between entropies and mutual information for two random
variables.

Definition 2.20. For random variables X, Y and Z, the mutual information
between X and Y conditioning on Z is defined as

, _ p(z,ylz) p(X,Y|Z)
I(X;Y1Z2) = pla,y, 2) logm = Elogm. (2.60)

z,Y,2

Remark I(X;Y|Z) is symmetrical in X and Y.

Analogous to conditional entropy, we write

I(X;Y]2) =) p(2)[(X;Y|Z = 2), (2.61)
where ( 2)
; =z)= ,y|2) log —2A2Y1E) )

Similarly, when conditioning on two random variables, we write

I(X;Y[2,T) =Y p0)I(X;Y|Z,T =1) (2.63)

where

p(z,y|z,1)
I(X;Y|Z,T=t)= p(z,y, 2|t) log ———F————. (2.64)
zzy: p(z|z, t)p(y|2,1)

Conditional mutual information satisfies the same set of relations given in
Propositions 2.18 and 2.19 for mutual information except that all the terms
are now conditioned on a random variable Z. We state these relations in the
next two propositions. The proofs are omitted.
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Proposition 2.21. The mutual information between a random variable X
and itself conditioning on a random wvariable Z is equal to the conditional

entropy of X given Z, i.e., [(X; X|Z) = H(X|Z).

Proposition 2.22.

I(X;Y|Z2)=H(X|Z) - HX|Y, Z), (2.65)
I(X;Y|Z)=H(Y|Z)- HY|X, Z), (2.66)

and
I(X;Y|Z)=H(X|Z)+ HY|Z) - HX,Y|Z), (2.67)

provided that all the conditional entropies are finite.

Remark All Shannon’s information measures are finite if the random vari-
ables involved have finite alphabets. Therefore, Propositions 2.19 and 2.22
apply provided that all the random variables therein have finite alphabets.

To conclude this section, we show that all Shannon’s information measures
are special cases of conditional mutual information. Let & be a degenerate
random variable, i.e., ¢ takes a constant value with probability 1. Consider
the mutual information I(X;Y|Z). When X =Y and Z = &, I(X;Y|Z) be-
comes the entropy H(X). When X =Y, I(X;Y|Z) becomes the conditional
entropy H(X|Z). When Z = @, I(X;Y|Z) becomes the mutual information
I(X;Y). Thus all Shannon’s information measures are special cases of condi-
tional mutual information.

2.3 Continuity of Shannon’s Information Measures for
Fixed Finite Alphabets

In this section, we prove that for fixed finite alphabets, all Shannon’s infor-
mation measures are continuous functionals of the joint distribution of the
random variables involved. To formulate the notion of continuity, we first
introduce the variational distance® as a distance measure between two prob-
ability distributions on a common alphabet.

Definition 2.23. Let p and q be two probability distributions on a common
alphabet X. The variational distance between p and q is defined as

Vip,q) =Y _ Ip(x) - q(x)|. (2.68)

rzeX

5 The variational distance is also referred to as the £ distance in mathematics.
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For a fixed finite alphabet X, let Px be the set of all distributions on X.
Then according to (2.35), the entropy of a distribution p on an alphabet X is
defined as

H(p)=— > p(x)logp(x) (2.69)
€Sy

where S, denotes the support of p and S, C X. In order for H(p) to be
continuous with respect to convergence in variational distance® at a particular
distribution p € Py, for any € > 0, there exists § > 0 such that

|H(p) — H(q)| < e (2.70)
for all ¢ € Py satisfying
Vi(p,q) <9, (2.71)
or equivalently,
lim H(p')=H (lim p’) = H(p), (2.72)
p'—=p p'—=p

where the convergence p’ — p is in variational distance.
Since aloga — 0 as a — 0, we define a function ! : [0,00) — R by

__Jalogaifa>0
l(a) = {O ifa =0, (2.73)

i.e., l(a) is a continuous extension of aloga. Then (2.69) can be rewritten as

H(p) =~ lp(x)), (2.74)

reX

where the summation above is over all x in X’ instead of S,. Upon defining a
function I, : Py — R for all z € X by

lz(p) = U(p(z)), (2.75)

(2.74) becomes
H(p) = =Y L(p). (2.76)

reX

Evidently, I,.(p) is continuous in p (with respect to convergence in variational
distance). Since the summation in (2.76) involves a finite number of terms,
we conclude that H(p) is a continuous functional of p.

We now proceed to prove the continuity of conditional mutual information
which covers all cases of Shannon’s information measures. Consider I(X;Y|2)
and let pxyz be the joint distribution of X, Y, and Z, where the alphabets
X, Y, and Z are assumed to be finite. From (2.47) and (2.67), we obtain

I(X;Y|2)=H(X,Z)+ H(Y,Z) - H(X,Y,Z) — H(Z). (2.77)

6 Convergence in variational distance is the same as £!-convergence.
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Note that each term on the right hand side above is the unconditional entropy
of the corresponding marginal distribution. Then (2.77) can be rewritten as

Ixyz(pxyz) = H(pxz) + H(pyz) — H(pxvyz) — H(pz), (2.78)
where we have used Ix,y|z(pxyz) to denote I(X;Y|Z). It follows that

Colm Ixyz(Pxyz)

Pyy z—PXyz

= lim  [H(pkz) +HWyz) — H@xyz) — HPZ)] (2.79)
Pxyz—7PXYyZz

= lim H(pxz) + lim H(py »)
Pyy 7= PXYZ Py 7= PxXYZ
— lim H(pxyz) — lim H(p). (2.80)

Py 7z —PXYZ Py z—PXYZ

It can readily be proved, for example, that

o lm plyy =pxaz, (2.81)
Pxyz—7PXYZ
so that
i HG) = H (), )= Hex) (282
Py zPXYZ PxyzPXYZ

by the continuity of H(-) when the alphabets involved are fixed and finite.
The details are left as an exercise. Hence, we conclude that

Colm Txyz(Pxyz)
Pxyz7PXYZ

= H(pxz)+ H(pyz) — H(pxvz) — H(pz) (2.83)
= Ix,viz(pxvz), (2.84)

i.e., Ix,y|z(pxyz) is a continuous functional of pxyz.

Since conditional mutual information covers all cases of Shannon’s infor-
mation measures, we have proved that all Shannon’s information measures
are continuous with respect to convergence in variational distance under the
assumption that the alphabets are fixed and finite. It is not difficult to show
that under this assumption, convergence in variational distance is equivalent
to L2-convergence, i.e., convergence in Euclidean distance (see Problem 8). It
follows that Shannon’s information measures are also continuous with respect
to L2-convergence. The variational distance, however, is more often used as a
distance measure between two probability distributions because it can be di-
rectly related with the informational divergence to be discussed in Section 2.5.

The continuity of Shannon’s information measures we have proved in this
section is rather restrictive and need to be applied with caution. In fact, if
the alphabets are not fixed, Shannon’s information measures are everywhere
discontinuous with respect to convergence in a number of commonly used
distance measures. We refer the readers to Problems 28 to 31 for a discussion
of these issues.
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2.4 Chain Rules

In this section, we present a collection of information identities known as the
chain rules which are often used in information theory.

Proposition 2.24 (Chain Rule for Entropy).

H(Xy, Xp, -+, X,) = Y H(Xi| X1, Xi). (2.85)

=1

Proof. The chain rule for n = 2 has been proved in Proposition 2.16. We
prove the chain rule by induction on n. Assume (2.85) is true for n = m,
where m > 2. Then

H(X17"'5XWL7Xm+1)

=H(Xy,- -, Xon) + H(Xpn 1| X1, Xin) (2.86)

=3 H(Xi|X1, -+, Xio1) + HX 1| X1, -+, Xon) (2.87)
i=1
m—+1

=Y H(Xi|X1,, Xi1), (2.88)
i=1

where in (2.86) we have used (2.47) by letting X = (X1,--+, X)) and Y =
Xm+1, and in (2.87) we have used (2.85) for n = m. This proves the chain
rule for entropy. 0O

The chain rule for entropy has the following conditional version.

Proposition 2.25 (Chain Rule for Conditional Entropy).

H(Xy, Xa, -+, X,|Y) =Y H(Xi| Xy, Xi21,Y). (2.89)

i=1

Proof. The proposition can be proved by considering

H(X1, Xs,-, Xp|Y)

— H(X1, Xay--, X, Y) — H(Y) (2.90)

= H((X1,Y), Xa, -+, Xp) — H(Y) (2.91)

:H(XLY)+XH:H(Xi|X1,"'7Xi—1’Y)—H(Y) (2.92)

:H(X1|Y)+§:H(Xi|X1,---,Xi,1,Y) (2.93)
i—2

I
NIE

H(Xi|Xla"'aXi—1aY)a (294)
1

.
I
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where (2.90) and (2.93) follow from Proposition 2.16, while (2.92) follows from
Proposition 2.24.
Alternatively, the proposition can be proved by considering

H(X1, Xs,- -+, Xy |Y)

= p(y)H (X1, Xa, -+, XY =) (2.95)
) Zj; H(X| Xy, -, X1,V =) (2.96)
- in(y)H(Xi|X1, L XY =) (2.97)
-y H(X| X1, -+, X1, Y), (2.98)

where (2.95) and (2.98) follow from (2.43) and (2.45), respectively, and (2.96)
follows from an application of Proposition 2.24 to the joint distribution of
X1, Xsa,- -+, X, conditioning on {Y = y}. This proof offers an explanation to
the observation that (2.89) can be obtained directly from (2.85) by condition-
ing on Y in every term. O

Proposition 2.26 (Chain Rule for Mutual Information).

n
(X1, Xa, X3 V) = > I(Xi5 V[ X, -+, Xi). (2.99)
=1
Proof. Consider
I(XlaXZa e 7XnaY)
= H(X1,Xs, -+, Xp) — H(Xy, X, -+, X,|Y) (2.100)

[H(X;| X1, Xs1) — H(Xi| X1, X1, )] (2.101)

|

@
I
-

I(Xi;Y|X1,"',Xi_1), (2102)

I

Il
—

K2

where in (2.101), we have invoked both Propositions 2.24 and 2.25. The chain
rule for mutual information is proved. O

Proposition 2.27 (Chain Rule for Conditional Mutual Information).
For random variables X1, X2, -+, X,, Y, and Z,

I(X1, Xa,-+, X3 Y|Z2) =Y I(X5;Y|X1,- -, X1, Z). (2.103)

i=1
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Proof. This is the conditional version of the chain rule for mutual information.
The proof is similar to that for Proposition 2.25. The details are omitted. O

2.5 Informational Divergence

Let p and ¢ be two probability distributions on a common alphabet X. We
very often want to measure how much p is different from ¢, and vice versa. In
order to be useful, this measure must satisfy the requirements that it is always
nonnegative and it takes the zero value if and only if p = q. We denote the
support of p and ¢ by S, and &, respectively. The informational divergence
defined below serves this purpose.

Definition 2.28. The informational divergence between two probability dis-
tributions p and q on a common alphabet X is defined as

(2.104)

T X
D(pllq) = zx:p(x) log 58 = E,log ngi’

where E,, denotes expectation with respect to p.

In the above definition, in addition to the convention that the summation

is taken over S, we further adopt the convention clog§ = oo for ¢ > 0.
With this convention, if D(p||q) < oo, then p(z) = 0 whenever ¢(z) = 0, i.e.,
S, C S,

In the literature, the informational divergence is also referred to as relative
entropy or the Kullback-Leibler distance. We note that D(pl|¢) is not symmet-
rical in p and g, so it is not a true metric or “distance.” Moreover, D(-||-) does
not satisfy the triangular inequality (see Problem 14).

In the rest of the book, the informational divergence will be referred to as
divergence for brevity. Before we prove that divergence is always nonnegative,
we first establish the following simple but important inequality called the
fundamental inequality in information theory.

Lemma 2.29 (Fundamental Inequality). For any a > 0,
Ina<a-1 (2.105)
with equality if and only if a = 1.

Proof. Let f(a) = Ina —a+ 1. Then f'(a) = 1/a — 1 and f"(a) = —1/a>.
Since f(1) = 0, f/(1) = 0, and f”(1) = —1 < 0, we see that f(a) attains
its maximum value 0 when a = 1. This proves (2.105). It is also clear that
equality holds in (2.105) if and only if a = 1. Figure 2.3 is an illustration of
the fundamental inequality. O



24 2 Information Measures

Fig. 2.3. The fundamental inequality Ina < a — 1.

Corollary 2.30. For any a > 0,

1
Ina>1-— (2.106)
a

with equality if and only if a = 1.
Proof. This can be proved by replacing a by 1/a in (2.105). O

We can see from Figure 2.3 that the fundamental inequality results from
the convexity of the logarithmic function. In fact, many important results in

information theory are also direct or indirect consequences of the convexity
of the logarithmic function!

Theorem 2.31 (Divergence Inequality). For any two probability distribu-
tions p and q on a common alphabet X,

D(pllq) = 0 (2.107)
with equality if and only if p = q.

Proof. If g(x) = 0 for some = € S,, then D(p||qg) = oo and the theorem is
trivially true. Therefore, we assume that ¢(z) > 0 for all x € S,. Consider

Do) = (loge) 3 pla)n 27 (2,108
€S,
oge T _a@)
> (t050) 3 )(1-29) (2109

= (loge) | > p(a) = Y a(@) (2.110)
€S,

€S,

>0 (2.111)

)
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where (2.109) results from an application of (2.106), and (2.111) follows from

d gy <1=Y pa). (2.112)
TES) €S,
This proves (2.107).
For equality to hold in (2.107), equality must hold in (2.109) for all z € S,
and also in (2.111). For the former, we see from Lemma 2.29 that this is the
case if and only if

p(z) =q(z) forallzeS, (2.113)
which implies
Y al@) =Y plx) =1, (2.114)
TES, €Sy

i.e., (2.111) holds with equality. Thus (2.113) is a necessary and sufficient
condition for equality to hold in (2.107).

It is immediate that p = ¢ implies (2.113), so it remains to prove the
converse. Since ) ¢q(z) =1 and ¢(x) > 0 for all z, p(x) = q(z) for all z € S,
implies g(x) = 0 for all « € S, and therefore p = ¢g. The theorem is proved.
O

‘We now prove a very useful consequence of the divergence inequality called
the log-sum inequality.

Theorem 2.32 (Log-Sum Inequality). For positive numbers aq, az, - - and
nonnegative numbers by, by, - - such that Y. a; < oo and 0 < Y, b; < 00,

Zai log % > <Z ai> log %ZZ (2.115)

with the convention that log G = oo. Moreover, equality holds if and only if

aq

i+ = constant for all i.
The log-sum inequality can easily be understood by writing it out for the
case when there are two terms in each of the summations:
a1 + as
by + by

a1 log % + as log % > (a1 + az) log (2.116)
1 2

Proof of Theorem 2.32. Let aj = a;/ }_;aj and b; = b;/ } >, b;. Then {a;} and
{b} are probability distributions. Using the divergence inequality, we have

/

0<Y al log% (2.117)

=3 " og ai/ Zf o (2.118)

= ﬁ [Z a; log% — <Z al-) log %ﬂ Zj] , (2.119)
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b;

a;

which implies (2.115). Equality holds if and only if a; = b, for all 4, or
constant for all 4. The theorem is proved. O

One can also prove the divergence inequality by using the log-sum in-
equality (see Problem 20), so the two inequalities are in fact equivalent. The
log-sum inequality also finds application in proving the next theorem which
gives a lower bound on the divergence between two probability distributions
on a common alphabet in terms of the variational distance between them. We
will see further applications of the log-sum inequality when we discuss the
convergence of some iterative algorithms in Chapter 9.

Theorem 2.33 (Pinsker’s Inequality).

p:q)- (2.120)

1
> _ - 2
D(pllq) > 5tz ¢

Both divergence and the variational distance can be used as measures of
the difference between two probability distributions defined on the same al-
phabet. Pinsker’s inequality has the important implication that for two proba-
bility distributions p and ¢ defined on the same alphabet, if D(p||q) or D(q||p)
is small, then so is V(p, ¢). Furthermore, for a sequence of probability distri-
butions gk, as k — oo, if D(p|lqx) — 0 or D(gx|lp) — 0, then V(p,qx) — O.
In other words, convergence in divergence is a stronger notion of convergence
than convergence in variational distance.

The proof of Pinsker’s inequality as well as its consequence discussed above
is left as an exercise (see Problems 23 and 24).

2.6 The Basic Inequalities

In this section, we prove that all Shannon’s information measures, namely
entropy, conditional entropy, mutual information, and conditional mutual in-
formation are always nonnegative. By this, we mean that these quantities are
nonnegative for all joint distributions for the random variables involved.

Theorem 2.34. For random variables X, Y, and Z,
I(X;Y|Z) >0, (2.121)

with equality if and only if X and Y are independent when conditioning on

Z.

Proof. Observe that
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I(X;Y|Z)
= €T z) lo M
_;y,zp( 2! gp(x 2)p(y|z) (2.122)

p(x|2)p(y|2)

=> p(2)Y_plx,yl2)log ple,ylz) (2.123)

where we have used pxy|. to denote {p(z,y|z),(z,y) € X x Y}, etc. Since
for a fixed z, both pxy|. and px|.py|. are joint probability distributions on
X x Y, we have

D(pXY\szX\szlz) = 0. (2'125)

Therefore, we conclude that I(X;Y|Z) > 0. Finally, we see from Theorem 2.31
that I(X;Y|Z) = 0 if and only if for all z € S,

p(x,ylz) = p(x|2)p(y|2), (2.126)

or

p(z,y,2) = p(z, 2)p(yl2) (2.127)
for all x and y. Therefore, X and Y are independent conditioning on Z. The
proof is accomplished. 0O

As we have seen in Section 2.2 that all Shannon’s information measures
are special cases of conditional mutual information, we already have proved
that all Shannon’s information measures are always nonnegative. The nonneg-
ativity of all Shannon’s information measures is called the basic inequalities.

For entropy and conditional entropy, we offer the following more direct
proof for their nonnegativity. Consider the entropy H(X) of a random variable
X. For all z € Sx, since 0 < p(z) < 1, logp(xz) < 0. It then follows from the
definition in (2.35) that H(X) > 0. For the conditional entropy H(Y|X) of
random variable Y given random variable X, since H(Y|X = z) > 0 for each
x € Sx, we see from (2.43) that H(Y|X) > 0.

Proposition 2.35. H(X) = 0 if and only if X is deterministic.

Proof. If X is deterministic, i.e., there exists z* € A such that p(z*) = 1
and p(z) = 0 for all z # z*, then H(X) = —p(z*)logp(z*) = 0. On the
other hand, if X is not deterministic, i.e., there exists z* € X such that
0 < p(z*) < 1, then H(X) > —p(z*)logp(z*) > 0. Therefore, we conclude
that H(X) = 0 if and only if X is deterministic. O

Proposition 2.36. H(Y|X) =0 if and only if Y is a function of X.

Proof. From (2.43), we see that H(Y|X) =0if and only if HY|X =2) =0
for each © € Sx. Then from the last proposition, this happens if and only if
Y is deterministic for each given x. In other words, Y is a function of X. O
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Proposition 2.37. I(X;Y) =0 if and only if X and Y are independent.

Proof. This is a special case of Theorem 2.34 with Z being a degenerate
random variable. O

One can regard (conditional) mutual information as a measure of (con-
ditional) dependency between two random variables. When the (conditional)
mutual information is exactly equal to 0, the two random variables are (con-
ditionally) independent.

We refer to inequalities involving Shannon’s information measures only
(possibly with constant terms) as information inequalities. The basic inequal-
ities are important examples of information inequalities. Likewise, we refer to
identities involving Shannon’s information measures only as information iden-
tities. From the information identities (2.47), (2.57), and (2.65), we see that
all Shannon’s information measures can be expressed as linear combinations
of entropies provided that the latter are all finite. Specifically,

H(Y|X)=H(X,Y)—- H(X), (2.128)
I(X;Y)=H(X)+ H(Y)-H(X,Y), (2.129)

and
I(X;Y|Z)=H(X,Z)+ HY,Z)—-H(X,Y,Z)— H(Z). (2.130)

Therefore, an information inequality is an inequality which involves only en-
tropies.

As we will see later in the book, information inequalities form the most
important set of tools for proving converse coding theorems in information
theory. Except for a number of so-called non-Shannon-type inequalities, all
known information inequalities are implied by the basic inequalities. Infor-
mation inequalities will be studied systematically in Chapters 13, 14, and 15.
In the next section, we will prove some consequences of the basic inequalities
which are often used in information theory.

2.7 Some Useful Information Inequalities

In this section, we prove some useful consequences of the basic inequalities
introduced in the last section. Note that the conditional versions of these
inequalities can be proved by techniques similar to those used in the proof of
Proposition 2.25.

Theorem 2.38 (Conditioning Does Not Increase Entropy).
HY|X)<H®Y) (2.131)

with equality if and only if X and Y are independent.
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Proof. This can be proved by considering
HY|X)=HY)-I(X;Y)<H(Y), (2.132)

where the inequality follows because I(X;Y") is always nonnegative. The in-
equality is tight if and only if I(X;Y’) = 0, which is equivalent by Proposi-
tion 2.37 to X and Y being independent. O

Similarly, it can be shown that
HY|X,Z)<H(Y|Z), (2.133)

which is the conditional version of the above proposition. These results have
the following interpretation. Suppose Y is a random variable we are interested
in, and X and Z are side-information about Y. Then our uncertainty about Y
cannot be increased on the average upon receiving side-information X. Once
we know X, our uncertainty about Y again cannot be increased on the average
upon further receiving side-information Z.

Remark Unlike entropy, the mutual information between two random vari-
ables can be increased by conditioning on a third random variable. We refer
the reader to Section 3.4 for a discussion.

Theorem 2.39 (Independence Bound for Entropy).
i=1

with equality if and only if X;, 1 =1,2,---,n are mutually independent.

Proof. By the chain rule for entropy,

n

H(Xy, Xo,++, Xp) = Y H(Xi| X1, +, Xi1) (2.135)

<Y H(X)), (2.136)

where the inequality follows because we have proved in the last theorem that
conditioning does not increase entropy. The inequality is tight if and only if
it is tight for each ¢, i.e.,

H(X:|X1, -, Xi1) = H(X;) (2.137)

for 1 < ¢ < n. From the last theorem, this is equivalent to X; being indepen-
dent of X1, X5, -+, X;_1 for each . Then
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p(xla'r27 e 7xn)

=p(z1, 22, -+, Tp—1)p(Tn) (2.138)

=p(p(z1,22, -, Tn_2)P(Tn—1)p(Tn) (2.139)

= p(z1)p(z2) - p(2n) (2.140)
for all z1,xs, -+, xn, i.e., X1, Xo,- -, X, are mutually independent.

Alternatively, we can prove the theorem by considering

ZH(X’L) *H(leXQa"'aXn)
=1

n
= - Elogp(X;) + Elog p(X1, X2, -+, X») (2.141)
i=1
= —Elog[p(X1)p(X2) - - p(Xn)] + Elogp(X1, Xa, -, X)) (2.142)
X Xo. - X
_ p( 1, A2, ) n) (2143)
p(X1)p(X2) -+ p(Xn)
= D(px,x,--x,Px,px, - Px,,) (2.144)
>0, (2.145)
where equality holds if and only if
p(xlvx%"'vmn) :p(xl)p(xg)---p(xn) (2146)
for all z1, x5, -, x,, ie., X1, X5, -+, X, are mutually independent. O
Theorem 2.40.
I(X;Y,2) > I(X;Y), (2.147)
with equality if and only if X —Y — Z forms a Markov chain.
Proof. By the chain rule for mutual information, we have
I(X;Y,2)=1(X;Y)+ I(X;Z]Y) > I(X;Y). (2.148)

The above inequality is tight if and only if I(X;Z|Y) =0,or X - Y — Z
forms a Markov chain. The theorem is proved. O

Lemma 2.41. If X — Y — Z forms a Markov chain, then
I(X;2)<I(X;Y) (2.149)

and
I(X;2)<I(Y;2). (2.150)
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Before proving this inequality, we first discuss its meaning. Suppose X
is a random variable we are interested in, and Y is an observation of X. If
we infer X via Y, our uncertainty about X on the average is H(X|Y"). Now
suppose we process Y (either deterministically or probabilistically) to obtain
a random variable Z. If we infer X via Z, our uncertainty about X on the
average is H(X|Z). Since X — Y — Z forms a Markov chain, from (2.149),
we have

H(X|Z)=H(X) - I(X;2) (2.151)
> H(X) - I(X;Y) (2.152)
= H(X|Y), (2.153)

i.e., further processing of Y can only increase our uncertainty about X on the
average.

Proof of Lemma 2.41. Assume X —Y — Z ie., X 1 Z|Y. By Theorem 2.34,
we have

I(X;Z]Y)=0. (2.154)
Then
I(X;2)=1(X;Y,2) - I(X;Y]|2) (2.155)
<I(X;Y,Z) (2.156)
=I(X;Y)+I1(X;Z|Y) (2.157)
=I1(X;Y). (2.158)

In (2.155) and (2.157), we have used the chain rule for mutual information.
The inequality in (2.156) follows because I(X;Y|Z) is always nonnegative,
and (2.158) follows from (2.154). This proves (2.149).

Since X — Y — Z is equivalent to Z — Y — X, we also have proved
(2.150). This completes the proof of the lemma. O

From Lemma 2.41, we can prove the more general data processing theorem.

Theorem 2.42 (Data Processing Theorem). If U — X — Y — V forms
a Markov chain, then
I(U; V) < I(X;Y). (2.159)

Proof. Assume U — X — Y — V. Then by Proposition 2.10, we have U —
X —>Y and U — Y — V. From the first Markov chain and Lemma 2.41, we
have

I(U;Y) <I(X;Y). (2.160)
From the second Markov chain and Lemma 2.41, we have
(U, V)< I(U;Y). (2.161)

Combining (2.160) and (2.161), we obtain (2.159), proving the theorem. 0O
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2.8 Fano’s Inequality

In the last section, we have proved a few information inequalities involving
only Shannon’s information measures. In this section, we first prove an upper
bound on the entropy of a random variable in terms of the size of the alpha-
bet. This inequality is then used in the proof of Fano’s inequality, which is
extremely useful in proving converse coding theorems in information theory.

Theorem 2.43. For any random variable X,
H(X) <logl|X|, (2.162)

where |X| denotes the size of the alphabet X. This upper bound is tight if and
only if X is distributed uniformly on X.

Proof. Let u be the uniform distribution on X, i.e., u(z) = |X|~! for all
z € X. Then

log |X| — H(X)

=— Z p(z)log | X7t + Z x)log p(x (2.163)
T€SX TE€Sx

=— Z x)logu(x) + Z p(z) log p(x) (2.164)
€8x r€Sx

= Z p(x) log iiz; (2.165)

TESx
= D(pllu) (2.166)
>0, (2.167)

proving (2.162). This upper bound is tight if and if only D(p|u) = 0, which
from Theorem 2.31 is equivalent to p(x) = u(z) for all z € X, completing the
proof. O

Corollary 2.44. The entropy of a random variable may take any nonnegative
real value.

Proof. Consider a random variable X defined on a fixed finite alphabet X.
We see from the last theorem that H(X) = log|X| is achieved when X is
distributed uniformly on X. On the other hand, H(X) = 0 is achieved when
X is deterministic. For 0 < a < |X|71, let

g(a) = H ({1 (1X| - Daa.---.a}) (2.168)
=—I(1-(X] - 1)a) — (|X| - Dli(a), (2.169)

where [(-) is defined in (2.73). Note that g(a) is continuous in a, with g(0) =0
and g(|X|7!) = log|X|. For any value 0 < b < log|X|, by the intermediate
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value theorem of continuous functions, there exists a distribution for X such
that H(X) = b. Then we see that H(X) can take any positive value by letting
|X| be sufficiently large. This accomplishes the proof. O

Remark Let |X| = D, or the random variable X is a D-ary symbol. When
the base of the logarithm is D, (2.162) becomes

Hp(X) < 1. (2.170)

Recall that the unit of entropy is the D-it when the logarithm is in the base
D. This inequality says that a D-ary symbol can carry at most 1 D-it of
information. This maximum is achieved when X has a uniform distribution.
We already have seen the binary case when we discuss the binary entropy
function hy(p) in Section 2.2.

We see from Theorem 2.43 that the entropy of a random variable is finite as
long as it has a finite alphabet. However, if a random variable has a countable
alphabet”, its entropy may or may not be finite. This will be shown in the
next two examples.

FEzxample 2.45. Let X be a random variable such that

Pr{X =i} =27" (2.171)
i=1,2,---. Then
Hy(X) =Y 27" =2, (2.172)
i=1

which is finite.

For a random variable X with a countable alphabet and finite entropy,
we show in Appendix 2.A that the entropy of X can be approximated by the
entropy of a truncation of the distribution of X.

Ezample 2.46. Let Y be a random variable which takes values in the subset
of pairs of integers

22"
{(i,j):1§i<ooand1§j§2i} (2.173)
such that

Pr{Y = (i,j)} =272 (2.174)
for all ¢+ and j. First, we check that

7 An alphabet is countable means that it is either finite or countably infinite.
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0o 27 /2" < (o2
(i — -2t [ 2 | _
Z Z Pr{Y = (i,5)} = 22 (21, ) 1. (2.175)
i=1 j=1 =1
Then ‘
0o 221/2i ] ) 0o
==> Y 27%log, 27 =) "1, (2.176)
i=1 j=1 i=1

which does not converge.

Let X be a random variable and X be an estimate on X which takes value
in the same alphabet X. Let the probability of error P, be

P, =Pr{X # X}. (2.177)

If P, =0, ic., X = X with probability 1, then H(X|X) = 0 by Proposi-
tion 2.36. Intuitively, if P is small, i.e., X = X with probability close to
1, then H(X|X) should be close to 0. Fano’s inequality makes this intuition
precise.

Theorem 2.47 (Fano’s Inequality). Let X and X be random variables
taking values in the same alphabet X. Then

H(X‘X) Shb(PP)“i’PelOg(“)q*l), (2178)
where hy, is the binary entropy function.
Proof. Define a random variable

Y_{Ole:X (2.179)

1if X # X.

The random variable Y is an indicator of the error event {X # X }, with
Pr{Y =1} = P, and H(Y) = hy(P.). Since Y is a function X and X,

H(Y|X,X)=0. (2.180)
Then

H(X|X)
= H(X|X)+ H(Y|X, X) (2.181)
= H(X,Y|X) (2.182)
= H(Y|X)+ H(X|X,Y) (2.183)
<H(Y)+ H(X|X,Y) (2.184)
=HY)+ Y [Pr{X =&Y =0 H(X|X =,V =0)

TeEX

+Pr{X =&Y =1}H(X|X =2,V =1)|. (2.185)
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In the above, (2.181) follows from (2.180), (2.184) follows because conditioning
does not increase entropy, and (2.185) follows from an application of (2.43).
Now X must take the value Z if X = # and Y = 0. In other words, X is
conditionally deterministic given X=¢andY =0. Therefore, by Proposi-
tion 2.35,

H(X|X =2Y =0)=0. (2.186)
If X =2 and Y = 1, then X must take a value in the set {z € X : = # &}
which contains |X| — 1 elements. By Theorem 2.43, we have

H(X|X =Y =1) <log(|X| — 1), (2.187)
where this upper bound does not depend on . Hence,
H(X|X)
< hy(P.) + (Z Pr{X =&Y = 1}) log(|X| — 1) (2.188)
TEX
= hp(P.) + Pr{Y =1} log(|X| — 1) (2.189)
= hb(Pe) + P 10g(|X| - ]-)7 (2190)

which completes the proof. O

Very often, we only need the following simplified version when we apply
Fano’s inequality. The proof is omitted.

Corollary 2.48. H(X|X) < 1+ P, log|X|.

Fano’s inequality has the following implication. If the alphabet X is finite,
as P, — 0, the upper bound in (2.178) tends to 0, which implies H (X|X) also
tends to 0. However, this is not necessarily the case if X is countable, which
is shown in the next example.

Ezample 2.49. Let X take the value 0 with probability 1. Let Z be an inde-
pendent binary random variable taking values in {0,1}. Define the random
variable X by

0ifZ=0
X_{Yiszl, (2.191)
where Y is the random variable in Example 2.46 whose entropy is infinity. Let
P, =Pr{X # X} =Pr{Z =1}. (2.192)

Then
H(X|X) (
= H(X) (
> H(X|Z) (2.195
=Pr{Z=0}H(X|Z=0)+Pr{Z=1}H(X|Z=1) (
=1-P)-0+P.-H(Y) (
(

=0
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for any P, > 0. Therefore, H(X|X) does not tend to 0 as P, — 0.

2.9 Maximum Entropy Distributions

In Theorem 2.43, we have proved that for any random variable X,
H(X) <logl|X|, (2.199)

with equality when X is distributed uniformly over X. In this section, we
revisit this result in the context that X is a real random variable.

To simplify our discussion, all the logarithms are in the base e. Consider
the following problem:

Maximize H (p) over all probability distributions p defined on a count-
able subset S of the set of real numbers, subject to

Z p(x)ri(z) =a; for1<i<m, (2.200)
zES)

where S, C S and () is defined for all z € S.

The following theorem renders a solution to this problem.

Theorem 2.50. Let
prla) = e (2.201)

for all x € S, where Ao, A1, -+, A\ are chosen such that the constraints in
(2.200) are satisfied. Then p* mazimizes H(p) over all probability distribu-
tion p on S, subject to the constraints in (2.200).

Proof. For any p satisfying the constraints in (2.200), consider

H(p") — H(p)
= - Zp ) Inp*(z) + Z p(z) Inp(z) (2.202)
€S €Sy
==Y p'(x) <—)\0 =Y () ) + Y p(z)Inp(z (2.203)
€S % TES,
0 (Zp* ) +Z/\ (Zp ) 3" pla)np(z)  (2.204)
z€eS TeS €S,

=14 Z/\ a;+ Y pla)np(x (2.205)

TES,

=X Z p(z) +Z)‘i Z p(@)ri(z) | + Z z)Inp(z) (2.206)

€S, i €S, €S,
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= — Z p(x) (—)\0 — Z)\irl ) Z x)Inp(x (2.207)

€S, €S,
S Z x)Inp*(z) + Z p(z) Inp(z) (2.208)
TES, €S,
_ )y 2@)
& .
= D(pllp") (2.210)
> 0. (2.211)

In the above, (2.207) is obtained from (2.203) by replacing p*(z) by p(x) and
xz € S by z € S, in the first summation, while the intermediate steps (2.204)
to (2.206) are justified by noting that both p* and p satisfy the constraints
n (2.200). The last step is an application of the divergence inequality (Theo-
rem 2.31). The proof is accomplished. 0O

Remark For all z € S, p*(z) > 0, so that Sp« = S.

The following corollary of Theorem 2.50 is rather subtle.

Corollary 2.51. Let p* be a probability distribution defined on S with

prla) = e T (2.212)

for all x € S§. Then p* mazximizes H(p) over all probability distribution p
defined on S, subject to the constraints

Z p(x)ri(z) = Zp*(x)n(ac) forl<i<m. (2.213)

TES) z€S

Ezample 2.52. Let S be finite and let the set of constraints in (2.200) be
empty. Then
pH(x) = e, (2.214)

a constant that does not depend on x. Therefore, p* is simply the uniform
distribution over S, i.e., p*(z) = |S|~! for all # € S. This is consistent with
Theorem 2.43.

Ezample 2.53. Let S = {0,1,2,---}, and let the set of constraints in (2.200)

be
> p)r =a, (2.215)

x

where a > 0, i.e., the mean of the distribution p is fixed at some nonnegative
value a. We now determine p* using the prescription in Theorem 2.50. Let

g =e N (2.216)
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for i = 0,1. Then by (2.201),

p*(x) = qoai- (2.217)
Evidently, p* is a geometric distribution, so that

Finally, we invoke the constraint (2.200) on p to obtain ¢; = (a + 1)~!. The
details are omitted.

2.10 Entropy Rate of a Stationary Source

In the previous sections, we have discussed various properties of the entropy of
a finite collection of random variables. In this section, we discuss the entropy
rate of a discrete-time information source.

A discrete-time information source { X,k > 1} is an infinite collection of
random variables indexed by the set of positive integers. Since the index set
is ordered, it is natural to regard the indices as time indices. We will refer to
the random variables X, as letters.

We assume that H (X)) < oo for all k. Then for any finite subset A of the
index set {k : k > 1}, we have

H(Xp, ke A) <> H(X,) < oo. (2.219)
keA

However, it is not meaningful to discuss H(Xg,k > 1) because the joint
entropy of an infinite collection of letters is infinite except for very special
cases. On the other hand, since the indices are ordered, we can naturally define
the entropy rate of an information source, which gives the average entropy per
letter of the source.

Definition 2.54. The entropy rate of an information source { Xy} is defined
as

1
HX = lim 7H(X1,X27~-~,Xn) (2220)

n—oo 1

when the limit exists.

We show in the next two examples that the entropy rate of a source may
or may not exist.

Ezample 2.55. Let {X} be an ii.d. source with generic random variable X.
Then

nH(X)

1
lim —H(Xy, Xa, -, X,) = lim (2.221)
n—oo N, n—oo n
= lim H(X) (2.222)
= H(X), (2.223)

i.e., the entropy rate of an i.i.d. source is the entropy of any of its single letters.
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Ezample 2.56. Let {X}} be a source such that X}, are mutually independent
and H(Xy) =k for k > 1. Then

1 1 —

—H(X{,X5,---, X :75 2.224
n ( 1, 25 bl ’I’L) nk:1k ( )
1n(n+1)
=" 2.22
g (2.225)

1
= i(n +1), (2.226)

which does not converge as n — oo although H(X}) < oo for all k. Therefore,
the entropy rate of {Xj} does not exist.

Toward characterizing the asymptotic behavior of {X}}, it is natural to
consider the limit

H = lim H(X,|X1,Xo, -, Xn_1) (2.227)

n—oo

if it exists. The quantity H(X,|X1, Xa2,--+, X, —1) is interpreted as the con-
ditional entropy of the next letter given that we know all the past history of
the source, and H is the limit of this quantity after the source has been run
for an indefinite amount of time.

Definition 2.57. An information source {Xy} is stationary if
X1, Xo, -+, Xom (2.228)

and
Xt Xogt, - Xonp (2.229)
have the same joint distribution for any m,l > 1.

In the rest of the section, we will show that stationarity is a sufficient
condition for the existence of the entropy rate of an information source.

Lemma 2.58. Let {X}} be a stationary source. Then HY exists.

Proof. Since H(X,|X1, X2, +,Xp—1) is lower bounded by zero for all n, it
suffices to prove that H(X,|X;, Xo, -, X,—_1) is non-increasing in n to con-
clude that the limit HY% exists. Toward this end, for n > 2, consider

H(anleXQa e aXn—l)
< H(X|Xo, X3, Xpo1) (2.230)
= H(X,1]X1, X2, -+, Xn—2), (2.231)

where the last step is justified by the stationarity of {X}. The lemma is
proved. O
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Lemma 2.59 (Cesdro Mean). Let ay and by be real numbers. If a, — a as
n — 0o and b, = %Zzzﬂllm then b,, — a as n — co.

Proof. The idea of the lemma is the following. If a,, — a as n — oo, then the
average of the first n terms in {ay}, namely b, also tends to a as n — oc.

The lemma is formally proved as follows. Since a,, — a as n — oo, for
every € > 0, there exists N(e) such that |a, — a| < € for all n > N(e). For
n > N (€), consider

1 n
by —al= |25 a - 2.232
ol = |3 Y (2.2
1 n
LS o 2.233
22— (2.23)
<1 Zn:| .~ qf (2.234)
P a; —a :
1 N(e) n
=— la; — al + Z la; — al (2.235)
i=1 i=N(e)+1
N(e)
1 (n— N(e))e
< — i — —_— 2.236
3 3o+ O (2.236)
N(e)
< — i . 2.237
DIURER (2.287)

The first term tends to 0 as n — oo. Therefore, for any € > 0, by taking n
to be sufficiently large, we can make |b, — a| < 2¢. Hence b,, — a as n — oo,
proving the lemma. O

We now prove that H is an alternative definition/interpretation of the
entropy rate of {X;} when {X}} is stationary.

Theorem 2.60. The entropy rate Hx of a stationary source { X} exists and
is equal to H.

Proof. Since we have proved in Lemma 2.58 that H% always exists for a
stationary source { Xy}, in order to prove the theorem, we only have to prove
that Hx = H%. By the chain rule for entropy,

1
~H(X1, Xa, 0, X)) = > H(X| X1, Xa, -+, Xio1). (2.238)

k=1

1 n
n e

Since

khm H(Xk|X1,X2,,Xk,1) :HS( (2239)
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from (2.227), it follows from Lemma 2.59 that

1
Hx = lim —H (X1, Xa, -, X,)) = Hy. (2.240)

n—oo n

The theorem is proved. O

In this theorem, we have proved that the entropy rate of a random source
{ Xk} exists under the fairly general assumption that { X} is stationary. How-
ever, the entropy rate of a stationary source { Xy} may not carry any physical
meaning unless { X} is also ergodic. This will be explained when we discuss
the Shannon-McMillan-Breiman Theorem in Section 5.4.

Appendix 2.A: Approximation of Random Variables
with Countably Infinite Alphabets by Truncation

Let X be a random variable with a countable alphabet X such that H(X) <
oco. Without loss of generality, X is taken to be the set of positive integers.
Define a random variable X (m) which takes values in

Ny ={1,2,---,m} (2.241)
such that PelX —
Pr{X(m) =k} = M (2.242)

for all k € M, i.e., the distribution of X (m) is the truncation of the distri-
bution of X up to m.

It is intuitively correct that H(X(m)) — H(X) as m — oo, which we
formally prove in this appendix. For every m > 1, define the binary random

variable
lif X <m
B(m) = {0 if X > m. (2.243)

Consider

H(X) = —iPr{X = k}logPr{X =k}

k=1
- i Pr{X = k}logPr{X = k}. (2.244)
k=m+1
As m — oo,
— zm:Pr{X =k}logPr{X =k} — H(X). (2.245)
k=1

Since H(X) < oo,
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— > Pr{X =k}logPr{X =k} -0 (2.246)
k=m+1

as k — oo. Now consider

H(X)
= H(X|B(m)) + I(X; B(m)) (2.247)
= H(X|B(m) =1)Pr{B(m) =1} + H(X|B(m) =0)

xPr{B(m) =0} 4+ I(X; B(m)) (2.248)
= H(X(m))Pr{B(m) =1} + H(X|B(m) = 0)

xPr{B(m) =0} + I(X; B(m)). (2.249)

As m — oo, H(B(m)) — 0 since Pr{B(m) = 1} — 1. This implies
I(X; B(m)) — 0 because

I(X; B(m)) < H(B(m)). (2.250)
In (2.249), we further consider

H(X|B(m) = 0)Pr{B(m) = 0}

__ kgﬂpr{x — k}log fm (2.251)
_ i Pr{X = k}(log Pr{X = k}

- fo:gml;rrl{B(m) =0}) (2.252)
__ i (Pr{X = k}log Pr{X = k})

k=m+1
+ ( > Pr(x = k}) log Pr{B(m) = 0) (2.259)
k=m+1

__ i Pr{X = k}log Pr{X = k}

+1’;:€39+(1m) — 0}log Pr{B(m) = 0}. (2.254)

As m — oo, the summation above tends to 0 by (2.246). Since Pr{B(m) =
0} — 0, Pr{B(m) = 0} logPr{B(m) = 0} — 0. Therefore,

H(X|B(m) = 0)Pr{B(m) = 0} — 0, (2.255)

and we see from (2.249) that H(X (m)) — H(X) as m — oo.
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Chapter Summary
Markov Chain: X — Y — Z forms a Markov chain if and only if

p(x,y,2) = a(z,y)b(y, 2)

for all x,y, and z such that p(y) > 0.

Shannon’s Information Measures:

Zp )log p(z) = —Elog p(X)
N g PO g pY)
B Zp( y)log p(x)p(y) Elog p(X)p(Y)
H(Y|X) = Zp z,y)logp(ylr) = —Elogp(Y|X)
S pel) Y[
1GY12) = 3 play2)log Loy s = Blog o V1)

z,Y,z

Some Useful Identitites:

(X):I( ) )
H(Y \X):H( Y) — H(X)
I(X;Y) = H(X) - H(X[|Y)
I(X; Y|Z):H(X|Z) H(X|Y,Z).

Chain Rule for Entropy:
H(X1, Xa,-+, Xp) = Y H(Xi| X1, , Xiq).
i=1

Chain Rule for Mutual Information:
(X1, Xa, X3 V) =Y (X3 Y[Xy, -, Xisy).
i=1

Informational Divergence: For two probability distributions p and ¢ on a
common alphabet X,

D(pllq) = ZP x) = I, log p(X).

Fundamental Inequality: For any a > 0, Ina < a — 1, with equality if and
only if a = 1.
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Divergence Inequality: D(p||q) > 0, with equality if and only if p = gq.

Log-Sum Inequality: For positive numbers a1, as, - - - and nonnegative num-
bers by, ba, - - - such that ). a; < oo and 0 <) . b; < o0,

zi:ai log%z > (Z:al) log %zzz

Equality holds if and only if ‘;— = constant for all 7.

The Basic Inequalities: All Shannon’s information measures are nonnega-
tive.

Some Useful Properties of Shannon’s Information Measures:

1. H(X) < log|X| with equality if and only if X is uniform.
2. H(X) =0 if and only if X is deterministic.

3. HY|X) =0 if and only if Y is a function of X.

4. I(X;Y) =0if and only X and Y are independent.

Fano’s Inequality: Let X and X be random variables taking values in the
same alphabet X. Then

H(X‘X) < hb(Pe) —|—P€10g(‘X| - 1)'

Conditioning Does Not Increase Entropy: H(Y|X) < H(Y'), with equal-
ity if and only if X and Y are independent.

Independence Bound for Entropy:
H(X1, Xy, +, X,) <Y H(X))

with equality if and only if X;, 1 =1,2,---,n are mutually independent.

Data Processing Theorem: If U - X — Y — V forms a Markov chain,
then I(U; V) < I(X;Y).
Maximum Entropy Distributions: Let

p* (!L‘) = e_)‘O_ZZL Airi(z)

for all x € §, where \g, A1, -+, Ay, are chosen such that the constraints

Z p(x)ri(z) =a; for1<i<m
€Sy

are satisfied. Then p* maximizes H(p) over all probability distributions p on
S subject to the above constraints.

Entropy Rate of a Stationary Source:
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1. The entropy rate of an information source {X}} is defined as

1
HX = lim —H(X17X2,"',Xn)

n—oo N

when the limit exists.
2. The entropy rate Hx of a stationary source { X} exists and is equal to

HS( = lim H(Xn|X1,X2,"'7Xn_1).

n—oo

Problems

1. Let X and Y be random variables with alphabets X =Y = {1,2,3,4,5}
and joint distribution p(z,y) given by

11111
L 21200
~l20111
25103020

00113

Calculate H(X),H(Y), H(X|Y),H(Y|X), and I(X;Y).

2. Prove Propositions 2.8, 2.9, 2.10, 2.19, 2.21, and 2.22.

3. Give an example which shows that pairwise independence does not imply
mutual independence.

4. Verify that p(x,y, z) as defined in Definition 2.4 is a probability distribu-
tion. You should exclude all the zero probability masses from the summa-
tion carefully.

5. Linearity of expectation It is well-known that expectation is linear, i.e.,
E[f(X)+9()] = Ef(X)+ Eg(Y), where the summation in an expec-
tation is taken over the corresponding alphabet. However, we adopt in
information theory the convention that the summation in an expectation
is taken over the corresponding support. Justify carefully the linearity of
expectation under this convention.

6. The identity I(X;Y) = H(X) — H(X|Y) is invalid if H(X]Y) (and hence
H(X)) is equal to infinity. Give an example such that I(X;Y") has a finite
value but both H(X) and H(Y|X) are equal to infinity.

7. Let p'yy and pxy be probability distributions defined on X x Y, where
X and ) are fixed finite alphabets. Prove that

lim p/z =Px,
Py —PXY
where the limit is taken with respect to the variational distance.
8. Let pr and p be probability distributions defined on a common finite

alphabet. Show that as k& — oo, if p — p in variational distance, then
pr — p in £2, and vice versa.



46 2 Information Measures
9. Consider any probability distribution p(x,y, z) and let

_ J p(@)p(y)p(z|z,y) if p(z,y) >0
q(z,y,2) = {0 otherwise.

a) Show that ¢g(z,y, z) is in general not a probability distribution.

b) By ignoring the fact that g(z,y, z) may not be a probability distribu-
tion, application of the divergence inequality D(p|lq) > 0 would yield
the inequality

H(X)+H(Y)+H(Z|X,Y)> H(X,Y,Z),

which indeed holds for all jointly distributed random variables X,Y,
and Z. Explain.
10. Let C, = Y 00 L

n=2 n(logn)~"
a) Prove that
C {<ooifa>1
N=0if0<a<1.

Then
Pa(n) = [Con(log n)o‘]_l, n=23,---

is a probability distribution for a > 1.
b) Prove that
<ooifa>2
H(p“){:ooifl<a<2.
11. Prove that H(p) is concave in p, i.e., for 0 < A< 1and A =1 — X,
AH (p1) + AH (p2) < H(Ap1 + Ap2).

12. Let (X,Y) ~ p(z,y) = p(z)p(y|).
a) Prove that for fixed p(z), I(X;Y) is a convex functional of p(y|x).
b) Prove that for fixed p(y|z), I(X;Y) is a concave functional of p(x).
13. Do I(X;Y) =0 and I(X;Y|Z) = 0 imply each other? If so, give a proof.
If not, give a counterexample.
14. Give an example for which D(-||-) does not satisfy the triangular inequality.
15. Let X be a function of Y. Prove that H(X) < H(Y"). Interpret this result.
16. Prove that for any n > 2,

H(X1, Xo,--, Xp) > Y H(X| X5, § #4).
i=1

17. Prove that
H(X:,X5) + H(X2, X3) + H(Xy,X3) > 2H (X1, X, X3).
Hint: Sum the identities
H(Xy, X2, X3) = H(Xj,j # 1) + H(Xi|X;,j # 1)
for i = 1,2,3 and apply the result in Problem 16.
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19.

20.
21.

22.

23.

Problems 47

For a subset a of N, = {1,2,---,n}, denote (X;,i € a) by X,. For
1<k<mn, let

Hy = > Hi(“).

n

(k) a:lal=k
Here Hy is interpreted as the average entropy per random variable when
k random variables are taken from X, X5, -+, X, at a time. Prove that

H,>Hy,>---> H,.

This sequence of inequalities, due to Han [147], is a generalization of the
independence bound for entropy (Theorem 2.39). See Problem 6 in Chap-
ter 21 for an application of these inequalities.

For a subset o of N}, = {1,2,---,n}, let @ = M\ and denote (X;,i € )
by X4. For 1 <k <mn, let

H/ 1 Z H(XalXE).

k) a:lal=k

Prove that
H <H,<.---<H,.

Note that H is equal to H,, in the last problem. This sequence of inequal-
ities is again due to Han [147]. See Yeung and Cai [406] for an application
of these inequalities.

Prove the divergence inequality by using the log-sum inequality.

Prove that D(pl||q) is convex in the pair (p,q), i.e., if (p1,¢q1) and (p2, g2)
are two pairs of probability distributions on a common alphabet, then

D(Ap1 + Ap2llAg1 + Ag2) < AD(p1llq1) + AD(p2llg2)

forall 0 < A <1, where A\=1—\.

Let pxy and ¢xy be two probability distributions on X x ). Prove that
D(pxvyllaxy) = D(px|lgx)-

Pinsker’s inequality Let V(p, q) denotes the variational distance between
two probability distributions p and ¢ on a common alphabet X. We will
determine the largest ¢ which satisfies

D(pllq) > cd®(p. q).

a) Let A= {o: p(x) > a(@)}, 5 = {p(A),1 - p(A)}, and G = {g(A),1 -
q(A)}. Show that D(pllg) > D(p||¢) and V(p,q) = V(p,q).

b) Show that toward determining the largest value of ¢, we only have to
consider the case when X is binary.

c) By virtue of b), it suffices to determine the largest ¢ such that

— P de(p—q)® >0

p 1
log = + (1 —p)l
pogq+( p)log 5
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24.

25.
26.

27.

28.

29.

30.
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for all 0 < p,q¢ < 1, with the convention that Olog% =0forb>0
and alog § = oo for a > 0. By observing that equality in the above
holds if p = ¢ and considering the derivative of the left hand side with
respect to ¢, show that the largest value of c is equal to (2In2)~!.
Let p and ¢,k > 1 be probability distributions on a common alphabet.
Show that if g converges to p in divergence, then it also converges to p
in variational distance.
Find a necessary and sufficient condition for Fano’s inequality to be tight.
Determine the probability distribution defined on {0,1,---,n} that max-
imizes the entropy subject to the constraint that the mean is equal to m,
where 0 < m < n.
Show that for a stationary source {X;}, +H (X1, X5, -+,X,) is non-
increasing in n.
For real numbers @ > 1 and § > 0 and an integer n > «, define the
probability distribution

pls) _ )i log o 1 (loga o 1 (loga p 0.0
no logn) 'n\logn/ > ’'n\logn/) 7

n

Let v = {1,0,0,...} be the deterministic distribution.
a) Show that lim,,_,o, D (1/||D,(La’5)> =0.

b) Determine lim,, o, H (Dy(,a’ﬁ)).

Discontinuity of entropy with respect to convergence in divergence Let P

be the set of all probability distributions on a countable alphabet. A func-

tion f : P — R is continuous with respect to convergence in divergence

at P € P if for any € > 0, there exists § > 0 such that |f(P) — f(Q)] < e

for all Q € P satistying D(P||Q) < d; otherwise, f is discontinuous at P.

a) Let H : P — R be the entropy function. Show that H is discontinu-
ous at the deterministic distribution v = {1,0,0, - -, }. Hint: Use the
results in Problem 28.

b) Show that H is discontinuous at P = {pg, p1,p2,- -} for all P such
that H(P) < oco. Hint: Consider the probability distribution

@n = 3P0 — e pr e py
" 0 Viogn’ nyIogn’ nylogn’
oot —2 poip
n N\/@7 n+1,n+25---

for large n.
Discontinuity of entropy with respect to convergence in variational dis-
tance Refer to Problem 29. The continuity of a function f: P — R with
respect to convergence in variational distance can be defined similarly.
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a) Show that if a function f is continuous with respect to convergence
in variational distance, then it is also continuous with respect to con-
vergence in divergence. Hint: Use Pinsker’s inequality.

b) Repeat b) in Problem 29 with continuity defined with respect to con-
vergence in variational distance.

Continuity of the entropy function for a fized finite alphabet Refer to

Problems 29 and 30. Suppose the domain of H is confined to P’, the set
of all probability distributions on a fixed finite alphabet. Show that H is
continuous with respect to convergence in divergence.

Let p = {p1,p2, - -,pn}t and q = {q1,q2, -+, gn} be two sets of real num-
bers such that p; > p;» and q; > g for all i < /. We say that p is majorized
by q if Y37 pi < 3070, gy for all m = 1,2,...,n, where equality holds
when m = n. A function f : R® — R is Schur-concave if f(p) > f(q)
whenever p is majorized by q. Now let p and q be probability distribu-
tions. We will show in the following steps that H(-) is Schur-concave.

a) Show that for p # q, there exist 1 < j < k < n which satisfy the
following:

i) 7 is the largest index ¢ such that p; < g
ii) k is the smallest index 4 such that i > j and p; > ¢;
iii) p; =¢; forall j <i<k.

b) Consider the distribution q* = {q7,¢5,---, ¢} defined by ¢ = ¢; for

1 # j, k and

(" qh) = { (P> qk + (g5 —pj)) pr—qx = ¢ — p;
A (g5 — (P — ar),pr) if P — a1 < g5 — pj-

Note that either ¢; = p; or g; = py. Show that

i) ¢ > ¢ foralli <

i) Y p <Y g foralm=1,2,---.n

iii) H(q") > H(q).
c) Prove that H(p) > H(q) by induction on the Hamming distance

between p and q, i.e., the number of places where p and q differ.
In general, if a concave function f is symmetric, i.e., f(p) = f(p’) where
p’ is a permutation of p, then f is Schur-concave. We refer the reader
to [246] for the theory of majorization. (Hardy, Littlewood, and Pdlya
[154].)

Historical Notes

The concept of entropy has its root in thermodynamics. Shannon [322] was the
first to use entropy as a measure of information. Informational divergence was
introduced by Kullback and Leibler [214], and it has been studied extensively
by Csiszér [81] and Amari [14].

Most of the materials in this chapter can be found in standard textbooks

in information theory. The main concepts and results are due to Shannon
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[322]. Pinsker’s inequality is due to Pinsker [292]. Fano’s inequality has its
origin in the converse proof of the channel coding theorem (to be discussed in
Chapter 7) by Fano [107]. Generalizations of Fano’s inequality which apply to
random variables with countable alphabets have been obtained by Han and
Verdi [153] and by Ho [165] (see also [168]). Maximum entropy, a concept in
statistical mechanics, was expounded in Jaynes [186].
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The I-Measure

In Chapter 2, we have illustrated the relationship between Shannon’s infor-
mation measures for two random variables by the diagram in Figure 2.2. For
convenience, Figure 2.2 is reproduced in Figure 3.1 with the random variables
X and Y replaced by X; and X5, respectively. This diagram suggests that
Shannon’s information measures for any n > 2 random variables may have a
set-theoretic structure.

In this chapter, we develop a theory which establishes a one-to-one cor-
respondence between Shannon’s information measures and set theory in full
generality. With this correspondence, manipulations of Shannon’s informa-
tion measures can be viewed as set operations, thus allowing the rich suite of
tools in set theory to be used in information theory. Moreover, the structure
of Shannon’s information measures can easily be visualized by means of an
information diagram if four or fewer random variables are involved. The use
of information diagrams simplifies many difficult proofs in information theory

H (X1,X>)

H(X|X
i N\ H(X,IX)

1(X1;X5)

Fig. 3.1. Relationship between entropies and mutual information for two random
variables.



52 3 The I-Measure

problems. More importantly, these results, which may be difficult to discover
in the first place, can easily be obtained by inspection of an information dia-
gram.

The main concepts to be used in this chapter are from measure theory.
However, it is not necessary for the reader to know measure theory to read
this chapter.

3.1 Preliminaries

In this section, we introduce a few basic concepts in measure theory which will
be used subsequently. These concepts will be illustrated by simple examples.

Definition 3.1. The field F,, generated by sets X1, Xo,--+, X, is the collec-
tion of sets which can be obtained by any sequence of usual set operations
(union, intersection, complement, and difference) on X1, Xo, -, Xn.

Definition 3.2. The atoms of F, are sets of the form N_,Y;, where Y; is
either X; or Xc the complement of X;.

There are 2" atoms and 22" sets in F,,. Evidently, all the atoms in F,, are
disjoint, and each set in F,, can be expressed uniquely as the union of a subset
of the atoms of F,,'. We assume that the sets Xi, Xo,---, X,, intersect with
each other generically, i.e., all the atoms of F,, are nonempty unless otherwise
specified.

FEzample 3.3. The sets f(l and XQ generate the field F5. The atoms of F5 are
Xl ﬂXz,XfﬁX27X1ﬂX§,XfﬂX§, (31)

which are represented by the four distinct regions in the Venn diagram in
Figure 3.2. The field F> consists of the unions of subsets of the atoms in (3.1).
There are a total of 16 sets in Fs, which are precisely all the sets which can
be obtained from )~(1 and Xz by the usual set operations.

Definition 3.4. A real function p defined on F,, is called a signed measure if
it is set-additive, i.e., for disjoint A and B in F,,

#(AUB) = pu(A) + u(B). (3.2)
For a signed measure u, we have
() =0, (3.3)

which can be seen as follows. For any A in F,,,

1 We adopt the convention that the union of the empty subset of the atoms of F,
is the empty set.
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Fig. 3.2. The Venn diagram for Xl and Xg.

1(A) = p(AU0) = p(A) + p(0) (3.4)

by set-additivity because A and () are disjoint, which implies (3.3).

A signed measure p on F,, is completely specified by its values on the
atoms of F,,. The values of p on the other sets in F,, can be obtained via
set-additivity.

Ezxample 3.5. A signed measure p on F> is completely specified by the values
p(X1 N Xo), w(XF N Xo), (X1 N X5), p(XT N X5). (3.5)
The value of u on X1, for example, can be obtained as

w(Xy) = /‘((251 N 252) U (){1 ﬂj{zc)) (3.6)
= (X1 N X2) + (X1 N X3). (3.7)

3.2 The I-Measure for Two Random Variables

To fix ideas, we first formulate in this section the one-to-one correspondence
between Shannon’s information measures and set theory for two random vari-
ables. For random variables X; and Xs, let X 1 and XQ be sets corresponding
to X7 and Xs, respectively. The sets X 1 and f(g generates the field F; whose
atoms are listed in (3.1). In our formulation, we set the universal set 2 to
X1 U X, for reasons which will become clear later. With this choice of (2, the
Venn diagram for X, and X, is represented by the diagram in Figure 3.3. For
simplicity, the sets X; and X, are respectively labeled by X; and X5 in the
diagram. We call this the information diagram for the random variables X1
and X,. In this diagram, the universal set, which is the union of X; and Xo,
is not shown explicitly just as in a usual Venn diagram. Note that with our
choice of the universal set, the atom X{ N )N(QC degenerates to the empty set,
because
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X

1

Fig. 3.3. The generic information diagram for X; and Xo.

XN X5 = (X, UXp) = 02°=0. (3.8)

Thus this atom is not shown in the information diagram in Figure 3.3.
For random variables X; and X5, the Shannon’s information measures are

H(X1), H(X2), H(X1|X2), H(X2|X1), H(X1, X2), [(X1; X2). (3.9)

Writing AN B¢ as A — B, we now define a signed measure? u* by

pr (X1 — Xo) = H(X1|X2) (3.10)
pH(Xo — X1) = H(X2|Xy), (3.11)
and

These are the values of p* on the nonempty atoms of F» (i.e., atoms of F
other than X{NX$). The values of u* on the other sets in F» can be obtained
via set-additivity. In particular, the relations

(X1 UXy) = H(X1, Xa) (3.13)
w(%y) = H(X), (3.14)
and R
i (Xz) = H(X) (3.15)
can readily be verified. For example, (3.13) is seen to be true by considering
(X1 U Xy)
:u*(Xl—X2)+,U,*(X2—X1>+,U,*(X1 ﬁXQ) (316)
= H(X1|X2) + H(X2|X1) + 1(X1; X2) (3.17)
= H(X1, X5). (3.18)

The right hand sides of (3.10) to (3.15) are the six Shannon’s information
measures for X; and X in (3.9). Now observe that (3.10) to (3.15) are con-
sistent with how the Shannon’s information measures on the right hand side

2 Tt happens that p* defined here for n = 2 assumes only nonnegative values, but
we will see in Section 3.4 that p* can assume negative values for n > 3.
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are identified in Figure 3.1, with the left circle and the right circle represent-
ing the sets X, and X, respectively. Specifically, in each of these equations,
the left hand side and the right hand side correspond to each other via the
following substitution of symbols:

H/I .

)

O C ¥

. (3.19)

Note that we make no distinction between the symbols H and [ in this sub-
stitution. Thus, for two random variables X; and X5, Shannon’s information
measures can be regarded formally as a signed measure on F5. We will refer
to u* as the I-Measure for the random variables X; and X,3.

Upon realizing that Shannon’s information measures can be viewed as a
signed measure, we can apply the rich family of operations in set theory to
information theory. This explains why Figure 3.1 or Figure 3.3 represents
the relationships among all Shannon’s information measures for two random
variables correctly. As an example, consider the following set identity which
is readily identified in Figure 3.3:

1111

(X1 U Xo) = p*(Xq) + p" (X2) — (X1 0 X). (3.20)

This identity is a special case of the inclusion-exclusion formula in set theory.
By means of the substitution of symbols in (3.19), we immediately obtain the
information identity

H(X1, X2) = H(X1) + H(Xz) — I(X1; X2). (3:21)

We end this section with a remark. The value of u* on the atom X{ N X§
has no apparent information-theoretic meaning. In our formulation, we set the
universal set £2 to X;U X5 so that the atom XfﬁXg degenerates to the empty
set. Then p* (ch mf(g) naturally vanishes because p* is a measure, so that pu*
is completely specified by all Shannon’s information measures involving the
random variables X; and Xs.

3.3 Construction of the I-Measure p*

We have constructed the I-Measure for two random variables in the last sec-
tion. We now construct the I-Measure for any n > 2 random variables.

Consider n random variables X7, X5, -+, X,,. For any random variable X,
let X be a set corresponding to X. Let

3 The reader should not confuse p* with the probability measure defining the ran-
dom variables X; and X>. The former, however, is determined by the latter.
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N, ={1,2,---,n}. (3.22)
Define the universal set £2 to be the union of the sets X1, X, -+, X,,, i.e.,
0= U X;. (3.23)
€N,

We use F,, to denote the field generated by )~(1, )~(27 cee ,Xn. The set

A= [ X (3.24)
1EN,

is called the empty atom of F,, because

M X¢= < U X) = ° =10, (3.25)

iE€EN, i€EN,

All the atoms of F,, other than Ay are called nonempty atoms.

Let A be the set of all nonempty atoms of F,,. Then |A|, the cardinality
of A, is equal to 2™ — 1. A signed measure p on F,, is completely specified by
the values of 1 on the nonempty atoms of F,,.

To simplify notation, we will use X to denote (X;,i € G) and Xa to
denote U;cX; for any nonempty subset G of \,.

Theorem 3.6. Let

B= {XG . G is a nonempty subset of./\/n}. (3.26)

Then a signed measure p on F, is completely specified by {u(B), B € B},
which can be any set of real numbers.

Proof. The number of elements in B is equal to the number of nonempty
subsets of A,,, which is 2" — 1. Thus |A] = |[B| = 2" — 1. Let k = 2™ — 1.
Let u be a column k-vector of pu(A), A € A, and h be a column k-vector of
w(B),B € B. Since all the sets in B can expressed uniquely as the union of
some nonempty atoms in A, by the set-additivity of p, for each B € B, u(B)
can be expressed uniquely as the sum of some components of u. Thus

where C), is a unique k X k matrix. On the other hand, it can be shown
(see Appendix 3.A) that for each A € A, u(A) can be expressed as a linear
combination of u(B), B € B by applications, if necessary, of the following two
identities:

WANB —C) = w(A—C)+ u(B—C) — u(AUB - C) (3.28)
i(A = B) = y(AUB) — u(B). (3.20)
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However, the existence of the said expression does not imply its uniqueness.
Nevertheless, we can write
u=D,h (3.30)

for some k x k matrix D,,. Upon substituting (3.27) into (3.30), we obtain
u = (D,Cp)u, (3.31)

which implies that D,, is the inverse of C), as (3.31) holds regardless of the
choice of u. Since C,, is unique, so is D,,. Therefore, 1(A), A € A are uniquely
determined once p(B), B € B are specified. Hence, a signed measure p on
F. is completely specified by {u(B), B € B}, which can be any set of real
numbers. The theorem is proved. 0O

We now prove the following two lemmas which are related by the substi-
tution of symbols in (3.19).

Lemma 3.7.

wWANB-C)=pu(AUC)+pu(BUC) —pu(AUBUC) — u(C).  (3.32)

Proof. From (3.28) and (3.29), we have

w(ANB—C)
= (A= C)+pu(B—C)— u(AUB - C) (3.33)
= (uAUC) = u(C)) + (u(BUC) = u(C))

—(u(AuBUC) = p(C)) (3.34)
= w(AUC) + u(BUC) — (AUBUC) — u(0). (3.35)

The lemma is proved. 0O
Lemma 3.8.

I(X;Y|2)=H(X,Z)+ H(Y,Z) - H(X,Y, Z) — H(Z). (3.36)

Proof. Consider

I(X;Y|Z)

= H(X|2) - H(X|Y, Z) (3.37)
=H(X,Z)-H(Z) - (H(X,Y,Z)— H(Y, Z)) (3.38)
= H(X,Z)+ H(Y,Z)— H(X,Y, Z) — H(Z). (3.39)

The lemma is proved. 0O
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We now construct the I-Measure p* on F,, using Theorem 3.6 by defining

i(Xe) = H(Xo) (3.40)

for all nonempty subsets G of N,,. In order for p* to be meaningful, it has to
be consistent with all Shannon’s information measures (via the substitution of
symbols in (3.19)). In that case, the following must hold for all (not necessarily
disjoint) subsets G, G’, G" of N, where G and G’ are nonempty:

' (XeNXe — Xan) = I(Xg; Xor| Xar). (3.41)
When G” = 0, (3.41) becomes
' (XenXe) =I1(Xg; Xa). (3.42)
When G = G, (3.41) becomes
p(Xa - Xan) = H(Xg|Xan). (3.43)
When G = G' and G” =), (3.41) becomes
pw(Xe) = H(Xg). (3.44)

Thus (3.41) covers all the four cases of Shannon’s information measures, and
it is the necessary and sufficient condition for p* to be consistent with all
Shannon’s information measures.

Theorem 3.9. p* is the unique signed measure on F, which is consistent
with all Shannon’s information measures.

Proof. Consider

w (XG n X(;/ — XG”)

= 1" (Xeue) + 1" (Xeuar) — 1" (Xauaruer) — n*(Xer) (3.45)
= H(Xgugr) + H(Xguer) — HXquaruar) — H(Xgr) (3.46)
= 1(Xg; X | Xar), (3.47)

where (3.45) and (3.47) follow from Lemmas 3.7 and 3.8, respectively, and
(3.46) follows from (3.40), the definition of p*. Thus we have proved (3.41),
i.e., p* is consistent with all Shannon’s information measures.

In order that u* is consistent with all Shannon’s information measures, for
all nonempty subsets G' of AV,,, u* has to satisfy (3.44), which in fact is the
definition of p* in (3.40). Therefore, p* is the unique signed measure on F,
which is consistent with all Shannon’s information measures. 0O
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3.4 p* Can be Negative

In the previous sections, we have been cautious in referring to the I-Measure
1 as a signed measure instead of a measure*. In this section, we show that
w* in fact can take negative values for n > 3.

For n = 2, the three nonempty atoms of F» are

XN Xy, X1 — Xo, X5 — X (3.48)
The values of p* on these atoms are respectively
I(X1; Xo), H(X1|X2), H(X3| X71). (3.49)

These quantities are Shannon’s information measures and hence nonnegative
by the basic inequalities. Therefore, u* is always nonnegative for n = 2.
For n = 3, the seven nonempty atoms of F3 are

Xl'*X{j,k},Xiij7Xk,X1ﬂX20X3, (350)
where 1 <7 < j < k < 3. The values of p* on the first two types of atoms are
1 (Xi — Xginy) = H(X:| X5, Xk) (3.51)

and R R R
p (X N Xy — Xi) = 1(X;; X[ Xk), (3.52)

respectively, which are Shannon’s information measures and therefore non-
negative. However, u* (Xl N X, N Xg) does not correspond to a Shannon’s
information measure. In the next example, we show that p* (X' 1 NXoN Xg)
can actually be negative.

Ezample 3.10. In this example, all entropies are in the base 2. Let X7 and X5
be independent binary random variables with

Pr{X; =0} = Pr{X; =1} = 0.5, (3.53)

i=1,2. Let
Xg = (X1 + X2) mod 2. (354)

It is easy to check that X3 has the same marginal distribution as X; and Xs.
Thus,
H(X;)=1 (3.55)

for ¢ = 1,2, 3. Moreover, X, Xs, and X3 are pairwise independent. Therefore,
H(X;, X;)=2 (3.56)

and

4 A measure can assume only nonnegative values.
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for 1 < i < j < 3. We further see from (3.54) that each random variable
is a function of the other two random variables. Then by the chain rule for
entropy, we have

H(X1, Xy, X3) = H(Xy, X5) + H(X3]X1, X) (3.58)
=240 (3.59)
=2 (3.60)

Now for 1 <i< j <k <3,

I(Xi; X,|X5)

— H(X;, Xp) + H(X;, X3,) — H(X1, Xa, X3) — H(X}) (3.61)
=24+2-2-1 (3.62)
=1, (3.63)

where we have invoked Lemma 3.8. It then follows that

p (X1 N Xy N X3) = p* (XN Xo) — p* (X1 N Xy — X3) (3.64)
= I(X1; Xo) — I(X1; X2| X3) (3.65)
=0-1 (3.66)
=1 (3.67)

Thus p* takes a negative value on the atom X; N X5 N Xs.

Motivated by the substitution of symbols in (3.19) for Shannon’s informa-
tion measures, we will write p* (X1 N X2 N X3) as I(X1; Xo; X3). In general,
we will write

' (Xe, N Xg,N---NXg, —Xr) (3.68)

as
I(Xe,: Xays 3 Xa,, | Xp) (3.69)
and refer to it as the mutual information between X¢,, Xq,, -+, Xq,, condi-

tioning on X . Then (3.64) in the above example can be written as
I(X1; X0 X3) = I(X1; Xo) — I( X715 X2| X3). (3.70)
For this example, I(X7; Xa; X3) < 0, which implies
I1(X1; Xo| X3) > I(Xq; Xo). (3.71)

Therefore, unlike entropy, the mutual information between two random vari-
ables can be increased by conditioning on a third random variable. Also, we
note in (3.70) that although the expression on the right hand side is not sym-
bolically symmetrical in X7, Xo, and X3, we see from the left hand side that
it is in fact symmetrical in X7, X5, and X3.
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3.5 Information Diagrams

We have established in Section 3.3 a one-to-one correspondence between Shan-
non’s information measures and set theory. Therefore, it is valid to use an
information diagram, which is a variation of a Venn diagram, to represent the
relationship between Shannon’s information measures.

For simplicity, a set X; will be labeled by X; in an information diagram.
We have seen the generic information diagram for n = 2 in Figure 3.3. A
generic information diagram for n = 3 is shown in Figure 3.4. The information-
theoretic labeling of the values of p* on some of the sets in F3 is shown
in the diagram. As an example, the information diagram for the I-Measure
for random variables X1, X5, and X3 discussed in Example 3.10 is shown in
Figure 3.5.

For n > 4, it is not possible to display an information diagram perfectly
in two dimensions. In general, an information diagram for n random variables
needs n — 1 dimensions to be displayed perfectly. Nevertheless, for n = 4, an
information diagram can be displayed in two dimensions almost perfectly as
shown in Figure 3.6. This information diagram is correct in that the region
representing the set X, splits each atom in Figure 3.4 into two atoms. However,
the adjacency of certain atoms are not displayed correctly. For example, the
set Xl N Xg N Xi, which consists of the atoms )~(1 N )~(2 N Xg N Xj and )~(1 N
X, ﬂf(?f NnX £, is not represented by a connected region because the two atoms
are not adjacent to each other.

When p* takes the value zero on an atom A of F,,, we do not need to
display the atom A in an information diagram because the atom A does
not contribute to p*(B) for any set B containing the atom A. As we will
see shortly, this can happen if certain Markov constraints are imposed on
the random variables involved, and the information diagram can be simplified
accordingly. In a generic information diagram (i.e., when there is no constraint

I(X1; X5 X5)

(X5 X[ X5) X

H(X,| X))

H(X))

X

H(X,|X,,X5) I(X1;X5)

Fig. 3.4. The generic information diagram for X1, X3, and Xs.
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Fig. 3.5. The information diagram for X;, X2, and X3 in Example 3.10.

on the random variables), however, all the atoms have to be displayed, as is
implied by the next theorem.

Theorem 3.11. If there is no constraint on X1, Xo, -+, X, then u* can take
any set of nonnegative values on the nonempty atoms of Fy,.

Proof. We will prove the theorem by constructing an I-Measure u* which can
take any set of nonnegative values on the nonempty atoms of F,,. Recall that A
is the set of all nonempty atoms of F,,. Let Y4, A € A be mutually independent
random variables. Now define the random variables X;,i =1,2,---,n by

X;=(Ya:Ac Aand A C X;). (3.72)

We determine the I-Measure p* for X1, Xo, - - -, X, so defined as follows. Since
Y4 are mutually independent, for any nonempty subsets G of N,, we have

=H((Ya:Ac Aand AC X;),i €G) (3.74)
XZ
Xl X3
X4

Fig. 3.6. The generic information diagram for X;, X2, X3, and Xa.
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=H(Ys:Ac Aand A C Xg) (3.75)
= ) H(Ya). (3.76)
A€A:ACK g
On the other hand,
H(Xe)=p'(Xa) = Y w'(A). (3.77)
AcA:ACX G

Equating the right hand sides of (3.76) and (3.77), we have
Y. HYw= > (A (3.78)

AcA:ACXg AcA:ACXq

Evidently, we can make the above equality hold for all nonempty subsets G
of N, by taking

1 (A) = H(Ya) (3.79)
for all A € A. By the uniqueness of p*, this is also the only possibility for p*.
Since H(Y4) can take any nonnegative value by Corollary 2.44, u* can take
any set of nonnegative values on the nonempty atoms of F,,. The theorem is
proved. 0O

In the rest of this section, we explore the structure of Shannon’s informa-

tion measures when X; — X9 — --- — X, forms a Markov chain. To start
with, we consider n = 3, i.e., X7 — X5 — X3 forms a Markov chain. Since

the atom X;NX. QCQX 3 does not have to be displayed in an information diagram.
Therefore, in constructing the information diagram, the regions representing
the random variables X7, X3, and X3 should overlap with each other such
that the region corresponding to the atom XN )~(§ N X5 is empty, while the
regions corresponding to all other nonempty atoms are nonempty. Figure 3.7
shows such a construction, in which each random variable is represented by a
“mountain.” From Figure 3.7, we see that X; N X, N X5, as the only atom
on which p* may take a negative value, now becomes identical to the atom
XN X;. Therefore, we have

I(X1; X5 X3) = p* (X1 N X5 N X;) (3.81)
= p" (X1 N X3) (3.82)
= I(X1; X3) (3.83)
> 0. (3.84)

Hence, we conclude that when X; — X5 — X3 forms a Markov chain, p* is
always nonnegative.

Next, we consider n = 4, ie., X; — X5 — X3 — X, forms a Markov
chain. With reference to Figure 3.6, we first show that under this Markov
constraint, u* always vanishes on certain nonempty atoms:
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Fig. 3.7. The information diagram for the Markov chain X; — Xy — X3.

1. The Markov chain X; — X5 — X3 implies

I(X1; X5 X4| Xo) + I(X7; X3|Xo, Xy) = 1(X1; X5 X32) = 0. (3.85)
2. The Markov chain X; — Xy — X4 implies

I(X1; X35 Xu| Xo) + I(X1; Xa| X0, X3) = (X715 X4 X2) =0.  (3.86)
3. The Markov chain X; — X3 — X4 implies

I(X71; X0y X4| X3) + I(X1; X4| X2, X3) = I(X71; X4| X3) = 0. (3.87)
4. The Markov chain Xy — X3 — X, implies

I( X715 Xo; Xy| X3) + 1(Xo; X4| X1, X3) = I(Xo; X4 X3) =0.  (3.88)
5. The Markov chain (X7, X2) — X35 — X4 implies

B Xo; X4| X3) + T(X1; X4| Xo, X3) + I(Xo; X4| X1, X3)
= I(X1, X2; Xu| X3) (3.89)
= 0. (3.90)

Now (3.85) and (3.86) imply

I(X71; X4| Xo, X3) = I(X7; X3] X, Xy), (3.91)
(3.87) and (3.91) imply

I(X1; Xo; X4|X3) = —I(X1; X3| X2, Xy), (3.92)
and (3.88) and (3.92) imply

I(Xg; X4 X1, X3) = I(X7; X35]| X2, X4). (3.93)

The terms on the left hand sides of (3.91), (3.92), and (3.93) are the three
terms on the left hand side of (3.90). Then we substitute (3.91), (3.92), and
(3.93) in (3.90) to obtain
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X,

\‘ 3

X4

Fig. 3.8. The atoms of F4 on which p* vanishes when X1 — Xo — X3 — X4 forms
a Markov chain.

From (3.85), (3.91), (3.92), and (3.93), (3.94) implies

p (X1NXENX3NXy) = 1(X1; X35 X4 X2) =0 (3.95)
p (X1NXENXEN Xy) = I(X1; X4/ Xo, X3) =0 (3.96)
(X, N Xy NXSNXy) = I(X1; Xo; X4|X3) =0 (3.97)
p(XEN Xy N XN Xy) = I(Xy; X4 X1, X3) =0 (3.98)

From (3.94) to (3.98), we see that u* always vanishes on the atoms

XiNX§NXsn XS
XiNXSNX3NX,
X1 NX§NXSN X, (3.99)
XiNnX,NnX5nX,
XinXoNX§N Xy
of Fy, which we mark by an asterisk in the information diagram in Figure 3.8.
In fact, the reader can gain a lot of insight by letting I(X7; X3/ X2, X4) =a >0
in (3.85) and tracing the subsequent steps leading to the above conclusion in
the information diagram in Figure 3.6.
It is not necessary to display the five atoms in (3.99) in an information
diagram because p* always vanishes on these atoms. Therefore, in constructing
the information diagram, the regions representing the random variables should

overlap with each other such that the regions corresponding to these five
nonempty atoms are empty, while the regions corresponding to the other ten
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nonempty atoms, namely

X1 NnXsNnXsNX§, XN X,Nn XN XS
XiNXoNXsNXS, X1 NXoNXsN Xy,
XeNXoNXSN XS, XEN Xy N X3 N X§, (3.100)
XenXoNXsnNXy, XENX5N XN XS
XenXsnXsn Xy, XN Xsn X5 Xy,
are nonempty. Figure 3.9 shows such a construction. The reader should com-
pare the information diagrams in Figures 3.7 and 3.9 and observe that the
latter is an extension of the former.

From Figure 3.9, we see that the values of p* on the ten nonempty atoms
in (3.100) are equivalent to

H(X1]X2, X3, Xa), I(X1; X2| X3, X4)
I(X1; X3 X4), 1(X1; Xy)
H(X2| X1, X3, X4), I(X2; X3 X1; X4) (3.101)
I(X9; X4 X1), H(X3|X1, X2, X4)
I(X3; X4| X1, Xo), H(X4| X1, Xo, X3),

respectively®. Since these are all Shannon’s information measures and thus
nonnegative, we conclude that u* is always nonnegative.

When X; — X9 — -+ — X, forms a Markov chain, for n = 3, there is only
one nonempty atom, namely XinX SN X35, on which w* always vanishes. This
atom can be determined directly from the Markov constraint I(X7; X3|X2) =
0. For n = 4, the five nonempty atoms on which p* always vanishes are
listed in (3.99). The determination of these atoms, as we have seen, is not
straightforward. We have also shown that for n = 3 and n = 4, u* is always
nonnegative.

Fig. 3.9. The information diagram for the Markov chain X; — X; — X3 — X4.

5 A formal proof will be given in Theorem 12.30.
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We will extend this theme in Chapter 12 to finite Markov random fields
with Markov chains being a special case. For a Markov chain, the information
diagram can always be displayed in two dimensions as in Figure 3.10, and p*
is always nonnegative. These will be explained in Chapter 12.

3.6 Examples of Applications

In this section, we give a few examples of applications of information diagrams.
These examples show how information diagrams can help solving information
theory problems.

The use of an information diagram is highly intuitive. To obtain an infor-
mation identity from an information diagram is WYSIWYG®. However, how
to obtain an information inequality from an information diagram needs some
explanation.

Very often, we use a Venn diagram to represent a measure p which takes
nonnegative values. If we see in the Venn diagram two sets A and B such
that A is a subset of B, then we can immediately conclude that p(A) < p(B)
because

w(B) = p(A) = u(B — A) = 0. (3.102)

However, an I-Measure p* can take negative values. Therefore, when we see
in an information diagram that A is a subset of B, we cannot conclude from
this fact alone that p*(A) < p*(B) unless we know from the setup of the
problem that p* is nonnegative. (For example, 1* is nonnegative if the random
variables involved form a Markov chain.) Instead, information inequalities
can be obtained from an information diagram in conjunction with the basic
inequalities. The following examples illustrate how it works.

Ezample 3.12 (Concavity of Entropy). Let X1 ~ p1(z) and X5 ~ pa(z). Let

X ~ p(z) = A\p1(z) + Apa(2), (3.103)

X X

1 2 n-1 n

Fig. 3.10. The information diagram for the Markov chain X; — Xo — -+ — X,,.

5 What you see is what you get.
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Z=2

Fig. 3.11. The schematic diagram for Example 3.12.

where 0 < A <1 and A =1 — \. We will show that
H(X) > AH(X1) + M H(X3).

(3.104)

Consider the system in Figure 3.11 in which the position of the switch is

determined by a random variable Z with

Pr{Z=1}=X and Pr{Z=2}=),

(3.105)

where Z is independent of X; and X5. The switch takes position i if Z = i,
1 = 1,2. The random variable Z is called a mizing random variable for the
probability distributions p;(x) and ps(x). Figure 3.12 shows the information
diagram for X and Z. From the diagram, we see that X — Z is a subset of X.
Since p* is nonnegative for two random variables, we can conclude that

p(X) 2 pr (X - 2),
which is equivalent to
H(X)> H(X\|Z).
Then
H(X) > H(X|Z)
=Pr{Z=1}H(X|Z=1)+Pr{Z=2}H(X|Z =2)
= \H(X1) + AH (X2),

(3.106)

(3.107)

(3.108)
(3.109)
(3.110)

proving (3.104). This shows that H(X) is a concave functional of p(z).

X

Fig. 3.12. The information diagram for Example 3.12.
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o— P,(¥[x) —o°
zZ=2

Fig. 3.13. The schematic diagram for Example 3.13.

Ezample 3.13 (Convezity of Mutual Information). Let

(X,Y) ~ p(z,y) = p(x)p(y|z).

69

(3.111)

We will show that for fixed p(z), I(X;Y) is a convex functional of p(y|x).

Let p1(y|x) and p2(y|z) be two transition matrices. Consider the

system

in Figure 3.13 in which the position of the switch is determined by a random

variable Z as in the last example, where Z is independent of X, i.e.,
I(X;Z)=0.
In the information diagram for X, Y, and Z in Figure 3.14, let
I(X;ZlY)=a>0.
Since I(X; Z) = 0, we see that
I(X;Y;7) = —a,

because
I(X;2)=1(X;Z2|)Y)+ I(X;Y; Z).
Then

Y

e

Fig. 3.14. The information diagram for Example 3.13.

(3.112)

(3.113)

(3.114)

(3.115)
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Z=1
p,(x)
\ X
p(ylx) Y
py(x) ©
7Z=2

Fig. 3.15. The schematic diagram for Example 3.14.

I(X;Y)

=1(X;Y|Z)+1(X;Y; Z) (3.116)
=1(X;Y|Z)—a (3.117)
< I(X;Y|2) (3.118)
= Pr{Z = 1}I(X;Y|Z=1) + Pr{Z = 2}[(X;Y|Z = 2) (3.119)
— A(p(e),pr(512)) + AT (p(a), po (). (3.120)

where I(p(z), p;(y|z)) denotes the mutual information between the input and
output of a channel with input distribution p(z) and transition matrix p;(y|z).
This shows that for fixed p(x), I(X;Y) is a convex functional of p(y|z).

Ezample 3.14 (Concavity of Mutual Information). Let

(X,Y) ~p(z,y) = p(x)p(y|x). (3.121)

We will show that for fixed p(y|z), I(X;Y) is a concave functional of p(x).

Consider the system in Figure 3.15, where the position of the switch is
determined by a random variable Z as in the last example. In this system,
when X is given, Y is independent of Z, or Z — X — Y forms a Markov
chain. Then p* is nonnegative, and the information diagram for X, Y, and Z
is shown in Figure 3.16.

From Figure 3.16, since XNY —Z is a subset of XNY and ©* is nonnegative,
we immediately see that

Fig. 3.16. The information diagram for Example 3.14.
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I(X;Y)

> I(X;Y|2) (3.122)
=Pr{Z=1(X;Y|Z=1)+Pr{Z =2} (X;Y|Z =2) (3.123)
= M(p1(2), p(y|x)) + M (p2(), p(y|2)). (3.124)

This shows that for fixed p(y|x), I(X;Y) is a concave functional of p(z).

Ezample 3.15 (Imperfect Secrecy Theorem). Let X be the plain text, Y be the
cipher text, and Z be the key in a secret key cryptosystem. Since X can be
recovered from Y and Z, we have

H(X|Y,Z)=0. (3.125)
We will show that this constraint implies
I(X;Y)>HX)-H(Z). (3.126)

The quantity I(X;Y) is a measure of the security level of the cryptosystem.
In general, we want to make I(X;Y’) small so that the eavesdropper cannot
obtain too much information about the plain text X by observing the cipher
text Y. The inequality in (3.126) says that the system can attain a certain
level of security only if H(Z) (often called the key length) is sufficiently large.
In particular, if perfect secrecy is required, i.e., I(X;Y) = 0, then H(Z) must
be at least equal to H(X). This special case is known as Shannon’s perfect
secrecy theorem [323].

We now prove (3.126). Let

I(X;Y|Z)=a>0 (3.127)
I(Y;Z1X)=b>0 (3.128)
H(Z|X,Y)=c>0, (3.129)
and
I(X;Y;Z) =d. (3.130)

(See Figure 3.17.) Since I(Y; Z) > 0,
b+d>0. (3.131)

In comparing H(X) with H(Z), we do not have to consider I(X; Z|Y") and
I(X;Y; Z) since they belong to both H(X) and H(Z). Then we see from
Figure 3.17 that

H(X)-H(Z)=a—b—c (3.132)

7 Shannon used a combinatorial argument to prove this theorem. An information-
theoretic proof can be found in Massey [251].
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GD)

Fig. 3.17. The information diagram for Example 3.15.

Therefore,
I(X;Y)=a+d (3.133)
>a—b (3.134)
>a—-b—c (3.135)
=H(X)-H(Z), (3.136)

where (3.134) and (3.135) follow from (3.131) and (3.129), respectively, prov-
ing (3.126).

Note that in deriving our result, the assumptions that H(Y|X, Z) = 0, i.e.,
the cipher text is a function of the plain text and the key, and I(X; Z) = 0,
i.e., the plain text and the key are independent, are not necessary.

Ezxample 3.16. Figure 3.18 shows the information diagram for the Markov
chain X — Y — Z. From this diagram, we can identify the following two
information identities:

I(X;Y) = I(X;Y,2) (3.137)
H(X|Y) = H(X|Y, Z). (3.138)

Since p* is nonnegative and X N Z is asubset of X NY, we have

I(X:Z) < I(X;Y), (3.139)

X Y Z

Fig. 3.18. The information diagram for the Markov chain X — Y — Z.
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X Y Z T

Fig. 3.19. The information diagram for the Markov chain X - Y — Z — T.

which has already been obtained in Lemma 2.41. Similarly, we can also obtain

H(X|Y) < H(X|Z). (3.140)

Ezample 3.17 (Data Processing Theorem). Figure 3.19 shows the information
diagram for the Markov chain X — Y — Z — T'. Since p* is nonnegative and
X NT is asubset of Y N Z, we have

I(X:T) < I(Y;2), (3.141)
which is the data processing theorem (Theorem 2.42).

We end this chapter by giving an application of the information diagram
for a Markov chain with five random variables.

FEzample 3.18. In this example, we prove with the help of an information di-
agram that for five random variables X,Y, Z, T, and U such that X — Y —
7 — T — U forms a Markov chain,

H(Y)+ H(T) =
I(Z;X,Y,T,U) + I(X,Y;T,U) + HY|Z) + H(T|Z). (3.142)

In the information diagram for X,Y,Z T, and U in Figure 3.20, we first
identify the atoms of H(Y") and then the atoms of H(T') by marking each of

Fig. 3.20. The atoms of H(Y) + H(T).



74 3 The I-Measure

Fig. 3.21. The atoms of I(Z; X, Y, T,U) + I(X,Y;T,U) + H(Y|Z) + H(T|Z).

them by a dot. If an atom belongs to both H(Y) and H(T), it receives two
dots. The resulting diagram represents

H(Y)+ H(T). (3.143)
By repeating the same procedure for
I(Z; X, Y, T, U)+ I(X,Y;T,U)+ HY|Z)+ H(T|Z), (3.144)

we obtain the information diagram in Figure 3.21. Comparing these two
information diagrams, we find that they are identical. Hence, the infor-
mation identity in (3.142) always holds conditioning on the Markov chain
X - Y — Z — T — U. This identity is critical in proving an outer bound
on the achievable coding rate region of the multiple descriptions problem in
Fu et al. [125]. It is virtually impossible to discover this identity without the
help of an information diagram!

Appendix 3.A: A Variation of the Inclusion-Exclusion
Formula

In this appendix, we show that for each A € A, u(A) can be expressed as a
linear combination of u(B), B € B via applications of (3.28) and (3.29). We
first prove by using (3.28) the following variation of the inclusive-exclusive
formula.

Theorem 3.19. For a set-additive function pu,
u(ﬂAk—B>= > wAi—B)— Y u(A;UA; - B)
k=1 1<i<n 1<i<j<n

oot (=)™ (A U A U--- U A, — B). (3.145)
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Proof. The theorem will be proved by induction on n. First, (3.145) is obvi-
ously true for n = 1. Assume (3.145) is true for some n > 1. Now consider

n+1
(o
k=1

=4 ((ﬁ Ak> N Apir — B) (3.146)

1 < - A — B) + p(Aps1 — B) —p ((ﬁ Ak> UAptr — B) (3.147)
k=1 k=1
—{ wA;i—B)— > u(A;UA;—B)+

1<i<n 1<i<j<n

+( )n+1 (AlUA2U UAn—B)}+M(An+1 —B)

—p (ﬂ (Ar U Apr) B) (3.148)
k=1
= { Z w(A; — B) — Z wAiUA; —B) + -
1<i<n 1<i<j<n

+( )n—i—l (Al UAs U-- UAn—B)} +M(An+1 —B)

{ Z /J,(AZUAn+1 7B)7 Z ILL(AiUAjUAn_i_l 7B)

1<i<n 1<i<j<n
4+ 4+ ( )n-‘rl (Al UAQU UAnUAn+1 —B)} (3149)
1<i<n+ 1<i<j<n+1
+(- )”+2 (A1UAU---UAn — B). (3.150)

In the above, (3.28) was used in obtaining (3.147), and the induction hy-
pothesis was used in obtaining (3.148) and (3.149). The theorem is proved.
O

Now a nonempty atom of F,, has the form

Y (3.151)
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where Y; is either X; or Xf, and there exists at least one i such that ¥; = X;.
Then we can write the atom in (3.151) as

N x-{ U X (3.152)

Y, =X; 3:Y;=X¢
Note that the intersection above is always nonempty. Then using (3.145) and

(3.29), we see that for each A € A, u(A) can be expressed as a linear combi-
nation of u(B), B € B.

Chapter Summary

Definition: The field F,, generated by sets X1, X5, -+, X, is the collection
of sets which can be obtained by any sequence of usual set operations (union,
intersection, complement, and difference) on X7, Xo, -+, X,,.

Definition: A real function p defined on F, is called a signed measure if it
is set-additive, i.e., for disjoint A and B in F,,

1(AUB) = p(A) + u(B).

I-Measure p*: There exists a unique signed measure p* on F,, which is
consistent with all Shannon’s information measures.

p* Can be Negative: Let X; and X3 be i.i.d. uniform on {0,1}, and let
X3 = X1 + X2 mod 2. Then

/L*<X1 M XQ ﬂXg) = I(Xl;Xg;Xg) = —1.

Information Diagrams for Two, Three, and Four Random Variables:

H(X,,X>)

H(X,1X)) /\ G
2 1

I(X;X5)



Chapter Summary

I1(X1; X025 X5)

I(X1; X5] X3) X,

H(X5|X,)

H(X,)

X3
H(X,|X,,X5) I1(X1;X5)
X,
X, X,
X,

Information Diagram for Markov Chain X; — X5 — --- — X;:

X X

1 2 n-1 n

T
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Problems
1. Show that
v - p(X,Y)p(Y, Z)p(X, Z)
Y2 = Bl XV (X, ¥, 2)
and obtain a general formula for I(X1; Xo,;---; X,).

2. Suppose X 1 Y and X | Z. Does X L (Y, Z) hold in general?

3. Show that I(X;Y;Z) vanishes if at least one of the following conditions
hold:

a) X, Y, and Z are mutually independent;
b) X —Y — Z forms a Markov chain and X and Z are independent.

4. a) Verify that I(X;Y’; Z) vanishes for the distribution p(x,y, z) given by

p(0,0,0) = 0.0625, p(0,0,1) = 0.0772, p(0,1,0) = 0.0625
p(0,1,1) = 0.0625, p(1,0,0) = 0.0625, p(1,0,1) = 0.1103
p(1,1,0) = 0.1875, p(1,1,1) = 0.375.
b) Verify that the distribution in part a) does not satisfy the conditions
in Problem 3.

5. Weak independence X is weakly independent of Y if the rows of the

transition matrix [p(z|y)] are linearly dependent.
a) Show that if X and Y are independent, then X is weakly independent
of Y.
b) Show that for random variables X and Y, there exists a random vari-
able Z satisfying
) X—-Y—>Z
ii) X and Z are independent
iii) Y and Z are not independent
if and only if X is weakly independent of Y.
(Berger and Yeung [29].)

6. Prove that
a) I(X;Y;2) > —min{I(X; Y|2), I(Y; Z|X), I(X, ZY )}

b) I(X;Y;2) <min{I(X;Y),[(Y;2),I(X;Z)}.

7. a) Prove that if X and Y are independent, then I(X,Y; Z) > I(X;Y|Z).
b) Show that the inequality in part a) is not valid in general by giving a

counterexample.

8. In Example 3.15, it was shown that I(X;Y) > H(X) — H(Z), where X
is the plain text, Y is the cipher text, and Z is the key in a secret key
cryptosystem. Give an example of a secret key cryptosystem such that
this inequality is tight.

9. a) Prove that under the constraint that X — Y — Z forms a Markov

chain, X 1 Y|Z and X 1 Z imply X 1L Y.
b) Prove that the implication in a) continues to be valid without the
Markov chain constraint.
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10. a) Show that Y L Z|T does not imply Y L Z|(X,T) by giving a coun-
terexample.
b) Prove that Y L Z|T implies Y L Z|(X,T) conditioningon X — Y —
Z —T.
11. a) Let X — Y — (Z,T) form a Markov chain. Prove that I(X;Z) +
I(X;T) < I(X;Y) + I(Z;T).
b) Let X - Y — Z — T form a Markov chain. Determine which of the
following inequalities always hold:
) I(XGT)+1(Y;2) 2 1(X;2) + 1(Y;T)
i) I(X;T)+1(Y;2) > I(X;Y)+ 1(Z,T)
i) I(X;Y)+1(Z;T) > 1(X;Z2)+ 1(Y;T).
12. Secret sharing For a given finite set P and a collection A of subsets of P,
a secret sharing scheme is a random variable S and a family of random
variables {X), : p € P} such that for all A € A,

H(S[X4) =0,

and for all B € A,
H(S|Xp)=H(S).

Here, S is the secret and P is the set of participants of the scheme. A
participant p of the scheme possesses a share X, of the secret. The set
A specifies the access structure of the scheme: For a subset A of P, by
pooling their shares, if A € A, the participants in A can reconstruct S,
otherwise they can know nothing about S.

a) 1) Prove that for A, B C P,if B¢ Aand AUB € A, then

H(XalXp) = H(S) + H(Xa|XB,5).
ii) Prove that if B € A, then
H(XalXp)=H(X4|XB,S).

(Capocelli et al. [57].)
b) Prove that for A, B,C C P such that AUC € A, BUC € A, and
C ¢ A, then
1(Xa; X5|Xc) > H(S).

(van Dijk [363].)

13. Consider four random variables XY, Z, and T which satisfy the follow-
ing constraints: H(T|X) = H(T), H(T|X,Y) = 0, H(T|Y) = H(T),
H(Y|Z) =0, and H(T|Z) = 0. Prove that
a) HT|X,Y,Z)=1(Z;T|X,Y) =0.

(X;T)Y,2)=1(X;Y;T|Z)=1Y;T|X,Z) = 0.

(X;Z;T)=1(Y;Z;,T) = 0.

H(Y|X,2,T) = I(X;Y|Z,T) = 0.
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f) I(X;2) > H(T).
The inequality in f) finds application in a secret sharing problem studied
by Blundo et al. [43].

14. Prove that for random variables X, Y, Z, and T,

D IA) g

(X,Y) LT|Z

Y L Z|T =Y 1Z
Y L Z|X

XLT

Hint: Observe that X L Z|Y and (X,Y) L T|Z are equivalent to X —
Y — Z — T and use an information diagram.
15. Prove that

X1y Z1T
X 1Y|(2,7T) Z L T|(X,Y)
Z1T|X TYXLY|Z
Z LTy X LY|T.

(Studeny [346].)

Historical Notes

The original work on the set-theoretic structure of Shannon’s information
measures is due to Hu [173]. It was established in this paper that every infor-
mation identity implies a set identity via a substitution of symbols. This allows
the tools for proving information identities to be used in proving set identi-
ties. Since the paper was published in Russian, it was largely unknown to the
West until it was described in Csiszér and Korner [84]. Throughout the years,
the use of Venn diagrams to represent the structure of Shannon’s information
measures for two or three random variables has been suggested by various
authors, for example, Reza [302], Abramson [2], and Papoulis [286], but no
formal justification was given until Yeung [398] introduced the I-Measure.

McGill [265] proposed a multiple mutual information for any number of
random variables which is equivalent to the mutual information between two
or more random variables discussed here. Properties of this quantity have been
investigated by Kawabata [196] and Yeung [398].

Along a related direction, Han [146] viewed the linear combination of en-
tropies as a vector space and developed a lattice-theoretic description of Shan-
non’s information measures.
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Zero-Error Data Compression

In a random experiment, a coin is tossed n times. Let X; be the outcome of
the 7th toss, with

Pr{X; = HEAD} = p and Pr{X; =TAIL} =1 —p, (4.1)

where 0 < p < 1. It is assumed that X; are i.i.d., and the value of p is known.
We are asked to describe the outcome of the random experiment without error
(with zero error) by using binary symbols. One way to do this is to encode
a HEAD by a ‘0’ and a TAIL by a ‘1.’ Then the outcome of the random
experiment is encoded into a binary codeword of length n. When the coin is
fair, i.e., p = 0.5, this is the best we can do because the probability of every
outcome of the experiment is equal to 27". In other words, all the outcomes
are equally likely.

However, if the coin is biased, i.e., p # 0.5, the probability of an outcome of
the experiment depends on the number of HEADs and the number of TAILs
in the outcome. In other words, the probabilities of the outcomes are no longer
uniform. It turns out that we can take advantage of this by encoding more
likely outcomes into shorter codewords and less likely outcomes into longer
codewords. By doing so, it is possible to use fewer than n bits on the average to
describe the outcome of the random experiment. In particular, in the extreme
case when p = 0 or 1, we actually do not need to describe the outcome of the
experiment because it is deterministic.

At the beginning of Chapter 2, we mentioned that the entropy H(X)
measures the amount of information contained in a random variable X. In
this chapter, we substantiate this claim by exploring the role of entropy in the
context of zero-error data compression.
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4.1 The Entropy Bound

In this section, we establish that H(X) is a fundamental lower bound on the
expected length of the number of symbols needed to describe the outcome of
a random variable X with zero error. This is called the entropy bound.

Definition 4.1. A D-ary source code C for a source random variable X is a
mapping from X to D*, the set of all finite length sequences of symbols taken
from a D-ary code alphabet.

Consider an information source {X,k > 1}, where X}, are discrete ran-
dom variables which take values in the same alphabet. We apply a source
code C to each X and concatenate the codewords. Once the codewords are
concatenated, the boundaries of the codewords are no longer explicit. In other
words, when the code C is applied to a source sequence, a sequence of code
symbols are produced, and the codewords may no longer be distinguishable.
We are particularly interested in uniquely decodable codes which are defined
as follows.

Definition 4.2. A code C is uniquely decodable if for any finite source se-
quence, the sequence of code symbols corresponding to this source sequence is
different from the sequence of code symbols corresponding to any other (finite)
source sequence.

Suppose we use a code C to encode a source file into a coded file. If C is
uniquely decodable, then we can always recover the source file from the coded
file. An important class of uniquely decodable codes, called prefix codes, are
discussed in the next section. But we first look at an example of a code which
is not uniquely decodable.

Ezample 4.3. Let X = {A, B,C, D}. Consider the code C defined by

Then all the three source sequences AAD, ACA, and AABA produce the code
sequence 0010. Thus from the code sequence 0010, we cannot tell which of the
three source sequences it comes from. Therefore, C is not uniquely decodable.

In the next theorem, we prove that for any uniquely decodable code, the
lengths of the codewords have to satisfy an inequality called the Kraft inequal-
1ty.
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Theorem 4.4 (Kraft Inequality). Let C be a D-ary source code, and let
l1,l2,- -+ Iy, be the lengths of the codewords. If C is uniquely decodable, then

> D <1 (4.2)
k=1

Proof. Let N be an arbitrary positive integer, and consider

m N m m m
(Z le> — Z Z . Z DUy g ++ley) (4.3)
k=1

ki1=1ko=1 kn=1

By collecting terms on the right-hand side, we write

m N Nlmax
<Zplk> = > AD™ (4.4)
k=1 =1

where
lmax = 11Sr}cagxm I (4.5)

and A; is the coefficient of D~ in (22;1 D*l’“)N. Now observe that A; gives
the total number of sequences of N codewords with a total length of ¢ code
symbols (see Example 4.5 below). Since the code is uniquely decodable, these
code sequences must be distinct, and therefore

A; < D' (4.6)

because there are D* distinct sequences of i code symbols. Substituting this
inequality into (4.4), we have

m N Nigax
<Z D—lk> < Y 1= Nlpax, (4.7)
k=1 =1
or

D> D7 < (Nlax) V. (4.8)
k=1

Since this inequality holds for any N, upon letting N — oo, we obtain (4.2),
completing the proof. O

Ezxample 4.5. In this example, we illustrate the quantity A; in the proof of
Theorem 4.4 for the code C in Example 4.3. Let [y =1y =1 and I3 = 4, = 2.
Let N = 2 and consider

4 2
(Z 2—lk> =(2-27142.27%)?2 (4.9)
k=1

=4-27248.27% 44274 (4.10)
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Then Ay = 4, A3 = 8, and A, = 8, i.e., the total number of sequences of 2
codewords with a total length of 2, 3, and 4 code symbols are 4, 8, and 4,
respectively. For a total length of 3, for instance, the 8 code sequences are
001(AC), 010(AD), 101(BC), 110(BD), 010(CA), 011(CB), 100(DA), and
101(DB).

Let X be a source random variable with probability distribution

{p1,p2, "+, P}, (4.11)

where m > 2. When we use a uniquely decodable code C to encode the outcome
of X, we are naturally interested in the expected length of a codeword, which
is given by

L=> pi. (4.12)

We will also refer to L as the expected length of the code C. The quantity L
gives the average number of symbols we need to describe the outcome of X
when the code C is used, and it is a measure of the efficiency of the code C.
Specifically, the smaller the expected length L is, the better the code C is.

In the next theorem, we will prove a fundamental lower bound on the
expected length of any uniquely decodable D-ary code. We first explain why
this is the lower bound we should expect. In a uniquely decodable code, we use
L D-ary symbols on the average to describe the outcome of X. Recall from
the remark following Theorem 2.43 that a D-ary symbol can carry at most
one D-it of information. Then the maximum amount of information which
can be carried by the codeword on the average is L - 1 = L D-its. Since the
code is uniquely decodable, the amount of entropy carried by the codeword
on the average is Hp(X). Therefore, we have

Hp(X) < L. (4.13)

In other words, the expected length of a uniquely decodable code is at least
the entropy of the source. This argument is rigorized in the proof of the next
theorem.

Theorem 4.6 (Entropy Bound). Let C be a D-ary uniquely decodable code
for a source random variable X with entropy Hp(X). Then the expected length
of C is lower bounded by Hp(X), i.e.,

L > Hp(X). (4.14)
This lower bound is tight if and only if [; = —logp p; for alli.

Proof. Since C is uniquely decodable, the lengths of its codewords satisfy the
Kraft inequality. Write

L= Zpi log, D% (4.15)
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and recall from Definition 2.35 that

Hp(X) == _pilogppi (4.16)

Then
L—Hp(X) = Zpi log p (p: D") (4.17)
= (D)™ Zpi In(p; D") (4.18)

> (InD)* Zpi <1 - pilDli> (4.19)

= (InD)~! lZpi - ZD‘“‘] (4.20)

> (InD)"1(1-1) (4.21)
=0, (4.22)
where we have invoked the fundamental inequality in (4.19) and the Kraft
inequality in (4.21). This proves (4.14). In order for this lower bound to be

tight, both (4.19) and (4.21) have to be tight simultaneously. Now (4.19) is
tight if and only if p; D% = 1, or I; = — logp, p; for all i. If this holds, we have

Z D7l = Zpi =1, (4.23)

i.e., (4.21) is also tight. This completes the proof of the theorem. O
The entropy bound can be regarded as a generalization of Theorem 2.43,
as is seen from the following corollary.
Corollary 4.7. H(X) < log |X]|.
Proof. Considering encoding each outcome of a random variable X by a dis-
tinct symbol in {1,2,---,|X|}. This is obviously a |X|-ary uniquely decodable
code with expected length 1. Then by the entropy bound, we have
Hyy(X) <1, (4.24)
which becomes
H(X) <log|X] (4.25)
when the base of the logarithm is not specified. O
Motivated by the entropy bound, we now introduce the redundancy of a

uniquely decodable code.

Definition 4.8. The redundancy R of a D-ary uniquely decodable code is the
difference between the expected length of the code and the entropy of the source.

We see from the entropy bound that the redundancy of a uniquely decod-
able code is always nonnegative.



86 4 Zero-Error Data Compression

4.2 Prefix Codes

4.2.1 Definition and Existence

Definition 4.9. A code is called a prefix-free code if no codeword is a prefix
of any other codeword. For brevity, a prefiz-free code will be referred to as a
prefix code.

Ezample 4.10. The code C in Example 4.3 is not a prefix code because the
codeword 0 is a prefix of the codeword 01, and the codeword 1 is a prefix of
the codeword 10. It can easily be checked that the following code C’ is a prefix
code.

A D-ary tree is a graphical representation of a collection of finite sequences
of D-ary symbols. In a D-ary tree, each node has at most D children. If a
node has at least one child, it is called an internal node, otherwise it is called
a leaf. The children of an internal node are labeled by the D symbols in the
code alphabet.

A D-ary prefix code can be represented by a D-ary tree with the leaves of
the tree being the codewords. Such a tree is called the code tree for the prefix
code. Figure 4.1 shows the code tree for the prefix code C’ in Example 4.10.

As we have mentioned in Section 4.1, once a sequence of codewords are
concatenated, the boundaries of the codewords are no longer explicit. Prefix
codes have the desirable property that the end of a codeword can be rec-
ognized instantaneously so that it is not necessary to make reference to the
future codewords during the decoding process. For example, for the source se-
quence BCDAC - - -, the code C’ in Example 4.10 produces the code sequence

110

1111

Fig. 4.1. The code tree for the code C’.
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1011011110110 - - -. Based on this binary sequence, the decoder can reconstruct
the source sequence as follows. The first bit 1 cannot form the first codeword
because 1 is not a valid codeword. The first two bits 10 must form the first
codeword because it is a valid codeword and it is not the prefix of any other
codeword. The same procedure is repeated to locate the end of the next code-
word, and the code sequence is parsed as 10,110,1111,0,110,---. Then the
source sequence BCDAC --- can be reconstructed correctly.

Since a prefix code can always be decoded correctly, it is a uniquely de-
codable code. Therefore, by Theorem 4.4, the codeword lengths of a prefix
code also satisfies the Kraft inequality. In the next theorem, we show that the
Kraft inequality fully characterizes the existence of a prefix code.

Theorem 4.11. There exists a D-ary prefiz code with codeword lengths Iy,
lo, ++,lm if and only if the Kraft inequality

Y ph<1 (4.26)
k=1

1s satisfied.

Proof. We only need to prove the existence of a D-ary prefix code with code-
word lengths 1,1, - - -, [, if these lengths satisfy the Kraft inequality. Without
loss of generality, assume that [y <ly < - <.

Consider all the D-ary sequences of lengths less than or equal to [, and
regard them as the nodes of the full D-ary tree of depth [,,. We will refer to
a sequence of length [ as a node of order [. Our strategy is to choose nodes
as codewords in nondecreasing order of the codeword lengths. Specifically, we
choose a node of order [; as the first codeword, then a node of order I, as the
second codeword, so on and so forth, such that each newly chosen codeword is
not prefixed by any of the previously chosen codewords. If we can successfully
choose all the m codewords, then the resultant set of codewords forms a prefix
code with the desired set of lengths.

There are D't > 1 (since [; > 1 ) nodes of order [; which can be chosen
as the first codeword. Thus choosing the first codeword is always possible.
Assume that the first i codewords have been chosen successfully, where 1 <
i < m—1, and we want to choose a node of order [;;1 as the (i+1)st codeword
such that it is not prefixed by any of the previously chosen codewords. In other
words, the (i + 1)st node to be chosen cannot be a descendant of any of the
previously chosen codewords. Observe that for 1 < j < ¢, the codeword with
length [; has Dl+174 descendents of order [; 1. Since all the previously chosen
codewords are not prefeces of each other, their descendents of order I; 1 do not
overlap. Therefore, upon noting that the total number of nodes of order ;41
is D'+1, the number of nodes which can be chosen as the (i 4+ 1)st codeword
is

Dli+r — plitai=ti _ ... _ pliti—li (4.27)
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If Iy, 15, - - -, I, satisfy the Kraft inequality, we have
D™ ...y Dl DT < (4.28)
Multiplying by D'+! and rearranging the terms, we have
Dli+r — plivi—h _ ... plivi—li > 1, (4.29)

The left hand side is the number of nodes which can be chosen as the (i+ 1)st
codeword as given in (4.27). Therefore, it is possible to choose the (i + 1)st
codeword. Thus we have shown the existence of a prefix code with codeword
lengths I1,12, -, I, completing the proof. 0O

A probability distribution {p;} such that for all i, p; = D~% where t; is a
positive integer, is called a D-adic distribution. When D = 2, {p;} is called a
dyadic distribution. From Theorem 4.6 and the above theorem, we can obtain
the following result as a corollary.

Corollary 4.12. There exists a D-ary prefiz code which achieves the entropy
bound for a distribution {p;} if and only if {p;} is D-adic.

Proof. Consider a D-ary prefix code which achieves the entropy bound for
a distribution {p;}. Let I; be the length of the codeword assigned to the
probability p;. By Theorem 4.6, for all 4, I[; = —logp, p;, or p; = D', Thus
{p:} is D-adic.

Conversely, suppose {p;} is D-adic, and let p; = D% for all 5. Let I; = ¢;
for all i. Then by the Kraft inequality, there exists a prefix code with codeword

lengths {I;}, because
Y Dh=3"D"=)"p =1 (4.30)

Assigning the codeword with length I; to the probability p; for all i, we see
from Theorem 4.6 that this code achieves the entropy bound. O

4.2.2 Huffman Codes

As we have mentioned, the efficiency of a uniquely decodable code is measured
by its expected length. Thus for a given source X, we are naturally interested
in prefix codes which have the minimum expected length. Such codes, called
optimal codes, can be constructed by the Huffrman procedure, and these codes
are referred to as Huffman codes. In general, there exists more than one opti-
mal code for a source, and some optimal codes cannot be constructed by the
Huffman procedure.

For simplicity, we first discuss binary Huffman codes. A binary prefix code
for a source X with distribution {p;} is represented by a binary code tree,
with each leaf in the code tree corresponding to a codeword. The Huffman
procedure is to form a code tree such that the expected length is minimum.
The procedure is described by a very simple rule:
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Keep merging the two smallest probability masses until one probabil-
ity mass (i.e., 1) is left.

The merging of two probability masses corresponds to the formation of an
internal node of the code tree. We now illustrate the Huffman procedure by
the following example.

Ezample 4.13. Let X be the source with X = {A, B,C, D, E'}, and the prob-
abilities are 0.35, 0.1, 0.15, 0.2, 0.2, respectively. The Huffman procedure is
shown in Figure 4.2. In the first step, we merge probability masses 0.1 and 0.15

p; codeword

0k 035 00
025 —— 01 010

! L o015 o1l
o4 02 10

02 11

Fig. 4.2. The Huffman procedure.

into a probability mass 0.25. In the second step, we merge probability masses
0.2 and 0.2 into a probability mass 0.4. In the third step, we merge probability
masses 0.35 and 0.25 into a probability mass 0.6. Finally, we merge probabil-
ity masses 0.6 and 0.4 into a probability mass 1. A code tree is then formed.
Upon assigning 0 and 1 (in any convenient way) to each pair of branches at
an internal node, we obtain the codeword assigned to each source symbol.

In the Huffman procedure, sometimes there is more than one choice of
merging the two smallest probability masses. We can take any one of these
choices without affecting the optimality of the code eventually obtained.

For an alphabet of size m, it takes m — 1 steps to complete the Huffman
procedure for constructing a binary code, because we merge two probability
masses in each step. In the resulting code tree, there are m leaves and m — 1
internal nodes.

In the Huffman procedure for constructing a D-ary code, the smallest
D probability masses are merged in each step. If the resulting code tree is
formed in k 4 1 steps, where & > 0, then there will be k + 1 internal nodes
and D + k(D — 1) leaves, where each leaf corresponds to a source symbol in
the alphabet. If the alphabet size m has the form D + k(D — 1), then we
can apply the Huffman procedure directly. Otherwise, we need to add a few
dummy symbols with probability 0 to the alphabet in order to make the total
number of symbols have the form D + k(D — 1).
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Ezample 4.14. If we want to construct a quaternary Huffman code (D = 4)
for the source in the last example, we need to add 2 dummy symbols so that
the total number of symbols becomes 7 = 4 + (1)3, where k£ = 1. In general,
we need to add at most D — 2 dummy symbols.

In Section 4.1, we have proved the entropy bound for a uniquely decodable
code. This bound also applies to a prefix code since a prefix code is uniquely
decodable. In particular, it applies to a Huffman code, which is a prefix code
by construction. Thus the expected length of a Huffman code is at least the
entropy of the source. In Example 4.13, the entropy H(X) is 2.202 bits, while
the expected length of the Huffman code is

0.35(2) + 0.1(3) + 0.15(3) + 0.2(2) + 0.2(2) = 2.25. (4.31)

We now turn to proving the optimality of a Huffman code. For simplicity,
we will only prove the optimality of a binary Huffman code. Extension of the
proof to the general case is straightforward.

Without loss of generality, assume that

D1 >P2 > > Dy (4.32)

Denote the codeword assigned to p; by c;, and denote its length by [;. To prove
that a Huffman code is actually optimal, we make the following observations.

Lemma 4.15. In an optimal code, shorter codewords are assigned to larger
probabilities.

Proof. Consider 1 <4 < j < m such that p; > p;. Assume that in a code, the
codewords ¢; and c; are such that l; > [;, i.e., a shorter codeword is assigned
to a smaller probability. Then by exchanging ¢; and c;, the expected length
of the code is changed by

(pily + pjli) — (pili +pjly) = (pi —pj)(l; — 1) <O (4.33)

since p; > p; and l; > l;. In other words, the code can be improved and
therefore is not optimal. The lemma is proved. 0O

Lemma 4.16. There exists an optimal code in which the codewords assigned
to the two smallest probabilities are siblings, i.e., the two codewords have the
same length and they differ only in the last symbol.

Proof. The reader is encouraged to trace the steps in this proof by drawing
a code tree. Consider any optimal code. From the last lemma, the codeword
cm, assigned to p,, has the longest length. Then the sibling of ¢,, cannot be
the prefix of another codeword.

We claim that the sibling of ¢,, must be a codeword. To see this, assume
that it is not a codeword (and it is not the prefix of another codeword). Then
we can replace ¢, by its parent to improve the code because the length of
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the codeword assigned to p,, is reduced by 1, while all the other codewords
remain unchanged. This is a contradiction to the assumption that the code is
optimal. Therefore, the sibling of ¢, must be a codeword.

If the sibling of ¢, is assigned to p,,_1, then the code already has the
desired property, i.e., the codewords assigned to the two smallest probabilities
are siblings. If not, assume that the sibling of ¢, is assigned to p;, where i <
m — 1. Since p; > Pm—1, lm—1 > l; = L. On the other hand, by Lemma 4.15,
l;m—1 is always less than or equal to [,,, which implies that [,, 1 = [, = I;.
Then we can exchange the codewords for p; and p,,_1 without changing the
expected length of the code (i.e., the code remains optimal) to obtain the
desired code. The lemma is proved. 0O

Suppose ¢; and c; are siblings in a code tree. Then I; = [;. If we replace
¢; and ¢; by a common codeword at their parent, call it ¢;;, then we obtain
a reduced code tree, and the probability of ¢;; is p; + p;. Accordingly, the
probability set becomes a reduced probability set with p; and p; replaced by
a probability p; + p;. Let L and L’ be the expected lengths of the original
code and the reduced code, respectively. Then

L—L" = (pili +pjly) = (pi +p)(li — 1) (4.34)
= (pili +pjli) — (pi +p;)(li — 1) (4.35)
= pi +pj, (4.36)
which implies
L=L'+(pi+p)). (4.37)

This relation says that the difference between the expected length of the
original code and the expected length of the reduced code depends only on
the values of the two probabilities merged but not on the structure of the
reduced code tree.

Theorem 4.17. The Huffman procedure produces an optimal prefix code.

Proof. Consider an optimal code in which ¢, and ¢,,_1 are siblings. Such an
optimal code exists by Lemma 4.16. Let {p}} be the reduced probability set
obtained from {p;} by merging p,, and p,,—1. From (4.37), we see that L’ is
the expected length of an optimal code for {p}} if and only if L is the expected
length of an optimal code for {p;}. Therefore, if we can find an optimal code
for {p,}, we can use it to construct an optimal code for {p;}. Note that by
merging p.,, and p,,_1, the size of the problem, namely the total number of
probability masses, is reduced by one. To find an optimal code for {p}}, we
again merge the two smallest probability in {p}}. This is repeated until the
size of the problem is eventually reduced to 2, which we know that an optimal
code has two codewords of length 1. In the last step of the Huffman procedure,
two probability masses are merged, which corresponds to the formation of a
code with two codewords of length 1. Thus the Huffman procedure indeed
produces an optimal code. O
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‘We have seen that the expected length of a Huffman code is lower bounded
by the entropy of the source. On the other hand, it would be desirable to obtain
an upper bound in terms of the entropy of the source. This is given in the
next theorem.

Theorem 4.18. The expected length of a Huffman code, denoted by Lyusg,
satisfies
LHuﬂ‘ < HD(X) + 1. (438)

This bound is the tightest among all the upper bounds on Ly.g which depend
only on the source entropy.

Proof. We will construct a prefix code with expected length less than H(X)+
1. Then, because a Huffman code is an optimal prefix code, its expected length
Lyug is upper bounded by H(X) + 1.

Consider constructing a prefix code with codeword lengths {I;}, where

li = [—logppil. (4.39)
Then
—logppi < li < —logp pi +1, (4.40)
or
p; > D7l > D7, (4.41)
Thus

Y D <y pi=1, (4.42)

i.e., {l;} satisfies the Kraft inequality, which implies that it is possible to
construct a prefix code with codeword lengths {/;}.

It remains to show that L, the expected length of this code, is less than
H(X)+ 1. Toward this end, consider

L= Zpili (4.43)

< Zpi(— logppi +1) (4.44)
== sz' logp pi + Zpi (4.45)
=H(X)+1, (4.46)

where (4.44) follows from the upper bound in (4.40). Thus we conclude that
Liwg < L < H(X) + 1. (4.47)

To see that this upper bound is the tightest possible, we have to show that
there exists a sequence of distributions Py, such that Ly, approaches H(X)+1
as k — oo. This can be done by considering the sequence of D-ary distributions
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D—-11 1

where k > D. The Huffman code for each Pj consists of D codewords of length
1. Thus Lyug is equal to 1 for all k. As k — oo, H(X) — 0, and hence Ly,g
approaches H(X) 4 1. The theorem is proved. 0O

The code constructed in the above proof is known as the Shannon code.
The idea is that in order for the code to be near-optimal, we should choose [;
close to —logp; for all i. When {p;} is D-adic, l; can be chosen to be exactly
—log p; because the latter are integers. In this case, the entropy bound is
tight.

From the entropy bound and the above theorem, we have

H(X) < Lyug < H(X) + 1. (4.49)

Now suppose we use a Huffman code to encode X1, Xo, -, X,, which are n
iid. copies of X. Let us denote the length of this Huffman code by Lfj,g-
Then (4.49) becomes

nH(X) < Lijug < nH(X) + 1. (4.50)

Dividing by n, we obtain

1 1
H(X) < —Lijg < H(X) + —. (4.51)

As n — oo, the upper bound approaches the lower bound. Therefore,
n~lL% &, the coding rate of the code, namely the average number of code
symbols needed to encode a source symbol, approaches H(X) as n — oo.
But of course, as n becomes large, constructing a Huffman code becomes very
complicated. Nevertheless, this result indicates that entropy is a fundamental
measure of information.

4.3 Redundancy of Prefix Codes

The entropy bound for a uniquely decodable code has been proved in Sec-
tion 4.1. In this section, we present an alternative proof specifically for prefix
codes which offers much insight into the redundancy of such codes.

Let X be a source random variable with probability distribution

{plaan"'7pm}; (452)

where m > 2. A D-ary prefix code for X can be represented by a D-ary code
tree with m leaves, where each leaf corresponds to a codeword. We denote the
leaf corresponding to p; by ¢; and the order of ¢; by [;, and assume that the
alphabet is
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{0,1,---,D —1}. (4.53)

Let Z be the index set of all the internal nodes (including the root) in the
code tree.

Instead of matching codewords by brute force, we can use the code tree of
a prefix code for more efficient decoding. To decode a codeword, we trace the
path specified by the codeword from the root of the code tree until it termi-
nates at the leaf corresponding to that codeword. Let gx be the probability of
reaching an internal node k € Z during the decoding process. The probability
qx is called the reaching probability of internal node k. Evidently, g is equal
to the sum of the probabilities of all the leaves descending from node k.

Let py,; be the probability that the jth branch of node £ is taken during
the decoding process. The probabilities py ;,0 < j < D — 1, are called the
branching probabilities of node k, and

qr = Zﬁk,j- (4.54)
J
Once node k is reached, the conditional branching distribution is

{pk707pk’1’...7pk7D_1}. (455)
ak gk qk

Then define the conditional entropy of node k by

he = Hyp ({pko Pri . PrDo1 }) , (4.56)

gk ' gk qk

where with a slight abuse of notation, we have used Hp(-) to denote the
entropy in the base D of the conditional branching distribution in the paren-
thesis. By Theorem 2.43, h; < 1. The following lemma relates the entropy of
X with the structure of the code tree.

Lemma 4.19. Hp(X) = >, .7 qxhe.

Proof. We prove the lemma by induction on the number of internal nodes of
the code tree. If there is only one internal node, it must be the root of the tree.
Then the lemma is trivially true upon observing that the reaching probability
of the root is equal to 1.

Assume the lemma is true for all code trees with n internal nodes. Now
consider a code tree with n 4 1 internal nodes. Let k£ be an internal node such
that k is the parent of a leaf ¢ with maximum order. Each sibling of ¢ may or
may not be a leaf. If it is not a leaf, then it cannot be the ascendent of another
leaf because we assume that c¢ is a leaf with maximum order. Now consider
revealing the outcome of X in two steps. In the first step, if the outcome
of X is not a leaf descending from node k, we identify the outcome exactly,
otherwise we identify the outcome to be a child of node k. We call this random
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variable V. If we do not identify the outcome exactly in the first step, which
happens with probability ¢, we further identify in the second step which of
the children (child) of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of ¢ are not leaves). We call this
random variable W. If the second step is not necessary, we assume that W
takes a constant value with probability 1. Then X = (V, W).

The outcome of V' can be represented by a code tree with n internal nodes
which is obtained by pruning the original code tree at node k. Then by the
induction hypothesis,

HV)= Y avhy. (4.57)
K eT\{k}

By the chain rule for entropy, we have

H(X) = H(V)+HW|V) (4.58)
= Y awhw +(1—q) -0+ ghy (4.59)
K ET\{k}
= Z qk/hk/. (4'60)
KeT

The lemma is proved. 0O

The next lemma expresses the expected length L of a prefix code in terms
of the reaching probabilities of the internal nodes of the code tree.

Lemma 4.20. L =}, 7 qx-
Proof. Define

a { 1 if leaf ¢; is a descendent of internal node k
ki =

0 otherwise. (4.61)

Then
L= a, (4.62)

because there are exactly [; internal nodes of which ¢; is a descendent if the
order of ¢; is [;. On the other hand,

qk = Z AiPi- (4.63)
7
Then
L= Z pil; (4.64)
= Zpi Z Qi (465)

i keZ
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=3 piaki (4.66)

kel

= an (4.67)

keZ

proving the lemma. O

Define the local redundancy of an internal node k by
7% = qr(1 — hg). (4.68)

This quantity is local to node k in the sense that it depends only on the
branching probabilities of node k, and it vanishes if and only if pi ; = qx/D
for all j, i.e., if and only if the node is balanced. Note that r, > 0 because
hi < 1.

The next theorem says that the redundancy R of a prefix code is equal to
the sum of the local redundancies of all the internal nodes of the code tree.

Theorem 4.21 (Local Redundancy Theorem). Let L be the expected
length of a D-ary prefix code for a source random variable X, and R be the
redundancy of the code. Then

R=> . (4.69)

keZ

Proof. By Lemmas 4.19 and 4.20, we have

R=L—-Hp(X) (4.70)
=D @Y ahx (4.71)
kel k
— quu — hg) (4.72)
kel
=Y (4.73)
kel

The theorem is proved. O

We now present an slightly different version of the entropy bound.

Corollary 4.22 (Entropy Bound). Let R be the redundancy of a prefix
code. Then R > 0 with equality if and only if all the internal nodes in the code
tree are balanced.

Proof. Since ri > 0 for all k, it is evident from the local redundancy theorem
that R > 0. Moreover R = 0 if and only if r, = 0 for all k, which means that
all the internal nodes in the code tree are balanced. 0O
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Remark Before the entropy bound was stated in Theorem 4.6, we gave
the intuitive explanation that the entropy bound results from the fact that
a D-ary symbol can carry at most one D-it of information. Therefore, when
the entropy bound is tight, each code symbol has to carry exactly one D-it
of information. Now consider revealing a random codeword one symbol after
another. The above corollary states that in order for the entropy bound to
be tight, all the internal nodes in the code tree must be balanced. That is, as
long as the codeword is not completed, the next code symbol to be revealed
always carries one D-it of information because it is distributed uniformly on
the alphabet. This is consistent with the intuitive explanation we gave for the
entropy bound.

Ezxample 4.23. The local redundancy theorem allows us to lower bound the
redundancy of a prefix code based on partial knowledge on the structure of
the code tree. More specifically,

R>> (4.74)

kel’

for any subset Z’ of 7.

Let p,,_1,pm be the two smallest probabilities in the source distribution.
In constructing a binary Huffman code, p,,—1 and p,, are merged. Then the
redundancy of a Huffman code is lower bounded by

Pm—-1 Pm
m—1 1 Pm 1-H 5 s 4.75
(p ! P ) |: ? <{pm1 + Pm Pm—1 1 Pm }>:| ( )

the local redundancy of the parent of the two leaves corresponding to p,,_1 and
Dm- See Yeung [399] for progressive lower and upper bounds on the redundancy
of a Huffman code.

Chapter Summary

Kraft Inequality: For a D-ary uniquely decodable source code,

m
> D <1
k=1

Entropy Bound:

L= pily > Hp(X),
k

with equality if and only if the distribution of X is D-adic.
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Definition: A code is called a prefix code if no codeword is a prefix of any
other codeword.

Existence of Prefix Code: A D-ary prefix code with codeword lengths
l1,lo, -+, exists if and only if the Kraft inequality is satisfied.

Huffman Code:

1. A Huffman code is a prefix code with the shortest expected length for a
given source.

2. HD(X) < Lygur < HD(X) + 1.

Huffman Procedure: Keep merging the D smallest probability masses.
Redundancy of Prefix Code:

L—Hp(X)=R=Y)

where 7, = qi(1 — hg) is the local redundancy of an internal node k.

Problems

1. Construct a binary Huffman code for the distribution {0.25, 0.05, 0.1,
0.13, 0.2,0.12,0.08,0.07}.

2. Construct a ternary Huffman code for the source distribution in Prob-
lem 1.

3. Show that a Huffman code is an optimal uniquely decodable code for a
given source distribution.

4. Construct an optimal binary prefix code for the source distribution in
Problem 1 such that all the codewords have even lengths.

5. Prove directly that the codeword lengths of a prefix code satisfy the Kraft
inequality without using Theorem 4.4.

6. Prove that if p; > 0.4, then the shortest codeword of a binary Huffman
code has length equal to 1. Then prove that the redundancy of such a
Huffman code is lower bounded by 1 — hy(p1). (Johnsen [192].)

7. Suffiz codes A code is a suffix code if no codeword is a suffix of any other
codeword. Show that a suffix code is uniquely decodable.

8. Fiz-free codes A code is a fix-free code if it is both a prefix code and a

suffix code. Let Iy, 1o, -+, l,, be m positive integers. Prove that if
S 1
-2
k=1
then there exists a binary fix-free code with codeword lengths l1, 1o, -, ;-

(Ahlswede et al. [5].)



10.

Historical Notes 99

Random coding for prefix codes Construct a binary prefix code with code-
word lengths [} < Iy < .-+ < [, as follows. For each 1 < k < m, the
codeword with length [, is chosen independently from the set of all 2%
possible binary strings with length [ according the uniform distribution.
Let P,,(good) be the probability that the code so constructed is a prefix
code.

a) Prove that Py(good) = (1 —271)* where

+ Jzifz>0
(z) {0ﬁx<&

b) Prove by induction on m that

+
1

P, (good) = H 1- Z sl
k=1 j=1
c) Observe that there exists a prefix code with codeword lengths I, o, - - -,
I if and only if P, (good) > 0. Show that P,,(good) > 0 is equivalent
to the Kraft inequality.
By using this random coding method, one can derive the Kraft inequality
without knowing the inequality ahead of time. (Ye and Yeung [395].)
Let X be a source random variable. Suppose a certain probability mass
pi in the distribution of X is given. Let

l.:{[—logpﬂ ifj=k
! [—log(p; + ;)] if j # k,

where
pre — 27 [ log P
Tj = Pj < 1— s )

for all j # k.

a) Show that 1 <1i; < [—logp,] for all j.

b) Show that {l;} satisfies the Kraft inequality.

¢) Obtain an upper bound on Ly,g in terms of H(X) and p; which is
tighter than H(X)+ 1. This shows that when partial knowledge about
the source distribution in addition to the source entropy is available,
tighter upper bounds on Li,.g can be obtained.

(Ye and Yeung [396].)

Historical Notes

The foundation for the material in this chapter can be found in Shannon’s
original paper [322]. The Kraft inequality for uniquely decodable codes was
first proved by McMillan [267]. The proof given here is due to Karush [195].
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The Huffman coding procedure was devised and proved to be optimal by
Huffman [175]. The same procedure was devised independently by Zimmerman
[418]. Linder et al. [236] have proved the existence of an optimal prefix code
for an infinite source alphabet which can be constructed from Huffman codes
for truncations of the source distribution. The local redundancy theorem is
due to Yeung [399]. A comprehensive survey of code trees for lossless data
compression can be found in Abrahams [1].
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Weak Typicality

In the last chapter, we have discussed the significance of entropy in the con-
text of zero-error data compression. In this chapter and the next, we explore
entropy in terms of the asymptotic behavior of i.i.d. sequences. Specifically,
two versions of the asymptotic equipartition property (AEP), namely the weak
AEP and the strong AEP, are discussed. The role of these AEP’s in infor-
mation theory is analogous to the role of the weak law of large numbers in
probability theory. In this chapter, the weak AEP and its relation with the
source coding theorem are discussed. All the logarithms are in the base 2
unless otherwise specified.

5.1 The Weak AEP

We consider an information source {Xj,k > 1} where X} are ii.d. with
distribution p(z). We use X to denote the generic random variable and
H(X) to denote the common entropy for all Xj, where H(X) < oo. Let
X = (X1,Xs, -+, X,). Since X}, are i.i.d.,

p(X) = p(X1)p(Xa2) - - p(Xy). (5.1)

Note that p(X) is a random variable because it is a function of the random
variables X1, X, - -+, X,,. We now prove an asymptotic property of p(X) called
the weak asymptotic equipartition property (weak AEP).

Theorem 5.1 (Weak AEP I).
1
- log p(X) — H(X) (5.2)
in probability as n — oo, i.e., for any € > 0, for n sufficiently large,

Pr{’—;logp(X) - H(X)‘ < e} S1-e (5.3)
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Proof. Since X1, Xs, -+, X, are i.i.d., by (5.1),
1 1<
— - logp(X) = —— > log p(Xy). (5.4)
k=1
The random variables log p(X}) are also i.i.d. Then by the weak law of large
numbers, the right hand side of (5.4) tends to
—Elogp(X) = H(X), (5.5)

in probability, proving the theorem. 0O

The weak AEP is nothing more than a straightforward application of the
weak law of large numbers. However, as we will see shortly, this property has
significant implications.

Definition 5.2. The weakly typical set W[gq
of sequences X = (x1, T2, -, Tp) € X™ such that

with respect to p(x) is the set

€

_% log p(x) — H(X)| <e, (5.6)

or equivalently,
1
H(X)—eg—glogp(x)gH(X)—l—e, (5.7)

where € is an arbitrarily small positive real number. The sequences in W[’}qe
are called weakly e-typical sequences.

The quantity
1 1<
— - logp(x) = —— > logp(ak) (5.8)
k=1

is called the empirical entropy of the sequence x. The empirical entropy of
a weakly typical sequence is close to the true entropy H(X). The important
properties of the set W'y, are summarized in the next theorem which we will
see is equivalent to the weak AEP.

Theorem 5.3 (Weak AEP II). The following hold for any e > 0:
1) Ifx € Wy, then

2—n(H(X)+e) < p(x) < 2—7L(H(X)—s). (59)
2) For n sufficiently large,
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3) For n sufficiently large,

(1 — 2 (HO=0) < | < 9nH O+, (5.11)

Proof. Property 1 follows immediately from the definition of W[’;(]e in (5.7).
Property 2 is equivalent to Theorem 5.1. To prove Property 3, we use the
lower bound in (5.9) and consider

Wikel2 " H O+ < Pr{Wpy, } <1, (5.12)

which implies
Wikl < 2nHEOF), (5.13)

Note that this upper bound holds for any n > 1. On the other hand, using
the upper bound in (5.9) and Theorem 5.1, for n sufficiently large, we have

Then
Wikl > (1 —e)2nH=9), (5.15)

Combining (5.13) and (5.15) gives Property 3. The theorem is proved. 0O

Remark Theorem 5.3 is a consequence of Theorem 5.1. However, Property
2 in Theorem 5.3 is equivalent to Theorem 5.1. Therefore, Theorem 5.1 and
Theorem 5.3 are equivalent, and they will both be referred to as the weak
AEP.

The weak AEP has the following interpretation. Suppose X = (X7, Xo, - - -,
X,) is drawn i.i.d. according to p(x), where n is large. After the sequence is
drawn, we ask what the probability of occurrence of the sequence is. The weak
AEP says that the probability of occurrence of the sequence drawn is close
to 27"H(X) with very high probability. Such a sequence is called a weakly
typical sequence. Moreover, the total number of weakly typical sequences is
approximately equal to 2"7(X) The weak AEP, however, does not say that
most of the sequences in X are weakly typical. In fact, the number of weakly
typical sequences is in general insignificant compared with the total number
of sequences, because

Wiksl | 2nH#0
x| ~ onlog|X|

9—n(log | X|-H(X)) _, (5.16)

as n — oo as long as H(X) is strictly less than log|X|. The idea is that,
although the size of the weakly typical set may be insignificant compared with
the size of the set of all sequences, the former has almost all the probability.

When n is large, one can almost think of the sequence X as being obtained
by choosing a sequence from the weakly typical set according to the uniform
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distribution. Very often, we concentrate on the properties of typical sequences
because any property which is proved to be true for typical sequences will then
be true with high probability. This in turn determines the average behavior
of a large sample.

Remark The most likely sequence is in general not weakly typical although
the probability of the weakly typical set is close to 1 when n is large. For
example, for X}, i.i.d. with p(0) = 0.1 and p(1) = 0.9, (1,1,---,1) is the most
likely sequence, but it is not weakly typical because its empirical entropy is not
close to the true entropy. The idea is that as n — oo, the probability of every
sequence, including that of the most likely sequence, tends to 0. Therefore, it
is not necessary for a weakly typical set to include the most likely sequence
in order to possess a probability close to 1.

5.2 The Source Coding Theorem

To encode a random sequence X = (X7, Xo,--+, X,,) drawn i.i.d. according
to p(x) by a block code, we construct a one-to-one mapping from a subset .4
of X" to an index set

T={1,2,---, M}, (5.17)

where |A] = M < |X|™. We do not have to assume that |X| is finite. The
indices in Z are called codewords, and the integer n is called the block length
of the code. If a sequence x € A occurs, the encoder outputs the corresponding
codeword which is specified by approximately log M bits. If a sequence x ¢
A occurs, the encoder outputs the constant codeword 1. In either case, the
codeword output by the encoder is decoded to the sequence in A corresponding
to that codeword by the decoder. If a sequence x € A occurs, then x is decoded
correctly by the decoder. If a sequence x ¢ A occurs, then x is not decoded
correctly by the decoder. For such a code, its performance is measured by
the coding rate defined as n~'log M (in bits per source symbol), and the
probability of error is given by

P.=Pr{X ¢ A} (5.18)

If the code is not allowed to make any error, i.e., P. = 0, it is clear that
M must be taken to be |X|"”, or A = X™. In that case, the coding rate is
equal to log|X|. However, if we allow P, to be any small quantity, Shannon
[322] showed that there exists a block code whose coding rate is arbitrarily
close to H(X) when n is sufficiently large. This is the direct part of Shannon’s
source coding theorem, and in this sense the source sequence X is said to be
reconstructed almost perfectly.

We now prove the direct part of the source coding theorem by constructing
a desired code. First, we fix € > 0 and take
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and
M = |Al. (5.20)

For sufficiently large n, by the weak AEP,
(1—€)2"HC=) < M = |A] = W) | < 2nHCOF), (5.21)
Therefore, the coding rate n~' log M satisfies
%log(lfe)JrH(X)feg%logMgH(X)nLe. (5.22)
Also by the weak AEP,
Po=Pr{X ¢ A} =Pr{X ¢ W} <e (5.23)

Letting e — 0, the coding rate tends to H(X), while P. tends to 0. This
proves the direct part of the source coding theorem.

The converse part of the source coding theorem says that if we use a block
code with block length n and coding rate less than H(X) — (, where { > 0
does not change with n, then P, — 1 as n — oco. To prove this, consider any
code with block length n and coding rate less than H(X) — (, so that M, the
total number of codewords, is at most 27*(H(X)=¢) We can use some of these
codewords for the typical sequences x € W[}]E, and some for the non-typical
sequences X ¢ W/, . The total probability of the typical sequences covered
by the code, by the weak AEP, is upper bounded by

on(H(X)=C)g=n(H(X)=€) _ g=n((=e) (5.24)

Therefore, the total probability covered by the code is upper bounded by
27D L Pr{X & W)} <277 4 e (5.25)

for n sufficiently large, again by the weak AEP. This probability is equal to
1— P, because P, is the probability that the source sequence X is not covered
by the code. Thus

1-P, <2769 ¢ (5.26)

or

P.>1— (27779 1), (5.27)

This inequality holds when n is sufficiently large for any € > 0, in particular
for € < (. Then for any € < (, P, > 1 — 2¢ when n is sufficiently large. Hence,
P. — 1 asn — oo and then e — 0. This proves the converse part of the source
coding theorem.
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5.3 Efficient Source Coding

Theorem 5.4. Let Y = (Y1,Y2, -+, Y) be a random binary sequence of
length m. Then H(Y) < m with equality if and only if Y; are drawn i.i.d.
according to the uniform distribution on {0,1}.

Proof. By the independence bound for entropy,
H(Y) <Y H(Y) (5.28)
i=1

with equality if and only if Y; are mutually independent. By Theorem 2.43,
H(Y;) <log2=1 (5.29)

with equality if and only if Y; is distributed uniformly on {0,1}. Combining
(5.28) and (5.29), we have

HY) < S HE) <m, (5.30)

where this upper bound is tight if and only if Y¥; are mutually independent
and each of them is distributed uniformly on {0,1}. The theorem is proved.
O

Let Y = (Y1,Ys,---,Y,,) be a sequence of length n such that Y; are drawn
iid. according to the uniform distribution on {0,1}, and let Y denote the
generic random variable. Then H(Y) = 1. According to the source coding
theorem, for almost perfect reconstruction of Y, the coding rate of the source
code must be at least 1. It turns out that in this case it is possible to use a
source code with coding rate exactly equal to 1 while the source sequence Y
can be reconstructed with zero error. This can be done by simply encoding
all the 2" possible binary sequences of length n, i.e., by taking M = 2". Then
the coding rate is given by

n"tlogM =n"'log2" = 1. (5.31)

Since each symbol in Y is a bit and the rate of the best possible code describing
Y is 1 bit per symbol, Y7,Y5,---,Y,, are called fair bits, with the connotation
that they are incompressible.

It turns out that the whole idea of efficient source coding by a block
code is to describe the information source by a binary sequence consisting
of “almost fair” bits. Consider a sequence of block codes which encode X =
(X1,X2,--+, X,) into Y = (Y1,Ys,--+,Y,,), where X, are i.i.d. with generic
random variable X, Y is a binary sequence with length
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and n — oo. For simplicity, we assume that the common alphabet X is fi-
nite. Let X € &A™ be the reconstruction of X by the decoder and P, be the

probability of error, i.e., R
P, =Pr{X # X}. (5.33)

Further assume P, — 0 as n — oo. We will show that Y consists of almost
fair bits.
By Fano’s inequality,

H(X|X) <1+ P.log|X|" =1+ nP,log|X|. (5.34)

Since X is a function of Y,

H(Y)=H(Y,X) > H(X) (5.35)
It follows that
H(Y) > H(X) (5.36)
> I(X;X) (5.37)
= H(X) - H(X|X) (5.38)
>nH(X)— (14 nP.log|X|) (5.39)
=n(H(X)— P.log|X]|) — 1. (5.40)
On the other hand, by Theorem 5.4,
H(Y) <m. (5.41)
Combining (5.40) and (5.41), we have
n(H(X) — P, log|X|) —1 < H(Y) <m. (5.42)

Since P, — 0 as n — oo, the above lower bound on H(Y) is approximately

equal to
nH(X)~m (5.43)

when n is large (cf. (5.32)). Therefore,
H(Y)~m. (5.44)

In light of Theorem 5.4, Y almost attains the maximum possible entropy. In
this sense, we say that Y consists of almost fair bits.

5.4 The Shannon-McMillan-Breiman Theorem

For an i.i.d. information source {Xj} with generic random variable X and
generic distribution p(x), the weak AEP states that
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1
—=logp(X) — H(X) (5.45)
n

in probability as n — oo, where X = (X1, Xs,---,X,,). Here H(X) is the
entropy of the generic random variables X as well as the entropy rate of the
source {X}.

In Section 2.10, we showed that the entropy rate H of a source {Xj}
exists if the source is stationary. The Shannon-McMillan-Breiman theorem
states that if {X}} is also ergodic, then

Pr {— lim 1 log Pr{X} = H} =1. (5.46)
n—oo N,

This means that if {X}} is stationary and ergodic, then —2 log Pr{X} not
only almost always converges, but it also almost always converges to H. For
this reason, the Shannon-McMillan-Breiman theorem is also referred to as the
weak AEP for ergodic stationary sources.

The formal definition of an ergodic source and the statement of the
Shannon-McMillan-Breiman theorem require the use of measure theory which
is beyond the scope of this book. We point out that the event in (5.46) in-
volves an infinite collection of random variables which cannot be described
by a joint distribution except in very special cases. Without measure theory,
the probability of this event in general cannot be properly defined. However,
this does not prevent us from developing some appreciation of the Shannon-
McMillan-Breiman theorem.

Let X be the common alphabet for a stationary source {X}}. Roughly
speaking, a stationary source {X} is ergodic if the time average exhibited
by a single realization of the source is equal to the ensemble average with
probability 1. More specifically, for any ki, ko, - -, km,

n—1
Pr{ nh—)ngo n ZZ; f(Xkﬁ-l’ Xhgtis ’kafH)

:Ef<Xk17Xk27"'7ka)} :17 (547)

where f is a function defined on X which satisfies suitable conditions. For
the special case that {X}} satisfies

1
Pr {nan;o - ;Xl = EXk} =1, (5.48)

we say that {Xy} is mean ergodic.

Ezample 5.5. The i.i.d. source { X} is mean ergodic under suitable conditions
because the strong law of the large numbers states that (5.48) is satisfied.
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Ezample 5.6. Consider the source {X}} defined as follows. Let Z be a binary
random variable uniformly distributed on {0, 1}. For all &, let X} = Z. Then

1l 1
Pr {nlgr;o 5;& = 0} =5 (5.49)
and
o T 0 T (5.50)
rq lim — = = .
n—oo N, =1 ! 2
Since E Xy, = %,
RN
Pr {nan;O - ;Xl = EXk} =0. (5.51)
Therefore, { X} } is not mean ergodic and hence not ergodic.

If an information source { X} is stationary and ergodic, by the Shannon-
McMillan-Breiman theorem,

1
- logPr{X} ~ H (5.52)

when n is large. That is, with probability close to 1, the probability of the
sequence X which occurs is approximately equal to 27", Then by means of
arguments similar to the proof of Theorem 5.3, we see that there exist approx-
imately 2" sequences in X™ whose probabilities are approximately equal to
2 "H “and the total probability of these sequences is almost 1. Therefore, by
encoding these sequences with approximately nH bits, the source sequence X
can be recovered with an arbitrarily small probability of error when the block
length n is sufficiently large. This is a generalization of the direct part of the
source coding theorem which gives a physical meaning to the entropy rate of
an ergodic stationary sources. We remark that if a source is stationary but
not ergodic, although the entropy rate always exists, it may not carry any
physical meaning.

As an example, by regarding printed English as a stationary ergodic pro-
cess, Shannon [325] estimated by a guessing game that its entropy rate is
about 1.3 bits per letter. Cover and King [78] described a gambling estimate
of the entropy rate of printed English which gives 1.34 bits per letter. These
results show that it is not possible to describe printed English accurately by
using less than about 1.3 bits per letter.



110

5 Weak Typicality

Chapter Summary

Weak AEP I:

1
——logp(X) — H(X) in probability.
n

Weakly Typical Set:

Wi = {x € X" : |-n""logp(x) — H(X)| < ¢}

Weak AEP I11:

1.
2.

3.

27O < p(x) < 27HIXI=9) for x € W,

Pr{X € Wk} > 1 — ¢ for n sufficiently large
(1 —e)2nH(X)=) < Wikl < 2n(H (X)) for n sufficiently large.

Source Coding Theorem: An i.i.d. random sequence X1, Xo,---, X, with
generic random variable X can be compressed at rate H(X) + e while P, — 0
as n — oo. If a rate less than H(X) is used, then P, — 1 as n — oo.

Shannon-McMillan-Breiman Theorem: For a stationary source {Xj}
with entropy rate H,

1
Pr{— lim —logPr{X} = H} =1.
n—oo N,

Problems

1.
2.

Show that for any € > 0, W[’)‘q6 is nonempty for sufficiently large n.

The source coding theorem with a gemeral block code In proving the con-
verse of the source coding theorem, we assume that each codeword in 7
corresponds to a unique sequence in X™. More generally, a block code
with block length n is defined by an encoding function f: X™ — 7 and a
decoding function g : Z — X™. Prove that P. — 1 as n — oo even if we
are allowed to use a general block code.

Following Problem 2, we further assume that we can use a block code
with probabilistic encoding and decoding. For such a code, encoding is
defined by a transition matrix F' from X™ to Z and decoding is defined by
a transition matrix G from Z to X™. Prove that P, — 1 as n — 0o even
if we are allowed to use such a code.

In the discussion in Section 5.3, we made the assumption that the com-
mon alphabet X is finite. Can you draw the same conclusion when X is
countable but H(X) is finite? Hint: use Problem 2.
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. Alternative definition of weak typicality Let X = (X1, Xo,---,X,,) be
an i.i.d. sequence whose generic random variable X is distributed with
p(x). Let gx be the empirical distribution of the sequence x, i.e., gx(z) =
n~IN(z;x) for all x € X, where N(z;x) is the number of occurrence of
z in X.

a) Show that for any x € X™,

—% log p(x) = D(gx|lp) + H(gx)-

b) Show that for any € > 0, the weakly typical set W[’)’(]€ with respect to
p(x) is the set of sequences x € X™ such that

|D(gxllp) + H(gx) — H(p)| < e.
c¢) Show that for sufficiently large n,
Pr{|D(qx|[p) + H(qx) — H(p)| < €} > 1 —e.

(Ho and Yeung [167].)

. Verify that the empirical entropy of a sequence is different from the en-
tropy of the empirical distribution of the sequence (see Problem 5 for
definition).

. Let p and ¢ be two probability distributions on the same alphabet X such
that H(p) # H(q). Show that there exists an € > 0 such that

p" ({XG P ’filogp”(x) fH(q)’ < e}) —0

as n — oo. Give an example that p # ¢ but the above convergence does
not hold.

. Let p and ¢ be two probability distributions on the same alphabet X with
the same support.

a) Prove that for any § > 0,

o ({xe s |- T10ga" 00— (H) + Do) < 6}) —1

as n — 0o.
b) Prove that for any 6 > 0,

1
Hx can: ’—5 log ¢" (x) — (H(p) + D(p||q))‘ < 5}‘ < rHI@+DED+0)

. Universal source coding Let F = {{X,gs),k‘ > 1} : s € 8} be a family
of i.i.d. information sources indexed by a finite set S with a common
alphabet X. Define

H= meagH(X(S))

where X () is the generic random variable for {X ,is), k> 1}, and
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A?(S) = U W[?;{(S)]y
SES

where € > 0.
a) Prove that for all s € S,

Pr{X® ¢ A"(S)} — 1

as n — 00, where X(*) = (Xl(s),XQ(S)7 e ,Xf{g)).
b) Prove that for any € > e,

|AR(S)] < 2n(H+)

for sufficiently large n.
c¢) Suppose we know that an information source is in the family F but
we do not know which one it is. Devise a compression scheme for the
information source such that it is asymptotically optimal for every
possible source in F.
10. Let {Xk,k > 1} be an i.i.d. information source with generic random vari-
able X and alphabet X. Assume

3 pl(@)llog p(x))? < oo

and define log p(X)
ogp
Lp=——"12—nH(X
L v (x)
forn=1,2,---. Prove that Z,, — Z in distribution, where Z is a Gaussian

random variable with mean 0 and variance Y p(z)[logp(z)]* — H(X)?.

Historical Notes

The weak asymptotic equipartition property (AEP), which is instrumental in
proving the source coding theorem, was first proved by Shannon in his original
paper [322]. In this paper, he also stated that this property can be extended to
an ergodic stationary source. Subsequently, McMillan [266] and Breiman [48]
proved this property for an ergodic stationary source with a finite alphabet.
Chung [71] extended the theme to a countable alphabet.
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Strong Typicality

Weak typicality requires that the empirical entropy of a sequence is close to
the true entropy. In this chapter, we introduce a stronger notion of typicality
which requires that the relative frequency of each possible outcome is close to
the corresponding probability. As we will see later, strong typicality is more
powerful and flexible than weak typicality as a tool for theorem proving for
memoryless problems. However, strong typicality can be used only for random
variables with finite alphabets. Throughout this chapter, typicality refers to
strong typicality and all the logarithms are in the base 2 unless otherwise
specified.

6.1 Strong AEP

We consider an information source {Xy,k > 1} where Xj are ii.d. with
distribution p(z). We use X to denote the generic random variable and
H(X) to denote the common entropy for all Xj, where H(X) < oo. Let
X = (X17X27 te 7Xn)'

Definition 6.1. The strongly typical set T&]é with respect to p(x) is the set
of sequences x = (x1, 22, ,Tp) € X™ such that N(z;x) =0 for z ¢ Sx, and

lN(ac;x) —p(x)| <6, (6.1)

>l <

x

where N(x;x) is the number of occurrences of x in the sequence x, and 0 is
an arbitrarily small positive real number. The sequences in T&]é are called
strongly d-typical sequences.

Throughout this chapter, we adopt the convention that all the summations,
products, unions, etc, are taken over the corresponding supports unless oth-
erwise specified. The strongly typical set T&] s Shares similar properties with
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its weakly typical counterpart, which is summarized as the strong asymptotic
equipartition property (strong AEP) below. The interpretation of the strong

AEP is similar to that of the weak AEP.

Theorem 6.2 (Strong AEP). There exists n > 0 such thatn — 0 as d — 0,

and the following hold:
1) If x € Tly;, then

2 M HX)4) < p(x) < 2= nHX)=n),
2) For n sufficiently large,
Pr{X € T{kx)s} > 1 4.
3) For n sufficiently large,

(1-— 5)2n(H(X)*77) < ‘T&]H < gn(H(X)+n)

Proof To prove Property 1, for x € T&w, we write
p(x) = [[ ()N .
x

Then

log p(x)
= N(z;x)logp(x)

=) (N (x;%) — np(x) + np(x)) log p(z)

w Y p)ogp(o) ~ 1 3 (L) i) ) (- Togp(o)

—n [H(X) + Y (2N - pio)) <—1ogp<x>>] .

Since x € T&]é,

which implies

(6.5)

(6.10)
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1
< —N(x;x) — —1 A1
< 32|V ) - plo)| (- ogp(e) (6.11)
< —log (minp(x)) Z ‘IN(x' x) — p(x) (6.12)
— e n )
x
< —dlog (minp(:r)) (6.13)
=, (6.14)
where
n = —dlog (minp(:v)) > 0. (6.15)
Therefore,
1
=X (V@) ) o) v (610
x
It then follows from (6.9) that
—n(H(X) +n) <logp(x) < —n(H(X) —n), (6.17)
or
2 n(H(X)+1) < p(x) < 2*71(H(X)*77)7 (6.18)
where 7 — 0 as 6 — 0, proving Property 1.
To prove Property 2, we write
n
N(x;X) = Bi(w), (6.19)
k=1
where
_ 1if Xk =T
By(z) = {0 if X # 2. (6.20)
Then By(z),k =1,2,---,n are i.i.d. random variables with
Pr{By(x) =1} = p(x) (6.21)
and
Pr{By(z) =0} =1 — p(x). (6.22)
Note that
EBy(z) = (1 = p(z)) - 0+ p(x) - 1 = p(x). (6.23)
By the weak law of large numbers, for any 6 > 0 and for any = € X,
1 < ) )
Prq|— Bi(z) —pla)| > = ¢ < = 6.24

for n sufficiently large. Then
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Pr { %N(x; X) — p(x)

: |
> — for some zx

||
1 — )
= Pr{‘n ZBk(x) p(x)| > Ed for some x} (6.25)
k=1
- Pr{U{ %ZB}C(Z) p(z)| > él}} (6.26)
T k=1
< ZPr{ %ZBk(x) p(@)| > ij} (6.27)
x k=1
)
< zw: Tl (6.28)
_ s, (6.29)

where we have used the union bound! to obtain (6.27). Since

) %N(a:;x) ()| > 6 (6.30)
implies
0
EN(.I,X) —p(z)| > Ed for some x € X, (6.31)
we have
1
=Pr {ZE: —N(;X) = pla)| < 5} (6.32)
=1-—Pr {Z %N(J;;X) —p(x)| > 5} (6.33)
1 0
> 1Pr{‘nN(x;X)p(x) > mfor somexeX} (6.34)
>1-4, (6.35)

proving Property 2.
Finally, Property 3 follows from Property 1 and Property 2 in exactly the
same way as in Theorem 5.3, so the proof is omitted. O

Remark Analogous to weak typicality, we note that the upper bound on
|T[7}(]5\ in Property 3 holds for all n > 1, and for any 6 > 0, there exists at
least one strongly typical sequence when n is sufficiently large. See Problem 1
in Chapter 5.

! The union bound refers to Pr{A U B} < Pr{A} + Pr{B}.
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In the rest of the section, we prove an enhancement of Property 2 of the
strong AEP which gives an exponential bound on the probability of obtaining
a non-typical vector?. The reader may skip this part at the first reading.

Theorem 6.3. For sufficiently large n, there exists p(§) > 0 such that

Pr{X ¢ Ti s} < 2770, (6.36)

The proof of this theorem is based on the Chernoff bound [67] which we
prove in the next lemma.

Lemma 6.4 (Chernoff Bound). Let Y be a real random variable and s be
any nonnegative real number. Then for any real number a,

log Pr{Y > a} < —sa +log E [2°7] (6.37)
and
logPr{Y < a} < sa+logE [27°7]. (6.38)
Proof. Let
_J1lify>0
uly) = {0 ity <0, (6.39)
Then for any s > 0,
u(y —a) < 25079, (6.40)

This is illustrated in Fig. 6.1. Then

Elu(Y —a)| <E [2”*’”} =27 [2eY]. (6.41)
Since
Elu(Y —a)] =Pr{Y >a} - 1+Pr{Y <a} - 0=Pr{Y >a},  (6.42)
we see that
Pr{Y >a} <27%°F [2°7] = 2~ satlos B27], (6.43)

Then (6.37) is obtained by taking logarithm in the base 2. Upon replacing Y
by =Y and a by —a in (6.37), (6.38) is obtained. The lemma is proved. O

Proof of Theorem 6.3. We will follow the notation in the proof of Theorem 6.2.
Consider = € X such that p(z) > 0. Applying (6.37), we have

2 This result is due to Ning Cai and Raymond W. Yeung. An alternative proof
based on Pinsker’s inequality (Theorem 2.33) and the method of types has been
given by Prakash Narayan (private communication). See also Proposition 1 in
Weissman et al. [375].
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log Pr {Z Bi(z) > n(p(z) + 5)}

k=1
< —sn(p(z) +6) + log E [25 2 Bk(”} (6.44)
Y _sn(p(z) + 8) + log (H E {28316@)}) (6.45)
k=1
Y sn(p(z) + 8) + nlog(l — p(z) + p(x)2°) (6.46)
2 sn (o) +8) + n(ln D)~ (<p(x) + p(x)2) (6.47)
=-n [s (p(x) +90) + (In 2)_1p(x)(1 — 23)] , (6.48)

where

a) follows because By (z) are mutually independent;

b) is a direct evaluation of the expectation from the definition of By (z) in
(6.20);

c) follows from the fundamental inequality Ina < a — 1.

In (6.48), upon defining

Ba(s,0) = s (p(x) +0) + (In2)'p(x)(1 - 2°), (6.49)
we have .,
log Pr {Z Bi(z) > n(p(x) + 5)} < —nB(s,9), (6.50)
k=1
or .
Pr {Z Bi(x) > n (p(x) + 5)} < 27 (59), (6.51)
k=1
Hs(y=a)
17 ——u(y-a)
/
a y

Fig. 6.1. An illustration of u(y — a) < 2°#~%),
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It is readily seen that
06.(0,8) = 0. (6.52)

Regarding ¢ as fixed and differentiate with respect to s, we have
Bh(s,8) = p(z)(1 —2°%) + 4. (6.53)

Then
3.(0,8) =8 > 0 (6.54)

and it is readily verified that

B (5,6) = 0 (6.55)
for 5
0<s<lo 1+). 6.56
& ( p(x) (6.56)
Therefore, we conclude that 5, (s, ) is strictly positive for
0<5<log(1+§) (6.57)
- p(x))’ '

On the other hand, by applying (6.38), we can obtain in the same fashion
the bound

log Pr {Z By(z) <n(p(x) — 6)} < —nog(s,9), (6.58)
k=1
Pr {zn: Bi(x) < n(p(x) — 5)} < 270 (s9) (6.59)
k=1

where
0.(5,0) = —s (p(z) — 6) + (In2) " p(x)(1 —27%). (6.60)

Then
7.(0,5) = 0, (6.61)

and

ol (s,8) =p(x)(27° = 1) + 4, (6.62)

which is nonnegative for

0<s<—log <1p(‘;)>. (6.63)

In particular,
a.(0,8) =4 > 0. (6.64)

Therefore, we conclude that o,(s,d) is strictly positive for
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0<s<—log (1;7(53;)>‘ (6.65)

By choosing s satisfying

5 ]
0 < s <min |[lo 1—|—>,—lo (1—)}, 6.66
o (14 587) e (1= 5 (650
both £,(s,d) and o,(s,d) are strictly positive. From (6.51) and (6.59), we

have
1 n
=Pr { Z —np(x)| > n6} (6.67)
k=1
k=1
{ n(p(z) — 5)} (6.68)
< 27Pe(8:9) 4 9=now(s9) (6.69)
S 2.9- nmin(By(s,6),05(s,9)) (670)
_ 27n[min(ﬁz(5,5),01(5,5))7%] (671)
_ 9-n9a(6), (6.72)
where )
0z (0) = min(ﬁz(& 5)70'90(5,6)) - — (6'73)
n

Then ¢, (d) is strictly positive for sufficiently large n because both f3,(s,d)
and o,(s,0) are strictly positive.
Finally, consider

=Pr {Z %N(x;X) —p(z)| < 5} (6.74)
> Pr{’iN(x;X) —p(z)] < |i| for all x € X} (6.75)
—1Pr{‘71lN(x;X)p(x) > |5X|for somexeX} (6.76)

> I—Zz:Pr{‘;N(x;X)—p(x)

b
> IXI} (6.77)
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zl—ZPr{ %ZBk(m)—p(x) >é|} (6.78)

x k=1

=1- Y Pr{ %ZBk(x) —p(z)| > |i|} (6.79)
z:p(xz)>0 k=1

>1- Y omee(id), (6.80)

z:p(z)>0

where the last step follows from (6.72). Define

o0 =5 [ e (7)) @

Then for sufficiently large n,
Pr{X € T{y;s} > 1 — 27", (6.82)

or
Pr{X ¢ Tfx)s} <27, (6.83)

where ¢(0) is strictly positive. The theorem is proved. 0O

6.2 Strong Typicality Versus Weak Typicality

As we have mentioned at the beginning of the chapter, strong typicality is
more powerful and flexible than weak typicality as a tool for theorem proving
for memoryless problems, but it can be used only for random variables with
finite alphabets. We will prove in the next proposition that strong typicality is
stronger than weak typicality in the sense that the former implies the latter.

Proposition 6.5. For any x € X", if x € T[’)lqé, then x € W[T)li']n’ where
n—0asd—0.

Proof. By Property 1 of strong AEP (Theorem 6.2), if x € Txy5> then
2 n(H(X)+1) < p(x) < o~ H(X)=n) (6.84)

H(X) ~ 1y <~ logp(x) < H(X) +n, (6.85)

where 7 — 0 as 6 — 0. Then x € W[gﬂn by Definition 5.2. The proposition is
proved. O

We have proved in this proposition that strong typicality implies weak
typicality, but the converse is not true. This idea can be explained without
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any detailed analysis. Let X be distributed with p such that p(0) = 0.5,
p(1) = 0.25, and p(2) = 0.25. Consider a sequence x of length n and let ¢()
be the relative frequency of occurrence of symbol i in x, i.e., %N (i;x), where
i1 =0,1,2. In order for the sequence x to be weakly typical, we need

~ logp(x)

= —¢q(0)1og 0.5 — ¢(1) log 0.25 — ¢(2) log 0.25 (6.86)
~ H(X) (6.87)
= —(0.5)log 0.5 — (0.25) log 0.25 — (0.25) log 0.25. (6.88)

Obviously, this can be satisfied by choosing ¢(i) = p(i) for all 7. But alterna-
tively, we can choose ¢(0) = 0.5, ¢(1) = 0.5, and ¢(2) = 0. With such a choice
of {q(i)}, the sequence x is weakly typical with respect to p but obviously not
strongly typical with respect to p, because the relative frequency of occurrence
of each symbol i is ¢(i), which is not close to p(i) for i = 1, 2.

Therefore, we conclude that strong typicality is indeed stronger than weak
typicality. However, as we have pointed out at the beginning of the chapter,
strong typicality can only be used for random variables with finite alphabets.

6.3 Joint Typicality

In this section, we discuss strong joint typicality with respect to a bivariate
distribution. Generalization to a multivariate distribution is straightforward.

Consider a bivariate information source {(Xy, Y%),k > 1} where (X, Y%)
are 1.i.d. with distribution p(x,y). We use (X,Y) to denote the pair of generic
random variables.

Definition 6.6. The strongly jointly typical set T[’;(Yw with respect to p(z,y)
is the set of (X,y) € X™ x Y™ such that N(z,y;x,y) = 0 for (z,y) &€ Sxv,

and
Ty
where N(z,y;X,y) is the number of occurrences of (x,y) in the pair of se-

quences (x,y), and § is an arbitrarily small positive real number. A pair of
sequences (x,y) is called strongly jointly d-typical if it is in T[T)lcy]é'

1
ﬁN(iL’,y;X, y) *p(l',y) S 53 (689)

Strong typicality satisfies the following consistency property.

Theorem 6.7 (Consistency). If (x,y) € T[xy);, then x € T{y5 and 'y €

T[’;”,] 5

Proof. If (x,y) € T[}y;, then



6.3 Joint Typicality 123

>0 %N(fc,y;x, y) — p(x,y)‘ <4. (6.90)
Upon observing that
N(z;x) = > N(z,y;x,y), (6.91)
we have
BIFESRE
=2 % > N(,yx,y) =Y pla,y) (6.92)
= g: Xy: <iN(:c,y;x, y) p(x,y)>‘ (6.93)
<22 %N(% yix,y) = p(z, y)‘ (6.94)
<o (6.95)

Therefore, x € T[’}(] s+ Similarly, y € T[’{/] s+ The theorem is proved. O

The following thoerem asserts that strong typicality is preserved when a
function is applied to a vector componentwise.

Theorem 6.8 (Preservation). Let Y = f(X). If
x = (21,72, ", %) € Tk, (6.96)

then
f(X) = (ylay27"'ayn) € 11[7;/]67 (697)

where y; = f(x;) for 1 <i<n.

Proof. Consider x € T[’)Lqé, ie.,

> %N(x;x) —p(x)| < 4. (6.98)
Since Y = f(X),
ply)= >, p() (6.99)

for all y € Y. On the other hand,
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Ny f(x) = >, N(xx) (6.100)

zef~1(y)

for all y € Y. Then

>

Y

=2 X (iN(x;X)—p(x)) (6.101)

Yy |zef~1(y)

N )~ 200

<Y N ) (6.102)
v xef'(y)

= Z %N(m;x) —p(x) (6.103)

<6 (6.104)

Therefore, f(x) € T, (y)s> proving the lemma. O

For a bivariate i.i.d. source {(X,Yx)}, we have the strong joint asymp-
totic equipartition property (strong JAEP), which can readily be obtained by
applying the strong AEP to the source {(X, Yx)}.

Theorem 6.9 (Strong JAEP). Let
(X7Y) = ((Xlayl)v(X27}/2)7"'a(XnaYn))7 (6105)

where (X;,Y;) are i.i.d. with generic pair of random variables (X,Y). Then
there exists A > 0 such that A — 0 as § — 0, and the following hold:

1) If (x,y) € T{xy)5. then
9 (HXY)HN) < pix y) < 2 nHEY)=N), (6.106)

2) For n sufficiently large,
Pr{(X,Y) € T{xy}s} >1—6. (6.107)

3) For n sufficiently large,

(1= 6)2" =N < 5| < 2n(FEEYIHA), (6.108)

From the strong JAEP, we can see the following. Since there are approxi-
mately 27 (XY) typical (x,y) pairs and approximately 27 (X) typical x, for
a typical x, the number of y such that (x,y) is jointly typical is approximately
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2nH(X,Y)

_ onH(Y|X)
S =2 (6.109)

on the average. The next theorem reveals that this is not only true on the
average, but it is in fact true for every typical x as long as there exists at least
one y such that (x,y) is jointly typical.

Theorem 6.10 (Conditional Strong AEP). For any x € Tixy5: define
2 HOPO™ < [Ty g5 () < 27 TPD), (6.111)
where v — 0 as n — oo and § — 0.

We first prove the following lemma which is along the line of Stirling’s
approximation [113].

Lemma 6.11. For any n > 0,

nlnn—n <lnn! < (n+1)In(n+1) —n. (6.112)

Proof. First, we write
Innp!=Inl+4+In2+---+Inn. (6.113)

Since In x is a monotonically increasing function of x, we have
k k+1
/ Inz dxr <lnk < / Inz dx. (6.114)
k—1 k

Summing over 1 < k < n, we have

n n+1
/ Inx dw<lnn!</ Inz dz, (6.115)
0 1
or
nlnn—n<lnn!<(n+1)ln(n+1) —n. (6.116)
The lemma is proved. 0O

Proof of Theorem 6.10. Let § be a small positive real number and n be a
large positive integer to be specified later. Fix an x € T[}] s> S0 that

l]\7(x;x) —p(x)| <6. (6.117)

21 <

x
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This implies that for all x € X,

%N(a}; x) —p(x)| <6, (6.118)

or
p(z) =6 < lN(a:;x) < p(x)+ 4. (6.119)

n

We first prove the upper bound on [T}y y5(x)[. For any v > 0, consider

a

=

pntr -/ D o (6.120)
= > p(xy) (6.121)
yeyn»
> Y ay) (6.122)
YET x)5(%)
b>_) Z 9—n(H(X,Y)+v/2) (6.123)
YETT x5 (%)
= |Tfy | x)s ()27 H Y H0/2), (6.124)

where a) and b) follow from the strong AEP (Theorem 6.2) and the strong
joint AEP (Theorem 6.9), respectively. Then we obtain

1Ty 1 x35(X)] < r(HY X)), (6.125)

which is the upper bound to be proved.
Assume that [T}y x15(x)| = 1. We now prove the lower bound on |7} y5(x)].
Let

{K(2,9), (v,y) € X x Y} (6.126)
be any set of nonnegative integers such that
1.
ZK(m,y) = N(x;x) (6.127)
Yy

for all x € X, and

2. for any y € Y, if
N(z,y;x,y) = K(z,y) (6.128)

for all (z,y) € X x Y, then (x,y) € T{xys-
Then by Definition 6.6, {K(z,y)} satisfy

»>

K () - pley)| <6 (6.129)
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which implies that for all (z,y) € X x Y,

%K(x, y) —p(z,y)| <4, (6.130)

or
1
p(@,y) =6 < —K(z,y) < plz,y) +0. (6.131)

Such a set {K(x,y)} exists because Ty x 5(x) is assumed to be nonempty.
Straightforward combinatorics reveals that the number of y which satisfy the
constraints in (6.128) is equal to

6.132
and it is readily seen that
Tiy 1 x75(X)| = M(K). (6.133)
Using Lemma 6.11, we can lower bound In M (K) as follows.
In M(K)
> Z{ z;x) In N(z;x) — N(z; %)
> (K (z,y) + 1) In(K(z,y) + 1) —K(w,y)]} (6.134)
y
G)Z[Nxx In N(x;x)
> (K(z,y) + 1) In(K(z,y) + 1) (6.135)
y

2 3 (NG nn 0e) )

,Z (x,y)+1) ln[ (p(x,y)+§+i)]}. (6.136)

In the above, a) follows from (6.127), and b) is obtained by applying the
lower bound on n~!N(z;x) in (6.119) and the upper bound on n~!K(x,y) in
(6.131). Also from (6.127), the coefficient of Inn in (6.136) is given by

) [Nu;x) - (K () + 1)

z Yy

— x|y (6.137)

Let 6 be sufficiently small and n be sufficiently large so that
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0<plz)—d<1 (6.138)
and 1
p(z,y) + 06 + < 1 (6.139)
for all z and y. Then in (6.136), both the logarithms
In(p(x) — ) (6.140)
and .
In (p(x,y) +d+ n) (6.141)

are negative. Note that the logarithm in (6.140) is well-defined by virtue of
(6.138). Rearranging the terms in (6.136), applying the upper bound in (6.119)
and the lower bound? in (6.131), and dividing by n, we have

n~'n M(K)
> Z )+ ) In(p ZZ ( (z,y) — o+ )

x In (p(x, y)+ 0+ ;) - W (6.142)
= “H.(X)+ H.(X,Y) + Li(n, ) (6.143)
= H.(Y|X) + Li(n, ), (6.144)

where L;(n,d) denotes a function of n and ¢ which tends to 0 as n — oo and
& — 0. Changing the base of the logarithm to 2, we have

n~tlog M(K) > H(Y|X) + Li(n, ). (6.145)
Then it follows from (6.133) that
n~!log Ty x16(x)| = H(Y|X) + Li(n, 0). (6.146)
Upon replacing L;(n,d) by v, we obtain
T x5 ()| = 20 APO=2), (6.147)
where v — 0 as n — oo and § — 0 as required. The theorem is proved. O

The above theorem says that for any typical x, as long as there is one
typical y such that (x,y) is jointly typical, there are approximately 2" 1X)
y such that (x,y) is jointly typical. This theorem has the following corollary
that the number of such typical x grows with n at almost the same rate as
the total number of typical x.

3 For the degenerate case when p(x,y) = 1 for some  and y, p(z,y) + 6 + >,
and the logarithm in (6.141) is in fact positive. Then the upper bound instead of
the lower bound should be applied. The details are omitted.
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n
)y € Sl
o [ ] o, .\
ZHHQY) . . . ‘k\\\\\\\~\§§§ 2nHC&Y3
n
X € S . . — |xye Tixns
.l [ ] [J ]

Fig. 6.2. A two-dimensional strong joint typicality array.

Corollary 6.12. For a joint distribution p(xz,y) on X x Y, let Sl be the
set of all sequences x € T[’)Lqé such that T[’{/lx](;(x) is nonempty. Then

|Stsl = (1 — 8)2nHX) =), (6.148)
where 1 — 0 as n — oo and § — 0.

Proof. By the consistency of strong typicality (Theorem 6.7), if (x,y) €
T[T)L(Y](S’ then x € T[’)Lqé. In particular, x € S[’}(]é. Then

Ty = |J {xy) iy € T x5 ()} (6.149)
xeSn ..
[X]6
Using the lower bound on |T&Y] s| in Theorem 6.9 and the upper bound on
1T}y x75(%)| in the last theorem, we have

(1= §)2n TN < [T | < [Ty s 20 OX040) (6.150)

which implies
|S[T;(]5‘ > (1 _ 6)2"(H(X)*()\+V))' (6151)

The theorem is proved upon letting ¢y = A+v. 0O

We have established a rich set of structural properties for strong typicality
with respect to a bivariate distribution p(z,y), which is summarized in the
two-dimensional strong joint typicality array in Figure 6.2. In this array, the
rows and the columns are the typical sequences x € S[’}(] sand y € Sﬁ,] 5
respectively. The total number of rows and columns are approximately equal
to 27H(X) and 27H(Y) | respectively. An entry indexed by (x,y) receives a dot
if (x,y) is strongly jointly typical. The total number of dots is approximately
equal to 2" (X:Y) The number of dots in each row is approximately equal to

2nH(Y1X) while the number of dots in each column is approximately equal to
QnH(X\Y) .
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QnH(Z)

n
z ES[zw

Y € S

o
‘\
H
I
‘\
211H(Y) H
h
h
h
5

nH(X) n
2 X € S[X]($

Fig. 6.3. A three-dimensional strong joint typicality array.

For reasons which will become clear in Chapter 16, the strong joint typical-
ity array in Figure 6.2 is said to exhibit an asymptotic quasi-uniform structure.
By a two-dimensional asymptotic quasi-uniform structure, we mean that in
the array all the columns have approximately the same number of dots, and
all the rows have approximately the same number of dots. The strong joint
typicality array for a multivariate distribution continues to exhibit an asymp-
totic quasi-uniform structure. The three-dimensional strong joint typicality
array with respect to a distribution p(z,y, z) is illustrated in Figure 6.3. As
before, an entry (x,y,z) receives a dot if (x,y,z) is strongly jointly typical.
This is not shown in the figure otherwise it will be very confusing. The total
number of dots in the whole array is approximately equal to 277 (X:Y:2)  Thege
dots are distributed in the array such that all the planes parallel to each other
have approximately the same number of dots, and all the cylinders parallel
to each other have approximately the same number of dots. More specifically,
the total number of dots on the plane for any fixed zy € S["Z] s (as shown) is
approximately equal to 277 (X:Y12) “and the total number of dots in the cylin-
der for any fixed (xg,yo) pair in S[T}(Y] s (as shown) is approximately equal to
2nH(ZIXY) 50 on and so forth.

We see from the strong AEP and Corollary 6.12 that S[’}q 5 and T[’}(] 5 Srow
with n at approximately the same rate. We end this section by stating in the
next proposition that S[’;(] s indeed contains almost all the probability when n
is large. The proof is left as an exercise (see Problem 4).

Proposition 6.13. With respect to a joint distribution p(xz,y) on X x Y, for
any 6 >0,
Pr{X € S5t >1-4¢ (6.152)

for n sufficiently large.
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6.4 An Interpretation of the Basic Inequalities

The asymptotic quasi-uniform structure exhibited in a strong joint typicality
array discussed in the last section is extremely important in information the-
ory. Later in the book, we will see how this structure is involved in proving
results such as the channel coding theorem and the rate-distortion theorem. In
this section, we show how the basic inequalities can be revealed by examining
this structure. It has further been shown by Chan [59] that all unconstrained
information inequalities can be obtained from this structure, thus giving a
physical meaning to these inequalities.

Consider random variables XY, and Z and a fixed z € S7},;, so that

(218>
Ty 2 5(z) is nonempty. By the consistency of strong typicality, if (x,y,z) €
Tixy 735> then (x,2) € T{y 515 and (y,z) € Tj5 45, or x € Ty z5(2) and

€ T[@‘Z]é(Z), respectively. Thus

T&lew(z) C T&lz]é(z) X ﬂ@‘z]é(Z% (6153)

which implies
Tixy1215(2)] < T{x)215(@)|T{y| 215 ()] (6.154)
Applying the lower bound in Theorem 6.10 to T[}le]é(z) and the upper

bound to T1%

(x| 715(2) and T(y,| 75(2), we have

on(H(X.Y|2)=C) < gnlH(X|Z)+7)gn(H(Y|Z)+¢) (6.155)

where (,v,¢ — 0 as n — oo and d — 0. Taking logarithm to the base 2 and
dividing by n, we obtain

H(X,Y|Z)<H(X|Z)+ HY|Z) (6.156)
upon letting n — oo and § — 0. This inequality is equivalent to
I(X;Y|Z) > 0. (6.157)

Thus we have proved the nonnegativity of conditional mutual information.
Since all Shannon’s information measures are special cases of conditional mu-
tual information, we have proved the nonnegativity of all Shannon’s informa-
tion measures, namely the basic inequalities.

Chapter Summary

Strong typicality implies weak typicality but can be used only for random
variables with finite alphabets.

Strongly Typical Set:
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T'x ]5—{)(62\’" Z’n (x;x) p(m)‘gé}.
Strong AEP:

1.
2.

3.

2_n(H(X)+"7) S p(x) S 2_n(H(X)_77) for x € /11[7)1(]5
Pr{X € Ty} > 1 — ¢ for n sufficiently large

(1 —§)2MHX) =) < |T[’}(]5\ < 2nHX)+1) for n sufficiently large.

Theorem: For sufficiently large n,

Pr{X ¢ Ti s} < 270,

Consistency: If (x,y) € T[T)L(Y]w then x € T[S’(]S andy € T[’;,]é,

Preservation: If x € T{y;, then flx) e Tk (x5

Conditional Strong AEP: For x € T;

[Y)L(] 5> let

Ty xps(x) ={y € Tlyy5 : (x,¥) € Txvs}-

If |T’}‘,|X]5( x)| > 1, then
on(H(Y1X)—v) < |T[Y|X (x)| < gn(H (Y |X)+v)
Problems
1. Slr:low that (x,y) € Ty y; and (y,2z) € Ty 5 do not imply (x,z) €
Tix 715
2. Let X = (X1, Xa,++,X,), where X}, are i.i.d. with generic random vari-
able X. Prove that
Pr{X € Tis} > 1 - 2P
[X]6 52
for any n and 6 > 0. This shows that Pr{X € T[’)Lqﬁ} — lasd — 0 and
n — oo if v/nd — oo.
3. Prove that for a random variable X with a countable alphabet, Property
2 of the strong AEP holds, while Properties 1 and 3 do not hold.
4. Prove Proposition 6.13. Hint: Use the fact that if (X,Y) € T[XY](S’ then
X € (x5
5. Let P(X) be the set of all probability distributions over a finite alphabet

X. Find a polynomial Q(n) such that for any integer n, there exists a
subset P, (X) of P(X) such that
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a) [Pn(X)] < Q(n);
b) for all P € P(X), there exists P, € P, (X) such that

|Pofa) ~ P)] <

for all x € X.
Hint: Let P, (X) be the set of all probability distributions over X such that
all the probability masses can be expressed as fractions with denominator
n.
6. Let p be any probability distribution over a finite set X and n be a real
number in (0, 1). Prove that for any subset A of X™ with p™(A) > n,

| AN Typs] > 2nH @)=,
where ¢/ — 0 as § — 0 and n — oo.

In the following problems, for a sequence x € X", let gx be the empirical
distribution of x, i.e., gx(z) = n~!N(x;x) for all x € X. Similarly, for a pair
of sequences (x,y) € X" x Y, let g,y be the joint empirical distribution of
(x,¥), ie., guy(z,y) =n"'N(z,y;x,y) for all (z,y) € X x .

7. Alternative definition of strong typicality Show that (6.1) is equivalent to

V(gx,p) <0,

where V (-, ) denotes the variational distance. Thus strong typicality can
be regarded as requiring the empirical distribution of a sequence to be
close to the probability distribution of the generic random variable in
variational distance. Also compare the result here with the alternative
definition of weak typicality (Problem 5 in Chapter 5).

8. The empirical distribution gx of the sequence x is also called the type of
x. Assuming that X is finite, show that there are a total of ("Hffl_l)
distinct types gx. Hint: There are (‘”271) ways to distribute a identical
balls in b boxes.

9. Unified typicality Let X = (X1, X9, -+, X,,) be an i.i.d. sequence whose
generic random variable X is distributed with p(x), where the alpbabet
X is countable. For any n > 0, the unified typical set U[’}(]n with respect

to p(x) is the set of sequences x € X™ such that

D(gx|lp) + [H(gx) — H(p)| <.

a) Show that for any x € X", if x € U[”XW then x € W[}]n.

b) Show that for any x € X" if x € Ulxy,» then x € Ty, where
d=+n-2In2.

Therefore, unified typicality implies both weak typicality and strong typ-

icality.
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10. The AEP for unified typicality Unified typicality defined in Problem 9,
unlike strong typicality, can be applied to random variables whose alpha-
bets are countable . At the same time, it preserves the essential properties
of strong typicality. The following outlines the proof of the AEP which
has been discussed in Theorem 5.3 and Theorem 6.2 for weak typicality
and strong typicality, respectively.

a) Show that
o~ n(H(X)+n) < p(x) < 9 (H(X)=n)

i.e., Property 1 of the AEP.
b) Show that for sufficiently large n,

Pr{H(qx) — H(p) > €} < e.

Hint: Use the results in Problem 9 above and Problem 5 in Chapter 5.
¢) It can be proved by means of the result in Problem 9 that

Pr{H(p) — H(qx) > €} <e
(see Ho and Yeung [167]). By assuming this inequality, prove that
Pr{|H(gx) — H(p)| < €} <1 — 2e.

d) Show that if |H(gx) — H(p)| < € and |[D(gx|lp) + H(gx) — H(p)| < e,
then
D(qx|lp) + [H(gx) — H(p)| < 3e.

e) Use the results in ¢) and d) above and the result in Problem 5, Part ¢)
in Chapter 5 to show that

Pr{D(¢x|lp) + |H(qx) — H(p)| <n} > 1—1n.

This proves Property 2 of the AEP. Property 3 of the AEP follows
from Property 1 as in the proof of Theorem 5.3.
11. Consistency of unified typicality For any n > 0, the unified jointly typical
set U’;(Y]n with respect to pxy (z,y) is the set of sequences (x,y) € X" x
V" such that

D(QX,prXY) + ‘H(QX,y) — H(pxy)|
+|H(gx) — H(px)| + [H(qy) — H(py)| < n.

Show that if (x,y) € U&Y]nv then x € U&]n and y € Uﬁ/]n.

Historical Notes

Strong typicality was used by Wolfowitz [385] for proving channel coding the-
orems and by Berger [28] for proving the rate-distortion theorem and various
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results in multiterminal source coding. The method of types, a refinement
of the notion of strong typicality, was systematically developed in the book
by Csiszdar and Koérner [84]. The interpretation of the basic inequalities in
Section 6.4 is a preamble to the relation between entropy and groups to be
discussed in Chapter 16.

Recently, Ho and Yeung [167] introduced the notion of unified typicality
which is stronger than both weak typicality and strong typicality. This notion
of typicality can be applied to random variables with countable alphabets,
while at the same time preserve the essential properties of strong typicality.
See Problems 9, 10, and 11 for a discussion.
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Discrete Memoryless Channels

In all practical communication systems, when a signal is transmitted from
one point to another point, the signal is inevitably contaminated by random
noise, i.e., the signal received is correlated with but possibly different from
the signal transmitted. We use a noisy channel to model such a situation.
A noisy channel is a “system” which has one input terminal and one output
terminal®, with the input connected to the transmission point and the output
connected to the receiving point. When the signal is transmitted through
the channel, it is distorted in a random way which depends on the channel
characteristics. As a consequence, the signal received may be different from
the signal transmitted.

In communication engineering, we are interested in conveying messages
reliably through a noisy channel at the maximum possible rate. We first look
at a simple channel called the binary symmetric channel (BSC), which is
represented by the transition diagram in Figure 7.1. In this channel both the
input X and the output Y take values in the set {0,1}. There is a certain
probability, denoted by e, that the output is not equal to the input. That is,
if the input is 0, then the output is 0 with probability 1 — €, and is 1 with
probability e. Likewise, if the input is 1, then the output is 1 with probability
1 — ¢, and is 0 with probability e. The parameter € is called the crossover
probability of the BSC.

Let {A, B} be the message set which contains two possible messages to
be conveyed through a BSC with 0 < € < 0.5. We further assume that the
two messages A and B are equally likely. If the message is A, we map it to
the codeword 0, and if the message is B, we map it to the codeword 1. This
is the simplest example of a channel code. The codeword is then transmitted
through the channel. Our task is to decode the message based on the output of
the channel, and an error is said to occur if the message is decoded incorrectly.

Consider

Pr{A]Y = 0} = Pr{X = 0]V = 0} (7.1)

! The discussion on noisy channels here is confined to point-to-point channels.
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1-€

1—€

Fig. 7.1. The transition diagram of a binary symmetric channel.

Pr{X =0}Pr{Y =0|X =0}

Pr{Y =0}
_0.5(1—¢)
TPy =0}

Since
Pr{Y =0} =Pr{Y =1} =05

by symmetry?, it follows that
Pr{AlY =0} =1—¢

and
Pr{B|Y =0} =1—-Pr{AlY =0} =e.

Since € < 0.5,
Pr{B|Y =0} < Pr{A|Y = 0}.

(7.5)

(7.6)

(7.7)

Therefore, in order to minimize the probability of error, we decode a received
0 to the message A. By symmetry, we decode a received 1 to the message B.

An error occurs if a 0 is received and the message is B, or if a 1 is received
and the message is A. Therefore, the probability of error, denoted by P., is

given by

P, =Pr{Y =0}Pr{B|Y =0} + Pr{Y = 1}Pr{A]Y =1}
= 0.5¢ + 0.5¢

=€,

2 More explicitly,

Pr{Y =0} = Pr{A}Pr{Y = 0|A} 4+ Pr{B}Pr{Y = 0|B}
— 0.5 Pr{Y = 0|X = 0} + 0.5 Pr{Y = 0|X = 1}
= 0.5(1 — €) + 0.5¢
= 0.5.
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where (7.9) follows from (7.6) because
Pr{A]Y =1} = Pr{B]Y =0} = ¢ (7.11)

by symmetry.

Let us assume that ¢ # 0. Then the above scheme obviously does not
provide perfectly reliable communication. If we are allowed to use the channel
only once, then this is already the best we can do. However, if we are allowed
to use the same channel repeatedly, then we can improve the reliability by
generalizing the above scheme.

We now consider the following channel code which we refer to as the binary
repetition code. Let n > 1 be an odd positive integer which is called the block
length of the code. In this code, the message A is mapped to the sequence of
n 0’s, and the message B is mapped to the sequence of n 1’s. The codeword,
which consists of a sequence of either n 0’s or n 1’s, is transmitted through
the channel in n uses. Upon receiving a sequence of n bits at the output of
the channel, we use the majority vote to decode the message, i.e., if there are
more 0’s than 1’s in the sequence, we decode the sequence to the message
A, otherwise we decode the sequence to the message B. Note that the block
length is chosen to be odd so that there cannot be a tie. When n = 1, this
scheme reduces to the previous scheme.

For this more general scheme, we continue to denote the probability of
error by P.. Let Ny and N; be the number of 0’s and 1’s in the received
sequence, respectively. Clearly,

No+ N1 =n. (7.12)

For large n, if the message is A, the number of 0’s received is approximately

equal to
E[No|A] =n(l —¢) (7.13)

and the number of 1’s received is approximately equal to
E[N1|A] = ne (7.14)

with high probability by the weak law of large numbers. This implies that the
probability of an error, namely the event { Ny < Nj}, is small because

n(l —€) > ne (7.15)
with the assumption that € < 0.5. Specifically,
Pr{error|A} = Pr{Ny < N;|A}
= Pr{n — N1 < N;|A}

(7.16)
(7.17)
= Pr{N; > 0.5n|A} (7.18)
< Pr{N; > (e + ¢)n|A}, (7.19)
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where
0<¢<0.5—g¢, (7.20)

so that ¢ is positive and
e+ ¢ <0.5. (7.21)

Note that such a ¢ exists because ¢ < 0.5. Then by the weak law of large
numbers, the upper bound in (7.19) tends to 0 as n — oco. By symmetry,
Pr{error| B} also tends to 0 as n — oo. Therefore,

P, = Pr{A}Pr{error|A} + Pr{B}Pr{error| B} (7.22)

tends to 0 as n — oo. In other words, by using a long enough repetition
code, we can make P, arbitrarily small. In this sense, we say that reliable
communication is achieved asymptotically.

We point out that for a BSC with ¢ > 0, for any given transmitted se-
quence of length n, the probability of receiving any given sequence of length
n is nonzero. It follows that for any two distinct input sequences, there is
always a nonzero probability that the same output sequence is produced so
that the two input sequences become indistinguishable. Therefore, except for
very special channels (e.g., the BSC with ¢ = 0), no matter how the encod-
ing/decoding scheme is devised, a nonzero probability of error is inevitable,
and asymptotically reliable communication is the best we can hope for.

Though a rather naive approach, asymptotically reliable communication
can be achieved by using the repetition code. The repetition code, however,
is not without catch. For a channel code, the rate of the code in bit(s) per
use, is defined as the ratio of the logarithm of the size of the message set
in the base 2 to the block length of the code. Roughly speaking, the rate of
a channel code is the average number of bits the channel code attempts to
convey through the channel per use of the channel. For a binary repetition
code with block length n, the rate is % log2 = %, which tends to 0 as n — oo.
Thus in order to achieve asymptotic reliability by using the repetition code,
we cannot communicate through the noisy channel at any positive rate!

In this chapter, we characterize the maximum rate at which information
can be communicated through a discrete memoryless channel (DMC) with an
arbitrarily small probability of error. This maximum rate, which is generally
positive, is known as the channel capacity. Then we discuss the use of feed-
back in communicating through a DMC, and show that feedback does not
increase the capacity. At the end of the chapter, we discuss transmitting an
information source through a DMC, and we show that asymptotic optimality
can be achieved by separating source coding and channel coding.

7.1 Definition and Capacity

Definition 7.1. Let X and Y be discrete alphabets, and p(y|z) be a transition
matric from X to ). A discrete channel p(y|x) is a single-input single-output
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system with input random variable X taking values in X and output random
variable Y taking values in Y such that

Pr{X =2,Y =y} =Pr{X = z}p(y|z) (7.23)
for all (x,y) € X x Y.
Remark From (7.23), we see that if Pr{X =z} > 0, then

_ o Pr{X=13Y=y}
Pr{Y =y|lX =z} = Pr{X — ] = p(y|x). (7.24)
Note that Pr{Y = y|X = z} is undefined if Pr{X = 2} = 0. Nevertheless,
(7.23) is valid for both cases.

We now present an alternative description of a discrete channel. Let X
and ) be discrete alphabets. Let X be a random variable taking values in X
and p(y|z) be any transition matrix from X to Y. Define random variables
Z, with Z, = )Y for x € X such that

Pr{Z, =y} = p(y|z) (7.25)

for all y € Y. We assume that Z,, x € X are mutually independent and also
independent of X. Further define the random variable

Z=(Zy:x€X), (7.26)

called the noise variable. Note that Z is independent of X. Now define a
random variable taking values in ) as

Y =2, if X =u. (7.27)

Evidently, Y is a function of X and Z. Then for x € X such that Pr{X =
x} > 0, we have

Pr{X =2,Y =y} = Pr{X = 2}Pr{Y = y|X =2} (7.28)
=Pr{X =2}Pr{Z, =y X =z} (7.29)
=Pr{X =2}Pr{Z, =y} (7.30)
— Pr{X = a}plylo), (731)

i.e., (7.23) in Definition 7.1, where (7.30) follows from the assumption that Z,
is independent of X. For z € X such that Pr{X = x} = 0, since Pr{X =z} =
0 implies Pr{X = z,Y =y} = 0, (7.23) continues to hold. Then by regarding
X and Y as the input and output random variables, we have obtained an
alternative description of the discrete channel p(y|x).

Since Y is a function of X and Z, we can write

Y = a(X, 2). (7.32)

Then we have the following equivalent definition for a discrete channel.
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Fig. 7.2. Illustrations of (a) a discrete channel p(y|z) and (b) a discrete channel
(o, Z).

Definition 7.2. Let X, Y, and Z be discrete alphabets. Let a: X X Z — ),
and Z be a random wvariable taking values in Z, called the noise variable.
A discrete channel (o, Z) is a single-input single-output system with input
alphabet X and output alphabet Y. For any input random variable X, the
noise variable Z is independent of X, and the output random variable Y 1is
given by

Y =a(X,2). (7.33)

Figure 7.2 illustrates a discrete channel p(y|z) and a discrete channel
(o, Z). The next definition gives the condition for the equivalence of the two
specifications of a discrete channel according to Definitions 7.1 and 7.2, re-
spectively.

Definition 7.3. Two discrete channels p(y|x) and («, Z) defined on the same
iput alphabet X and output alphabet Y are equivalent if

Pr{a(z, Z) = y} = p(y|z) (7.34)
for all x and y.

We point out that the qualifier “discrete” in a discrete channel refers to the
input and output alphabets of the channel being discrete. As part of a discrete-
time communication system, a discrete channel can be used repeatedly at
every time index i = 1,2,---. As the simplest model, we may assume that
the noise for the transmission over the channel at different time indices are
independent of each other. In the next definition, we will introduce the discrete
memoryless channel (DMC) as a discrete-time extension of a discrete channel
that captures this modeling assumption.

To properly formulate a DMC, we regard it as a subsystem of a discrete-
time stochastic system which will be referred to as “the system” in the sequel.
In such a system, random variables are generated sequentially in discrete-time,
and more than one random variable may be generated instantaneously but
sequentially at a particular time index.
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Fig. 7.3. An illustration of a discrete memoryless channel p(y|z).

Definition 7.4. A discrete memoryless channel (DMC) p(y|x) is a sequence
of replicates of a generic discrete channel p(y|z). These discrete channels
are indexed by a discrete-time index i, where i > 1, with the ith channel
being available for transmission at time i. Transmission through a channel is
assumed to be instantaneous. Let X; and Y; be respectively the input and the
output of the DMC at time i, and let T;_ denote all the random variables that
are generated in the system before X;. The equality

Pr{Y, =y, X, =2, T, =t} =Pr{X; =, T;— = t}p(y|x) (7.35)
holds for all (x,y,t) € X x Y x T;_.

Remark Similar to the remark following Definition 7.1, if Pr{X; = =, T;_ =
t} > 0, then

PI‘{Y; = ysz = x?ﬂ* = t}
PrlY =ylXi =i =ty = — 5 T 1

= p(y|x). (7.37)

Note that Pr{Y; = y|X; = z,T;,— = t} is undefined if Pr{X; = 2, T;_ =t} = 0.
Nevertheless, (7.35) is valid for both cases.

(7.36)

Invoking Proposition 2.5, we see from (7.35) that
T —X; =Y, (7.38)

forms a Markov chain, i.e., the output of the DMC at time i is independent
of all the random variables that have already been generated in the system
conditioning on the input at time ¢. This captures the memorylessness of a
DMC. Figure 7.3 is an illustration of a DMC p(y|z).

Paralleling Definition 7.2 for a discrete channel, we now present an alter-
native definition of a DMC.

Definition 7.5. A discrete memoryless channel (o, Z) is a sequence of repli-
cates of a generic discrete channel (a, Z). These discrete channels are indexed
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Fig. 7.4. An illustration of a discrete memoryless channel («, Z).

by a discrete-time index i, where © > 1, with the ith channel being available
for transmission at time i. Transmission through a channel is assumed to be
instantaneous. Let X; and Y; be respectively the input and the output of the
DMC at time i, and let T;_ denote all the random variables that are generated
in the system before X;. The noise variable Z; for the transmission at time i
is a copy of the generic noise variable Z, and is independent of (X;,T;—). The
output of the DMC' at time i is given by

Figure 7.4 is an illustration of a DMC (o, Z). We now show that Defini-
tions 7.4 and 7.5 specify the same DMC provided that the generic discrete
channel p(y|z) in Definition 7.4 is equivalent to the generic discrete channel
(av, Z) in Definition 7.5, i.e., (7.34) holds. For the DMC («, Z) in Definition 7.5,
consider

0 < I(Ti-; Vil X;) (7.40)
< I(To_; Yy, Xi, 25 X:) (7.41)
— [(To; Xy, Z,|X) (7.42)
= I(T;-; Z;| X3) (7.43)
—0, (7.44)

where the first equality follows from (7.39) and the last equality follows from
the assumption that Z; is independent of (X;,T;_). Therefore,

I(T;-; Y| X3) = 0, (7.45)
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or T, — X; — Y; forms a Markov chain. It remains to establish (7.35) for
all (z,y,t) € X x ¥ x T,_. For ¢ € X such that Pr{X; = z} = 0, both
Pr{Y; =y, X; = 2,T;,— =t} and Pr{X; = «, T, = t} vanish because they are
upper bounded by Pr{X; = x}. Therefore (7.35) holds. For x € X such that
PI‘{XZ = 37} > 0,

Pr{Yi =y, X; =2,T; =t}
Y pr{X, = 2, T, = t}Pr{Y; = y|X; = x}

(7.46)
2 Pr{X; = 2,T,- = t}Pr{a(X;, Z;) = y|X; = 2} (7.47)
=Pr{X; =2,T;— = t}Pr{a(z, Z;) = y|X; = =} (7.48)
(7.49)
(7.50)
(751)

(
D pr{X; = 2, T, = t}Pr{a(z, Z;) = y}
D pr{X; = 2,T,_ = t}Pr{a(z, Z) = y}
2 Pr{X; = 2, Tim = t}plyl)

b
where

a) follows from the Markov chain T;— — X; — Y;;

b) follows from (7.39);

c¢) follows from Definition 7.5 that Z; is independent of Xj;

d) follows from Definition 7.5 that Z; and the generic noise variable Z have
the same distribution;

e) follows from (7.34).

Hence, (7.35) holds for all (x,y,t) € X x Y x 7;_, proving that the DMC
(a, Z) in Definition 7.4 is equivalent to the DMC (p(y|z) in Definition 7.5.

Definition 7.5 renders the following physical conceptualization of a DMC.
The DMC can be regarded as a “box” which has only two terminals, the
input and the output. The box perfectly shields its contents from the rest
of the system. At time ¢, upon the transmission of the input X;, the noise
variable Z; is generated inside the box according to the distribution of the
generic noise variable Z. Since the box is perfectly shielded, the generation of
the Z; is independent of X; and any other random variable that has already
been generated in the system. Then the function « is applied to (X;, Z;) to
produce the output Y;.

In the rest of the section, we will define the capacity of a DMC and discuss
some of its basic properties. The capacities of two simple DMCs will also be
evaluated explicitly. To keep our discussion simple, we will assume that the
alphabets X' and Y are finite.

Definition 7.6. The capacity of a discrete memoryless channel p(y|z) is de-
fined as

C = m(a§<I(X; Y), (7.52)
p(z

where X andY are respectively the input and the output of the generic discrete
channel, and the mazimum is taken over all input distributions p(x).
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Fig. 7.5. An alternative representation for a binary symmetric channel.
From the above definition, we see that
c>0 (7.53)

because
I(X;Y)>0 (7.54)

for all input distributions p(x). By Theorem 2.43, we have

C=maxI(X;Y) <max H(X) = log|X|. (7.55)
p(z) p(z)
Likewise, we have
C <log|Y|. (7.56)
Therefore,
C < min(log | X/, log |Y]). 7.57)

Since I(X;Y) is a continuous functional of p(z) and the set of all p(z) is a
compact set (i.e., closed and bounded) in RI*!, the maximum value of I(X;Y")
can be attained®. This justifies taking the maximum rather than the supre-
mum in the definition of channel capacity in (7.52).

We will prove subsequently that C' is in fact the maximum rate at which
information can be communicated reliably through a DMC. We first give some
examples of DMC’s for which the capacities can be obtained in closed form.
In the following, X and Y denote respectively the input and the output of the
generic discrete channel, and all logarithms are in the base 2.

Ezample 7.7 (Binary Symmetric Channel). The transition diagram of a BSC
has been shown in Figure 7.1. Alternatively, a BSC can be represented by the
system in Figure 7.5. Here, Z is a binary random variable representing the
noise of the channel, with

Pr{Z=0}=1—¢ and Pr{Z=1}=c¢, (7.58)
and Z is independent of X. Then

Y = X + Z mod 2. (7.59)

3 The assumption that X is finite is essential in this argument.
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Fig. 7.6. The capacity of a binary symmetric channel.

This representation for a BSC is in the form prescribed by Definition 7.2.
In order to determine the capacity of the BSC, we first bound I(X;Y) as
follows.

I(X;Y)=H(Y) - H(Y|X) (7.60)
=H(Y)- > p@)H(Y|X =) (7.61)

= 1Y)~ Y pl)h(e) (7.62)

— H(Y) — hy(e) (7.63)
< 1-—hy(e), (7.64)

where we have used h; to denote the binary entropy function in the base 2.
In order to achieve this upper bound, we have to make H(Y) = 1, i.e., the
output distribution of the BSC is uniform. This can be done by letting p(x)
be the uniform distribution on {0, 1}. Therefore, the upper bound on I(X;Y)
can be achieved, and we conclude that

C =1— hy(e) bit per use. (7.65)

Figure 7.6 is a plot of the capacity C' versus the crossover probability . We
see from the plot that C' attains the maximum value 1 when e = 0 or € = 1,
and attains the minimum value 0 when € = 0.5. When € = 0, it is easy to see
that C =1 is the maximum rate at which information can be communicated
through the channel reliably. This can be achieved simply by transmitting
unencoded bits through the channel, and no decoding is necessary because all
the bits are received unchanged. When € = 1, the same can be achieved with
the additional decoding step which complements all the received bits. By doing
so, the bits transmitted through the channel can be recovered without error.
Thus from the communication point of view, for binary channels, a channel
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Fig. 7.7. The transition diagram of a binary erasure channel.

which never makes error and a channel which always makes errors are equally
good. When e = 0.5, the channel output is independent of the channel input.
Therefore, no information can possibly be communicated through the channel.

Ezample 7.8 (Binary Erasure Channel). The transition diagram of a binary
erasure channel is shown in Figure 7.7. In this channel, the input alphabet
is {0, 1}, while the output alphabet is {0,1, e}. With probability ~, the era-
sure symbol e is produced at the output, which means that the input bit is
lost; otherwise the input bit is reproduced at the output without error. The
parameter -y is called the erasure probability.

To determine the capacity of this channel, we first consider

C= m(a§<l(X; Y) (7.66)
= m(ai((H(Y) — H(Y|X)) (7.67)
= r;l(g§<H(Y) — by (7). (7.68)

Thus we only have to maximize H(Y'). To this end, let
Pr{X =0}=a (7.69)
and define a binary random variable E by

_J0if Y#e
o { 1if Y =e. (7.70)
The random variable E indicates whether an erasure has occurred, and it is
a function of Y. Then

H(Y) = H(Y,E) (7.71)
— H(E) + H(Y|E) (7.72)
= hp(7) + (1 = 7)hs(a). (7.73)
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Hence,
C= I&gﬂ (Y) = ho(v) (7.74)
= max[hy(7) + (1 = ) (a)] = hs(7) (7.75)
= (1 =) maxhy(a) (7.76)
= (1 —~) bit per use, (7.77)

where the capacity is achieved by letting a = 0.5, i.e., the input distribution
is uniform.

It is in general not possible to obtain the capacity of a DMC in closed
form, and we have to resort to numerical computation. In Chapter 9 we will
discuss the Blahut-Arimoto algorithm for computing the channel capacity.

7.2 The Channel Coding Theorem

We will justify the definition of the capacity of a DMC by the proving the
channel coding theorem. This theorem, which consists of two parts, will be
formally stated at the end of the section. The direct part of the theorem asserts
that information can be communicated through a DMC with an arbitrarily
small probability of error at any rate less than the channel capacity. Here
it is assumed that the decoder knows the transition matrix of the DMC.
The converse part of the theorem asserts that if information is communicated
through a DMC at a rate higher than the capacity, then the probability of
error is bounded away from zero. For better appreciation of the definition of
channel capacity, we will first prove the converse part in Section 7.3 and then
prove the direct part in Section 7.4.

Definition 7.9. An (n, M) code for a discrete memoryless channel with input
alphabet X and output alphabet Y is defined by an encoding function

f:{1,2,--- .M} - X" (7.78)
and a decoding function
g: V" —={1,2,--- M} (7.79)

The set {1,2,---, M}, denoted by W, is called the message set. The sequences
fQ), f(2),---, f(M) in X™ are called codewords, and the set of codewords is
called the codebook.

In order to distinguish a channel code as defined above from a channel code
with feedback which will be discussed in Section 7.6, we will refer to the former
as a channel code without feedback.
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Fig. 7.8. A channel code with block length n.

We assume that a message W is randomly chosen from the message set W
according to the uniform distribution. Therefore,

H(W) =log M. (7.80)
With respect to a channel code for a DMC, we let
X =(X1,Xs, -, X,) (7.81)

and
Y =Y1,Y2,--,Y,) (7.82)

be the input sequence and the output sequence of the channel, respectively.
Evidently,
X = f(W). (7.83)

We also let

W = g(Y) (7.84)

be the estimate on the message W by the decoder. Figure 7.8 is the block
diagram for a channel code.

Definition 7.10. For all 1 <w < M, let
A =Pr{W £wW=w}= > Pr{Y=y[X=f(w)} (7.8
yeEYig(y)Fw
be the conditional probability of error given that the message is w.

We now define two performance measures for a channel code.

Definition 7.11. The maximal probability of error of an (n, M) code is de-
fined as
Amaz = Max Ay . (7.86)

Definition 7.12. The average probability of error of an (n, M) code is defined
as
P, =Pr{W # W} (7.87)
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From the definition of P., we have

P, =Pr{W # W} (7.88)
= > " Pr{W = w}Pr{W # W|W = w} (7.89)
-y %pr{w £ wlW = w) (7.90)

= % > Aws (7.91)

w

i.e., P, is the arithmetic mean of A, 1 < w < M. It then follows that
P, < Max- (7.92)

In fact, it can be readily seen that this inequality remains valid even without
the assumption that W is distributed uniformly on the message set W.

Definition 7.13. The rate of an (n, M) channel code is n='log M in bits per
use.

Definition 7.14. A rate R is asymptotically achievable for a discrete memo-
ryless channel if for any € > 0, there exists for sufficiently large n an (n, M)
code such that

1
~logM > R~ (7.93)

and
Amaz < €. (7.94)

For brevity, an asymptotically achievable rate will be referred to as an achiev-
able rate.

In other words, a rate R is achievable if there exists a sequence of codes
whose rates approach R and whose probabilities of error approach zero. We
end this section by stating the channel coding theorem, which gives a charac-
terization of all achievable rates. This theorem will be proved in the next two
sections.

Theorem 7.15 (Channel Coding Theorem). A rate R is achievable for a
discrete memoryless channel if and only if R < C, the capacity of the channel.

7.3 The Converse

Let us consider a channel code with block length n. The random variables
involved in this code are W, X; and Y; for 1 < i < n, and W. We see



152 7 Discrete Memoryless Channels

Fig. 7.9. The dependency graph for a channel code without feedback.

from the definition of a channel code in Definition 7.9 that all the random
variables are generated sequentially according to some deterministic or prob-
abilistic rules. Specifically, the random variables are generated in the order
W, X1,Y1,X5,Ys,--- ,XmYn,W. The generation of these random variables
can be represented by the dependency graph* in Figure 7.9. In this graph, a
node represents a random variable. If there is a (directed) edge from node X
to node Y, then node X is called a parent of node Y. We further distinguish
a solid edge and a dotted edge: a solid edge represents functional (determinis-
tic) dependency, while a dotted edge represents the probabilistic dependency
induced by the transition matrix p(y|x) of the generic discrete channel. For a
node X, its parent nodes represent all the random variables on which random
variable X depends when it is generated.

We now explain the specific structure of the dependency graph. First, X;
is a function of W, so each X; is connected to W by a solid edge. According
to Definition 7.4,

T, =W, X1,Y1, -, X;-1,Yi_1). (7.95)

By (7.35), the Markov chain
(W7X17Y717"'7Xi717}/i71)_)Xi_)y;ﬁ (796)
prevails. Therefore, the generation of Y; depends only on X; and not on
W, X1,Y1, -+, X;1,Y;_1. So, Y; is connected to X; by a dotted edge rep-
resenting the discrete channel p(y|z) at time 4, and there is no connection

between Y; and any of the nodes W, Xy,Yy, -+, X;_1,Y;_;. Finally, W is a
function of Y7,Y5,---,Y,,, so W is connected to each Y; by a solid edge.

4 A dependency graph can be regarded as a Bayesian network [287].
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We will use ¢ to denote the joint distribution of these random variables as
well as all the marginals, and let x; denote the ¢th component of a sequence x.
From the dependency graph, we see that for all (w, x,y,w) € Wx X" x Y" x W
such that ¢(x) > 0 and ¢(y) > 0,

ﬂmxmw»=aw<[h@mw><Dﬁ@mw)mmw. (7.97)

Note that ¢(w) > 0 for all w so that q(x;|w) are well-defined, and ¢(z;|w) and
q(wly) are both deterministic. Denote the set of nodes X1, Xo,---, X,, by X
and the set of nodes Y7,Y5, -+, Y, by Y. We notice the following structure in
the dependency graph: all the edges from W end in X, all the edges from X
end in Y, and all the edges from Y end in W. This suggests that the random
variables W, X, Y, and W form the Markov chain

W—-X—-Y—W. (7.98)

The validity of this Markov chain can be formally justified by applying Propo-
sition 2.9 to (7.97), so that for all (w,x,y,w) € W x X™ x Y™ x W such that
g(x) > 0 and ¢(y) > 0, we can write

q(w, x,y, w) = q(w)q(x|w)q(y[x)q(wl]y). (7.99)

Now ¢(x,y) is obtained by summing over all w and & in (7.97), and ¢(x) is
obtained by further summing over all y. After some straightforward algebra
and using

q@k)=q$50 (7.100)

for all x such that ¢(x) > 0, we obtain

n

a(ylx) = [ p(yilas)- (7.101)

i=1

The Markov chain in (7.98) and the relation in (7.101) are apparent from
the setup of the problem, and the above justification may seem superfluous.
However, the methodology developed here is necessary for handling the more
delicate situation which arises when the channel is used with feedback. This
will be discussed in Section 7.6.

Consider a channel code whose probability of error is arbitrarily small.
Since W, X,Y, and W form the Markov chain in (7.98), the information di-
agram for these four random variables is as shown in Figure 7.10. Moreover,
X is a function of W, and W is a function of Y. These two relations are
equivalent to

H(X|W) =0, (7.102)

and
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Fig. 7.10. The information diagram for W - X —-Y — W.

H(WI[Y) =0, (7.103)

respectively. Since the probability of error is arbitrarily small, W and W are
essentially identical. To gain insight into the problem, we assume for the time
being that W and W are equivalent, so that

H(W|W)=H(W|W)=0. (7.104)

Since the I-Measure p* for a Markov chain is nonnegative, the constraints
in (7.102) to (7.104) imply that p* vanishes on all the atoms in Figure 7.10
marked with a ‘0.” Immediately, we see that

H(W) =I(X;Y). (7.105)

That is, the amount of information conveyed through the channel is essentially
the mutual information between the input sequence and the output sequence
of the channel.

For a single transmission, we see from the definition of channel capacity
that the mutual information between the input and the output cannot exceed
the capacity of the channel, i.e., for all 1 <7 < n,

I(X:Y;) <C. (7.106)

Summing ¢ from 1 to n, we have

> I(Xi;Y;) < nC. (7.107)

i=1

Upon establishing in the next lemma that
I(X:Y) < 3 I(X3: Vo), (7.108)
i=1

the converse of the channel coding theorem then follows from
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Liog s = %H(W) (7.109)
- %I(X;Y) (7.110)
< %i[(x,»;y) (7.111)
< o (7.112)

Lemma 7.16. For a discrete memoryless channel used with a channel code
without feedback, for anyn > 1,

I

Il
—

1(X:Y) < 3 1(X:Y3), (7.113)

7

where X; and Y; are, respectively, the input and the output of the channel at
time 1.

Proof. For any (x,y) € X™ x Y, if ¢(x,y) > 0, then ¢(x) > 0 and (7.101)
holds. Therefore,

q(Y[X) = [[ p(vi|X3) (7.114)
=1

holds for all (x,y) in the support of ¢(x,y). Then

~Elogq(Y[X) = —Elog [ [ p(¥i|Xi) = = ) Elogp(Yi|X;),  (7.115)

or
H(Y|X) =) H(Yi|X,). (7.116)
i=1
Hence,
I(X;Y) = H(Y) — H(Y|X) (7.117)

n

(]

1Y) - Y HYIX) (7118)

=1

«
Il

M=

I(X;;Y5). (7.119)

.
Il

The lemma is proved. 0O

We now formally prove the converse of the channel coding theorem. Let R
be an achievable rate, i.e., for any € > 0, there exists for sufficiently large n
an (n, M) code such that
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1
—logM >R —¢ (7.120)
n
and
Amaz < €. (7.121)
Consider
log M 2 H(W) (7.122)
= HW|W) + I(W; W) (7.123)
b) .
< HW|W) + I(X;Y) (7.124)
< H(W|W) Z (Xi:Y5) (7.125)
< HWI|W) +nC, (7.126)
where

a) follows from (7.80);

b) follows from the data processing theorem since W — X — Y — W;
c) follows from Lemma 7.16;

d) follows from (7.107).

From (7.87) and Fano’s inequality (cf. Corollary 2.48), we have

H(W|W) < 1+ P.log M. (7.127)
Therefore, from (7.126),
logM <14 P.log M +nC (7.128)
< 14 Apazlog M +nC (7.129)
<1+ elogM +nC, (7.130)

where we have used (7.92) and (7.121), respectively, to obtain the last two
inequalities. Dividing by n and rearranging the terms, we have

%logM< %IJ:S’ (7.131)
and from (7.120), we obtain
1
R—ec< 2. (7.132)

For any € > 0, the above inequality holds for all sufficiently large n. Letting
n — oo and then € — 0, we conclude that

R<C. (7.133)
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%logM
C

Fig. 7.11. An asymptotic upper bound on P..

This completes the proof for the converse of the channel coding theorem.
From the above proof, we can obtain an asymptotic bound on P. when
the rate of the code X log M is greater than C. Consider (7.128) and obtain

1+nC ilic0
P.>1- =1--—. 7.134
‘= log M %logM ( )
Then L
=+C C
P.>1- -1 ~ (7.135)

cl-gr— g
~log M = log M
when n is large. This asymptotic bound on P,, which is strictly positive if

%logM > (), is illustrated in Figure 7.11.
In fact, the lower bound in (7.134) implies that P, > 0 for all n if % log M >

C because if P{™) = 0 for some ng, then for all £ > 1, by concatenating k
copies of the code, we obtain a code with the same rate and block length equal
to kng such that Pe(knO) = 0, which is a contradiction to our conclusion that
P. > 0 when n is large. Therefore, if we use a code whose rate is greater than
the channel capacity, the probability of error is non-zero for all block lengths.

The converse of the channel coding theorem we have proved is called the
weak converse. A stronger version of this result called the strong converse can
be proved, which says that P, — 1 as n — oo if there exists an € > 0 such
that %logM > (O + € for all n.

7.4 Achievability

We have shown in the last section that the channel capacity C' is an upper
bound on all the achievable rates for a DMC. In this section, we show that
the rate C' is achievable, which implies that any rate R < C is achievable.
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Consider a DMC p(y|z), and denote the input and the output of the generic
discrete channel by X and Y, respectively. For every input distribution p(x),
we will prove that the rate I(X;Y) is achievable by showing for large n the
existence of a channel code such that

1. the rate of the code is arbitrarily close to I(X;Y);
2. the maximal probability of error A, is arbitrarily small.

Then by choosing the input distribution p(z) to be one that achieves the
channel capacity, i.e., I(X;Y) = C, we conclude that the rate C is achievable.

Before we prove the achievability of the channel capacity, we first prove
the following lemma.

Lemma 7.17. Let (X', Y’) ben i.i.d. copies of a pair of generic random vari-
ables (X', Y"), where X' and Y’ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X",Y') € Tl y s} < 27 "0FEY)=7), (7.136)
where 7 — 0 as § — 0.

Proof. Consider
Pr{(X"Y) e Ty} = D px)p(y). (7.137)

(X7Y)€T&y]5

By the consistency of strong typicality, for (x,y) € T&Y] 50 X € T[’}q 5 and
y € T[g‘,]&. By the strong AEP, all the p(x) and p(y) in the above summation

satisfy
p(x) < 27 nHE)=) (7.138)

and
p(y) < 27"HE)=0, (7.139)

where 1, — 0 as 6 — 0. By the strong JAEP,
| Tiys] < 2nHZFE), (7.140)
where £ — 0 as § — 0. Then from (7.137), we have

Pr{(X',Y') € Tk yy5}

< QMHEXY)+E)  g—n(H(X)=n)  9g—n(H(Y)=() (7.141)
— 9—n(H(X)+H(Y)=H(X,Y)=£-n—C) (7.142)
— 9= n(I(X3Y)=6-1—() (7.143)
— 9—n(I(X;Y)=7), (7.144)

where
T=+0n+(—0 (7.145)
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as § — 0. The lemma is proved. O

Fix any € > 0 and let § be a small positive quantity to be specified later.
Toward proving the existence of a desired code, we fix an input distribution
p(z) for the generic discrete channel p(y|z), and let M be an even integer
satisfying

€

47
where n is sufficiently large. We now describe a random coding scheme in the
following steps:

1
I(X:Y) — % < —log M < I(X:Y) (7.146)

1. Construct the codebook C of an (n, M) code randomly by generating M
codewords in X" independently and identically according to p(z)™. Denote
these codewords by X(1),X(2), - - -, X(M).

2. Reveal the codebook C to both the encoder and the decoder.

A message W is chosen from W according to the uniform distribution.

4. The sequence X = X (W), namely the Wth codeword in the codebook C,
is transmitted through the channel.

5. The channel outputs a sequence Y according to

@

Pr{Y = y|X(W) =x} = _Hp(ym) (7.147)

(cf. (7.101)). 3
6. The sequence Y is decoded to the message w if (X(w),Y) € T[g(y]a and

there does not exists w’ # w such that (X(w'),Y) € T'xyys- Otherwise,

Y is decoded to a constant message in W. Denote by W the message to
which Y is decoded.

Remark 1 There are a total of |X|M" possible codebooks which can be
constructed in Step 1 of the random coding scheme, where we regard two
codebooks whose sets of codewords are permutations of each other as two
different codebooks.

Remark 2 Strong typicality is used in defining the decoding function in
Step 6. This is made possible by the assumption that the alphabets X and )
are finite.

We now analyze the performance of this random coding scheme. Let
Err = {W # W} (7.148)

be the event of a decoding error. In the following, we analyze Pr{Err}, the
probability of a decoding error for the random code constructed above. For
all 1 <w < M, define the event
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Ey ={(X(w),Y) € Tixys}- (7.149)

Now v
Pr{Err} = > Pr{Err|W = w}Pr{W = w}. (7.150)

w=1

Since Pr{Err|W = w} are identical for all w by symmetry in the code con-
struction, we have

Pr{Err} = Pr{Err|W =1} % Pr{W = w} (7.151)

= Pr{Err|W =1}, (7.152)

i.e., we can assume without loss of generality that the message 1 is chosen.
Then decoding is correct if the received sequence Y is decoded to the message
1. This is the case if F; occurs but E,, does not occur for all 2 < w < M. It
follows that®

Pr{Err¢|W =1} > Pr{E1 N ESNE{N---NEy W =1}, (7.153)
which implies

Pr{Err|W =1}

=1—-Pr{Erm W =1} (
<1-Pr{E1NESNESN---NE§|W =1} (
=Pr{(E1NESNEN---NES)|W =1} (7.156
=Pr{E{UF,UE3U---UEy|W =1}. (

By the union bound, we have

M
Pr{Err|W =1} < Pr{E{|W =1} + > Pr{E,|W = 1}. (7.158)

w=2

First, conditioning on {W = 1}, (X(1),Y) are n i.i.d. copies of the pair of
generic random variables (X,Y’). By the strong JAEP, for any v > 0,

Pr{E{|W =1} = Pr{(X(1),Y) & T{xy}s|W = 1} <v (7.159)

for sufficiently large n. This gives an upper bound on the first term on the
right hand side of (7.158).

Second, conditioning on {W = 1}, for 2 < w < M, (X(w),Y) are n
i.i.d. copies of the pair of generic random variables (X', Y”), where X’ and Y’

5 If Ey does not occur or E, occurs for some 1 < w < M, the received sequence
Y is decoded to the constant message, which may happen to be the message 1.
Therefore, the inequality in (7.153) is not an equality in general.
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have the same marginal distributions as X and Y, respectively. Furthermore,
from the random coding scheme and the memorylessness of the DMC, it is
intuitively correct that X’ and Y’ are independent because X(1) and X (w)
are independent and the generation of Y depends only on 5((1)

A formal proof of this claim requires a more detailed analysis. In our
random coding scheme, the random variables are generated in the order
X(1),X(2),---, X (M), W, X1,Y1,X5,Ys, -+, X, Y, W. By considering the
joint distribution of these random variables, similar to the discussion in Sec-
tion 7.3, the Markov chain

(X(1),X(2),-- -, X(M),W) - X -Y - W (7.160)

can be established. See Problem 1 for the details. Then for any 2 < w < M,
from the above Markov chain, we have

I(Y; X (w), W|X) = 0. (7.161)
By the chain rule for mutual information, the left hand side can be written as
I(Y; W|X) + I(Y; X (w)|X, W). (7.162)

By the nonnegativity of conditional mutual information, this implies

I(Y; X (w)|X, W) =0, (7.163)
or
M
> Pr{W = wh (Y; X (w)|X, W = w) = 0. (7.164)
w=1

Since I(Y; X (w)|X, W = w) are all nonnegative, we see from the above that
they must all vanish. In particular,

I(Y; X(w)|X, W =1) = 0. (7.165)
Then
I0Y; X(w)[X (1), W =1) = I(Y; X(w)|X(W), W = 1) (7.166)
= I(Y; X(w)|X, W =1) (7.167)
= 0. (7.168)

On the other hand, since X(l),f{(w), and W are mutually independent, we
have R R
I(X(1); X(w)|W = 1) = 0. (7.169)

Hence,
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I(Y; X(w)|[W = 1)

< I(X(1),Y; X(w)|W = 1) (7.170)
= [(X(1); X (w)|W = 1) + I(Y; X (w)|X(1), W = 1) (7.171)
=0+0 (7.172)
=0, (7.173)

where (7.172) follows from (7.168) and (7.169), proving the claim.
Let us now return to (7.158). For any 2 < w < M, it follows from the
above claim and Lemma 7.17 that

Pr{E,|W =1}
= Pr{(X(w),Y) € T{ky)|W = 1} (7.174)
< g nUI(XY)=r), (7.175)

where 7 — 0 as 0 — 0. From the upper bound in (7.146), we have
M < 2n(XsY)—1), (7.176)

Using (7.159), (7.175), and the above upper bound on M, it follows from
(7.152) and (7.158) that

Pr{Err} < v+ 2nUXY)=9)  9o=n(I(X3Y)=7) (7.177)
=y 427G, (7.178)

Since 7 — 0 as § — 0, for sufficiently small §, we have

i —r>0 (7.179)
for any € > 0, so that 2=*(i=7) — 0 as n — co. Then by letting v < g, it
follows from (7.178) that

Pr{Err} < g (7.180)

for sufficiently large n.

The main idea of the above analysis of Pr{Err} is the following. In con-
structing the codebook, we randomly generate M codewords in X" according
to p(z)™, and one of the codewords is sent through the channel p(y|x). When n
is large, with high probability, the received sequence is jointly typical with the
codeword sent with respect to p(x,y). If the number of codewords M grows
with n at a rate less than I(X;Y'), then the probability that the received
sequence is jointly typical with a codeword other than the one sent through
the channel is negligible. Accordingly, the message can be decoded correctly
with probability arbitrarily close to 1.

In constructing the codebook in Step 1 of the random coding scheme, we
choose a codebook C with a certain probability Pr{C} from the ensemble of
all possible codebooks. By conditioning on the codebook chosen, we have
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Pr{Err} = > Pr{C}Pr{Err|C}, (7.181)
c

i.e.,, Pr{Err} is a weighted average of Pr{Err|C} over all C in the ensemble
of all possible codebooks, where Pr{Err|C} is the average probability of error
of the code, i.e., P., when the codebook C is chosen (cf. Definition 7.12). The
reader should compare the two different expansions of Pr{Err} in (7.181) and
(7.150).

Therefore, there exists at least one codebook C* such that

Pr{Err|C*} < Pr{Err} < % (7.182)

Thus we have shown that for any € > 0, there exists for sufficiently large n an
(n, M) code such that

€

1
~log M > I(X;Y) (7.183)

(cf. (7.146)) and
P, < g (7.184)
We are still one step away from proving that the rate I(X;Y") is achievable
because we require that \,,q, instead of P, is arbitrarily small. Toward this
end, we write (7.184) as

1 M
— ) A < 3, (7.185)
M w=1

N

or

i A < ("‘24) . (7.186)

Upon ordering the codewords according to their conditional probabilities of
error, we observe that the conditional probabilities of error of the better half
of the M codewords are less than ¢, otherwise the conditional probabilities of
error of the worse half of the codewords are at least €, and they contribute at
least (4 )e to the summation in (7.186), which is a contradiction.

Thus by discarding the worse half of the codewords in C*, for the resulting
codebook, the maximal probability of error A, is less than e. Using (7.183)
and considering

1 M 1 1
—log— = —logM — — (7.187)
n 2 n n
€ 1
> (I(X,Y) - 5) - (7.188)
>I(X;Y)—e (7.189)

when n is sufficiently large, we see that the rate of the resulting code is greater
than I(X;Y) — e. Hence, we conclude that the rate I(X;Y") is achievable.
Finally, upon letting the input distribution p(z) be one that achieves the
channel capacity, i.e., [(X;Y) = C, we have proved that the rate C is achiev-
able. This completes the proof of the direct part of the channel coding theorem.
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7.5 A Discussion

In the last two sections, we have proved the channel coding theorem which
asserts that reliable communication through a DMC at rate R is possible if
and only if R < C, the channel capacity. By reliable communication at rate R,
we mean that the size of the message set grows exponentially with n at rate R,
while the message can be decoded correctly with probability arbitrarily close
to 1 as n — oo. Therefore, the capacity C is a fundamental characterization
of a DMC.

The capacity of a noisy channel is analogous to the capacity of a water
pipe in the following way. For a water pipe, if we pump water through the
pipe at a rate higher than its capacity, the pipe would burst and water would
be lost. For a communication channel, if we communicate through the channel
at a rate higher than the capacity, the probability of error is bounded away
from zero, i.e., information is lost.

In proving the direct part of the channel coding theorem, we showed that
there exists a channel code whose rate is arbitrarily close to C and whose
probability of error is arbitrarily close to zero. Moreover, the existence of such
a code is guaranteed only when the block length n is large. However, the proof
does not indicate how we can find such a codebook. For this reason, the proof
we gave is called an existence proof (as oppose to a constructive proof).

For a fixed block length n, we in principle can search through the ensemble
of all possible codebooks for a good one, but this is quite prohibitive even for
small n because the number of all possible codebooks grows doubly exponen-
tially with n. Specifically, the total number of all possible (n, M) codebooks is
equal to |X'|M™. When the rate of the code is close to C', M is approximately
equal to 2"¢. Therefore, the number of codebooks we need to search through
is about |X'|"2""

Nevertheless, the proof of the direct part of the channel coding theorem
does indicate that if we generate a codebook randomly as prescribed, the
codebook is most likely to be good. More precisely, we now show that the
probability of choosing a code C such that Pr{Err|C} is greater than any
prescribed ¢ > 0 is arbitrarily small when n is sufficiently large. Consider

Pr{Err} = Y Pr{C}Pr{Err|C} (7.190)
C

= Z Pr{C}Pr{Err|C}

C:Pr{Err|C}<y

+ > Pr{c}Pr{Em|C} (7.191)
C:Pr{Err|C}>vy
> > Pr{C}Pr{Err|C} (7.192)

C:Pr{Err|C}>¢

>y > Pr{c}, (7.193)

C:Pr{Err|C}>y
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Fig. 7.12. A channel code that achieves capacity.

which implies
Pr{Err}

> Pr{c)< (7.194)
C:Pr{Err|C}>y 1/)
From (7.182), we have
Pr{Err} < g (7.195)
for any € > 0 when n is sufficiently large. Then
€
> Pr{C}< R (7.196)

C:Pr{Err|C}>v¢

Since ) is fixed, this upper bound can be made arbitrarily small by choosing
a sufficiently small e.

Although the proof of the direct part of the channel coding theorem does
not provide an explicit construction of a good code, it does give much insight
into what a good code is like. Figure 7.12 is an illustration of a channel code
that achieves the channel capacity. Here we assume that the input distribution
p(x) is one that achieves the channel capacity, i.e., I(X;Y) = C. The idea
is that most of the codewords are typical sequences in X™ with respect to
p(z). (For this reason, the repetition code is not a good code.) When such a
codeword is transmitted through the channel, the received sequence is likely
to be one of about 2"#(Y1X) sequences in Y™ which are jointly typical with
the transmitted codeword with respect to p(z,y). The association between a
codeword and the about 27 (Y1X) corresponding sequences in )" is shown as
a cone in the figure. As we require that the probability of decoding error is
small, the cones essentially do not overlap with each other. Since the number
of typical sequences with respect to p(y) is about 2nH(Y) the number of
codewords cannot exceed about

2nH(Y) _ 2nI(X;Y)

_ onC
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This is consistent with the converse of the channel coding theorem. The direct
part of the channel coding theorem says that when n is large, as long as the
number of codewords generated randomly is not more than about 27(€—¢),
the overlap among the cones is negligible with high probability.

Therefore, instead of searching through the ensemble of all possible code-
books for a good one, we can generate a codebook randomly, and it is likely
to be good. However, such a code is difficult to use due to the following im-
plementation issues.

A codebook with block length n and rate R consists of n2" symbols from
the input alphabet X. This means that the size of the codebook, i.e., the
amount of storage required to store the codebook, grows exponentially with
n. This also makes the encoding process inefficient.

Another issue is regarding the computation required for decoding. Based
on the sequence received at the output of the channel, the decoder needs
to decide which of the about 2"# codewords was the one transmitted. This
requires an exponential amount of computation.

In practice, we are satisfied with the reliability of communication once
it exceeds a certain level. Therefore, the above implementation issues may
eventually be resolved with the advancement of microelectronics. But before
then, we still have to deal with these issues. For this reason, the entire field of
coding theory has been developed since the 1950’s. Researchers in this field are
devoted to searching for good codes and devising efficient decoding algorithms.

In fact, almost all the codes studied in coding theory are linear codes. By
taking advantage of the linear structures of these codes, efficient encoding and
decoding can be achieved. In particular, Berrou et al. [33] proposed in 1993
a linear code called the turbo code® that can practically achieve the channel
capacity.

Today, channel coding has been widely used in home entertainment sys-
tems (e.g., audio CD and DVD), computer storage systems (e.g., CD-ROM,
hard disk, floppy disk, and magnetic tape), computer communication, wireless
communication, and deep space communication. The most popular channel
codes used in existing systems include the Hamming code, the Reed-Solomon
code’, the BCH code, and convolutional codes. We refer the interested reader
to textbooks on coding theory [39] [234] [378] for discussions of this subject.

7.6 Feedback Capacity

Feedback is common in practical communication systems for correcting possi-
ble errors which occur during transmission. As an example, during a telephone

5 The turbo code is a special case of the class of Low-density parity-check (LDPC)
codes proposed by Gallager [127] in 1962 (see MacKay [240]). However, the per-
formance of such codes was not known at that time due to lack of high speed
computers for simulation.

" The Reed-Solomon code was independently discovered by Arimoto [18].
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X, =f (WY
W t Y, W
—— = Encoder Ch(al’llil)e ! Decoder
Message Py Estimate
T of message

Fig. 7.13. A channel code with feedback.

conversation, we often have to request the speaker to repeat due to poor voice
quality of the telephone line. As another example, in data communication,
the receiver may request a packet to be retransmitted if the parity check bits
received are incorrect. In general, when feedback from the receiver is available
at the transmitter, the transmitter can at any time decide what to transmit
next based on the feedback so far, and can potentially transmit information
through the channel reliably at a higher rate.

In this section, we study a model in which a DMC is used with complete
feedback. The block diagram for the model is shown in Figure 7.13. In this
model, the symbol Y; received at the output of the channel at time i is available
instantaneously at the encoder without error. Then depending on the message
W and all the previous feedback Y7, Ys, .-, Y;, the encoder decides the value
of X;11, the next symbol to be transmitted. Such a channel code is formally
defined below.

Definition 7.18. An (n, M) code with complete feedback for a discrete mem-
oryless channel with input alphabet X and output alphabet Y is defined by
encoding functions

fio {12, M}x Y™t —Xx (7.198)
for 1 <i<n and a decoding function
g:Yy" —={1,2,---,M}. (7.199)

We will use Y to denote (Y7,Ya,---,Y;) and X; to denote f;(W, Y™ 1).
We note that a channel code without feedback is a special case of a channel

code with complete feedback because for the latter, the encoder can ignore
the feedback.

Definition 7.19. A rate R is achievable with complete feedback for a discrete
memoryless channel p(y|z) if for any e > 0, there exists for sufficiently large
n an (n, M) code with complete feedback such that

1
~logM > R~ (7.200)

and
Amaz < €. (7201)
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Definition 7.20. The feedback capacity, Crp, of a discrete memoryless chan-
nel is the supremum of all the rates achievable by codes with complete feedback.

Proposition 7.21. The supremum in the definition of Cppg in Definition 7.20
is the mazimum.

Proof. Consider rates R**) which are achievable with complete feedback such
that
lim R® = R. (7.202)

k—oo

Then for any € > 0, for all k, there exists for sufficiently large n an (n, M)
code with complete feedback such that

1
ZlogM® > RK) _ ¢ (7.203)
n
and
AR < e (7.204)
By virtue of (7.202), let k(e) be an integer such that for all k > k(e),
IR — RW| < ¢ (7.205)
which implies
R® > R e (7.206)
Then for all &k > k(e),
1
—logM® > R®) _ ¢ > R — 2. (7.207)
n

Therefore, it follows from (7.207) and (7.204) that R is achievable with com-
plete feedback. This implies that the supremum in Definition 7.20, which can
be achieved, is in fact the maximum. 0O

Since a channel code without feedback is a special case of a channel code
with complete feedback, any rate R achievable by the former is also achievable
by the latter. Therefore,

Cpp=C. (7.208)

A fundamental question is whether Cpp is greater than C. The answer
surprisingly turns out to be negative for a DMC, as we now show. From the
description of a channel code with complete feedback, we obtain the depen-
dency graph for the random variables W, X,Y, W in Figure 7.14. From this
dependency graph, we see that

g(w,x,y,®) = q(w) (H q(wilwyyi‘1)> (Hp(yilwi)> g(dly)  (7.209)
1=1 i=1

for all (w,x,y,w) € W x X" x Y" x W such that q(w,y* 1), q(z;) > 0 for
1 <i<nandq(y) >0, where y* = (y1,92,---,¥i). Note that g(z;|w,y"~")
and ¢(w|y) are deterministic.
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Fig. 7.14. The dependency graph for a channel code with feedback.

Lemma 7.22. For all1 <i<n,
WY™ - X, - Y; (7.210)
forms a Markov chain.

Proof. The dependency graph for the random variables W, X% and Y' is
shown in Figure 7.15. Denote the set of nodes W, X' "', and Y*~! by Z.
Then we see that all the edges from Z end at X;, and the only edge from X,
ends at Y;. This means that Y; depends on (W, X?~1 Y1) only through X,
i.e.,

W, XLy Y - X, - Y; (7.211)

forms a Markov chain, or
IW, XY h v X;) = 0. (7.212)

This can be formally justified by Proposition 2.9, and the details are omitted
here. Since

0=I(W, XL Y"1 YX) (7.213)

=1

=IW, YL Y X) + IXTL YW, X, Y h) (7.214)
and mutual information is nonnegative, we obtain

IW, Y"1 v X;) =0, (7.215)

or

WY - X, -V (7.216)

forms a Markov chain. The lemma is proved. 0O
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Fig. 7.15. The dependency graph for W, X", and Y*.

From the definition of C'pg and by virtue of Proposition 7.21, if R < Cpp,
then R is a rate achievable with complete feedback. We will show that if a rate
R is achievable with complete feedback, then R < C'. If so, then R < Cpp
implies R < C, which can be true if and only if Cpg < C. Then from (7.208),
we can conclude that Cpp = C.

Let R be a rate achievable with complete feedback, i.e., for any € > 0,
there exists for sufficiently large n an (n, M) code with complete feedback
such that

n"tlogM >R —¢ (7.217)
and
Amaz < €. (7.218)
Consider
logM =HW)=IW;Y)+ HWIY) (7.219)
and bound I(W;Y) and H(W|Y) as follows. First,
IW;Y) = H(Y)— H(Y|W) (7.220)
=H(Y) =Y HY|Y"',W) (7.221)
=1
2H(Y) - Y HY[Y™ L W.X) (7.222)
=1
2 H(Y) - Y H(YilX) (7.223)

3

simmfZHmm> (7.224)

=1 =1
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I(Xi;Y3) (7.225)

IA I

C, (7.226)

where a) follows because X; is a function of W and Y*~! and b) follows from
Lemma 7.22. Second,

H(W|Y)=HWI|Y,W) < HW|W). (7.227)

Thus R
logM < HW|W) 4+ nC, (7.228)

which is the same as (7.126). Then by (7.217) and an application of Fano’s
inequality, we conclude as in the proof for the converse of the channel coding
theorem that

R<C. (7.229)

Hence, we have proved that Cpg = C.

Remark 1 The proof for the converse of the channel coding theorem in
Section 7.3 depends critically on the Markov chain

W-X->Y W (7.230)

and the relation in (7.101) (the latter implies Lemma 7.16). Both of them do
not hold in general in the presence of feedback.

Remark 2 The proof for Cpg = C in this section is also a proof for the
converse of the channel coding theorem, so we actually do not need the proof in
Section 7.3. However, the proof here and the proof in Section 7.3 have different
spirits. Without comparing the two proofs, one cannot possibly understand
the subtlety of the result that feedback does not increase the capacity of a
DMC.

Remark 3 Although feedback does not increase the capacity of a DMC, the
availability of feedback often makes coding much simpler. For some channels,
communication through the channel with zero probability of error can be
achieved in the presence of feedback by using a variable-length channel code.
These are discussed in the next example.

Ezxample 7.23. Consider the binary erasure channel in Example 7.8 whose ca-
pacity is 1 —~y, where =y is the erasure probability. In the presence of complete
feedback, for every information bit to be transmitted, the encoder can trans-
mit the same information bit through the channel until an erasure does not
occur, i.e., the information bit is received correctly. Then the number of uses
of the channel it takes to transmit an information bit through the channel
correctly has a truncated geometrical distribution whose mean is (1 — )~
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U source | W | channel | X (y1x) Y | channel source i
encoder encoder PLy decoder decoder

Fig. 7.16. Separation of source coding and channel coding.

Therefore, the effective rate at which information can be transmitted through
the channel is 1 — . In other words, the channel capacity is achieved by using
a very simple variable-length code. Moreover, the channel capacity is achieved
with zero probability of error.

In the absence of feedback, the rate 1 — = can also be achieved, but with
an arbitrarily small probability of error and a much more complicated code.

To conclude this section, we point out that the memoryless assumption
of the channel is essential for drawing the conclusion that feedback does not
increase the channel capacity not because the proof presented in this section
does not go through without this assumption, but because if the channel has
memory, feedback actually can increase the channel capacity. For an illustrat-
ing example, see Problem 12.

7.7 Separation of Source and Channel Coding

We have so far considered the situation in which we want to convey a message
through a DMC, where the message is randomly selected from a finite set
according to the uniform distribution. However, in most situations, we want
to convey an information source through a DMC. Let {Ug,k > —n} be an
ergodic stationary information source with entropy rate H. Denote the com-
mon alphabet by U and assume that U is finite. To convey {Uy} through the
channel, we can employ a source code with rate Rs and a channel code with
rate R. as shown in Figure 7.16 such that R; < R..

Let f* and g® be respectively the encoding function and the decoding func-
tion of the source code, and f¢ and g¢ be respectively the encoding function
and the decoding function of the channel code. The block of n information
symbols U = (U_(,—1), U_(n—2)," - -, Up) is first encoded by the source encoder
into an index

W = f5(U), (7.231)

called the source codeword. Then W is mapped by the channel encoder to a
distinct channel codeword
X = fYW), (7.232)

where X = (X1, X5,---, X,,). This is possible because there are about 2%
source codewords and about 2"f¢ channel codewords, and we assume that
Ry < R.. Then X is transmitted through the DMC p(y|z), and the sequence
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Y = (11,Ys,---,Y,,) is received. Based on Y, the channel decoder first esti-
mates W as

W = g¢°(Y). (7.233)
Finally, the source decoder decodes W to

U =g*(W). (7.234)

For this scheme, an error occurs if U # U, and we denote the probability of
error by P,.

We now show that if H < C, the capacity of the DMC p(y|x), then it is
possible to convey U through the channel with an arbitrarily small probability
of error. First, we choose R, and R, such that

H<R;,<R.<C. (7.235)

Observe that if W = W and ¢%(W) = U, then from (7.234),

U=g"(W)=g"(W) =1, (7.236)

i.e., an error does not occur. In other words, if an error occurs, either W W
or g°(W) # U. Then by the union bound, we have

P, <Pr{W # W} +Pr{g°(W) # UL (7.237)

For any € > 0 and sufficiently large n, by the Shannon-McMillan-Breiman
theorem, there exists a source code such that

Pr{g*(W) £ U} <e. (7.238)

By the channel coding theorem, there exists a channel code such that A4, <
€, where \;,q; is the maximal probability of error. This implies

Pr{W # W} = Pr{W # W|W = w}Pr{W = w} (7.239)
< Mnaz Z PI‘{W = w} (7240)
= )\ma:r ’ (7241)
<e (7.242)

Combining (7.238) and (7.242), we have
P, < 2e. (7.243)

Therefore, we conclude that as long as H < C, it is possible to convey {Uy}
through the DMC reliably.

In the scheme we have discussed, source coding and channel coding are
separated. In general, source coding and channel coding can be combined.
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X,=f(W,Y"")
source- L Y, source-
U channel P(yIx) channel U
encoder decoder

T

Fig. 7.17. Joint source-channel coding.

This technique is called joint source-channel coding. It is then natural to ask
whether it is possible to convey information through the channel reliably at a
higher rate by using joint source-channel coding. In the rest of the section, we
show that the answer to this question is no to the extent that for asymptotic
reliability, we must have H < C. However, whether asymptotical reliability
can be achieved for H = C depends on the specific information source and
channel.

We base our discussion on the general assumption that complete feedback
is available at the encoder as shown in Figure 7.17. Let f’¢, 1 < ¢ < n, be
the encoding functions and ¢°¢ be the decoding function of the source-channel
code. Then

X; = ffU, Y (7.244)

for 1 <i <n, where Y™ = (V3,Ya, -+, Y1), and

U = g*(Y), (7.245)

where U = (Ul, U, -, U,). In exactly the same way as we proved (7.226) in
the last section, we can prove that

I(U;Y) < nC. (7.246)
Since U is a function of Y,
I(U;U) < I(U;U,Y) (7.247)
= I(U}Y) (7.248)
<nC. (7.249)
For any € > 0,
H(U) >n(H —¢) (7.250)
for sufficiently large n. Then
n(H —¢) < H(U) = H(U|U) + I(U; U) < H(U|U) 4 nC. (7.251)

Applying Fano’s inequality (Corollary 2.48), we obtain
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n(H —e€) <1+ nP.log|U|+ nC, (7.252)

or

1
H—-e< E+Pelog|l/l\—|—0. (7.253)

For asymptotic reliability, P, — 0 as n — oo. Therefore, by letting n — oo
and then ¢ — 0, we conclude that

H<C. (7.254)

This result, sometimes called the separation theorem for source and chan-
nel coding, says that asymptotic optimality can be achieved by separating
source coding and channel coding. This theorem has significant engineering
implication because the source code and the channel code can be designed
separately without losing asymptotic optimality. Specifically, we only need
to design the best source code for the information source and design the best
channel code for the channel. Moreover, separation of source coding and chan-
nel coding facilitates the transmission of different information sources on the
same channel because we need only change the source code for different in-
formation sources. Likewise, separation of source coding and channel coding
also facilitates the transmission of an information source on different channels
because we need only change the channel code for different channels.

We remark that although asymptotic optimality can be achieved by sep-
arating source coding and channel coding, for finite block length, the proba-
bility of error generally can be reduced by using joint source-channel coding.

Chapter Summary

Capacity of Discrete Memoryless Channel:

C =maxI(X;Y),
p(z)

where p(z) is the input distribution of the channel.

1. C < min(log |X],1log |V]).
2. For a binary symmetric channel with crossover probability €, C' = 1—hy(€).
3. For a binary erasure channel with erasure probability v, C =1 —~.

Lemma: Let X and Y be a pair of random variables and (X', Y’) be n
i.i.d. copies of a pair of generic random variables (X', Y’), where X’ and
Y’ are independent and have the same marginal distributions as X and Y,
respectively. Then

PI‘{(X/,Y/) c T&Y]é} < 2—TL(I(X;Y)—T)’

where 7 — 0 as § — 0.
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Channel Coding Theorem: A message drawn uniformly from the set {1, 2,
e 2”<R*5)} can be transmitted through a discrete memoryless channel with
negligible probability of error as n — oo if and only if R < C.

Feedback: The capacity of a discrete memoryless channel is not increased by
feedback.

Separation of Source and Channel Coding: An information source with
entropy rate H can be transmitted through a discrete memoryless channel
with capacity C reliably if H < C (only if H < ('), and asymptotic optimality
can be achieved by separating source coding and channel coding.

Problems

In the following, X = (X1, Xs, -+, X,), x = (21,Z2, -+, &y ), and so on.

1. Refer to the discussion in Section 7.4.
a) Construct the dependency graph for the random variables involved in
the random coding scheme.
b) By considering the joint distribution of these random variables, prove
the Markov chain in (7.160).
2. Show that the capacity of a DMC with complete feedback cannot be
increased by using probabilistic encoding and/or decoding schemes.
3. Memory increases capacity Consider a BSC with crossover probability
0 < € < 1 represented by X; = Y; + Z; mod 2, where X;, Y;, and Z; are
respectively the input, the output, and the noise variable at time ¢. Then

Pr{Z;=0}=1—¢ and Pr{Z;=1}=¢

for all i. We assume that {X;} and {Z;} are independent, but we make
no assumption that Z; are i.i.d. so that the channel may have memory.
a) Prove that

I(X;Y) <n— hye).

b) Show that the upper bound in a) can be achieved by letting X; be
ii.d. bits taking the values 0 and 1 with equal probability and Z; =
Jy= = 27,.

¢) Show that with the assumptions in b), I(X;Y) > nC, where C =
1 — hp(€) is the capacity of the BSC if it is memoryless.

4. Consider the channel in Problem 3, Part b).

a) Show that the channel capacity is not increased by feedback.

b) Devise a coding scheme without feedback that achieves the channel
capacity.
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In Remark 1 toward the end of Section 7.6, it was mentioned that in the
presence of feedback, both the Markov chain W —- X — Y — W and
Lemma 7.16 do not hold in general. Give examples to substantiate this
remark.

Prove that when a DMC is used with complete feedback,

Pr{Y; = yi| X' =x", Y ' =y '} = Pr{Vi = | X; = 2}

for all ¢ > 1. This relation, which is a consequence of the causality of
the code, says that given the current input, the current output does not
depend on all the past inputs and outputs of the DMC.

Let
Ple) = [1261;}

be the transition matrix for a BSC with crossover probability e. Define
axb=(1—a)b+a(l—>)for0<a,b<1.

a) Prove that a DMC with transition matrix P(e;)P(e2) is equivalent to
a BSC with crossover probability €1 €. Such a channel is the cascade
of two BSC’s with crossover probabilities €; and es, respectively.

b) Repeat a) for a DMC with transition matrix P(e2)P(eq).

c¢) Prove that

1 — hp(er * €2) < min(l — hy(er), 1 — hp(e2)).

This means that the capacity of the cascade of two BSC’s is upper
bounded by the capacity of either of the two BSC'’s.

d) Prove that a DMC with transition matrix P(e)™ is equivalent to a
BSC with crossover probabilities (1 — (1 — 2¢)").

. Symmetric channel A DMC is symmetric if the rows of the transition

matrix p(y|z) are permutations of each other and so are the columns.
Determine the capacity of such a channel.
See Section 4.5 in Gallager [129] for a more general discussion.

. Let C'; and C5 be the capacities of two DMC’s with transition matrices Py

and Ps, respectively, and let C' be the capacity of the DMC with transition
matrix P P5. Prove that C' < min(C4, Cs).

Two parallel channels Let C7; and Cs be the capacities of two DMC’s
p1(y1|x1) and pa(ya|z2), respectively. Determine the capacity of the DMC

p(y1, y2lr1, 22) = p1(y1]21)p2(ya|w2).
Hint: Prove that

I(X1, Xo; Y1, Ys) < I(X13Y7) + I(X2; Ya)

if p(y1, y2|e1, w2) = p1(yi|z1)p2(y2|z2).
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In the system below, there are two channels with transition matrices
p1(y1]z) and pa(ya|z). These two channels have a common input alphabet
X and output alphabets )y and ), repespectively, where )y and )5 are
disjoint. The position of the switch is determined by a random variable Z
which is independent of X, where Pr{Z =1} = A.

p(ylx) 0, z=1

pyX)F——0 Z=2

a) Show that
I(X;Y) = M(X; Y1) + (1 — NI(X;Ya).

b) The capacity of the system is given by C' = maxp,) [(X;Y’). Show
that C' < AC1+(1—\)Cy, where C; = maxy,,) 1(X;Y;) is the capacity
of the channel with transition matrix p;(y;|z), i = 1, 2.

c¢) If both C; and Cy can be achieved by a common input distribution,
show that C = ACy + (1 — \)Cs.

Feedback increases capacity Consider a ternary channel with memory with

input/output alphabet {0, 1,2} as follows. At time 1, the output of the

channel Y] has a uniform distribution on {0, 1,2} and is independent of

the input X (i.e., the channel outputs each of the values 0, 1, and 2 with

probability % regardless of the input). At time 2, the transition from X5

to Y5 which depends on the value of Y7 is depicted below:

Y,=0 Y,=1 Y,=2

For every two subsequent transmissions, the channel replicates itself inde-
pendently. So we only need to consider the first two transmissions. In the
sequel, we regard this channel as described by a generic discrete channel
(with transmission duration equals 2) with two input symbols X; and X,
and two output symbols Y7 and Y5, and we will refer to this channel as
the block channel.
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Determine the capacity this block channel when it is used without
feedback. Hint: Use the results in Problems 8 and 11.
Consider the following coding scheme when the block channel is used
with feedback. Let the message W = (Wq, Ws) with Wy = {0,1,2}
and Wy = {0,1}. Let W; and W5 be independent, and each of them
is distributed uniformly on its alphabet. First, Let X; = W; and
transmit X; through the channel to obtain Y7, which is independent
of X;1. Then based on the value of Y7, we determine X5 as follows:

1) Ile :0, let X2 :OlfWQ :0, and let X2 =1 lfWQ = 1.

ii) Ile = 1, let X2 =1 lfW2 :07 and let X2 :2ifW2 =1.
111) Ile 22, let XQ =0 1fW2 :07 and let X2 =2 1fW2 =1.
Then transmit X5 through the channel to obtain Y5. Based on this
coding scheme, show that for the capacity of this block channel can
be increased by feedback.

13. Channel with memory and directed information The memorylessness of a
DMC is characterized by the Markov chain T;_ — X; — Y; according to
the discussion following Definition 7.4. In general, a channel with memory
satisfies the Markov chain T/ — (X% Y*~!) — Y;, where T/_ denotes all
the random variables generated in the system before X; (i.e., the random
variables denoted by T;_) except for X*~! and Y*~!. Consider the use of
such a channel in the presence of complete feedback.

a)

Give the dependency graph for all the random variables involved in the
coding scheme. Note that the memory of the channel is manifested by
the dependence of Y; on X*~! and Y*~! (in addition to its dependence
on X;) for 1 <i<n.

Verify the correctness of the following derivation:

I(W;Y) = H(Y) — H(Y|W)

[H(Y;[Y'"™ ) — H(Y;|W, Y1)

I

&
Il
-

[H(Y;[Y'"™) — H(Y; W, X, Y )]

-

IN

@
Il
_

[H(Yi[Y'"™!) = H(Y;[ X', Y'™)]

I

@
Il
-

I(Y; X Y1),

I

s
I
-

The above upper bound on I(W;Y), denoted by I(X — Y), is called
the directed information from X to Y.

Show that the inequality in the derivation in b) is in fact an equality.
Hint: Use Definition 7.18.

In the spirit of the informal discussion in Section 7.3, we impose the
constraint H(W|Y) = 0. Show that
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HW) = I(X —Y).

This is the generalization of (7.105) for a channel with memory in the
presence of complete feedback.

e) Show that I[(X — Y) = I(X;Y) if the channel code does not make
use of the feedback. Hint: First show that

H(YXL, Y = HY|W, XL YS! = HY W, X, Y,

(Marko [245] and Massey [250].)

Mazimum likelihood decoding In maximum likelihood decoding for a given

channel and a given codebook, if a received sequence y is decoded to a

codeword x, then x maximizes Pr{y|x’} among all codewords x" in the

codebook.

a) Prove that maximum likelihood decoding minimizes the average prob-
ability of error.

b) Does maximum likelihood decoding also minimize the maximal prob-
ability of error? Give an example if your answer is no.

Minimum distance decoding The Hamming distance between two binary

sequences x and y, denoted by d(x, y), is the number of places where x and

y differ. In minimum distance decoding for a memoryless BSC, if a received

sequence y is decoded to a codeword x, then x minimizes d(x’,y) over all

codewords x’ in the codebook. Prove that minimum distance decoding is

equivalent to maximum likelihood decoding if the crossover probability of

the BSC is less than 0.5.

The following figure shows a communication system with two DMC’s with

complete feedback. The capacities of the two channels are respectively Cy

and Cs.

W | Encoder Channel Encoder Channel Decoder
1 1 2 2 2

1

a) Give the dependency graph for all the random variables involved in
the coding scheme.

b) Prove that the capacity of the system is min(Cy, Cs).

Binary arbitrarily varying channel Consider a memoryless BSC whose

crossover probability is time-varying. Specifically, the crossover probabil-

ity €(i) at time 4 is an arbitrary value in [e1, €2], where 0 < €1 < €3 < 0.5.

Prove that the capacity of this channel is 1 — hj(e3). (Ahlswede and

Wolfowitz [12].)

Consider a BSC with crossover probability € € [e1, €2], where 0 < € <

€2 < 0.5, but the exact value of € is unknown. Prove that the capacity of

this channel is 1 — hy(e2).

E
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Historical Notes

The concept of channel capacity was introduced in Shannon’s original pa-
per [322], where he stated the channel coding theorem and outlined a proof.
The first rigorous proof was due to Feinstein [110]. The random coding error
exponent was developed by Gallager [128] in a simplified proof.

The converse of the channel coding theorem was proved by Fano [107],
where he used an inequality now bearing his name. The strong converse was
first proved by Wolfowitz [384]. An iterative algorithm for calculating the
channel capacity developed independently by Arimoto [19] and Blahut [37]
will be discussed in Chapter 9. Shannon [326] proved that the capacity of a
discrete memoryless channel cannot be increased by feedback.

The definition of a discrete memoryless channel in this chapter is new.
With this definition, coding over such a channel with or without feedback can
be rigorously formulated.
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Rate-Distortion Theory

Consider an information source with entropy rate H. By the source coding
theorem, it is possible to design a source code with rate R which reconstructs
the source sequence X = (X7, Xs,---,X,,) with an arbitrarily small proba-
bility of error provided R > H and the block length n is sufficiently large.
However, there are situations in which we want to convey an information
source by a source code with rate less than H. Then we are motivated to ask:
what is the best we can do when R < H?

A natural approach is to design a source code such that for part of the time
the source sequence is reconstructed correctly, while for the other part of the
time the source sequence is reconstructed incorrectly, i.e., an error occurs. In
designing such a code, we try to minimize the probability of error. However,
this approach is not viable asymptotically because the converse of the source
coding theorem says that if R < H, then the probability of error inevitably
tends to 1 as n — oo.

Therefore, if R < H, no matter how the source code is designed, the source
sequence is almost always reconstructed incorrectly when n is large. An alter-
native approach is to design a source code called a rate-distortion code which
reproduces the source sequence with distortion. In order to formulate the
problem properly, we need a distortion measure between each source sequence
and each reproduction sequence. Then we try to design a rate-distortion code
which with high probability reproduces the source sequence with a distortion
within a tolerance level.

Clearly, a smaller distortion can potentially be achieved if we are allowed
to use a higher coding rate. Rate-distortion theory, the subject matter of this
chapter, gives a characterization of the asymptotic optimal tradeoff between
the coding rate of a rate-distortion code for a given information source and the
allowed distortion in the reproduction sequence with respect to a distortion
measure.
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8.1 Single-Letter Distortion Measures

Let {Xj,k > 1} be an i.i.d. information source with generic random variable
X. We assume that the source alphabet X is finite. Let p(z) be the probability
distribution of X, and we assume without loss of generality that the support
of X is equal to X'. Consider a source sequence

x = (21,%2, *,Tpn) (8.1)
and a reproduction sequence
X = (&1, %0, -, In). (8.2)

The components of X can take values in X', but more generally, they can take
values in any finite set X which may be different from X. The set X, which is
also assumed to be finite, is called the reproduction alphabet. To measure the
distortion between x and %, we introduce the single-letter distortion measure
and the average distortion measure.

Definition 8.1. A single-letter distortion measure is a mapping
d: X x X — R, (8.3)

where R is the set of nonnegative real numbers'. The value d(z,%) denotes
the distortion incurred when a source symbol x is reproduced as .

Definition 8.2. The average distortion between a source sequence x € X"
and a reproduction sequence X € X™ induced by a single-letter distortion mea-
sure d is defined by

n

d(x, %) = % > d(wk, ). (8.4)

k=1

In Definition 8.2, we have used d to denote both the single-letter distor-
tion measure and the average distortion measure, but this abuse of notation
should cause no ambiguity. Henceforth, we will refer to a single-letter distor-
tion measure simply as a distortion measure.

Very often, the source sequence x represents quantized samples of a con-
tinuous signal, and the user attempts to recognize certain objects and derive
meaning from the reproduction sequence x. For example, x may represent a
video signal, an audio signal, or an image. The ultimate purpose of a distor-
tion measure is to reflect the distortion between x and X as perceived by the
user. This goal is difficult to achieve in general because measurements of the
distortion between x and X must be made within context unless the symbols
in X carry no physical meaning. Specifically, when the user derives meaning

! Note that d(z, ) is finite for all (z,2) € X x X.
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from x, the distortion in x as perceived by the user depends on the context.
For example, the perceived distortion is small for a portrait contaminated by
a fairly large noise, while the perceived distortion is large for the image of a
book page contaminated by the same noise. Hence, a good distortion measure
should be context dependent.

Although the average distortion is not necessarily the best way to measure
the distortion between a source sequence and a reproduction sequence, it has
the merit of being simple and easy to use. Moreover, rate-distortion theory,
which is based on the average distortion measure, provides a framework for
data compression when distortion is inevitable.

Ezample 8.3. When the symbols in A and X represent real values, a popular
distortion measure is the square-error distortion measure which is defined by

d(z,2) = (x — &) (8.5)

The average distortion measure so induced is often referred to as the mean-
square error.

Ezample 8.4. When X and X are identical and the symbols in X do not carry
any particular meaning, a frequently used distortion measure is the Hamming
distortion measure, which is defined by

. Oifx =2z
d(z, ) = { Lif 2 # & (8.6)
The Hamming distortion measure indicates the occurrence of an error. In
particular, for an estimate X of X, we have

Ed(X,X)=Pr{X =X} -0+Pr{X # X}-1="Pr{X # X}, (8.7)

i.e., the expectation of the Hamming distortion measure between X and X is
the probability of error.

For x € X™ and X € X™, the average distortion d(x,%) induced by the
Hamming distortion measure gives the frequency of error in the reproduction
sequence X.

Definition 8.5. For a distortion measure d, for each x € X, let i*(x) € X
minimize d(x,Z) over all & € X. A distortion measure d is said to be normal
if
def %
¢z = d(x,2*(x)) =0 (8.8)

forallz e X.
The square-error distortion measure and the Hamming distortion measure

are examples of normal distortion measures. Basically, a normal distortion
measure is one which allows X to be reproduced with zero distortion. Although
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a distortion measure d is not normal in general, a normalization of d can always
be obtained by defining the distortion measure

d(z,2) =d(z,T) — ¢y (8.9)

for all (z,%) € X x X. Evidently, d is a normal distortion measure, and it is
referred to as the normalization of d.

Ezxample 8.6. Let d be a distortion measure defined by

d(z,2)|a b c
1 1275
2 1438

Then d, the normalization of d, is given by

d(z,z)la b c
1 1053
2 1105

Note that for every & € X, there exists an & € X such that d(z, ) = 0.

Let X be any estimate of X which takes values in X , and denote the joint
distribution for X and X by p(z,z). Then

Ed(X,X) = ZZp(m,i:)d(x,i‘) (8.10)
=33 pwd) [d(,7) + .| (8.11)
= BEd(X,X)+ > p(x) Z p(#|7)e, (8.12)

= EJ(X’X) + Zp(%)cg; (Zp(f?l‘)) (8.13)
= Ed(X,X)+ Zp(x)cz (8.14)

= Ed(X,X) + A, (8.15)

where

A= Zp(:v)cz (8.16)

is a constant which depends only on p(z) and d but not on the conditional
distribution p(Z|x). In other words, for a given X and a distortion measure d,
the expected distortion between X and an estimate X of X is always reduced
by a constant upon using d instead of d as the distortion measure. For reasons
which will be explained in Section 8.3, it is sufficient for us to assume that a
distortion measure is normal.
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Definition 8.7. Let #* minimizes Ed(X, &) over all # € X, and define

Dinas = Ed(X, 7). (8.17)

Z* is the best estimate of X if we know nothing about X, and D4, is the
minimum expected distortion between X and a constant estimate of X. The
significance of D, can be seen by taking the reproduction sequence X to be

(z*,2*,---,2*). Since d(Xk, £*) are i.i.d., by the weak law of large numbers
R 1 &
d(X,X) ==Y d(Xy, &) = Bd(X, ") = Dynaa (8.18)
"=

in probability, i.e., for any € > 0,
Pr{d(X,X) > Dyaz + €} <€ (8.19)

for sufficiently large n. Note that X is a constant sequence which does not
depend on X. In other words, even when no description of X is available, we
can still achieve an average distortion no more than D, ., + € with probability
arbitrarily close to 1 when n is sufficiently large.

The notation D,,,, may seem confusing because the quantity stands for
the minimum rather than the maximum expected distortion between X and
a constant estimate of X. But we see from the above discussion that this
notation is in fact appropriate because D, 4, is the maximum distortion we
have to be concerned about. Specifically, it is not meanful to impose a con-
straint D > D,,., on the reproduction sequence because it can be achieved
even without receiving any information about the sequence produced by the
source.

8.2 The Rate-Distortion Function R(D)

Throughout this chapter, all the discussions are with respect to an i.i.d. infor-
mation source { X, k > 1} with generic random variable X and a distortion
measure d. All logarithms are in the base 2 unless otherwise specified.

Definition 8.8. An (n, M) rate-distortion code is defined by an encoding
function
f:x"—={1,2,---,M} (8.20)

and a decoding function
g:{1,2,--- M} — X" (8.21)

The set {1,2,---, M}, denoted by I, is called the index set. The reproduction
sequences g(f(1)),g(f(2)), - -,g9(f(M)) in X™ are called codewords, and the
set of codewords is called the codebook.
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X S(X) X
Encoder Decoder -
source reproduction
sequence sequence

Fig. 8.1. A rate-distortion code with block length n.

Figure 8.1 is an illustration of a rate-distortion code.

Definition 8.9. The rate of an (n, M) rate-distortion code is n~log M in
bits per symbol.

Definition 8.10. A rate-distortion pair (R, D) is asymptotically achievable if
for any € > 0, there exists for sufficiently large n an (n, M) rate-distortion
code such that

1
ElogM <R+e (8.22)

and R
Pr{d(X,X) > D + ¢} <, (8.23)

where X = g(f(X)). For brevity, an asymptotically achievable pair will be
referred to as an achievable pair.

Remark It is clear from the definition that if (R, D) is achievable, then
(R',D) and (R, D’) are also achievable for all R’ > R and D’ > D.

Definition 8.11. The rate-distortion region is the subset of R? containing all
achievable pairs (R, D).

Theorem 8.12. The rate-distortion region is closed and convex.

Proof. We first show that the rate-distortion region is closed. Consider achiev-
able rate-distortion pairs (R®*), D(*)) such that

lim (R®), DXy = (R, D) (8.24)

k—o0

componentwise. Then for any € > 0, for all k, there exists for sufficiently large
n an (n, M*)) code such that

1
ZlogM® < R®) 4 ¢ (8.25)
n

and

Pr{d(X®) X®) > DF) 4 ¢} <, (8.26)

where f(*) and ¢(*) are respectively the encoding function and the decoding
function of the (n, M*)) code, and X¥) = ¢(k)( f(k)(X)). By virtue of (8.24),
let k(e) be an integer such that for all & > k(e),
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|IR— R™| < ¢ (8.27)
and
|ID - DW| <, (8.28)
which imply
R® < R+ (8.29)
and
D®) < D e, (8.30)

respectively. Then for all k > k(e),
1
“logM®) < R® 4 ¢ < R+ 2¢ (8.31)
n

and

Pr{d(X® X®) > D+ 2¢} < Pr{d(X® , X®)) > D*) 4 ¢} (8.32)
<e (8.33)

Note that (8.32) follows because
D+2¢>DW 4 ¢ (8.34)

by (8.30). From (8.31) and (8.33), we see that (R, D) is also achievable. Thus
we have proved that the rate-distortion region is closed.

We will prove the convexity of the rate-distortion region by a time-sharing
argument whose idea is the following. Roughly speaking, if we can use a code
C1 to achieve (R™, DM) and a code Cy to achieve (R(?), D®) then for any
rational number A\ between 0 and 1, we can use C; for a fraction A of the time
and use Cy for a fraction X of the time to achieve (R()‘)7 D()‘)), where

R™ = ARW 4 \R® (8.35)
D™ = xDW 4 AD?), (8.36)

and A = 1 — \. Since the rate-distortion region is closed as we have proved, A
can be taken as any real number between 0 and 1, and the convexity of the
region follows.

We now give a formal proof for the convexity of the rate-distortion region.
Let ,

A= , (8.37)
r+s

where r and s are positive integers. Then A is a rational number between
0 and 1. We now prove that if (R, DM) and (R, D®) are achievable,
then (R, DWN) is also achievable. Assume (R, D)) and (R?), D)) are
achievable. Then for any € > 0 and sufficiently large n, there exist an (n, M (1))
code and an (n, M) code such that
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1 ) )
—logM® < R® 4 ¢ (8.38)
n
and - _
Pr{d(X,X®¥) > DO 4 ¢} <, (8.39)
i=1,2. Let
M(A) = (MD)" (M) (8.40)
and
n(A) = (r + s)n. (8.41)

We now construct an (n(A), M(\)) code by concatenating r copies of the
(n, MM) code followed by s copies of the (n, M) code. We call these 7 + s
codes subcodes of the (n(\), M (X)) code. For this code, let

Y = (X(1),X(2), -, X(r + 5)) (8.42)

and

Y = (X(1),X(2),--,X(r +s)), (8.43)

where X (j) and X (j) are the source sequence and the reproduction sequence
of the jth subcode, respectively. Then for this (n(\), M(\)) code,

1 1
log M()\) = log[(M MY (M 2)ys 44
w0y o8 (N T om og|( )" ( )°] (8.44)
1
= log MMV + slog M 4
"t s)n(r og + slog ) (8.45)
= A (1 log M(1)> + A (1 log M<2>> (8.46)
n n
<ARW +€) + A(RP +¢) (8.47)
= (ARW 4+ AR ¢ (8.48)

where (8.47) follows from (8.38), and

Pr{d(Y,Y) > DV + ¢}

_Pr{ ! Zd(X(j),X(j))>D(’\)+e} (8.50)

<Pr {d(X(j)j((j)) > DW 4 ¢ for some 1 < j <7 or

d(X(j),X(j)) > D@ + ¢ for some r+1 < j <r+ s} (8.51)

< ZPr{d(X(J‘LXU)) > DW + ¢}
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r4+s

+ ) Pr{d(X(j), X(j)) > DP + ¢} (8.52)
j=r+1

< (r+ s)e, (8.53)

where (8.52) follows from the union bound and (8.53) follows from (8.39).
Hence, we conclude that the rate-distortion pair (R(A),D(A)) is achievable.
This completes the proof of the theorem. O

Definition 8.13. The rate-distortion function R(D) is the minimum of all
rates R for a given distortion D such that (R, D) is achievable.

Definition 8.14. The distortion-rate function D(R) is the minimum of all
distortions D for a given rate R such that (R, D) is achievable.

Both the functions R(D) and D(R) are equivalent descriptions of the
boundary of the rate-distortion region. They are sufficient to describe the
rate-distortion region because the region is closed. Note that in defining R(D),
the minimum instead of the infimum is taken because for a fixed D, the set
of all R such that (R, D) is achievable is closed and lower bounded by zero.
Similarly, the minimum instead of the infimum is taken in defining D(R). In
the subsequent discussions, only R(D) will be used.

Theorem 8.15. The following properties hold for the rate-distortion function
R(D):

1. R(D) is non-increasing in D.
2. R(D) is conver.
3. R(D) =0 for D > Daq-
4. R(0) < H(X).
Proof. From the remark following Definition 8.10, since (R(D), D) is achiev-
able, (R(D),D’) is also achievable for all D’ > D. Therefore, R(D) > R(D’)
because R(D’) is the minimum of all R such that (R, D’) is achievable. This
proves Property 1.

Property 2 follows immediately from the convexity of the rate-distortion
region which was proved in Theorem 8.12. From the discussion toward the
end of the last section, we see for any € > 0, it is possible to achieve

Pr{d(X,X) > Dyaz + €} <€ (8.54)

for sufficiently large n with no description of X available. Therefore, (0, D) is
achievable for all D > D,,4., proving Property 3.

Property 4 is a consequence of the assumption that the distortion measure
d is normalized, which can be seen as follows. By the source coding theorem,
for any € > 0, by using a rate no more than H(X) + €, we can describe the
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R(D)
HX)
R(0)
The rate
distortion

region

D, max

Fig. 8.2. A rate-distortion function R(D).

source sequence X of length n with probability of error less than € when n is
sufficiently large. Since d is normalized, for each k& > 1, let

Xp = 2% (Xy) (8.55)
(cf. Definition 8.5), so that whenever an error does not occur,
(X, Xi) = d(Xp, & (X)) =0 (8.56)
by (8.8) for each k, and

Xn: d( Xy, 3% (Xg)) = 0. (8.57)
k=1

1
n

Zd Xy, Xp) =

Therefore, R
Pr{d(X,X) > ¢} <, (8.58)

which shows that the pair (H(X),0) is achievable. This in turn implies that
R(0) < H(X) because R(0) is the minimum of all R such that (R,0) is
achievable. 0O

Figure 8.2 is an illustration of a rate-distortion function R(D). The reader
should note the four properties of R(D) in Theorem 8.15. The rate-distortion
theorem, which will be stated in the next section, gives a characterization of
R(D).

8.3 The Rate-Distortion Theorem

Definition 8.16. For D > 0, the information rate-distortion function is de-
fined by

Ri(D)=  min  I(X;X). (8.59)
X:Ed(X,X)<D
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In defining R;(D), the minimization is taken over all random variables X
jointly distributed with X such that

Ed(X,X) < D. (8.60)

Since p(x) is given, the minimization is taken over the set of all p(&|z) such
that (8.60) is satisfied, namely the set

p(&|x) : Zp p(&|z)d(z, &) <D p. (8.61)

Since this set is compact in RI¥!I¥1 and I1(X; X) is a continuous functional of
p(&|2), the minimum value of I(X; X) can be attained?. This justifies taking
the minimum instead of the infimum in the definition of R;(D).

We have seen in Section 8.1 that we can obtain a normalization d for any
distortion measure d with

Ed(X,X)=FEd(X,X)—- A (8.62)

for any X, where A is a constant which depends only on p(z) and d. Thus if d
is not normal, we can always replace d by d and D by D — A in the definition
of R;(D) without changing the minimization problem. Therefore, we do not
lose any generality by assuming that a distortion measure d is normal.

Theorem 8.17 (The Rate-Distortion Theorem). R(D) = R;(D).

The rate-distortion theorem, which is the main result in rate-distortion
theory, says that the minimum coding rate for achieving a distortion D is
R;(D). This theorem will be proved in the next two sections. In the next
section, we will prove the converse of this theorem, i.e., R(D) > R;(D), and
in Section 8.5, we will prove the achievability of R;(D), i.e., R(D) < R;(D).

In order for R;(D) to be a characterization of R(D), it has to satisfy
the same properties as R(D). In particular, the four properties of R(D) in
Theorem 8.15 should also be satisfied by R;(D).

Theorem 8.18. The following properties hold for the information rate-distortion
function Ry(D):

1. R;(D) is non-increasing in D.

2. R;(D) is convex.
3. R (D) =0 for D > Dypqs-
4- R1(0) < H(X).

2 The assumption that both X and X are finite is essential in this argument.
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Proof. Referring to the definition of R;(D) in (8.59), for a larger D, the
minimization is taken over a larger set. Therefore, R;(D) is non-increasing in
D, proving Property 1.

To prove Property 2, consider any D™, D) > 0 and let A be any number
between 0 and 1. Let X achieves RI(D(i)) fori=1,2, i.e.,

Ry(DW) =I(X;X), (8.63)

where o _
Ed(X,X®) < D, (8.64)

and let X be defined by the transition matrix pi(&]z). Let X® be jointly
distributed with X which is defined by

pa(Z]z) = Ap1(2]x) + Apa(2|2), (8.65)

where A =1 — \. Then

Ed(X,XW)
= Zp(z)m(aﬂz)d(sc,i) (8.66)
= Zp (1 (&) + Ap2(2|2))d(z, ) (8.67)
=A Zp x)p1(&|z)d(x, T) Zp x)p2(&|z)d(x, T) (8.68)
xT, T

= AEd(X, XW) + XEd(X, X®) (8.69)
< ADW 4+ AD®? (8.70)
— DO, (8.71)

where -
DN = xDW 4 XxD@), (8.72)

and (8.70) follows from (8.64). Now consider
AR (DM) + AR (DP) = AI(X; X)) 4+ XI(X; X)) (8.73)
> I(X; XN) (8.74)
> Ri(DW), (8.75)

where the inequality in (8.74) follows from the convexity of mutual information
with respect to the transition matrix p(Z|z) (see Example 3.13), and the
inequality in (8.75) follows from (8.71) and the definition of R;(D). Therefore,
we have proved Property 2.

To prove Property 3, let X take the value 2* as defined in Definition 8.7
with probability 1. Then
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I(X;X)=0 (8.76)
and R
Ed(X;X) = Ed(X;2") = Dpas. (8.77)
Then for D > D4z, .
R;(D)<I(X;X)=0. (8.78)

On the other hand, since Ry(D) is nonnegative, we conclude that
R;(D) = 0. (8.79)

This proves Property 3.
Finally, to prove Property 4, we let

X = 3*(X), (8.80)

where £*(x) is defined in Definition 8.5. Then

Ed(X,X) = Ed(X,&*(X)) (8.81)
=Y p(a)d(z, 3" (z)) (8.82)
=0 (8.83)

by (8.8) since we assume that d is a normal distortion measure. Moreover,
Ri(0) < I(X;X) < H(X). (8.84)
Then Property 4 and hence the theorem is proved. 0O

Corollary 8.19. If R;(0) > 0, then R;(D) is strictly decreasing for 0 <
D < Dpaz, and the inequality constraint in Definition 8.16 for Ry(D) can be
replaced by an equality constraint.

Proof. Assume that R;(0) > 0. We first show that R;(D) > 0 for 0 < D <
Dipaz by contradiction. Suppose R;(D') = 0 for some 0 < D' < D4, and
let R;(D’) be achieved by some X. Then

Ri(D")=1I(X;X)=0 (8.85)
implies that X and X are independent, or
p(z, ) = p(z)p(2) (8.86)

for all x and Z. It follows that
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D' > Ed(X,X) (8.87)
=> Zp(x, 2)d(z, #) (8.88)

=> Zp(x)p(i")d(x, &) (8.89)
= Z pg(gg:«) > p(a)d(, &) (8.90)
- ET: p(g%)Eil(X7 ) (8.91)
> i: p(2)Ed(X,3*) (8.92)

= Z (%) Dimas (8.93)

= Dinas, (8.94)

where £* and D, are defined in Definition 8.7. This leads to a contradiction
because we have assumed that 0 < D’ < D,,,4.. Therefore, we conclude that
R;(D) >0 for 0 < D < Dpae-

Since Rr(0) > 0 and Ry(Dmaz) = 0, and R;(D) is non-increasing and
convex from the above theorem, R;(D) must be strictly decreasing for 0 <
D < Dpuaz- We now prove by contradiction that the inequality constraint in
Definition 8.16 for R;(D) can be replaced by an equality constraint. Assume
that R;(D) is achieved by some X* such that

Ed(X,X*)=D" < D. (8.95)
Then

R;(D")y=  min I(X;X) < I(X; X*) = Ry(D). (8.96)
X:Ed(X,X)<D"

This is a contradiction because Ry (D) is strictly decreasing for 0 < D < D04
Hence, .
Ed(X,X*)=D. (8.97)

This implies that the inequality constraint in Definition 8.16 for R;(D) can
be replaced by an equality constraint. 0O

Remark In all problems of interest, R(0) = R;(0) > 0. Otherwise, R(D) =0
for all D > 0 because R(D) is nonnegative and non-increasing.

Ezample 8.20 (Binary Source). Let X be a binary random variable with
Pr{X=0}=1-v and Pr{X=1}=n. (8.98)

Let X = {0,1} be the reproduction alphabet for X, and let d be the Hamming
distortion measure. We first consider the case that 0 < v < % Then if we make
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a guess on the value of X, we should guess 0 in order to minimize the expected
distortion. Therefore, * = 0 and

Dmax = Ed(X; O) (899)
=Pr{X =1} (8.100)
= 7. (8.101)

We will show that for 0 < < 3,

R](D) _ {gb(’)/) - hb(D) iDO i 5 <7 (8102)

Let X be an estimate of X taking values in X, and let Y be the Hamming
distortion measure between X and X, i.e.,

Y =d(X,X). (8.103)
Observe that conditioning on X, X and Y determine each other. Therefore,
H(X|X)=H(Y|X). (8.104)

Then for D < v = Dy, and any X such that

Ed(X,X) < D, (8.105)
we have

I(X;X) = H(X) - H(X|X) (8.106)
= hy(7) = H(Y|X) (8.107)
> hy(v) — H(Y) (8.108)
= hy(7) — he(Pr{X # X}) (8.109)
> hy(7y) — ho(D), (8.110)

where the last inequality is justified because
Pr{X # X} = Ed(X,X) <D (8.111)

and hy(a) is increasing for 0 < a < % Minimizing over all X satisfying (8.105)
in (8.110), we obtain the lower bound

Ri(D) = () — ho(D). (8.112)

To show that this lower bound is achievable, we need to construct an X such
that the inequalities in both (8.108) and (8.110) are tight. The tightness of
the inequality in (8.110) simply says that

Pr{X # X} = D, (8.113)
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Fig. 8.3. Achieving R;(D) for a binary source via a reverse binary symmetric
channel.

while the tightness of the inequality in (8.108) says that Y should be inde-
pendent of X.

It would be more difficult to make Y independent of X if we specify X
by p(&|z). Instead, we specify the joint distribution of X and X by means
of a reverse binary symmetric channel (BSC) with crossover probability D
as the shown in Figure 8.3. Here, we regard X as the input and X as the
output of the BSC. Then Y is independent of the input X because the error
event is independent of the input for a BSC, and (8.113) is satisfied by setting
the crossover probability to D. However, we need to ensure that the marginal
distribution of X so specified is equal to p(z). Toward this end, we let

Pr{X =1} =q, (8.114)
and consider

Pr{X =1} = Pr{X = 0}Pr{X = 1|X =0}

+Pr{X = 1}Pr{X = 1|X =1}, (8.115)
or
y=(1—-a)D+a(l-D), (8.116)
which gives
v—D
= ) 8.117
“T 122D (8.117)
Since )
D < Doz =7 < 2 (8.118)
we have a > 0. On the other hand,
1
D5 (8.119)
gives
v+ D <1, (8.120)

This implies
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Fig. 8.4. The function R;(D) for the uniform binary source with the Hamming
distortion measure.

vy—D<1-2D, (8.121)
or a < 1. Therefore, .
0<a=Pr{X=1}<1 (8.122)
and .
0<1—-a=Pr{X=0}<1. (8.123)

Hence, we have shown that the lower bound on R;(D) in (8.110) can be
achieved, and Ry(D) is as given in (8.102).

For % < v < 1, by exchanging the roles of the symbols 0 and 1 in the
above argument, we obtain R;(D) as in (8.102) except that «y is replaced by
1 — ~. Combining the two cases, we have

Ri(D) = {g”m ~hs(D) ﬁDO i ﬁ;(fln(jj&_ 7) (8.124)

for 0 <~ < 1. The function R;(D) for v = % is illustrated in Figure 8.4.

Remark In the above example, we see that R;(0) = hy(y) = H(X). Then by
the rate-distortion theorem, H(X) is the minimum rate of a rate-distortion
code which achieves an arbitrarily small average Hamming distortion. It is
tempting to regarding this special case of the rate-distortion theorem as a
version of the source coding theorem and conclude that the rate-distortion
theorem is a generalization of the source coding theorem. However, this is in-
correct because the rate-distortion theorem only guarantees that the average
Hamming distortion between X and X is small with probability arbitrarily
close to 1, but the source coding theorem guarantees that X = X with prob-
ability arbitrarily close to 1, which is much stronger.

It is in general not possible to obtain the rate-distortion function in closed
form, and we have to resort to numerical computation. In Chapter 9, we
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will discuss the Blahut-Arimoto algorithm for computing the rate-distortion
function.

8.4 The Converse

In this section, we prove that the rate-distortion function R(D) is lower
bounded by the information rate-distortion function R;(D), i.e., R(D) >
R;(D). Specifically, we will prove that for any achievable rate-distortion pair
(R,D), R > R;(D). Then by fixing D and minimizing R over all achievable
pairs (R, D), we conclude that R(D) > R(D).

Let (R, D) be any achievable rate-distortion pair. Then for any e > 0,
there exists for sufficiently large n an (n, M) code such that

%logM <R+e (8.125)
and
Pr{d(X,X) > D+ ¢} <&, (8.126)
where X = g(f(X)). Then
n(R+¢) az) log M (8.127)
> H(f(X)) (8.128)
> H(g(f(X))) (8.129)
= H(X) (8.130)
= H(X) — H(X|X) (8.131)
= H(X) — H(X|X) (8.133)
= i:H(Xk) — En:H(XMX, X1, X0, -, Xp1) (8.134)
k=1 k=1
bz) zn: H(X}) — zn: H(X|X3) (8.135)
k=1 k=1
= > [H(Xy) — H(Xy|Xp)] (8.136)
k=1
= Zn: I(Xp; Xi) (8.137)
k=1
23" Ri(Bd(x, %) (5.139)

=
Il
—
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—n % S Ry (Bd(Xs, Xk))] (8.139)
k=1
9 1 & .
> nR; (n > Ed(Xy, Xk)> (8.140)
k=1
= nR;(Ed(X,X)). (8.141)

In the above,

a) follows from (8.125);

b) follows because conditioning does not increase entropy;

c) follows from the definition of R;(D) in Definition 8.16;

d) follows from the convexity of Ry(D) proved in Theorem 8.18 and
Jensen’s inequality.

Now let

ey = maxd(x, 1) (8.142)
be the maximum value which can be taken by the distortion measure d.
The reader should not confuse d,,q; with D,,,, in Definition 8.7. Then from
(8.126), we have

Ed(X,X)
= E[d(X,X)|d(X,X) > D + ¢|Pr{d(X,X) > D + ¢}

+E[d(X, X)|d(X,X) < D + ¢]Pr{d(X,X) < D + ¢} (8.143)
<dmae €+ (D+e€)- 1 (8.144)
= D + (dmaz + 1)e. (8.145)

This shows that if the probability that the average distortion between X and
X exceeds D +e is small, then the expected average distortion between X and
X can exceed D only by a small amount®. Following (8.141), we have

R+ ¢ > Ri(Ed(X,X)) (8.146)
> Ri(D + (dmas + 1)e), (8.147)
where the last inequality follows from (8.145) because R;(D) is non-increasing

in D. We note that the convexity of R;(D) implies that it is a continuous
function of D. Then taking the limit as € — 0, we obtain

R = lim Ry (D + (dmaa + 1)¢) (8.148)
— R, (D + (dmaz +1) lim e) (8.149)
= Ry(D), (8.150)

3 The converse is not true.
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where we have invoked the continuity of R;(D) in obtaining (8.149). Upon
minimizing R over all achievable pairs (R, D) for a fixed D in (8.150), we have
proved that

R(D) > Ry(D). (8.151)

This completes the proof for the converse of the rate-distortion theorem.

8.5 Achievability of R;(D)

In this section, we prove that the rate-distortion function R(D) is upper
bounded by the information rate-distortion function R;(D), i.e., R(D) <
R;(D). Then by combining with the result that R(D) > R;(D) from the last
section, we conclude that R(D) = R;(D), and the rate-distortion theorem is
proved.

For any 0 < D < D,q., we will prove that for every random variable X
taking values in X such that

Ed(X,X) < D, (8.152)

the rate-distortion pair (I(X;X), D) is achievable. This will be proved by
showing for sufficiently large n the existence of a rate-distortion code such
that

1. the rate of the code is not more than I(X; X) +¢€
2. d(X,X) < D + € with probability almost 1.

Then by minimizing I(X; X ) over all X satisfying (8.152), we conclude that
the rate-distortion pair (R;(D), D) is achievable, which implies R;(D) >
R(D) because R(D) is the minimum of all R such that (R, D) is achievable.

Fix any 0 < D < Dy, and any € > 0, and let § be a small positive
quantity to be specified later. Toward proving the existence of a desired code,
we fix a random variable X which satisfies (8.152) and let M be an integer
satisfying

I(X;X)4+ =< =logM < I(X;X) +e, (8.153)

1
n

NN e

where n is sufficiently large.
We now describe a random coding scheme in the following steps:

1. Construct a codebook C of an (n,M) code by randomly generating M
codewords in X" independently and identically according to p(&)™. Denote
these codewords by X(l), X(Q), e ,X(M)

2. Reveal the codebook C to both the encoder and the decoder.

The source sequence X is generated according to p(z)™.

4. The encoder encodes the source sequence X into an index K in the set
Z={1,2,---,M}. The index K takes the value 7 if

2) (X, X(0) € Ty g

©w
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b) for all ¢ € Z, if (X, X(i)) € T gy then i <
otherwise, K takes the constant value 1.
5. The index K is delivered to the decoder. R
6. The decoder outputs X (K) as the reproduction sequence X.

Remark Strong typicality is used in defining the encoding function in Step
4. This is made possible by the assumption that both the source alphabet X
and the reproduction alphabet X are finite.

Let us further explain the encoding scheme described in Step 4. After the
source sequence X is generated, we search through all the codewords in the
codebook C for those which are jointly typical with X with respect to p(z, Z).
If there is at least one such codeword, we let ¢ be the largest index of such
codewords and let K = 4. If such a codeword does not exist, we let K = 1.

The event {K = 1} occurs in one of the following two scenarios:

1. X(l) is the only codeword in C which is jointly typical with X.
2. No codeword in C is jointly typical with X.

In either scenario, X is not jointly typical with the codewords )A((Q)7 X(S), e
X (M). In other words, if K = 1, then X is jointly typical with none of the
codewords X (2), X(3),---, X(M).
Define A
B = {(X,X(i)) € &qu} (8.154)
to be the event that X is jointly typical with the codeword X (7). We see from
the above discussion that

(K =1} CESNESN - NES,. (8.155)

Since the codewords are generated i.i.d., conditioning on {X = x} for any
x € X", the events E; are mutually independent?, and they all have the same
probability. Then for any x € A",

Pr{K = 1|X = x} < Pr{ES N ESN - N ES X = x) (8.156)
= [[PriEfX =x} (8.157)
— (Pr{E{IX = x}) ! (5.158)
= (1 -Pr{E|X =x})M L. (8.159)

We now obtain a lower bound on Pr{F;|X = x} for x € S&]é’ where
Stxge = {x € Tixps 1Tl x5 = 1} (8.160)

4 Without conditioning on {X = x}, the events F; are not mutually independent
because they depend on each other through X.
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(cf. Section 6.3). Consider

Pr{FyX = x} = Pr{(x,X(1) € T}y 4, } (8.161)

p(%). (8.162)

9
x:(x,x)ET["XX]&

mn

The summation above is over all X such that (x,%) € T, From the con-

[XX]6°
sistency of strong typicality (Theorem 6.7), if (x,%) € T&XW then x € T&]5~

By the strong AEP (Theorem 6.2), all p(x) in the above summation satisfy
p(x) > 27 I+, (8.163)
where 7 — 0 as 6 — 0. By the conditional strong AEP (Theorem 6.10),
IT7% x5 () > UHXIX) =), (8.164)

where £ — 0 as § — 0. Then from (8.162), we have

Pr{E;|X = x} > 2nHEX)=6)g-n(H(X)+n) (8.165)
_ 2—7L(H(X)—H(X\X)+£+n) (8166)
— 9 nI(XiX)+() (8.167)
where
C—t4n—0 (8.168)

as 0 — 0. Following (8.159), we have

M—-1

Pr{K = 1|X = x} < [1 — g XX+ (8.169)
The lower bound in (8.153) implies
M > nUI(XX)+5), (8.170)

Then upon taking natural logarithm in (8.169), we obtain

InPr{K =1|X =x}

< (M-l {1 _ 27n(I(X;X)+C)} (8.171)
2 (2n<I<X;X>+;> - 1) In [1 - 2*”(10‘?5‘)*0} (8.172)

_ [Qn@fo _ Tn(f(x;)mc)} ) (8.174)
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In the above, a) follows from (8.170) by noting that the logarithm in (8.171)
is negative, and b) follows from the fundamental inequality Ina < a — 1. By
letting ¢ be sufficiently small so that

% — (>0, (8.175)

the above upper bound on InPr{K = 1|X = x} tends to —co as n — o0, i.e.,
Pr{K =1|X =x} — 0 as n — oo. This implies

Pr{K =1|X = x} < g (8.176)
for sufficiently large n. It then follows that
Pr{K =1} (8.177)
= Z Pr{K = 1|X = x}Pr{X = x}
xES["X]{s
+ ) Pr{K =1X =x}Pr{X =x} (8.178)
*#57x1s
< Z %~Pr{X:x}+ Z 1-Pr{X = x} (8.179)
xES[Xw XQS[X]J
€ n n
€ n
< % +6, (8.182)

where we have invoked Proposition 6.13 in the last step. By letting § be

sufficiently small so that
€

o< (8.183)
and (8.175) is satisfied, we obtain
Pr{K =1} <e. (8.184)

The main idea of the above upper bound on Pr{K = 1} for sufficiently
large n is the following. In constructing the codebook, we randomly generate
M codewords in X™ according to p(&)". If M grows with n at a rate higher
than I(X X ), then the probability that there exists at least one codeword
which is jointly typical with the source sequence X with respect to p(z, %)
is very high when n is large. Further, the average distortion between X and
such a codeword is close to Ed(X, X) because the empirical joint distribution
of the symbol pairs in X and such a codeword is close to p(x, Z). Then by let-
ting the reproduction sequence X be such a codeword, the average distortion
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between X and X is less than D + e with probability arbitrarily close to 1
since Ed(X, X) < D. These will be formally shown in the rest of the proof.
Now for sufficiently large n, consider

Pr{d(X,X) > D + ¢}
=Pr{d(X,X) > D+ ¢|K = 1}Pr{K =1}

+Pr{d(X,X) > D + ¢|K # 1}Pr{K # 1} (8.185)
<1-e4+Pr{dX,X)>D+eK#1}-1 (8.186)
= e+ Pr{d(X,X) > D +¢lK #1}. (8.187)

We will show that by choosing the value of ¢ carefully, it is possible to make
d(X,X) always less than or equal to D + € provided K # 1. Since (X, X) €
T" .. conditioning on {K # 1}, we have

(X X5
d(X,X)
= % Zn:d(xk,)?k) (8.188)
= de x, )N (z, #X, X) (8.189)
= Z d(z, %) (np(z, %) + N(z, 2|X,X) — np(z, &)) (8.190)

x,T

;_p(x,fv)d(x & Zd (2,8 ( (z, %X, X) — p(a, @))

(8.191)
= Bd(X,X) + Zd(x,:ﬁ) <:L (z,2|X,X) — p(z, :e)) (8.192)
< Ed(X,X)+ Zd z,T (z,2|X,X) — p(z, ) (8.193)
L Bd(X, %) + dya 3| 2N, 8K, X) — plr,2) (8.194)
b_<) Ed(X,X) 4 dmazd (8.195)
p+ - (8.196)

where

a) follows from the definition of dyqs in (8.142);

b) follows because (X,X) € T&X]g’
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c) follows from (8.152).

By taking
€
§< 8.197
o dma:r’ ( )
we obtain
d(X,X) < D+ dyas <d€> =D+e (8.198)
if K # 1. Therefore,
Pr{d(X,X) > D+ ¢|/K #1} = 0, (8.199)
and it follows that from (8.187) that
Pr{d(X,X) > D+ ¢} <e. (8.200)

Thus we have shown that for sufficiently large n, there exists an (n, M)
random code which satisfies

1 A
ElogMgl(X;X)—O—e (8.201)

(this follows from the upper bound in (8.153)) and (8.200). This implies the
existence of an (n, M) rate-distortion code which satisfies (8.201) and (8.200).
Therefore, the rate-distortion pair (I(X; X ), D) is achievable. Then upon min-
imizing over all X which satisfy (8.152), we conclude that the rate-distortion
pair (R;(D), D) is achievable, which implies R;(D) > R(D). The proof is
completed.

Chapter Summary

Rate-Distortion Function: For an information source X and a single-letter
distortion measure d : X x X — R, the rate-distortion function is defined as

R(D)=  min  I(X;X).
X:Ed(X,X)<D

Rate-Distortion Theorem: An i.i.d. random sequence X1, Xo, -+, X,, with
generic random variable X can be compressed at rate R + e such that
Pr{d(X,X) > D +¢€} — 0 as n — oo if and only if R > R(D).

Binary Source: Let X be binary with distribution {v,1 — v} and let d be
the Hamming distortion measure. Then

R(D) = ho(y) — he(D) if 0 < D < min(y,1—7)
10 if D > min(y,1— 7).
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Problems

Obtain the forward channel description of R(D) for the binary source with
the Hamming distortion measure.

Binary covering radius The Hamming ball with center ¢ = (¢1, ¢, -+, ¢p) €
{0,1}" and radius r is the set

Sp(e) = {X € {0,1}": Z |z; —c;| < T} .

Let M, , be the minimum number M such that there exists Hamming
balls S,(c;), j = 1,2,---, M such that for all x € {0,1}", x € S,(c;) for
some j.
a) Show that
M,., > 2"
T e ()
b) What is the relation between M, ,, and the rate-distortion function
for the binary source with the Hamming distortion measure?
Consider a source random variable X with the Hamming distortion mea-
sure.
a) Prove that

R(D) > H(X) — Dlog(|X| — 1) — hy(D)

for 0 < D < Dypaz-
b) Show that the above lower bound on R(D) is tight if X is distributed
uniformly on X.
See Jerohin [190] (also see [84], p.133) for the tightness of this lower bound
for a general source. This bound is a special case of the Shannon lower
bound for the rate-distortion function [327] (also see [80], p.369).
Product source Let X and Y be two independent source random variables
with reproduction alphabets X and Y and distortion measures d, and dy,
and the rate-distortion functions for X and Y are denoted by R,(D.)
and R,(D,), respectively. Now for the product source (X,Y), define a
distortion measure d : X x )Y — X x )> by

Prove that the rate-distortion function R(D) for (X,Y") with distortion
measure d is given by

R(D)=  min_ (R(D:)+ Ry(D,).

Hint: Prove that I(X,Y;X,Y) > I(X;X) + I(Y;Y) if X and Y are
independent. (Shannon [327].)
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5. Compound source Let © be an index set and Zg = {Xp : 0 € O} be a
collection of source random variables. The random variables in Zg have
a common source alphabet X', a common reproduction alphabet X ,and a
common distortion measure d. A compound source is an i.i.d. information
source whose generic random variable is X, where @ is equal to some 0 €
O but we do not know which one it is. The rate-distortion function Rg (D)
for X¢ has the same definition as the rate-distortion function defined in
this chapter except that (8.23) is replaced by

Pr{d(Xy,X) >D+¢e} <e forall§eo.

Show that
Rg(D) = sup Ry(D),
feO
where Ry (D) is the rate-distortion function for Xj.

6. Show that asymptotic optimality can always be achieved by separating
rate-distortion coding and channel coding when the information source is
ii.d. (with a single-letter distortion measure) and the channel is memory-
less.

7. Slepian-Wolf coding Let €,, and § be small positive quantities. For 1 <
i < 2nHYIX)+e)  randomly and independently select with replacement
2n(I(X5Y)=7) gequences from T[’{/] 5 according to the uniform distribution
to form a bin B;. Let (x,y) be a fixed pair of sequences in T[S’(Y]&. Prove
the following by choosing €,~, and ¢ appropriately:

a) the probability that y is in some B; tends to 1 as n — oo;

b) given that y € B;, the probability that there exists another y’ € B;

such that (x,y’) € Txy)s tends to 0 as n — oo.

Let (X,Y) ~ p™(x,y). The results in a) and b) say that if (X,Y) is jointly
typical, which happens with probability close to 1 for large n, then it is
very likely that Y is in some bin B;, and that Y is the unique vector in
B; which is jointly typical with X. If X is available as side-information,
then by specifying the index of the bin containing Y, which takes about
2nH(Y1X) hits, Y can be uniquely specified. Note that no knowledge about
X is involved in specifying the index of the bin containing Y. This is the
basis of the Slepian-Wolf coding [339] which launched the whole area of
multiterminal source coding (see Berger [28]).

Historical Notes

Transmission of an information source with distortion was first conceived
by Shannon in his 1948 paper [322]. He returned to the problem in 1959
and proved the rate-distortion theorem [327]. The normalization of the rate-
distortion function is due to Pinkston [290]. The rate-distortion theorem
proved here is a stronger version of the original theorem. Extensions of the
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theorem to more general sources were proved in the book by Berger [27].
An iterative algorithm for computing the rate-distortion function developed
by Blahut [37] will be discussed in Chapter 9. Rose [312] has developed an
algorithm for the same purpose based on a mapping approach.
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The Blahut-Arimoto Algorithms

For a discrete memoryless channel p(y|x), the capacity

C=maxI(X;Y), (9.1)
r(z)

where X and Y are respectively the input and the output of the generic chan-
nel and r(x) is the input distribution, characterizes the maximum asymptot-
ically achievable rate at which information can be transmitted through the
channel reliably. The expression for C' in (9.1) is called a single-letter char-
acterization in the sense that it depends only on the transition matrix of
the generic channel but not on the block length n of a code for the channel.
When both the input alphabet X and the output alphabet ) are finite, the
computation of C' becomes a finite-dimensional maximization problem.

For an i.i.d. information source { Xy, k > 1} with generic random variable
X, the rate-distortion function

R(D) = min  I(X;X) (9.2)
Q(&|x):Ed(X,X)<D

characterizes the minimum asymptotically achievable rate of a rate-distortion
code which reproduces the information source with an average distortion no
more than D with respect to a single-letter distortion measure d. Again, the
expression for R(D) in (9.2) is a single-letter characterization because it de-
pends only on the generic random variable X but not on the block length n of
a rate-distortion code. When both the source alphabet X and the reproduction
alphabet X are finite, the computation of R(D) becomes a finite-dimensional
minimization problem.

Unless for very special cases, it is not possible to obtain an expression
for C or R(D) in closed form, and we have to resort to numerical compu-
tation. However, computing these quantities is not straightforward because
the associated optimization problem is nonlinear. In this chapter, we discuss
the Blahut-Arimoto algorithms (henceforth the BA algorithms), which is an
iterative algorithm devised for this purpose.
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In order to better understand how and why the BA algorithm works,
we will first describe the algorithm in a general setting in the next section.
Specializations of the algorithm for the computation of C' and R(D) will be
discussed in Section 9.2, and convergence of the algorithm will be proved in
Section 9.3.

9.1 Alternating Optimization

In this section, we describe an alternating optimization algorithm. This al-
gorithm will be specialized in the next section for computing the channel
capacity and the rate-distortion function.

Consider the double supremum

sup sup f(up,us), (9.3)
u; €A uz€As
where A; is a convex subset of ™ for ¢ = 1,2, and f is a real function defined
on Ay x As. The function f is bounded from above, and is continuous and
has continuous partial derivatives on A; X As. Further assume that for all
up € A,, there exists a unique ¢1(uz) € A; such that

flei(uz),uz) = max f(uf, ua), (9.4)

uj €A,
and for all u; € Ay, there exists a unique ca(uy) € Ay such that

f(uy,c2(uy)) = max f(ug,ub). (9.5)

u, €Ay
Let u = (uj,us) and A = A; X As. Then (9.3) can be written as

sup f(u). (9.6)

ucA

In other words, the supremum of f is taken over a subset of R™*"2 which
is equal to the Cartesian product of two convex subsets of R™ and R"2,
respectively.

We now describe an alternating optimization algorithm for computing f*,
the value of the double supremum in (9.3). Let u(®) = (ugk)7 uék)) for k>0
which are defined as follows. Let ugo) be an arbitrarily chosen vector in Ay,
and let uéo) = cz(ugo)). For k > 1, u®) is defined by

uf” = ¢ (uf ) (9.7)

and
uék) = cz(ugk)). (9.8)
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Fig. 9.1. Alternating optimization.

(k (k)

u® and O O 4O D,

In other words, are generated in the order u; ’, uy”’,

2 2 . . . .
ug ), u(2 ), -, where each vector in the sequence is a function of the previous

(0)

vector except that uj ’ is arbitrarily chosen in A;. Let

f® = fa®). (9.9)
Then from (9.4) and (9.5),
B = fu?, uf?) (9.10)
> fu,uf V) (9-11)
> f Y ugY) (9.12)
= f=1) (9.13)

for k > 1. Since the sequence f*) is non-decreasing, it must converge because
f is bounded from above. We will show in Section 9.3 that f*) — f* if
f is concave. Figure 9.1 is an illustration of the alternating maximization
algorithm, where in this case both n; and ns are equal to 1, and f*) — f*.

The alternating optimization algorithm can be explained by the following
analogy. Suppose a hiker wants to reach the summit of a mountain. Starting
from a certain point in the mountain, the hiker moves north-south and east-
west alternately. (In our problem, the north-south and east-west directions can
be multi-dimensional.) In each move, the hiker moves to the highest possible
point. The question is whether the hiker can eventually approach the summit
starting from any point in the mountain.

Replacing f by —f in (9.3), the double supremum becomes the double
infimum

inf inf f(ug,u). (9.14)

u; €A1 u2€A2
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All the previous assumptions on Ay, Ay, and f remain valid except that f is
now assumed to be bounded from below instead of bounded from above. The
double infimum in (9.14) can be computed by the same alternating optimiza-
tion algorithm. Note that with f replaced by — f, the maximums in (9.4) and
(9.5) become minimums, and the inequalities in (9.11) and (9.12) are reversed.

9.2 The Algorithms

In this section, we specialize the alternating optimization algorithm described
in the last section to compute the channel capacity and the rate-distortion
function. The corresponding algorithms are known as the BA algorithms.

9.2.1 Channel Capacity

We will use r to denote an input distribution 7(x), and we write r > 0 if r is
strictly positive, i.e., r(x) > 0 for all z € X. If r is not strictly positive, we
write r > 0. Similar notations will be introduced as appropriate.

Lemma 9.1. Let r(x)p(y|x) be a given joint distribution on X X Y such that
r > 0, and let q be a transition matriz from Y to X. Then

maxzz )p(y|x) lo 33|y ZZ )p(ylx) lo QZ((Z;U), (9.15)

where the maximization is taken over all q such that

q(zly) =0 if and only if p(y|z) =0, (9.16)

and

(el — @)

2o r(@)p(yla’)’

e., the maximizing q s the one which corresponds to the input distribution
r and the transition matriz p(y|z).

(9.17)

In (9.15) and the sequel, we adopt the convention that the summation is
taken over all z and y such that r(x) > 0 and p(y|z) > 0. Note that the right
hand side of (9.15) gives the mutual information I(X;Y") when r is the input
distribution for the generic channel p(y|z).

Proof. Let
w(y) =Y r(@)pyla’) (9.18)

x!

n (9.17). We assume without loss of generality that for all y € Y, p(y|z) > 0
for some z € X. Since r > 0, w(y) > 0 for all y, and hence ¢*(z|y) is well-
defined. Rearranging (9.17), we have
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r(z)p(ylr) = w(y)g* (z]y). (9.19)

Consider

2.2 r@plylo)lo

G
RN

= ZZ p(yle)lo q*(@'w)) (9.20)
= ZZ ¢"(aly) log 2 ((x|y)) (9.21)
= Z Z‘I (x[y)log (($||y)) (9.22)
= Z ¢ (zly)lla(z]y)) 9.23)
2 O? (9.24)

where (9.21) follows from (9.19), and the last step is an application of the
divergence inequality. Then the proof is completed by noting in (9.17) that
q* satisfies (9.16) because r > 0. O

Theorem 9.2. For a discrete memoryless channel p(y|z),

= sup max Z Z p(y|z) lo iﬂfx\y) (9.25)

r>0 4 ()7

where the mazimization is taken over all q that satisfies (9.16).

Proof. Let I(r,p) denote the mutual information I(X;Y") when r is the input
distribution for the generic channel p(y|z). Then we can write

C= rpzaéil(r,p). (9.26)

Let r* achieves C. If r* > 0, then

C= max I(r,p) (9.27)
= max I(r, p) (9.28)
= max mgxxz Z p(y|x) log (g(cg) (9.29)
= sup mé),xz Z p(y|z) log (f“;), (9.30)

where (9.29) follows from Lemma 9.1 (and the maximization is over all q that
satisfies (9.16)).
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Next, we consider the case when r* > 0. Since I(r,p) is continuous in r,

for any € > 0, there exists 0 > 0 such that if
v —x*| <6,

then
C—1I(r,p) <k,

(9.31)

(9.32)

where ||r—r*|| denotes the Euclidean distance between r and r*. In particular,

there exists & > 0 which satisfies (9.31) and (9.32). Then
C= max I(r,p)
> sup I(r,p)
r>0
> I(%,p)
>C —e,

where the last step follows because T satisfies (9.32). Thus we have

C—e<supl(r,p) <C.
r>0

Finally, by letting € — 0, we conclude that

q(fvly)
C= 1 = g E .
sup I(r, p) = sup max )p(y|z)lo o

r>0 r>0 4 ( )

This accomplishes the proof. 0O

Now for the double supremum in (9.3), let
o 11y
ZZ plyl)log <755,

with r and q playing the roles of u; and us, respectively. Let

Ay ={(r(z),r € X): r(x) >0and ), r(z) =1},

and

Az = {(4a(zly), (z,y) € X x V) : q(z|y) >0
if p(x[y) > 0, q(z[y) = 0 if p(y|z) =0,
and Y q(z|y) =1 for all y € V}.

(9.38)

(9.39)

(9.40)

(9.41)

Then A; is a subset of RI¥l and A, is a subset of RV and it can readily
be checked that both A; and Ay are convex. For all r € A; and q € As, by

Lemma 9.1,
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Z Z p(ylz) lo qri'cy) (9.42)

(
< Z Z p(y|z) lo q’;((a;)y) (9.43)

= I(X, Y) (9.44)
< H(X) (9.45)
< log |X]. (9.46)

Thus f is bounded from above. Since for all q € Ag, g(z]y) = 0 for all z and
y such that p(x|y) = 0, these components of q are degenerated. In fact, these
components of q do not appear in the definition of f(r,q) in (9.39), which
can be seen as follows. Recall the convention that the double summation in
(9.39) is over all z and y such that r(z) > 0 and p(y|z) > 0. If ¢(z]y) = 0,
then p(y|x) = 0, and hence the corresponding term is not included in the
double summation. Therefore, it is readily seen that f is continuous and has
continuous partial derivatives on A because all the probabilities involved in
the double summation in (9.39) are strictly positive. Moreover, for any given
r € Aj, by Lemma 9.1, there exists a unique q € A, that maximizes f. It will
be shown shortly that for any given q € As, there also exists a unique r € A;
that maximizes f.
The double supremum in (9.3) now becomes

sup sup Z Z r(z)p(y|x) log a(zly) (9.47)

rcA; qcA; z oy 7"(1‘) ’

which by Theorem 9.2 is equal to C, where the supremum over all q € A is
in fact a maximum. We then apply the alternating optimization algorithm in
the last section to compute C'. First, we arbitrarily choose a strictly positive
input distribution in A; and let it be r(®). Then we define q(® and in general
q® for k > 0 by

r® (@)p(ylz)
D B (@ )p(yla’)

in view of Lemma 9.1. In order to define r™") and in general r®) for k > 1,
we need to find the r € A; that maximizes f for a given q € Ay, where the

constraints on r are
> o) =1 (9.49)

x

qM (aly) = (9.48)

and
r(x) >0 forallz e X. (9.50)

We now use the method of Lagrange multipliers to find the best r by ignoring
temporarily the positivity constraints in (9.50). Let
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J = ZZ p(y|z) log )\Z (9.51)

For convenience sake, we assume that the logarithm is the natural logarithm.
Differentiating with respect to r(x) gives

afé) = 3" plyls) loga(aly) — log () — 1 — A. (9.52)

Y

Upon setting a?é) = 0, we have

logr(x Zp ylx)logg(zly) =1 = A, (9.53)
y
or
r(z) = e~ OFD Hq(m|y)p(y‘z). (9.54)
y

By considering the normalization constraint in (9.49), we can eliminate A and

obtain
[T, a(xly)r@=)
> 11, (e’ [y)plen”

The above product is over all y such that p(y|x) > 0, and g(x|y) > 0 for all
such y. This implies that both the numerator and the denominator on the
right hand side above are positive, and therefore r(x) > 0. In other words, the
r thus obtained happen to satisfy the positivity constraints in (9.50) although
these constraints were ignored when we set up the Lagrange multipliers. We
will show in Section 9.3.2 that f is concave. Then r as given in (9.55), which
is unique, indeed achieves the maximum of f for a given q € As because r is
in the interior of A;. In view of (9.55), we define r*) for k > 1 by

Hy q* =D (z|y)Pll®)
> I1, D (@ y)rtvl=)

The vectors r*) and q(*) are defined in the order r(®, q(@, r( M), r@),
q?, .-, where each vector in the sequence is a function of the previous vector
except that r(?) is arbitrarily chosen in A;. It remains to show by induction
that r®) € A; for k > 1 and q*) € A, for k > 0. If r) € Ay, ie., r®) > 0,
then we see from (9.48) that ¢(*)(z|y) = 0 if and only if p(z|y) = 0, i.e.,
q®) € A,. On the other hand, if q*¥) € A, then we see from (9.56) that
r# D) > 0, ie., r®*tD € Ay Therefore, r*) € A; and q'¥) € A, for all k > 0.
Upon determining (r®, q(®)), we can compute f*) = f(r*),q®)) for all k.
It will be shown in Section 9.3 that f(*) — (.

r(x) =

(9.55)

r®) (z) = (9.56)
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9.2.2 The Rate-Distortion Function

The discussion in this section is analogous to the discussion in Section 9.2.1.
Some of the details will be omitted for brevity.

For all problems of interest, R(0) > 0. Otherwise, R(D) = 0 for all D > 0
since R(D) is nonnegative and non-increasing. Therefore, we assume without
loss of generality that R(0) > 0.

We have shown in Corollary 8.19 that if R(0) > 0, then R(D) is strictly
decreasing for 0 < D < Dypqz. Since R(D) is convex, for any s < 0, there
exists a point on the R(D) curve for 0 < D < D4, such that the slope of a
tangent! to the R(D) curve at that point is equal to s. Denote such a point
on the R(D) curve by (D, R(Ds)), which is not necessarily unique. Then this
tangent intersects with the ordinate at R(Ds) — sD,. This is illustrated in
Figure 9.2.

Let I(p, Q) denote the mutual information (X, X) and D(p, Q) denote
the expected distortion Ed(X, X ) when p is the distribution for X and Q is the
transition matrix from X to X defining X. Then for any Q, (I(p,Q),D(p,Q))
is a point in the rate-distortion region, and the line with slope s passing
through (I(p,Q), D(p,Q)) intersects the ordinate at I(p,Q) — sD(p, Q).
Since the R(D) curve defines the boundary of the rate-distortion region and
it is above the tangent in Figure 9.2, we see that

R(D,) = D, = min[I(p, Q) ~ sD(p. Q)] (9.57)

For each s < 0, if we can find a Q, that achieves the above minimum, then the
line passing through (0, I(p, Qs) — sD(p, Qs)), i.e., the tangent in Figure 9.2,

R(D)

R(Dg)-sDg

(Dg,R(Dyg))
R(Dy)

Dy Dmax

Fig. 9.2. A tangent to the R(D) curve with slope equal to s.

! We say that a line is a tangent to the R(D) curve if it touches the R(D) curve
from below.
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gives a tight lower bound on the R(D) curve. In particular, if (R(Ds), D;) is
unique,
D, =D(p,Qs) (9.58)
and
R(D;) = I(p, Qs). (9.59)

By varying over all s < 0, we can then trace out the whole R(D) curve. In the
rest of the section, we will devise an iterative algorithm for the minimization
problem in (9.57).

Lemma 9.3. Let p(x)Q(Z|x) be a given joint distribution on X X X such that
Q > 0, and let t be any distribution on X such that t > 0. Then

iy 3 S p(wIQtele) og G = 3 S ptwtela) on ST 000

where

Zp Q(ilx), (9.61)

i.e., the minimizing t is the one which corresponds to the input distribution p
and the transition matriz Q.

Proof. 1t suffices to prove that

ZZ Q(i]x)lo x‘x ZZ Qt(:(vg) (9.62)

for all t > 0. The details are left as an exercise. Note in (9.61) that t* > 0
because Q > 0. O

Since I(p, Q) and D(p, Q) are continuous in Q, via an argument similar
to the one we used in the proof of Theorem 9.2, we can replace the minimum
over all Q in (9.57) by the infimum over all Q > 0. By noting that the right
hand side of (9.60) is equal to I(p, Q) and

ZZp Q(z|x)d(z, &), (9.63)

we can apply Lemma 9.3 to obtain

R(D,) — sD;
= clgr;fo |:1tmg Zp(:v Q(&|x) log £ ) _s Zp(w (&|x)d(x a:):| (964)
= ér;fo 1;n>1f)1 |:Z p(z)Q(Z|z) log t(zl —s Zp (2|z)d(x a:):| . (965)

Now in the double infimum in (9.14), let
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Z|z

ZZp Q(&|z) log Qt((£|) )

—sZZp Q(2|z)d(z, %), (9.66)

Ay = {(Q(fﬂlx), (#,2) € X x X) : Q(&[x) >0,

ol

> Q(ilr) = 1forall z X}, (9.67)

and
Ay = {(t(#),2 € X) : t(&) > 0 and Yo tx) =1}, (9.68)
with Q and t playing the roles of u; and us, respectively. Then A; is a subset

of RIXII¥ and A, is a subset of RI% |, and it can readily be checked that both
Ay and Ay are convex. Since s < 0,

f(Q.t)
= 5 Y sl os G2 -5 Y5 @) Qi) )
. ” (9.69)
A Q(%[x)
> Z Zp(x)Q(w|x) log (@) +0 (9.70)
= I(X;X) (9.71)
> 0. (9.72)

Therefore, f is bounded from below.
The double infimum in (9.14) now becomes

Jof nf > Zp(l‘)Q(i z)lo

ZZP Q(#[z)d(z, )| ,

(9.73)
where the infimum over all t € As is in fact a minimum. We then apply the
alternating optimization algorithm described in Section 9.2 to compute f*,
the value of (9.73). First, we arbitrarily choose a strictly positive transition
matrix in A; and let it be Q(®. Then we define t(°) and in general t*) for
k>1 by

t*)(z) Zp QW (i) (9.74)

in view of Lemma 9.3. In order to define Q") and in general Q¥ for k > 1,
we need to find the Q € A; that minimizes f for a given t € Ay, where the
constraints on Q are
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Q(&|z) >0 forall (z,2) € X x X, (9.75)

and
> Qilr) =1 forallze X. (9.76)

As we did for the computation of the channel capacity, we first ignore the
positivity constraints in (9.75) when setting up the Lagrange multipliers. Then
we obtain

t(j>esd(w,£)
S e 0. (9.77)

The details are left as an exercise. We then define Q*) for k > 1 by

Q&|r) =

t(k—l) (.%)esd(ac,a%)
Zi/ t(kfl)(i.l>esd(w7j’) :

Q™ (2|z) = (9.78)

It will be shown in the next section that f*) = f(Q®), t(*)) — f* as k — oo.
If there exists a unique point (R(D,), Ds) on the R(D) curve such that the
slope of a tangent at that point is equal to s, then

(I(p.Q™),D(p,Q")) — (R(Ds), D). (9.79)

Otherwise, (I(p, Q®), D(p, Q®)) is arbitrarily close to the segment of the
R(D) curve at which the slope is equal to s when k is sufficiently large. These
facts are easily shown to be true.

9.3 Convergence

In this section, we first prove that if f is concave, then f*) — f* We then
apply this sufficient condition to prove the convergence of the BA algorithm
for computing the channel capacity. The convergence of the BA algorithm for
computing the rate-distortion function can be proved likewise. The details are
omitted.

9.3.1 A Sufficient Condition

In the alternating optimization algorithm in Section 9.1, we see from (9.7)
and (9.8) that

ul ) = @ uy ) = (e (), e (u5?)) (9.80)
for k& > 0. Define

Af(a) = f(er(ug), ca(ci1(u2))) — f(ur, ug). (9.81)
Then



9.3 Convergence 223

FERD = 8 = fa®) — ) (9.82)
= flar(@§?), ex(er(mf?))) = f(f?, uf?) (9.83)
= Af(u®). (9.84)

We will prove that f being concave is sufficient for f*) — f*. To this end,
we first prove that if f is concave, then the algorithm cannot be trapped at

uif f(u) < f*.
Lemma 9.4. Let f be concave. If f*) < f*, then fE+1) > fk),

Proof. We will prove that Af(u) > 0 for any u € A such that f(u) < f*.
Then if f*) = f(u®) < f*, we see from (9.84) that

f(k+1) _ f(k) — Af(u(k)) >0, (9.85)

and the lemma is proved.
Consider any u € A such that f(u) < f*. We will prove by contradiction
that Af(u) > 0. Assume Af(u) = 0. Then it follows from (9.81) that

fler(ug), ca(er(uz))) = f(uy, ug). (9.86)
Now we see from (9.5) that
flei(uz), ca(er(uz))) = fler(uz), uz). (9.87)
If ¢1(u2) # uy, then
flei(uz),uz) > f(ur,uz) (9.88)
because ¢1(uz) is unique. Combining (9.87) and (9.88), we have
flei(uz), ea(er(uz))) > f(uy, uz), (9.89)

which is a contradiction to (9.86). Therefore,
u; = ¢1(ua). (9.90)
Using this, we see from (9.86) that
f(ur, ea(u)) = fu, ug), (9.91)

which implies
Uy = 62(u1). (992)

because ¢z(c1(u2)) is unique.
Since f(u) < f*, there exists v € A such that

flu) < f(v). (9.93)

Consider
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(u,,v,) (v,,v,)
z,

Z
(ul7u2) ZI (VI’UZ)

Fig. 9.3. The vectors u, v, z,z1, and zs.

v—-u= (Vl —uy, 0) + (OaVQ - u2)~ (994)

Let z be the unit vector in the direction of v — u, z; be the unit vector in
the direction of (vq — uy,0), and z2 be the unit vector in the direction of
(vy — ug,0). Then

v —ullz = ||vi — ui]|z1 + [|[v2 — uz||z2, (9.95)
or
Z = 121 + Q2Zo, (996)
where
S i (9.97)
[v —ull

1 =1,2. Figure 9.3 is an illustration of the vectors u, v, z,z;, and z,.

We see from (9.90) that f attains its maximum value at u = (uy, uz)
when usy is fixed. In particular, f attains its maximum value at u along the
line passing through (uj,us) and (vi,us). Let 57 f denotes the gradient of f.
Since f is continuous and has continuous partial derivatives, the directional
derivative of f at u in the direction of z; exists and is given by W/ f - z;.
It follows from the concavity of f that f is concave along the line passing
through (uj,us) and (vi,us). Since f attains its maximum value at u, the
derivative of f along the line passing through (uj,uz) and (vi,uy) vanishes.
Then we see that

vf-z1=0. (9.98)

Similarly, we see from (9.92) that
V/f-z2=0. (9.99)

Then from (9.96), the directional derivative of f at u in the direction of z is
given by
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Vi z=01(Vf 21)+ax(Vf 2z2) =0. (9.100)
Since f is concave along the line passing through u and v, this implies
f(a) > f(v), (9.101)

which is a contradiction to (9.93). Hence, we conclude that Af(u) > 0. O

Although we have proved that the algorithm cannot be trapped at u if
f(u) < f*, f®) does not necessarily converge to f* because the increment
in f®*) in each step may be arbitrarily small. In order to prove the desired
convergence, we will show in next theorem that this cannot be the case.

Theorem 9.5. If f is concave, then ) — f*.

Proof. We have already shown in Section 9.1 that f(*) necessarily converges,
say to f’. Hence, for any € > 0 and all sufficiently large k,

free<f® <y (9.102)
Let
7= min Af(u), (9.103)
where
A={ueA:f —e< f(u) < f'}. (9.104)

Since f has continuous partial derivatives, Af(u) is a continuous function of
u. Then the minimum in (9.103) exists because A’ is compact?.

We now show that f’ < f* will lead to a contradiction if f is concave. If
f' < f*, then from Lemma 9.4, we see that Af(u) > 0 for all u € A’ and
hence v > 0. Since f*) = f(u®) satisfies (9.102), u*) € A’; and

FEED ) — Af(u®) > 5 (9.105)

for all sufficiently large k. Therefore, no matter how smaller ~ is, f*) will
eventually be greater than f’, which is a contradiction to f*) — f’. Hence,
we conclude that f*) — f*. 0O

9.3.2 Convergence to the Channel Capacity

In order to show that the BA algorithm for computing the channel capacity
converges as intended, i.e., f*¥) — C, we only need to show that the function
f defined in (9.39) is concave. Toward this end, for

fle,@) = r(z)p(yle) log qf,fz‘z) (9.106)

2 A’ is compact because it is the inverse image of a closed interval under a contin-
uous function and A is bounded.
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defined in (9.39), we consider two ordered pairs (r1,q;) and (rs,q2) in A,
where A; and Ay are defined in (9.40) and (9.41), respectively. For any 0 <
A <1land A =1-\, an application of the log-sum inequality (Theorem 2.32)
gives

Arq(z) + 5\7"2 (2)
A1 (z|y) + Aga(zly)
ro(x)
a2 (zly)

(Ar(x) + Ara(z)) log

r1(x)
a1(zly)

Taking reciprocal in the logarithms yields

< Ary(z)log + Ara(z) log (9.107)

Aqi(zly) + E\Q2(x|y)
Ar(z) + Ara(x)
%2 ([y)
ra(z)

(Ar(x) + Ara(z)) log

qi(zly)
r1(z)

and upon multiplying by p(y|z) and summing over all z and y, we obtain

> Ari(z) log + Ary(z) log : (9.108)

FOr1 + Ara, Adi + Adz) > Af(r1,q1) + Af(r2, 92). (9.109)

Therefore, f is concave. Hence, we have shown that f(*) — C.

Chapter Summary

Channel Capacity: For a discrete memoryless channel p(y|x),

C = sup max Z Z r(z)p(y|z) log w

r>0 4 ()7

where the maximization is taken over all q that satisfies ¢(x|y) = 0 if and
only if p(y|z) = 0.

Computation of Channel Capacity: Start with any strictly positive input
distribution r(®. Compute q(©, r), g™, r® ... alternately by

) (2)p(ylz)
> T (@ )p(yla’)

g™ (z]y) =

and -
(g = @Dy
> 11, g (@ y)plen)”

Then r® tends to the capacity-achieving input distribution as k — co.
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Rate-Distortion Function: For s < 0, the tangent to the rate-distortion
function R(D) at (Ds, R(D;)) has slope s and intersects with the ordinate at
R(Ds) — sDg, which is given by

Q(flw)
®TH@)

inf min g p(z)Q(Z|x) lo
Q>0 t>0

—sY_ p@)Q(#|x)d(x, 2)

x,T

The curve R(D), 0 < D < D,,q, is traced out by the collection of all such
tangents.

Computation of Rate-Distortion Function: Start with any strictly pos-
itive transition matrix Q(®. Compute t(9, QM t() Q®, ... alternately by

D IECRLE

and

t(kfl)(A) sd(z,&)
Zwt(k 1)( )esd(x,;i’)'

QW (#]z) =

Let

= > > p(@)Q(il) log (s Zzp Q(ilx)d(x, 7).

Then f(Q®,t*) — R(D,) — sDy as k — oo.

Problems

1. Implement the BA algorithm for computing channel capacity.

Implement the BA algorithm for computing the rate-distortion function.

3. Explain why in the BA Algorithm for computing channel capacity, we
should not choose an initial input distribution which contains zero prob-
ability masses.

4. Prove Lemma 9.3.

5. Consider f(Q,t) in the BA algorithm for computing the rate-distortion
function.
a) Show that for fixed s and t, f(Q,t) is minimized by

N

t(i.)esd(x,i-)
Zﬁc’ t(.’f')GSd(m’j/) :

Q(&|r) =

b) Show that f(Q,t) is convex.
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Historical Notes

An iterative algorithm for computing the channel capacity was developed by
Arimoto [19], where the convergence of the algorithm was proved. Blahut [37]
independently developed two similar algorithms, the first for computing the
channel capacity and the second for computing the rate-distortion function.
The convergence of Blahut’s second algorithm was proved by Csiszdr [82].
These two algorithms are now commonly referred to as the Blahut-Arimoto
algorithms. The simplified proof of convergence in this chapter is based on
Yeung and Berger [404].

The Blahut-Arimoto algorithms are special cases of a general iterative
algorithm due to Csiszér and Tusnady [89] which also include the expectation-
maximization (EM) algorithm for fitting models from incomplete data [94] and
the algorithm for finding the log-optimal portfolio for a stock market due to
Cover [75].
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Differential Entropy

Our discussion in the previous chapters involved only discrete random vari-
ables. The actual values taken by these random variables did not play any
role in establishing the results. In this chapter and the next, our discussion
will involve random variables taking real values. The values taken by these
random variables do play a crucial role in the discussion.

Let X be a real random variable with cumulative distribution function
(CDF) Fx(z) = Pr{X < z}, which by definition is right-continuous. The
random variable X is said to be

discrete if Fx(z) increases only at a countable number of values of z;
continuous if Fx(x) is continuous, or equivalently, Pr{X = z} = 0 for
every value of x;

e mized if it is neither discrete nor continuous.

The support of X, denoted by Sx, is the set of all x such that Fx(z) >
Fx(xz —¢) for all e > 0. For a function g defined on Sx, we write

Eg(X) = /s g(2)dFx (), (10.1)

where the right hand side is a Lebesgue-Stieltjes integration which covers all
cases (i.e., discrete, continuous, and mixed) for the CDF Fx (). It may be
regarded as a notation for the expectation of g(X) with respect to Fx(x) if
the reader is not familiar with measure theory.

A nonnegative function fx(x) is called a probability density function (pdf)
of X if

Fy(z) = /_ " fe(u)du (10.2)

for all z. Since
/fX(x)dx = Fx(00) =1 < o0, (10.3)
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a pdf fx(x) can possibly take infinite value only on a set with zero Lebesgue
measure. Therefore, we can assume without loss of generality that fx (z) in-
stead takes any finite values on this set. If X has a pdf, then X is continuous,
but not vice versa.

Let X and Y be two real random variables with joint CDF Fxy (z,y) =
Pr{X < z,Y < y}. The marginal CDF of X is given by Fx(z) = Fxy (z,00)
(likewise for Y'). A nonnegative function fxy (z,y) is called a joint pdf of X
and Y if

Ty
Fevw)= [ [ fer(uo)dvda (10.4)
for all z and y. As for the case of a single random variable, we can assume

without loss of generality that a joint pdf fxy (z,y) is finite for all z and y.
For z € Sy, the conditional CDF of Y given {X = z} is defined as

Fyix () = /_ " e (vla)do, (10.5)
where
Fo e yl) = W (10.6)

is the conditional pdf of Y given {X = x}.

All the above definitions and notations naturally extend to more than two
real random variables. When there is no ambiguity, the subscripts specifying
the random variables will be omitted.

All the random variables in this chapter are assumed to be real'. The
variance of a random variable X is defined as

varX = B(X — EX)? = EX? — (EX)% (10.7)
The covariance between two random variables X and Y is defined as
cov(X,Y)=E(X —EX)(Y —EY)=E(XY)— (EX)(EY). (10.8)

For a random vector X = [X; X5 - - Xn]T, the covariance matrix is de-
fined as
Kx = E(X - EX)(X - EX)" = [cov(X;, X;)], (10.9)

and the correlation matrix is defined as
Kx = EXX" = [EX,X;]. (10.10)
Then

! For a discrete random variable X with a countable alphabet X, by replacing X
by any countable subset of %, all information measures involving X (and possibly
other random variables) are unchanged. Therefore, we assume without loss of
generality that a discrete random variable is real.
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Kx = EX-EX)(X-EX)" ( )

= EXX" - X(EX") — (EX)X" + (EX)(EX")] (10.12)

= EXX" — (EX)(EX") — (EX)(EX") + (EX)(EXT)  (10.13)

= EXX" — (EX)(EXT) ( )

= Kx — (EX)(EX)". ( )

This implies that if EX = 0, then Kx = Kx. On the other hand, it can

readily be verified that
Kx = Kx_px. (10.16)
Therefore, a covariance matrix is a correlation matrix. When there is no am-
biguity, the subscripts in Kx and f(x will be omitted.
Let N (p1,0?) denote the Gaussian distribution with mean p and variance
02, i.e., the pdf of the distribution is given by

1 omp?
f(:C) = \/ﬁe—( 2013) (1017)

for —oco < & < co. More generally, let N (u, K) denote the multivariate Gaus-
sian distribution with mean g and covariance matrix K, i.e., the joint pdf of
the distribution is given by
]. 1 T -1
f(x) = ——0 e 3 (x"H) KT (x—) 10.18
(x) (Vam)" (K2 (10.18)

for all x € R", where K is a symmetric positive definite matrix® and |K]| is
the determinant of K.

In the rest of the chapter, we will define various information measures
under suitable conditions. Whenever these information measures are subse-
quently used, they are assumed to be defined.

10.1 Preliminaries

In this section, we present some preliminary results on matrices and linear
transformation of random variables. All vectors and matrices are assumed to
be real.

Definition 10.1. A square matriz K is symmetric if KT = K.
Definition 10.2. An n x n matriz K is positive definite if

x Kx>0 (10.19)
for all nonzero column n-vector x, and is positive semidefinite if

x Kx>0 (10.20)
for all column n-vector x.

2 See Definitions 10.1 and 10.2.
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Proposition 10.3. A covariance matriz is both symmetric and positive semidef-
inite.

Proof. Omitted. 0O

If a matrix K is symmetric, it can be diagonalized as
K =QAQT, (10.21)
where A is a diagonal matrix and Q (also Q") is an orthogonal matrix, i.e.,

Q'=Q", (10.22)
or
QQT=QTQ=1 (10.23)

The latter says that the rows (columns) of @ form an orthonormal system.
Since

QP = QIR =1QQT| =1l =1, (10.24)
we have
Ql=1Q"| = 1. (10.25)
If (10.21) holds, we also say that QAQT is a diagonalization of K.
From (10.21) and (10.23), we have
KQ=(QAQNQ = QAQ"Q) = QA. (10.26)

Let A; and q; # 0 denote the ith diagonal element of A and the ith column
of @, respectively. Then (10.26) can be written as

Kq; = \iq; (10.27)

for all 7, i.e., q; is an eigenvector of K with eigenvalue \;. The next propo-
sition further shows that these eigenvalues are nonnegative if K is positive
semidefinite.

Proposition 10.4. The eigenvalues of a positive semidefinite matrix are non-
negative.

Proof. Let K be a positive semidefinite matrix, and let q # 0 be an eigenvector
of K with eigenvalue A, i.e.,
Kq = \q. (10.28)

Since K is positive semidefinite,
0<a'Kg=q' (M) =Aa"q) (10.29)

Then we conclude that A > 0 because q'q > 0. O
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The above discussions on diagonalization apply to a covariance matrix
because a covariance matrix is both symmetric and positive semidefinite. As
we will see, by diagonalizing the covariance matrix, a set of correlated random
variables can be decorrelated by an orthogonal transformation. On the other
hand, a set of correlated random variables can be regarded as an orthogonal
transformation of a set of uncorrelated random variables. This is particularly
important in the context of Gaussian random variables because a set of jointly
distributed Gaussian random variables are mutually independent if and only
if they are uncorrelated.

Proposition 10.5. Let Y = AX, where X and Y are column vectors of n
random variables and A is an n X n matriz. Then

Ky = AKx AT (10.30)

and ~ R
Ky = AKxAT. (10.31)

Proof. To prove (10.30), consider

Ky =E(Y -EY)(Y -EY)" (10.32)
= E[A(X — EX)][A(X — EX)]" (10.33)
= E[AX - EX)(X-EX)"AT] (10.34)
= A[E(X - EX)(X - EX)T]AT (10.35)
= AKxA'. (10.36)

The proof of (10.31) is similar. O

Proposition 10.6. Let X and Y be column vectors of n random variables
such that
Y =0Q'X, (10.37)

where QAQT is a diagonalization of Kx. Then Ky = A, i.e., the random
variables in Y are uncorrelated and varY; = \;, the ith diagonal element of

A.

Remark The matrix Kx is positive semidefinite, so that A;, being an eigen-
value of Kx, is nonnegative by Proposition 10.4, as required for being the
variance of a random variable.

Proof of Propostion 10.6. By Proposition 10.5,
Ky = Q"KxQ
= Q' (QAQNQ

(

(
= (QTQAQTQ) (10.40
— A (



234 10 Differential Entropy

Since Ky = A is a diagonal matrix, the random variables in Y are uncorre-
lated. Furthermore, the variance of Y; is given by the ith diagonal element of
Ky = A, i.e., ;. The proposition is proved. 0O

Corollary 10.7. Let X be a column vector of n random variables such that
QAQT is a diagonalization of Kx. Then

X = QY, (10.42)

where Y is the column vector of n uncorrelated random variables prescribed
in Proposition 10.6.

Proposition 10.8. Let X, Y, and Z be vectors of n random variables such
that X and Z are independent and Y = X + Z. Then

Ky = Kx + Kz. (10.43)

Proof. Omitted. 0O

In communication engineering, the second moment of a random variable
X is very often referred to as the energy of X. The total energy of a random
vector X is then equal to E'Y ", X2. The following proposition shows that the
total energy of a random vector is preserved by an orthogonal transformation.

Proposition 10.9. Let Y = QX, where X and Y are column vectors of n
random variables and @ is an orthogonal matriz. Then

Eznjyf = Ezn:Xf. (10.44)
i=1 i=1

Proof. Consider

V=YY (10.45)
i=1
= (@X)T(@X) (10.46)
= X'(QTQ)X (10.47)
=X'X (10.48)

=) X7 (10.49)
i=1

The proposition is proved upon taking expectation on both sides. 0O
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10.2 Definition

We now introduce the differential entropy for continuous random variables as
the analog of the entropy for discrete random variables.

Definition 10.10. The differential entropy h(X) of a continuous random
variable X with pdf f(x) is defined as

hMX)=— /s f(z)log f(x)dz = —Elog f(X). (10.50)

The entropy of a discrete random variable X is a measure of the average
amount of information contained in X, or equivalently, the average amount
of uncertainty removed upon revealing the outcome of X. This was justified
by the asymptotic achievability of the entropy bound for zero-error data com-
pression discussed in Chapter 4 as well as the source coding theorem discussed
in Chapter 5.

However, although entropy and differential entropy have similar mathe-
matical forms, the latter does not serve as a measure of the average amount
of information contained in a continuous random variable. In fact, a continu-
ous random variable generally contains an infinite amount of information, as
explained in the following example.

Ezample 10.11. Let X be uniformly distributed on [0,1). Then we can write

X=X XX3--, (10.51)
the dyadic expansion of X, where X1, Xo, X3, - is a sequence of fair bits>.
Then

H(X) :H(X13X27X33) (1052)
=Y H(X)) (10.53)
i=1
=31 (10.54)
i=1
= . (10.55)

In the following, we give two examples in which the differential entropy
can be evaluated explicitly.

Ezample 10.12 (Uniform Distribution). Let X be uniformly distributed on
[0,a). Then

“1 1
h(X) = —/O . log Edm = loga. (10.56)

3 Fair bits refer to i.i.d. bits, each distributed uniformly on {0, 1}.
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From this example, we see immediately that h(X) < 0 if @ < 1. This poses
no contradiction because as we have mentioned, the differential entropy does
not serve as a measure of the average amount of information contained in X.
The physical meaning of differential entropy will be understood through the
AEP for continuous random variables to be discussed in Section 10.4.

Example 10.18 (Gaussian Distribution). Let X ~ N(0,0?) and let e be the
base of the logarithm. Then

hX) = —/f(m) In f(z)dz (10.57)
= f/f(x) <2£222 - 1n\/27r02) dx (10.58)
= # xzf(m)dx+lnv27r02/f(a:)dx (10.59)
2
= % + %ln(%raz) (10.60)
= w + %ln(27r02) (10.61)
= 70;;0 + %ln(27702) (10.62)
= % + %1n(27r02) (10.63)
= % Ine+ % In(270?) (10.64)
= %111(27‘(60’2) (10.65)

in nats. Changing the base of the logarithm to any chosen positive value, we
obtain

hMX) = %10g(2ﬂ'60’2). (10.66)

The following two basic properties of differential entropy can readily be
proved from the definition.

Theorem 10.14 (Translation).

WX +¢) = h(X). (10.67)

Proof. Let Y = X +¢. Then fy(y) = fx(y —c) and Sy = {x +c:z € Sx}.
Letting x = y — ¢ in (10.50), we have
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h(X) = - /5 fx () log f (x)dz
=—/S fx(y — ¢)log fx (y — ¢)dy

- / fy (y)log fy (y)dy
Sy

~ h(Y)
=h(X +¢),

accomplishing the proof. 0O
Theorem 10.15 (Scaling). For a # 0,

h(aX) = h(X)+log|al.

Proof. Let Y = aX. Then fy(y) = |Tl‘fx(%) and Sy = {ax
Letting z = £ in (10.50), we have

a

h(X) = — 5. fx(x)log fx(x)dx
o (G)romsa ()
() [mg (@fx (g)) +10g|a] dy

- / fy (4)log fv (4)dy — log|al / fr (W)dy
Sy Sy

— h(Y) — logla
= h(aX) —log |al.

Hence,
h(aX) = h(X) + log]al,
accomplishing the proof. O

(10.68)
(10.69)

(10.70)

(10.71)
(10.72)

(10.73)

cx € Sx}.

(10.74)
(10.75)
(10.76)

(10.77)

(10.78)
(10.79)

(10.80)

Ezample 10.16. We illustrate Theorem 10.14 and Theorem 10.15 by means
of the Gaussian distribution. Let X ~ N (ux,0%). By Theorem 10.14 (and

Example 10.13),
1
hX) =3 log(2meo%).

(10.81)

Let Y = aX. Then Y ~ N(puy,0%), where uy = aux and o3 = a’0%. By

(10.81),

1 1 1
hY) = 3 log(2meoy) = 3 log(2mea’o%) = 3 log(2mec%) +log|al, (10.82)

verifying Theorem 10.15.
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Theorem 10.14 says that the differential entropy of a random variable is
unchanged by translation. Theorem 10.15 says that the differential entropy of
a random variable is generally changed by scaling. Specifically, if |a| > 1, the
differential entropy is increased by log|a|. If |a| < 1, the differential entropy
is decreased by —log|a| (note that —log|a| > 0). If a = —1, the differential
entropy is unchanged.

These properties suggest that the differential entropy of a random variable
depends only on the “spread” of the pdf. More specifically, the differential
entropy increases with the “spread” of the pdf. This point will be further
elaborated in Section 10.6.

10.3 Joint Differential Entropy, Conditional
(Differential) Entropy, and Mutual Information

The definition for differential entropy is readily extended to multiple contin-
uous random variables. In the rest of the chapter, we let X = [X; Xo - -+ X,,].

Definition 10.17. The joint differential entropy h(X) of a random vector X
with joint pdf f(x) is defined as

hX)=— /5 f(x)log f(x)dx = —Flog f(X). (10.83)

It follows immediately from the above definition that if X1, Xo,---, X,, are
mutually independent, then

h(X) = f: h(X;). (10.84)
i=1

The following two theorems are straightforward generalizations of Theo-
rems 10.14 and 10.15, respectively. The proofs are omitted.

Theorem 10.18 (Translation). Let ¢ be a column vector in R™. Then

h(X +¢) = h(X). (10.85)

Theorem 10.19 (Scaling). Let A be a nonsingular n X n matriz. Then

h(AX) = h(X) + log |det(A)]. (10.86)
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Theorem 10.20 (Multivariate Gaussian Distribution). Let X ~ N (u, K).
Then

h(X) = %log [(2me)"|K])]. (10.87)

Proof. Let K be diagonalizable as QAQ . Write X = QY as in Corollary 10.7,
where the random variables in Y are uncorrelated with varY; = A;, the ith
diagonal element of A. Since X is Gaussian, so is Y. Then the random variables
in Y are mutually independent because they are uncorrelated. Now consider

h(X) = h(QY) (10-88)
D 1Y) + log [det(Q))| (10.89)
b h(Y) +0 (10.90)
9] zn: h(Y;) (10.91)
=1
4 i % log(2me);) (10.92)

N
Il
-

= % log | (2me)" le )\i] (10.93)
9 %1og[(27re)”|/1\] (10.94)
D %10g[(27re)”|K|]. (10.95)

In the above

a) follows from Theorem 10.19;

b) follows from (10.25);

¢) follows from (10.84) since Y3, Y2, - -, Y, are mutually independent;
d) follows from Example 10.16;

e) follows because A is a diagonal matrix;

f) follows because

Al =QIAIQT] = QAQT| = |K]|. (10.96)
The theorem is proved. O

In describing a communication system, we very often specify the relation
between two random variables X and Y through a conditional distribution
p(y|z) (Y is discrete) or a conditional pdf f(y|z) (if Y is continuous) defined
for all x, even though certain x may not be in Sx. This is made precise by
the following two definitions.
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Definition 10.21. Let X and Y be two jointly distributed random variables
with Y being discrete. The random variable Y is related to the random variable
X through a conditional distribution p(y|x) defined for all x means that for
all x and vy,

x

PrX <o =y} = [ prixlu)dFx (), (10.97)

Definition 10.22. Let X and Y be two jointly distributed random variables
with Y being continuous. The random wvariable Y is related to the random
variable X through a conditional pdf f(y|x) defined for all x means that for
all x and vy,

x

Fry (@,y) = / Fy px (ylu)dFx (), (10.98)

where ”
Frixtule) = [ frix(ole)de. (10.99)

Definition 10.23. Let X andY be jointly distributed random variables where
Y is continuous and is related to X through a conditional pdf f(ylx) defined
for all x. The conditional differential entropy of Y given {X = x} is defined
as

mmx=m=—é(ﬁ@Mbw@mw (10.100)

where Sy (z) = {y : f(y|z) > 0}, and the conditional differential entropy of Y
given X is defined as

h(Y]X) = —/S h(Y|X = 2)dF(z) = —Elog f(Y]X). (10.101)

Proposition 10.24. Let X and Y be jointly distributed random variables
where Y is continuous and is related to X through a conditional pdf f(y|z)
defined for all x. Then f(y) exists and is given by

f<y>::]/f<ym»dﬁ%x>. (10.102)

Proof. From (10.98) and (10.99), we have

Fr) = Frv(oon) = [ [ frixtole) dvdr), (10.103)

Since fy|x(v|z) is nonnegative and
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y
// Fyix (v]z) dv dF(z) < //fy‘x(vh:) dvdF(z)  (10.104)
— 00

= /dF(x) (10.105)
=1, (10.106)

fy|x (v]z) is absolutely integrable. By Fubini’s theorem?, the order of integra-
tion in the iterated integral in (10.103) can be exchanged. Therefore,

y
r) = [ [ [ mxtloare) o (10.107)
implying (10.102) (cf. (10.2)). The proposition is proved. O

The above proposition says that if Y is related to X through a conditional
pdf f(y|z), then the pdf of Y exists regardless of the distribution of X. The
next proposition is a generalization to random vectors, and the proof is omit-
ted. The theory in the rest of this chapter and in the next chapter will be
developed around this important fact.

Proposition 10.25. Let X and Y be jointly distributed random vectors where
Y is continuous and is related to X through a conditional pdf f(y|x) defined
for all x. Then f(y) exists and is given by

f(y) = / F(yIx)dF (). (10.108)

Definition 10.26. Let X andY be jointly distributed random variables where
Y is continuous and is related to X through a conditional pdf f(y|x) defined
for all x. The mutual information between X and Y is defined as

I(X;Y):/S /S ()f(y|x)log fﬁg)dyd}?(x) (10.109)
_ fY]X)
= Blog 35 (10.110)

where f(y) exists and is given in (10.102) by Proposition 10.24. When both
X and Y are continuous and f(x,y) exists,

I(X;Y) :ElogM = Flog

fY)

f(XY)

FEOTvaL (10.111)

4 See for example [314].
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Together with our discussion on discrete random variables in Chapter 2,
the mutual information I(X;Y) is defined when each of the random variables
involved can be either discrete or continuous. In the same way, we can define
the conditional mutual information I(X;Y|T).

Definition 10.27. Let X, Y, and T be jointly distributed random variables
where Y is continuous and is related to (X,T) through a conditional pdf
f(ylz,t) defined for all x and t. The mutual information between X and Y
giwen T is defined as

I(X;Y|T) :/ [(X: Y|T = )dF(t) = Elog L0125 T) (10.112)

Sr fy|r
where

. o . flylz,t) .
I(X,Y|Tt)/sx(t) /Sy(x}t)f(y ,t)logif(y‘t) dydF(z|t). (10.113)

We now give a physical interpretation of I(X;Y) when X and Y have a
joint pdf f(z,y). For simplicity, we assume that f(z,y) > 0 for all x and y.
Let A be a small positive quantity. For all integer ¢, define the interval

Al =T[iA, (i +1)A) (10.114)
in R, and for all integer j, define the interval
Al =[jA, (j+1)A). (10.115)
For all integers 7 and j, define the set
Abl = Al x Al (10.116)

which corresponds to a rectangle in R2. A R
We now introduce a pair of discrete random variables X o and Y defined
by

Xa=iif X € AL

. 1 10.117
{YA:jierAgl. ( )
The random variables X A and YA are quantizations of the continuous random
variables X and Y, respectively. For all i and j, let (z;,y;) € A%J. Then

I(XA;YA)

ST P V) = (5, )} og XA V) = (@)

Pr{X, =i}Pr{V, = j}

(10.118)

~ z: 1. A% 1o f(ﬂﬁi,yj)AQ
~ S sl ton S oo
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2 f( Zvyj)
*sz 7 Y AT108 TN

//f“’ )log (>f<)>dxdy
—IXY

(10.120)

(10.121)

(10.122)

Therefore, I(X;Y) it can be interpreted as the limit of 1(Xa;Ya) as A — 0.
This interpretation carries over to the case when X and Y have a general joint
distribution® (see Dobrushin [96]). As I(X a;YA) is always nonnegative, this
suggests that T(X;Y") is also always nonnegative, which will be established in

Theorem 10.31.

Definition 10.28. Let Y be a continuous random variable and X be a discrete
random variable, where Y s related to X through a conditional pdf f(y|z).

The conditional entropy of X given Y is defined as
H(X|Y) = H(X) - I(X;Y),
where I(X;Y) is defined as in Definition 10.26.
Proposition 10.29. For two random variables X and Y,
h(Y)=h{Y|X)+ I(X;Y)
if Y is continuous, and
HY)=HY|X)+I(X;Y)

if Y is discrete.

Proposition 10.30 (Chain Rule for Differential Entropy).

h(X1, X, Xn) = > h(X| X1, -+, Xi).

The proofs of these propositions are left as an exercise.

Theorem 10.31.
I(X;Y) >0,

with equality if and only if X is independent of Y.

(10.123)

(10.124)

(10.125)

(10.126)

(10.127)

5 In the general setting, the mutual information between X and Y is defined as

o dPxy
I(X;Y) _/S <1og P Py)> dPxy,
XY

where Pxy, Px, and Py are the probability measures of (X,Y), X, and Y,

. dPxy
respectively, and AP Py

respect to the product measure Px X Py.

denotes the Radon-Nikodym derivative of Pxy with
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Proof. Consider

I(X;Y)

_ /S ) /S Tl f;:?;;)ddex(x) (10.128)
> (loge) /S ) /S ) (1— f{;ﬁ/;»ddex(x) (10.129)
= togo) | [ [ fa = [ way) arx@)  101s0)
>0, (10.131)

where (10.129) results from an application of the fundamental inequality
(Corollary 2.30), and (10.131) follows from

R e o (10.132)
Sy (x) Sy (z)
This proves (10.127).

For equality to hold in (10.127), equality must hold in (10.129) for all
x € Sx and all y € Sy (), and equality must hold in (10.131) for all z € Sx.
For the former, this is the case if and only if

flylz) = f(y) forall z € Sx and y € Sy (x), (10.133)
which implies

/ Fly)dy = / Fylz)dy =1, (10.134)
Sy (z) Sy (z)

i.e., equality holds in (10.131). Thus (10.133) is a necessary and sufficient
condition for equality to hold in (10.127).

It is immediate that if X and Y are independent, then (10.133) holds. It
remains to prove the converse. To this end, observe that (10.134), implied by
(10.133), is equivalent to that f(y) = 0 on Sy \Sy (z) a.e. (almost everywhere).
By the definition of Sy, this means that Sy\Sy(z) C 8§, or Sy = Sy (x).
Since this holds for all € Sx, we conclude that f(y|x) = f(y) for all (z,y) €
Sx X Sy, i.e., X and Y are independent. The theorem is proved. O

Corollary 10.32.
I(X;Y|T) >0, (10.135)

with equality if and only if X is independent of Y conditioning on T.
Proof. This follows directly from (10.112). O

Corollary 10.33 (Conditioning Does Not Increase Differential En-

tropy).
" W(X|Y) < h(X) (10.136)

with equality if and only if X and Y are independent.
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Corollary 10.34 (Independence Bound for Differential Entropy).
i=1

with equality if and only if i = 1,2, -+, n are mutually independent.

10.4 The AEP for Continuous Random Variables

The Weak AEP for discrete random variables discussed in Chapter 5 states
that for n i.i.d. random variables X, X5, -+, X,, with generic discrete ran-
dom variable X, p(X1, Xs, -+, X,,) is close to 2~ "H(X) with high probability
when n is large (Theorem 5.1, Weak AEP I). This fundamental property of
entropy leads to the definition of weak typicality, and as a consequence, the
total number of weakly typical sequences is approximately equal to 27 (X)
(Theorem 5.3, Weak AEP II).

In the following, we develop the AEP for continuous random variables
in the same way we developed the Weak AEP for discrete random variables.
Some of the proofs are exactly the same as their discrete analogs, and they are
omitted. We note that for continuous random variables, the notion of strong
typicality does not apply because the probability that a continuous random
variable takes a particular value is equal to zero.

Theorem 10.35 (AEP I for Continuous Random Variables).
1
—Zlog f(X) — h(X) (10.138)
n

in probability as n — oo, i.e., for any € > 0, for n sufficiently large,

Pr{’_; log f(X) — h(X)‘ < e} S1-e (10.139)

Definition 10.36. The typical set W&]e with respect to f(x) is the set of
sequences X = (x1,Ta, -+, Ty) € X™ such that

1
‘_n log f(x) — h(X)’ <€, (10.140)
or equivalently,
1
hX)—e< - log f(x) < h(X) + ¢, (10.141)

where € is an arbitrarily small positive real number. The sequences in W[g(

Je
are called e-typical sequences.
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The quantity
1 1 &
——log f(x) = —— > log f(ax) (10.142)
k=1

is called the empirical differential entropy of the sequence x. The empirical
differential entropy of a typical sequence is close to the true differential entropy
h(X).

If the pdf f(x) is continuous, we see from (10.142) that the empirical
differential entropy is continuous in x. Therefore, if x is e-typical, then all
the sequences in the neighborhood of x are also e-typical. As a consequence,
the number of e-typical sequences is uncountable, and it is not meaningful
to discuss the cardinality of a typical set as in the discrete case. Instead, the
“size” of a typical set is measured by its volume.

Definition 10.37. The volume of a set A in R™ is defined as
Vol(A) = / dx. (10.143)
A

Theorem 10.38 (AEP II for Continuous Random Variables). The fol-
lowing hold for any ¢ > 0:

1) If x € W[y, then
9~ nh(X)Fe) < f(x) < 27 (MX) =€), (10.144)
2) For n sufficiently large,
Pr{X € Wi} > 1« (10.145)
3) For n sufficiently large,
(1—€)2" M=) < Vol (W) < 2" X)), (10.146)

Proof. Property 1 follows immediately from the definition of W[}]E in (10.141).
Property 2 is equivalent to Theorem 10.35. To prove Property 3, we use the
lower bound in (10.144) and consider

1> Pr{W,.} (10.147)
:/ f(x)dx (10.148)
[g(]e
>/ 9 n(M(X)+9) gy (10.149)
W[g(]g
>2—"(’L<X>+E>/ dx (10.150)
[7;(16

= 27T Vol (W), (10.151)
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which implies
Vol (Wiky,) < 2mhX)+e), (10.152)

Note that this upper bound holds for any n > 1. On the other hand, using
the upper bound in (10.144) and Theorem 10.35, for n sufficiently large, we
have

1 —e < Pr{W.} (10.153)
= / f(x)dx (10.154)

[75(]5
< / 27 n(M(X)=9) gx (10.155)

[7;(](
= 27" Vol (Wk)- (10.156)

Then

Vol(Wki,) > (1 — )2 hX)=9), (10.157)

Combining (10.152) and (10.157) gives Property 3. The theorem is proved.
O

From the AEP for continuous random variables, we see that the volume of
the typical set is approximately equal to 2"(X) when n is large. This gives the
following physical interpretations of differential entropy. First, the fact that
h(X) can be negative does not incur any difficulty because 2nh(X) g always
positive. Second, if the differential entropy is large, then the volume of the
typical set is large; if the differential entropy is small (not in magnitude but
in value), then the volume of the typical set is small.

10.5 Informational Divergence

We first extend the definition of informational divergence introduced in Sec-
tion 2.5 to pdf’s.

Definition 10.39. Let f and g be two pdf’s defined on R"™ with supports Sy
and Sy, respectively. The informational divergence between f and g is defined
as

g(x) 9(X)’

where E; denotes expectation with respect to f.

D(fl9) :/S F(2)log L) d — 15, 10g L) (10.158)

Remark In the above definition, we adopt the convention clog § = oo for
¢ > 0. Therefore, if D(f|lg) < oo, then

S\ Sy ={z: f(x) > 0 and g(z) = 0} (10.159)

has zero Lebesgue measure, i.e., Sy is essentially a subset of S,.
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Theorem 10.40 (Divergence Inequality). Let f and g be two pdf’s defined
on R™. Then
D(fllg) = 0, (10.160)

with equality if and only if f = g a.e.
Proof. Consider

D(f||9)=/3 f(z)log ‘;g;dx (10.161)
= (loge X HM X

= (loge) S, f(@)] g(x)d (10.162)

o),

> (oge) | f f(x)< M)d (10.163)

= (loge) l f(x)dx—/ g(m)dw} (10.164)
Sy S

>0, (10.165)

where (10.163) follows from the fundamental inequality (Corollary 2.30) and
(10.165) follows from

/ glx)de < 1= f(z)dx. (10.166)
Sy Sy
Equality holds in (10.163) if and only if f(z) = g(z) on Sy a.e., which implies
/ g(z)dx = f(z)de =1, (10.167)
Sy Sy

i.e., equality holds in (10.165). Then we see from (10.167) that g(x) = 0 on
S§ a.e. Hence, we conclude that equality holds in (10.160) if and only if f = g
a.e. The theorem is proved. O

10.6 Maximum Differential Entropy Distributions
In Section 2.9, we have discussed maximum entropy distributions for a discrete

random variable. We now extend this theme to multiple continuous random
variables. Specifically, we are interested in the following problem:

Maximize h(f) over all pdf f defined on a subset S of R", subject to
/ ri(x)f(x)dx =a; for1l<i<m, (10.168)
Sr

where Sy C § and r;(x) is defined for all x € S.
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Theorem 10.41. Let
FH(x) = e 0720 Ximito) (10.169)

for all x € S, where Ao, A1, -+, A\ are chosen such that the constraints in
(10.168) are satisfied. Then f* mazimizes h(f) over all pdf f defined on S,
subject to the constraints in (10.168).

Proof. The proof is analogous to that of Theorem 2.50. The details are omit-
ted. O

Corollary 10.42. Let f* be a pdf defined on S with
f*(x) = e_kU_Z:;l Airi(x) (10170)

for allx € S. Then f* mazimizes h(f) over all pdf f defined on S, subject to
the constraints

/ ri(x)f(x)dx = / ri(x)f*(x)dx for1<i<m. (10.171)
Sy

S

Theorem 10.43. Let X be a continuous random variable with EX? = k.
Then

1
h(X) < §1og(2ﬂ'em), (10.172)
with equality if and only if X ~ N(0, k).

Proof. The problem here is to maximize h(f) subject to the constraint
/z2f(x)dx =K. (10.173)
An application of Theorem 10.41 yields

F*(x) = ae™t" (10.174)

which is identified as a Gaussian distribution with zero mean. In order that
the constraint (10.173) is satisfied, we must have

1 1
and b= —. (10.175)

a =
2TK 2K

Hence, in light of (10.66) in Example 10.13, we have proved (10.172) with
equality if and only if X ~ N (0,k). O

Theorem 10.44. Let X be a continuous random variable with mean p and
variance o*. Then

1
h(X) < §1og(27re02), (10.176)

with equality if and only if X ~ N(u,0?).
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Proof. Let X’ = X — u. Then
EX'=E(X—-p)=EX—p=0 (10.177)
and
E(X')? = B(X — p)? = varX = o°. (10.178)
Applying Theorem 10.14 and Theorem 10.43, we have

1
h(X)=h(X') < 3 log(2mea?), (10.179)
and equality holds if and only if X’ ~ A/(0,02), or X ~ N (u,0?). The theorem
is proved. O

Remark Theorem 10.43 says that with the constraint EX? = &, the differ-
ential entropy is maximized by the distribution N (0, k). If we impose the ad-
ditional constraint that EX = 0, then varX = EX? = k. By Theorem 10.44,
the differential entropy is still maximized by N (0, k).

We have mentioned at the end of Section 10.2 that the differential entropy
of a random variable increases with the “spread” of the pdf. Though a sim-
ple consequence of Theorem 10.43, the above theorem makes this important
interpretation precise. By rewriting the upper bound in (10.179), we obtain

h(X) <logo+ %log(%re). (10.180)

That is, the differential entropy is at most equal to the logarithm of the
standard deviation plus a constant. In particular, the differential entropy tends
to —oo as the standard deviation tends to 0.

The next two theorems are the vector generalizations of Theorems 10.43
and 10.44.

Theorem 10.45. Let X be a vector of n continuous random variables with
correlation matriz K. Then

1 .
h(X) <  log [(zwe)"m] : (10.181)
with equality if and only if X ~ N (0, K).
Proof. By Theorem 10.41, the joint pdf that maximizes h(X) has the form
f*(X) — 67)\072%]' AijTiTj — eonfxTLx’ (10182)

where L = [)\;;]. Thus f* is a multivariate Gaussian distribution with zero
mean. Therefore,
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COV(X,‘,XJ‘) = EX,‘X]' - (EXI)(EXJ) = EXLXJ (10183)

for all i and j. Since f* is constrained by K, Ao and L have the unique solution
given by

1
-\ _
e~ — (\/27-7)71 TAIE (10.184)
and 1
L= if(—l, (10.185)
so that ) i
%)= ——=mee X K, (10.186)

—e
(V2rm) " |K[1/?

the joint pdf of X ~ N(O,IN(). Hence, by Theorem 10.20, we have proved

(10.181) with equality if and only if X ~ A (0, K). O

Theorem 10.46. Let X be a vector of n continuous random variables with
mean p and covariance matriz K. Then

h(X) < %log [(2me)" K], (10.187)

with equality if and only if X ~ N (p, K).
Proof. Similar to the proof of Theorem 10.44. O

Chapter Summary

In the following, X = [X; X5 --- X, ".

Covariance Matrix: Kx = F(X — EX)(X — EX) " = [cov(X;, X;)].
Correlation Matrix: Kx = EXX" = [EX; X,].

Diagonalization of a Covariance Matrix: A covariance matrix can be
diagonalized as QAQT. The diagonal elements of A, which are nonnegative,
are the eigenvalues of the covariance matrix.

Linear Transformation of a Random Vector: Let Y = AX. Then Ky =
AKxAT and KY = AKxAT

Decorrelation of a Random Vector: Let Y = QT X, where QAQT is a
diagonalization of Kx. Then Ky = A, i.e., the random variables in Y are
uncorrelated and var Y; = )\;, the ith diagonal element of A.

Differential Entropy:

hX) = = [ J(@)log f(a)d = ~Flog f(X) = ~Flog f(X).
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. Translation: h(X + ¢) = h(X).

. Scaling: h(aX) = h(X) + log]|al.

. Uniform Distribution on [0,a): h(X) = loga.

. Gaussian Distribution Ay, 0): h(X) = }log(2mec?).

I R

Joint Differential Entropy:

hX) = = [ 60108 f(x)dx = ~Flog (X).

1. Translation: h(X + ¢) = h(X).
2. Scaling: h(AX) = h(X) + log |det(A)].
3. Multivariate Gaussian Distribution NV (p, K): h(X) = 3 log [(2me)"|K]].

Proposition: For fixed f(y|z), f(y) exists for any F(z) and is given by

fly) = / f(yl2)dF (z).

Conditional (Differential) Entropy and Mutual Information:

1. If Y is continuous,

WYX = 2) = — / F(yl) log f(yla)dy

Sy (z)

WY |X) = —/ WY |X = 2)dF(z) = —Elog f(Y|X)

Sx
o Gl Y]
I(X’Y)/SX /Sm) o) tog LS ayar (@) = 1og L3
(Y|X.T)

I(X;Y|T) = /S HX YT =t)dF(t) = Elog ff(YIT)

MY)=h(Y|X)+I(X;Y).
2. If Y is discrete,
HY|X)=H(Y)-I(X;Y)
HY)=HY|X)+I(X;Y).

Chain Rule for Differential Entropy:
h(X1, Xo, -, Xn) = > h(X| X1, -+, Xiq).
i=1

Some Useful Inequalities:
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1(X;Y)
I(X; YIT)
h(Y]X)

IN IV IV

0
0

h(Y)
AP

AEP I for Continuous Random Variables:

h(X15X27"'7

I A

1
——log f(X) — h(X) in probability.
n
Typical Set:
Wik = {x € X" |=n""log f(x) — h(X)| < ¢}.
AEP II for Continuous Random Variables:
L 27n(0%) < f(x) < 27079 for x € W,
2. Pr{X e W[}]E} > 1 — e for sufficiently large n
3. (1 —e)2nth(X)—e) < Vol(W/ky,) < 2n(h(X)+) for sufficiently large n.

Informational Divergence: For two probability density functions f and g
defined on R™,
T X
DUflg) = [ swytos Jiae = Byos T
Divergence Inequality: D(f||g) > 0, with equality if and only if f = g a.e.
Maximum Differential Entropy Distributions: Let
Fi(x) = e 0D Airi(%)

for all x € S, where \g, A1, -+, A\, are chosen such that the constraints
/ ri(x)f(x)dx =a; for1<i<m
Sy

are satisfied. Then f* maximizes h(f) over all pdf f defined on S subject to
the above constraints.

Maximum Differential Entropy for a Given Correlation Matrix:
1 -
A(X) <  log | (27e)" ||

with equality if and only if X ~ A/(0, K ), where K is the correlation matrix
of X.
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Maximum Differential Entropy for a Given Covariance Matrix:
1
h(X) < 5 log[(2me)"| K],

with equality if and only if X ~ N (p, K), where g and K are the mean and
the covariance matrix of X, respectively.

Problems

1. Prove Propositions 10.3 and 10.8.

2. Show that the joint pdf of a multivariate Gaussian distribution integrates
to 1.

3. Show that |K| > 0in (10.18), the formula for the joint pdf of a multivariate
Gaussian distribution.

4. Show that a symmetric positive definite matrix is a covariance matrix.

5. Let
7/4 V2/4 —3/4
K= |V2/4 5/2 —\/2/4
—3/4 —\/2/4 T7/4
a) Find the eigenvalues and eigenvectors of K.
b) Show that K is positive definite.

¢) Suppose K is the covariance matrix of a random vector X = [X; Xo X3]T.

i) Find the coefficient of correlation between X; and X, for 1 <i <
i<s.
i) Find an uncorrelated random vector Y = [Y; Y3 Y3] such that X
is a linear transformation of Y.
iii) Determine the covariance matrix of Y.

Prove Theorem 10.19.

7. For continuous random variables X and Y, discuss why I(X;X) is not
equal to h(X).

8. Each of the following continuous distributions can be obtained as the
distribution that maximizes the differential entropy subject to a suitable
set of constraints:

a) the exponential distribution,

=

f(z) = Xe ™2

for x > 0, where A > 0;
b) the Laplace distribution,

fla) = pre

for —oo < z < 0o, where A > 0;



10.

11.

12.

13.
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¢) the gamma distribution,

R L

for > 0, where A\, > 0 and I'(z) = fooo t*~le tdt;
d) the beta distribution,
F(p + q) p—1
)= ——
&)= Tort)

for 0 <z <1, where p,q > 0;
e) the Cauchy distribution,

(1—a)7 !

1

f(il?) - 7T(1 _|_1_2)

for —oo <z < 0.
Identify the corresponding set of constraints for each of these distributions.
Let 1 be the mean of a continuous random variable X defined on RT.
Obtain an upper bound on A(X) in terms of pu.
The inequality in (10.180) gives an upper bound on the differential entropy
in terms of the variance. Can you give an upper bound on the variance in
terms of the differential entropy?
For i = 1,2, suppose f; maximizes h(f) over all the pdf’s defined on
S; C R subject to the constraints in (10.168), where S; C Ss. Show that
h(f1) < h(f2).
Hadamard’s inequality Show that for a positive semidefinite matrix K,
|K| <TI", Ki, with equality if and only if K is diagonal. Hint: Consider
the differential entropy of a multivariate Gaussian distribution.
Let Kx and f(x be the covariance matrix and the correlation matrix
of a random vector X, respectively. Show that |[Kx| < |Kx|. This is a
generalization of varX < EX? for a random variable X. Hint: Consider
a multivariate Gaussian distribution with another multivariate Gaussian
distribution with zero mean and the same correlation matrix.

Historical Notes

The concept of differential entropy was introduced by Shannon [322]. Infor-
mational divergence and mutual information were subsequently defined in
Kolmogorov [204] and Pinsker [292] in the general setting of measure theory.
A measure-theoretic treatment of information theory for continuous systems
can be found in the book by Ihara [180].

The treatment in this chapter and the next chapter aims to keep the

generality of the results without resorting to heavy use of measure theory.
The bounds in Section 10.6 for differential entropy subject to constraints are
developed in the spirit of maximum entropy expounded in Jayes [186].
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Continuous-Valued Channels

In Chapter 7, we have studied the discrete memoryless channel. For such a
channel, transmission is in discrete time, and the input and output are dis-
crete. In a physical communication system, the input and output of a channel
often take continuous real values. If transmission is in continuous time, the
channel is called a waveform channel.

In this chapter, we first discuss discrete-time channels with real input and
output. We will then extend our discussion to waveform channels. All the
logarithms in this chapter are in the base 2.

11.1 Discrete-Time Channels

Definition 11.1. Let f(y|z) be a conditional pdf defined for all x, where
[ ko) tog flylondy < o (11.1)
Sy (z)

for all x. A discrete-time continuous channel f(y|z) is a system with input
random variable X and output random variable Y such that'Y is related to X
through f(y|x) (c¢f. Definition 10.22).

Remark The integral in (11.1) is precisely the conditional differential entropy
h(Y|X = z) defined in (10.100), which is required to be finite in this definition
of a discrete-time continuous channel.

Definition 11.2. Let o : R x R — R, and Z be a real random variable, called
the noise variable. A discrete-time continuous channel (o, Z) is a system with
a real input and a real output. For any input random variable X, the noise
random variable Z is independent of X, and the output random variable Y is
given by

Y =a(X, 2). (11.2)
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For brevity, a discrete-time continuous channel will be referred to as a
continuous channel.

Definition 11.3. Two continuous channels f(y|z) and (o, Z) are equivalent
if for every input distribution F(x),

Pr{a(X,Z) <y, X < a} = /_ /_y Frix@lwdvdFy(w)  (113)

for all z and y.

Remark In the above definitions, the input random variable X is not nec-
essarily continuous.

Definitions 11.1 and 11.2 are two definitions for a continuous channel which
are analogous to Definitions 7.1 and 7.2 for a discrete channel. While Defi-
nitions 7.1 and 7.2 are equivalent, Definition 11.2 is more general than Def-
inition 11.1. For a continuous channel defined in Definition 11.2, the noise
random variable Z may not have a pdf, and the function «(z, -) may be many-
to-one. As a result, the corresponding conditional pdf f(y|z) as required in
Definition 11.1 may not exist. In this chapter, we confine our discussion to
continuous channels that can be defined by Definition 11.1 (and hence also by
Definition 11.2).

Definition 11.4. A continuous memoryless channel (CMC) f(y|x) is a se-
quence of replicates of a generic continuous channel f(y|x). These continuous
channels are indezed by a discrete-time index i, where ¢ > 1, with the ith chan-
nel being available for transmission at time i. Transmission through a channel
is assumed to be instantaneous. Let X; and Y; be respectively the input and
the output of the CMC at time i, and let T;_ denote all the random variables
that are generated in the system before X;. The Markov chain T, — X; — Y;
holds, and

oy
Pr{Vy; <y, X; <z} = / / Jyix (v|u)dvdFx, (u). (11.4)

Definition 11.5. A continuous memoryless channel (o, Z) is a sequence of
replicates of a generic continuous channel (o, Z). These continuous channels
are indexed by a discrete-time index i, where © > 1, with the ith channel be-
ing available for transmission at time i. Transmission through a channel is
assumed to be instantaneous. Let X; and Y; be respectively the input and the
output of the CMC at time i, and let T;_ denote all the random variables that
are generated in the system before X;. The noise variable Z; for the transmis-
ston at time i is a copy of the generic noise variable Z, and is independent of
(Xi, T;—). The output of the CMC at time i is given by
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Definition 11.6. Let k be a real function. An average input constraint (k, P)
for a CMC'is the requirement that for any codeword (x1, o, -, Ty) transmit-

ted over the channel,
n

%ZK(%) <P (11.6)
i=1

For brevity, an average input constraint is referred to as an input constraint.

Definition 11.7. The capacity of a continuous memoryless channel f(y|z)
with input constraint (k, P) is defined as

C(P) = sup I(X;Y), (11.7)
F(z):Ex(X)<P

where X andY are respectively the input and output of the generic continuous
channel, and F(x) is the distribution of X.

Theorem 11.8. C(P) is non-decreasing, concave, and left-continuous.

Proof. In the definition of C'(P), the supremum is taken over a larger set for
a larger P. Therefore, C(P) is non-decreasing in P.

We now show that C'(P) is concave. Let j = 1,2. For an input distribution
Fj(x), denote the corresponding input and output random variables by X;
and Yj, respectively. Then for any P;, for all € > 0, there exists Fj(z) such
that

and
For 0 < A <1, let X =1 — )\ and define the random variable
XN ~ APy (2) + AFy(x). (11.10)
Then - -
Er(XN) = AEK(X1) + AEK(X3) < APy + AP, (11.11)

By the concavity of mutual information with respect to the input distribu-
tion!, we have

I(XN YWY > M(X13 Y1) + A(Xo; Ya) (11.12)
> MC(Py) —€) + MC(Py) — ) (11.13)
= \C(Py) + AO(P) —e. (11.14)

Then

! Specifically, we refer to the inequality (3.124) in Example 3.14 with X and Y
being real random variables related by a conditional pdf f(y|z). The proof of this
inequality is left as an exercise.
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C(APy 4+ APy) > I( XN, YY) > \C(Py) + AC(Py) — . (11.15)
Letting € — 0, we have
C(APy + AP2) > \C(P1) + AC(Py), (11.16)

proving that C'(P) is concave.
Finally, we prove that C'(P) is left-continuous. Let P, < P, in (11.16).
Since C'(P) is non-decreasing, we have

C(Py) > C(AP, + APy) > \C(P)) + \C(P). (11.17)
Letting A — 0, we have
C(Py) > lim C(APy + A\Py) > CO(Py), (11.18)
which implies ~
;ii% C(APy + \Py) = C(Py). (11.19)
Hence, we conclude that

Jim O(P) = C(P). (11.20)

i.e., C(P) is left-continuous. The theorem is proved. O

11.2 The Channel Coding Theorem

Definition 11.9. An (n, M) code for a continuous memoryless channel with
input constraint (k, P) is defined by an encoding function

e:{1,2,---,M} - R" (11.21)
and a decoding function
g: RN —={1,2,---, M}. (11.22)

The set {1,2,---, M}, denoted by W, is called the message set. The sequences
e(1),e(2),---,e(M) in X™ are called codewords, and the set of codewords is
called the codebook. Moreover,

%Zn(xl(w)) <P forl<w<M, (11.23)
i=1

where e(w) = (x1(w), xa(w), - -, z,(w)).
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We assume that a message W is randomly chosen from the message set W
according to the uniform distribution. Therefore,

H(W) =log M. (11.24)
With respect to a channel code for a given CMC, we let
X = (X1, Xg,-++, Xp) (11.25)
and
Y =(Y1,Ys,--,Y,) (11.26)

be the input sequence and the output sequence of the channel, respectively.
Evidently,

X =e(W). (11.27)
We also let .

W = g(Y) (11.28)
be the estimate of the message W by the decoder.

Definition 11.10. For all 1 <w < M, let
A =Pr{W £w[W=w}= > Pr{Y=yX=cw)} (11.29)
yEYig(y)Fw
be the conditional probability of error given that the message is w.
We now define two performance measures for a channel code.

Definition 11.11. The mazimal probability of error of an (n, M) code is de-
fined as
Mgz = MAaX Ay, . (11.30)

Definition 11.12. The average probability of error of an (n, M) code is de-
fined as R
P, =Pr{WW £ W}. (11.31)

Evidently, P, < Anaz-

Definition 11.13. A rate R is asymptotically achievable for a continuous
memoryless channel if for any € > 0, there exists for sufficiently large n an

(n, M) code such that
%logM> R—e¢ (11.32)
and
Amaz < €. (11.33)
For brevity, an asymptotically achievable rate will be referred to as an achiev-

able rate.

Theorem 11.14 (Channel Coding Theorem). A rate R is achievable for
a continuous memoryless channel if and only if R < C, the capacity of the
channel.
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11.3 Proof of the Channel Coding Theorem

11.3.1 The Converse
We can establish the Markov chain
W-X—-Y W (11.34)

very much like the discrete case as discussed in Section 7.3. Here, although
X is a real random vector, it takes only discrete values as it is a function of
the message W which is discrete. The only continuous random variable in the
above Markov chain is the random vector Y, which needs to be handled with
caution. The following lemma is essentially the data processing theorem we
proved in Theorem 2.42 except that Y is continuous. The reader may skip
the proof at the first reading.

Lemma 11.15. R
(W, W) <I(X;Y). (11.35)
Proof. We first consider
IW; W) < I(W,X; W) (11.36)
= I(X; W) 4+ I(W; W|X) (11.37)
= I(X;W). (11.38)

Note that all the random variables above are discrete. Continuing from the
above, we have

I(W; W) < I(X; W) (11.39)
< I(X; W) + I(X; Y|W) (11.40)
e P YK )

B swn) T e Ay

_ Flog 2% W)/ (YIX, W) (11.42)
p(X)[p(W) f(Y[W)]

_ Blog LPX W) (11.43)
PRV

_ Blog LEWIY) (11.44)
p(X)p(W[Y)

= Elog PX[Y)p(WIX, Y) (11.45)

p(X)p(W[Y)
:ElogwwLElogM (11.46)

p(X) p(W|Y)



11.3 Proof of the Channel Coding Theorem 263

fFY[X) p(X[Y, W)
= Elog + Elog ———— 11.47
1Y) H(XIY) D
pX[Y)
=I(X;Y)+ Elog (11.48)
(XY)
=I(X;Y)+ FElogl (11.49)
=IX;Y)+0 (11.50)
=I(X;Y). (11.51)
The above steps are justified as follows:
e The relation .
flylx) = H f(yilwi) (11.52)
i=1
can be established in exactly the same way as we established (7.101) for
the discrete case (when the channel is used without feedback). Then
-~ PX)f(y[x)p(wly
Flyle ) = LR OPIRLEY) (11.53)
p(x, )
and f(y|w) exists by Proposition 10.24. Therefore, I(X;Y|W) in (11.40)
can be defined according to Definition 10.27.
(11.40) follows from Corollary 10.32.
In (11.43), given f(y|x) as in (11.52), it follows from Proposition 10.24
that f(y) exists.
o (11.47) follows from

p(x)f(ylx) = f(y)p(xly) (11.54)

and
p(x|y)p(dlx,y) = p(dly)p(x]y, ). (11.55)
(11.48) follows from the Markov chain X — Y — .

The proof is accomplished. O

We now proceed to prove the converse. Let R be an achievable rate, i.e.,

for any € > 0, there exists for sufficiently large n and (n, M) code such that

1
ElogM> R—e¢ (11.56)

and

Amaz < €. (1157)

Consider
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log M = H(W) (11.58)
= H(W|W) + I(W; W) (11.59)
< HW|W) +I(X;Y) (11.60)
= HW|W) + h(Y) — h(Y|X) (11.61)
S HWW) + ) h(Y;) - h(Y[X) (11.62)
=1
= HW|W)+ Y h(Y:) = > h(Yi| X3) (11.63)
=1 =1
= HWIW)+ Y I(X;Yi). (11.64)
=1
The above steps are justified as follows:
e (11.60) follows from Lemma 11.15.
e It follows from (11.52) that
h(Y[X) =Y (Y] X). (11.65)

i=1

Then (11.1) in Definition 11.1 implies that h(Y;|X;) is finite for all ¢, and
hence h(Y|X) is also finite.

e From the foregoing, f(y) exists. Therefore, h(Y) can be defined according
to Definition 10.10 (but A(Y) may be infinite), and (11.61) follows from
Proposition 10.29 because h(Y|X) is finite. Note that it is necessary to
require h(Y|X) to be finite because otherwise h(Y) is also infinite and
Proposition 10.29 cannot be applied.

e (11.62) follows from Corollary 10.34, the independence bound for differen-
tial entropy.

(11.63) follows from (11.65) above.
(11.64) follows from Proposition 10.29.

Let V be a mixing random variable distributed uniformly on {1,2,--- n}
which is independent of X;, 1 < i < n. Let X = Xy and Y be the output of
the channel with X being the input. Then

Ex(X) = EE[r(X)|V] (11.66)
= ZPr{V =i} E[s(X)|V =] (11.67)
=Y Pr{V =} E[x(X;)|V =] (11.68)

i=1

_ Z L) (11.69)
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=F

S|

. H(Xi)] (11.70)

i=1
<P, (11.71)

where the above inequality follows from (11.23) in the definition of the code.
By the concavity of mutual information with respect to the input distribution,
we have

1 n
LS vy < 1xv) <6, (11.72)
n
i=1
where the last inequality holds in light of the definition of C' and (11.71). Then
it follows from (11.64) that

log M < H(W|W) + nC, (11.73)

which is precisely (7.126) in the proof of the converse of the channel coding
theorem for the DMC. Following exactly the same steps therein, we conclude
that

R<C. (11.74)

11.3.2 Achievability

The proof of the achievability of the channel capacity, which involves the
construction of a random code, is somewhat different from the construction
for the discrete case in Section 7.4. On the one hand, we need to take into
account the input constraint. On the other hand, since the input distribution
F(x) we use for constructing the random code may not have a pdf, it is difficult
to formulate the notion of joint typicality as in the discrete case. Instead, we
will introduce a different notion of typicality based on mutual information.

Consider a bivariate information source {(Xg, Yx), k > 1}, where (X, Y%)
are i.i.d. with (X,Y) being the pair of generic real random variables. The
conditional pdf f(y|x) exists in the sense prescribed in Definition 10.22. By
Proposition 10.24, f(y) exists so that the mutual information I(X;Y") can be
defined according to Definition 10.26.

Definition 11.16. The mutually typical set ¥[xy,5 with respect to F(x,y) is
the set of (x,y) € X™ x Y™ such that

Lo fx)

- log ) I(X;Y)’ <4, (11.75)
where .
Fybo) = [T £ Gils) (11.76)

and
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n

Fy) =TT ) (11.77)
i=1

and § is an arbitrarily small positive number. A pair of sequences (x,y) is
called mutually o-typical if it is in W&Y]é'

Lemma 11.17. For any § > 0, for sufficiently large n,

Pr{(X,Y) € ¥xy;)} > 1 - 0. (11.78)
Proof. By (11.76) and (11.77), we write
1. f(YIX) _ 1 Y X 1 =
Liog ;( | H it | Z . (1L79)
-1 Z

Since (X;,Y;) are i.i.d., so are the random variables log % Thus we

conclude by the weak law of large numbers that

%Zlog f(;g/X)) — Elog f%'/))() = I(X;Y) (11.80)

in probability, i.e., (11.78) holds for all sufficiently large n, proving the lemma.
O
The following lemma is analogous to Lemma 7.17 for the discrete case.

Lemma 11.18. Let (X', Y’) be n i.i.d. copies of a pair of generic random
variables (X',Y"), where X' and Y’ are independent and have the same
marginal distributions as X and Y, respectively. Then

Pr{(X',Y') € ¥liys} < 27 "UV)=0), (11.81)

Proof. For (x,y) € ¥[xyys, from (11.75), we obtain

%log f}i’y))() > I(X;Y) -9, (11.82)
N Flylx) > f(y)2ntav=o) (11.83)
Then
1>Pr{(X,Y) € ¥xyi5)} (11.84)
// [(y|x)dF(x)dy (11.85)
> 2"(I(X ¥)=9) (x) dy (11.86)
//[xy 5

= 2= OPr{(X! Y') € Wl ys}, (11.87)
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where the last inequality follows from (11.83). Therefore,
Pr{(X',Y’) € ¥y )y} < 2720, (11.88)
proving the lemma. 0O

Fix any € > 0 and let § be a small quantity to be specified later. Since
C(P) is left-continuous, there exists a sufficiently small v > 0 such that

C(P—7) > C(P) — %. (11.89)

By the definition of C(P — 7), there exists an input random variable X such
that
Exk(X)<P-—v (11.90)

and
€

I(X:Y) 2 C(P —7) - 2. (11.91)

Then choose for a sufficiently large n an even integer M satisfying

I(X;Y)— % < %logM <I(X;Y)— g (11.92)
from which we obtain
%logM > I(X;Y) — g (11.93)
> C(P - ) —g (11.94)
> O(P) — g (11.95)

We now describe a random coding scheme:

1. Construct the codebook C of an (n,M) code randomly by generating
M codewords in R" independently and identically according to F'(x)™.
Denote these codewords by X (1), X(2),---, X (M).

2. Reveal the codebook C to both the encoder and the decoder.

A message W is chosen from W according to the uniform distribution.

4. The sequence X = X(W), namely the Wth codeword in the codebook C,
is transmitted through the channel.

5. The channel outputs a sequence Y according to

©w

PeLY; < g1 < i < nlX(W) =x) = [ / " fleydy. (11.96)
=17~

This is the continuous analog of (7.101) and can be established similarly.
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6. The sequence Y is decoded to the message w if (X(w),Y) € Yixys and
there does not exist w’ # w such that (X(w'),Y) € Ulxys- Otherwise,

Y is decoded to a constant message in WW. Denote by W the message to
which Y is decoded.

We now analyze the performance of this random coding scheme. Let

X(w) = (X1(w), Xa(w), -, Xn(w)) (11.97)
and define the error event
Err=E.UEy, (11.98)
where .
Ee= {;ZF&(&(W)) > P} (11.99)
i=1

is the event that the input constraint is violated, and
Eq={W # W} (11.100)

is the event that a decoding error occurs. By symmetry in the code construc-
tion,

Pr{Err} = Pr{Err|W =1} (11.101)
< Pr{E|W =1} + Pr{E4W = 1}. (11.102)

With Lemma 11.18 in place of Lemma 7.17, the analysis of Pr{E4|W = 1}
is exactly the same as the analysis of the decoding error in the discrete case.
The details are omitted, and we conclude that by choosing d to be a sufficiently
small positive quantity,

Pr{E4W =1} < (11.103)

NG

for sufficiently large n.
We now analyze Pr{E.|W = 1}. By (11.90) and the weak law of large
numbers,

W= 1} (11.104)
{ ifﬁ(f(i(l)) > P} (11.105)
=Pr{ r(Xi(1)) > (P—7)+7} (11.106)

<Pr %i/{()@(l)) > Er(X) + ’y} (11.107)

(11.108)
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for sufficiently large n. It then follows from (11.102) and (11.103) that

Pr{Err} < (11.109)

€
2
for sufficiently large n.

It remains to show the existence of a codebook such that \,,.. < € and
the input constraint (11.23) is satisfied by every codeword. Consider

Pr{Err} = > Pr{C}Pr{Err(C}, (11.110)
c
where Pr{C} is the probability of choosing a codebook C from the ensemble

of all possible codebooks in Step 1 of the random coding scheme. In light of
(11.109), there exists at least one codebook C* such that

Pr{Err|C*} < % (11.111)
Furthermore,
M
Pr{Err|C*} = > Pr{W = w|C*}Pr{Err|C*,W = w} (11.112)
w=1
M
= Pr{W = w}Pr{Err|C*, W = w} (11.113)
w=1
1 M
=7 > Pr{Err|C*, W = w}. (11.114)
w=1

By discarding the worst half of the codewords in C*, if a codeword X(w)
remains in C*, then
Pr{ErriIC*, W = w} <e. (11.115)

Since Err = E. U Ey, this implies
Pr{E.|C*, W =w} <€ (11.116)

and
Pr{E4|C*, W = w} <€, (11.117)

where the latter implies A4, < € for the codebook C*. Finally, observe that
conditioning on {C*, W = w}, the codeword X (w) is deterministic. Therefore,
Pr{E.|C*,W = w} is equal to 1 if the codeword X(w) violates the input
constraint (11.23), otherwise it is equal to 0. Then (11.116) implies that for

every codeword X(w) that remains in C*, Pr{E.|C*, W = w} = 0, i.e., the
input constraint is satisfied. This completes the proof.
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11.4 Memoryless Gaussian Channels

In communication engineering, the Gaussian channel is the most commonly

used model for a noisy channel with real input and output. The reasons are

two-fold. First, the Gaussian channel is highly analytically tractable. Second,

the Gaussian noise can be regarded as the worst kind of additive noise subject

to a constraint on the noise power. This will be discussed in Section 11.9.
We first give two equivalent definitions of a Gaussian channel.

Definition 11.19 (Gaussian Channel). A Gaussian channel with noise en-

ergy N is a continuous channel with the following two equivalent specifications:

_==)?

1. f(ylz) = \/21”7]\,6 2N
2.Z~N(O,N) and a(X,Z2) =X + Z.

Definition 11.20 (Memoryless Gaussian Channel). A memoryless Gaus-
sian channel with noise power N and input power constraint P is a memory-
less continuous channel with the generic continuous channel being the Gaus-
stan channel with noise energy N. The input power constraint P refers to the
input constraint (k, P) with k(x) = 2.

Using the formula in Definition 11.7 for the capacity of a CMC, the ca-
pacity of a Gaussian channel can be evaluated.

Theorem 11.21 (Capacity of a Memoryless Gaussian Channel). The
capacity of a memoryless Gaussian channel with noise power N and input
power constraint P is

1 P
=1 1+=. 11.11
108 (14 ) (11.118)
The capacity is achieved by the input distribution N (0, P).
We first prove the following lemma.

Lemma 11.22. Let Y = X + Z. Then h(Y|X) = h(Z|X) provided that
fz1x (z|z) exists for all v € Sx.

Proof. For all x € Sx, since fzx(z|r) exists, fy|x(y|z) also exists and is
given by
frix(le) = fz1x (y — z[z). (11.119)

Then h(Y|X = z) is defined as in (10.100), and
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hY|X) = /h(Y|X = z)dFx(x) (11.120)

- /h(X + Z|X = 2)dFx () (11.121)

_ /h(x + Z|X = 2)dFx (2) (11.122)

_ /h(Z|X — 2)dFy(2) (11.123)

= h(Z|X). (11.124)

In the above, (11.120) and (11.124) follow from (10.101), while (11.123) follows

from the translation property of differential entropy (Theorem 10.14). O

Remark Since Y and Z uniquely determine each other given X, it is tempt-
ing to write h(Y|X) = h(Z|X) immediately. However, this interpretation is
incorrect because differential entropy is not the same as entropy.

Proof of Theorem 11.21. Let F(z) be the CDF of the input random variable
X such that EX? < P, where X is not necessarily continuous. Since Z ~
N(0,N), f(y|z) is given by (11.119). Then by Proposition 10.24, f(y) exists
and hence h(Y) is defined. Since Z is independent of X, by Lemma 11.22 and
Corollary 10.33,

MY |X)=h(Z|X) =h(Z). (11.125)

Then
I(X;Y)=h(Y)—Rh(Y|X) (11.126)
=hY) - h(2), (11.127)

where (11.126) follows from Proposition 10.29 and (11.127) follows from
(11.125).
Since Y = X + Z and Z is independent of X, we have

EY? = E(X + Z)* (11.128)

= EX? +2(EXZ) + EZ* (11.129)

= EX? +2(EX)(EZ) + EZ? (11.130)

= EX? +2(EX)(0) + EZ* (11.131)

= EX? + EZ? (11.132)

<P+ N. (11.133)

Given the above constraint on Y, by Theorem 10.43, we have
1
hY) < 3 log[2me(P 4+ N)J, (11.134)

with equality if Y ~ N(0, P+ N).
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Recall from Example 10.13 that
1
hZ) = 3 log(2meN). (11.135)

It then follows from (11.127), (11.134), and (11.135) that

I(X:Y) = h(Y) = h(Z) (11.136)
< % log[2me(P + N)] — % log(2reN) (11.137)
_ %log <1 n ]1\3[) . (11.138)

Evidently, this upper bound is tight if X ~ AN(0, P), because then

Y =X+ Z~N(0,P+N). (11.139)
Therefore,
C = sup I(X;Y) (11.140)

F(z):EX2<P

= max I(X;Y) (11.141)
F(z):EX2<P
1 P

=-1 1+—. 11.14
o6 (14 ) (11142)

The theorem is proved. O

Theorem 11.21 says that the capacity of a memoryless Gaussian channel
depends only on the ratio of the input power constraint P to the noise power
N. This important quantity is called the signal-to-noise ratio. Note that no
matter how small the signal-to-noise ratio is, the capacity is still strictly posi-
tive. In other words, reliable communication can still be achieved, though at a
low rate, when the noise power is much higher than the signal power. We also
see that the capacity is infinite if there is no constraint on the input power.

11.5 Parallel Gaussian Channels

In Section 11.4, we have discussed the capacity of a memoryless Gaussian
channel. Now suppose k such channels are available for communication, where
k > 1. This is illustrated in Figure 11.1, with X;, Y;, and Z; being the input,
the output, and the noise variable of the ith channel, respectively, where
Z; ~N(0,N;) and Z;, 1 <i < k are independent.

We are interested in the capacity of such a system of parallel Gaussian
channels, with the total input power constraint
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Z,
X :é > 1)

7

Fig. 11.1. A system of parallel Gaussian channels.

EY X}<P (11.143)

Let X = [X, Xy - X3, Y=Yy --- Vi), and Z = [Z, Zs - - Zi). Then

Frx(ylx) = HfYIX (il i) (11.144)
i=1
k
= [T fzx (i — i) (11.145)
Z;l
=1 /2. — ). (11.146)
i=1

With the existence of f(y|x), by extending Definition 10.23, we have
WYX) =~ [ fyitog f(yix)dy dP (). (11.147)
Sx /Sy (x)

Then by Proposition 10.25, f(y) exists and therefore h(Y) is defined. By
extending Definition 10.26, we have

flylx)
I(X;Y) /SX /Sy(x (y|x)log ) dy dF (x). (11.148)

It then follows from Definition 11.7 that the capacity of the system is given
by
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C(P) = sup I(X;Y), (11.149)
F(x): EZ X2<P
where F(x) is the joint CDF of the input vector X. As we will see, the supre-
mum above is indeed a maximum.

When we calculated the capacity of the memoryless Gaussian channel in
Theorem 11.21, we obtained in (11.132) that

EY? = EX? + EZ?, (11.150)

i.e., the output power is equal to the sum of the input power and the noise
power, provided that the noise has zero mean. By exactly the same argument,
we see that

EY? =EX?+EZ? (11.151)
for all 3.
Toward calculating C'(P), consider
I(X; Y) h(Y) — h(Y|X) (11.152)
hY) — h(Z|X) (11.153)
h(Y) — h(Z) (11.154)
k
)= > h(Zi (11.155)
=1
1 k
=h(Y ~3 log(2meN;) (11.156)
=1
k 1 k
< ;h(Y}) ) zlog(QweNi) (11.157)
<= Zlog [2me(EY?)] Zlog (2meN;) (11.158)
1=1
_! zk:log(EY-2) 21 Zlog N; (11.159)
2 &~ o2& ’ '
i 1<
. 2 2y _ .
=3 glog(EXZ +BZY) 5 ;mgm (11.160)
i 1<
= 5210g(Pi+Ni) - §ZIOgNZ- (11.161)
_Eilo 14+ & (11.162)
2 i=1 © Ni)’ .

where P; = EX? is the input power of the ith channel. In the above, (11.153)
is the vector generalization of Lemma 11.22, (11.155) follows because Z; are
independent, and (11.160) follows from (11.151).
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Equality holds in (11.157) and (11.158) if ¥;, 1 < ¢ < k are independent
and Y; ~ N(0,P; + N;). This happens when X; are independent of each
other and X; ~ N (0, P;). Therefore, maximizing I(X;Y) becomes maximizing
>, 1og(P; + N;) in (11.161) with the constraint ), P; < P and P; > 0 for
all 7. In other words, we are to find the optimal input power allocation among
the channels. Comparing (11.162) with (11.142), we see that the capacity of
the system of parallel Gaussian channels is equal to the sum of the capacities
of the individual Gaussian channels with the input power optimally allocated.

Toward this end, we first apply the method of Lagrange multipliers by
temporarily ignoring the nonnegativity constraints on P;. Observe that in
order for the summation ), log(P;+N;) in (11.161) to be maximized, ), P; =
P must hold because log (P; + N;) is increasing in P;. Therefore, the inequality
constraint ) |, P; < P can be replaced by the equality constraint ), P; = P.

Let
k k

J = log(Pi+N;)—pu> P (11.163)

i=1 =1

Differentiating with respect to P; gives

aJ loge
= = — 11.164
0=on "B+, (11.164)
which implies
1
p =26 N, (11.165)
1
Upon letting v = 1058, we have
P, =v— N, (11.166)
where v is chosen such that
k k
ZPi = Z(V—Ni) =P. (11.167)
i=1 i=1

However, P; as given in (11.166) is not guaranteed to be nonnegative, so it may
not be a valid solution. Nevertheless, (11.166) suggests the general solution
to be proved in the next proposition.

Proposition 11.23. The problem

For given \; > 0, mazximize Zle log(a; + A;) subject to ), a; < P
and a; > 0

has the solution
aj =(w-M\)", 1<i<k, (11.168)

where
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zifx >0
()t = {0 fo 0 (11.169)
and v satisfies
k
dw-x)t =P (11.170)
1=1

Proof. Rewrite the maximization problem as
For given A\; > 0, maximize ), log (a; + \;) subject to
k
> a;<P (11.171)
i=1
—a; <0, 1<i<k. (11.172)

We will prove the proposition by verifying that the proposed solution in
(11.168) satisfies the Karush-Kuhn-Tucker (KKT) condition. This is done by
finding nonnegative p and p; satisfying the equations

loge
l k
m (P-Z@) =0 (11.174)
1=1
par =0, 1<i<k, (11.175)

where p and p; are the multipliers associated with the constraints in (11.171)
and (11.172), respectively.

To avoid triviality, assume P > 0 so that v > 0, and observe that there
exists at least one ¢ such that a} > 0. For those 7, (11.175) implies

i =0. (11.176)
On the other hand,
af=@w-\)"=v-\. (11.177)
Substituting (11.176) and (11.177) into (11.173), we obtain
1
= Ofe > 0. (11.178)

For those ¢ such that af = 0, it follows from (11.168) that v < \;. From
(11.178) and (11.173), we obtain

1 1
= (1 —— — ] >0. 11.1
= loge) (1= ) 20 (11.179)

Thus we have found nonnegative p and u; that satisfy (11.173) to (11.175),
verifying the KKT condition. The proposition is proved. O
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Hence, following (11.162) and applying the above proposition with a; = P;
and \; = N;, we see that the capacity of the system of parallel Gaussian
channels is equal to

1 k
5 > log (1 +
=1

where {P, 1 < i < k} is the optimal input power allocation among the
channels given by

B (11.180)
N; )’ '

Pr=@w-N)t, 1<i<k (11.181)
with v satisfying
k
Y (v-N)T =P (11.182)
i=1

The process for obtaining {P’}, called water-filling, is illustrated in Fig-
ure 11.2. One can image that an amount P of water is poured into a reservoir
with an uneven bottom, and v is the level the water rises to. Under this
scheme, high input power is allocated to a channel with low noise power. For
a channel with noise power higher than v, no input power is allocated, i.e.,
the channel is not used.

11.6 Correlated Gaussian Channels

In this section, we generalize the results in the last section to the case when
the noise variables Z;, 1 < ¢ < k are correlated with covariance matrix Kz.
We continue to assume that Z; has zero mean for all 4, i.e., Z ~ N (0, Kz),
and the total input power constraint

Fig. 11.2. Water-filling for parallel Gaussian channels.
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X —> 0 QT ——Y’

Fig. 11.3. An equivalent system of parallel Gaussian channels.

k
EY X}<P (11.183)
i=1

prevails.

We will derive the capacity of such a system of correlated Gaussian chan-
nels by decorrelating the noise vector Z. Let Kz be diagonalizable as QAQ T
and consider

Y =X+7Z. (11.184)
Then
RQ'Y=Q'X+Q'"Z. (11.185)
Upon letting
X' =Q'X (11.186)
Y =Q'Y (11.187)
and
7' =Q'Z, (11.188)
we obtain
Y =X +727. (11.189)
Note that
EZ' =E(QZ)=Q(EZ)=Q-0=0, (11.190)

and Z' is jointly Gaussian because it is a linear transformation of Z. By
Proposition 10.6, the random variables in Z’ are uncorrelated, and

Kz = A. (11.191)

Hence, Z! ~ N(0,);), where \; is the ith diagonal element of A, and Z,
1 <i < k are mutually independent.

We are then motivated to convert the given system of correlated Gaussian
channels into the system shown in Figure 11.3, with X’ and Y’ being the input
and output, respectively. Note that in this system, X’ and Y’ are related to
X and Y as prescribed in (11.186) and (11.187), respectively. We then see
from (11.189) that Z’ is the equivalent noise vector of the system with Z;
being the noise variable of the ith channel. Hence, the system in Figure 11.3
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| X X/LY T | Y
X— 0 0 (+)— © o 0 »Y"

Fig. 11.4. A system identical to the system of correlated Gaussian channels.

is a system of parallel Gaussian channels. By Proposition 10.9, the total input
power constraint in (11.183) for the original system translates to the total
input power constraint

EY (X))?<P (11.192)

for the system in Figure 11.3.

The question is whether the capacity of the system in Figure 11.3 is the
same as the capacity of the original system. Let us called these two capacities
C' and C, respectively. Intuitively, C’ and C should be the same because the
matrix @ is invertible. A formal proof goes as follows. We remind the reader
that the capacity of a channel is the highest possible asymptotic rate at which
information can be transmitted reliably through the channel by means of any
encoding/decoding process. In Figure 11.3, by regarding the transformation
Q on X’ as part of the encoding process and the transformation Q" on Y
as part of the decoding process, we see that C’ < C. Now further convert
the system in Figure 11.3 into the system in Figure 11.4 with input X” and
output Y”, and call the capacity of this system C”. By repeating the same
argument, we see that C” < C’. Thus C” < C’ < C. However, the system in
Figure 11.4 is equivalent to the original system because Q" Q = I. Therefore,
C"” = C, which implies ¢’ = C.

Upon converting the given system of correlated Gaussian channels into an
equivalent system of parallel Gaussian channels, we see that the capacity of
the system is equal to

k
1 a’
— E 1 1+ =+ 11.1
2 i=1 Og( " )‘i) ( %)

where a; is the optimal power allocated to the ith channel in the equivalent
system, and its value can be obtained by water-filling as prescribed in Propo-
sition 11.23. The reader should compare (11.193) with the formula in (11.180)
for the capacity of parallel Gaussian channels.

Let A* be the k x k diagonal matrix with a} being the 7th diagonal element.
From the discussion in the last section, the optimal distribution for the input
X’ in the equivalent system of parallel channels is A(0, A*). Accordingly, the
distribution of X is N (0,QA*QT). We leave it as an exercise for the reader
to verify that this indeed gives the optimal input distribution for the original
system of correlated Gaussian channels.
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11.7 The Bandlimited White Gaussian Channel

In this section, we discuss a bandlimited waveform channel with zero-mean
additive white Gaussian noise (AWGN). In the rest of this chapter, the letters
j and f are reserved for v/—1 and “frequency,” respectively. We begin with a
few definitions from signal analysis. All the signals are assumed to be real.

Definition 11.24. The Fourier transform of a signal g(t) is defined as
G(f) = / g(t)e= 72 at. (11.194)

The signal g(t) can be recovered from G(f) as
g(t) = / G(f)e* It df, (11.195)

and g(t) is called the inverse Fourier transform of G(f). The functions g(t)
and G(f) are said to form a transform pair, denoted by

g(t) = G(f). (11.196)
The variables t and f are referred to as time and frequency, respectively.

In general, the Fourier transform of a signal g(t) may not exist. A sufficient
condition for the Fourier transform of g(t) to exist is that g(¢) has finite energy,
i.e.,

/oo lg(t)[2dt < 0. (11.197)

— 00

A signal with finite energy is called an energy signal.

Definition 11.25. Let g1(t) and g2(t) be a pair of energy signals. The cross-
correlation function for g1(t) and go(t) is defined as

Rua(7) = /oo (D) galt — 7). (11.198)

Proposition 11.26. For a pair of energy signals g1(t) and g2(t),
Ria(1) = G1(f)G5(f), (11.199)
where G5(f) denotes the complex conjugate of Ga(f).

Definition 11.27. For a wide-sense stationary process {X (t), —oo < t < o0},
the autocorrelation function is defined as

Rx(7) = E[X(t + 7)X(t)], (11.200)
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which does not depend on t, and the power spectral density is defined as
Sx(f) = / Rx(r)e ™ I7dr, (11.201)

i.e.,

Rx(r) = Sx(f) (11.202)

Definition 11.28. Let {(X(t),Y (t)), —0o < t < 0o} be a bivariate wide-sense
stationary process. Their cross-correlation functions are defined as

Rxy(r) = E[X(t+ 7)Y (2)] (11.203)
and
Ryx(r) = E[Y(t+7)X(t)], (11.204)
which do not depend on t. The cross-spectral densities are defined as
Sxy(f) = / Rxy(r)e 7> 7dr (11.205)
and -
Syx(f) = / Ry x(r)e 7™ 7dr, (11.206)
i.e.,
Rxy(r) = Sxv(f) (11.207)
and
Ry x(7) = Syx(f). (11.208)

We now describe the simplest nontrivial model for a waveform channel. In
wired-line and wireless communication, the frequency spectrum of the medium
is often partitioned into a number of communication channels, where each
channel occupies a certain frequency band. Consider such a channel that oc-
cupies the frequency band [fi, fn] with 0 < f; < fp,, where

W=fn—fi (11.209)
is called the bandwidth. The input process X (t) is contaminated by a zero-
mean additive white Gaussian noise process Z(t) with power %, ie.,

N,

Sz(f) = 70 —00 < f < 0. (11.210)

In reality, such a noise process cannot exist because its total power is infi-
nite. For practical purposes, one can regard the power spectral density to be
constant within the range of interest of the problem.

Let h(t) be the impulse response of an ideal bandpass filter for the fre-

quency band [fi, fz], i.e.,
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H(f){liffZS |fI < fn (11.211)

0 otherwise.

At the receiver for this channel, the ideal bandpass filter h(t) is applied to the
received signal in order to filter out the frequency components due to other
channels. Effectively, we can regard this filtered version of the received signal
given by

Y(t) = [X(t) + Z(t)] * h(t) = X(£) * h(t) + Z(t) * h(?) (11.212)

as the output of the channel, where * denotes convolution in the time domain.
Letting

X'(t) = X (t) = h(t) (11.213)
and
Z'(t) = Z(t) * h(t), (11.214)
(11.212) can be written as
Y(t) = X'(t) + Z'(t). (11.215)

The only difference between X (¢) and X'(¢) is that all the frequency com-
ponents of X'(t) are in [f;, fr], while X (¢) can have frequency components
outside this range. However, even if such frequency components exist in X (¢),
they are filtered out by the ideal bandpass filter h(t) and do not appear in
the output process Y (¢). Therefore, we can regard X'(t) instead of X (¢) as
the input process of the channel. By the same token, we regard Z'(t) instead
of Z(t) as the noise process of the channel. As for the memoryless Gaussian
channel discussed in the last section, we impose an average power constraint
P on the input process X'(t).

For simplicity, we consider in this section the case that the channel we
have described occupies the frequency band [0, W]. This channel, called the
bandlimited white Gaussian channel, is the special case of the general model
with fl = 0.

While a rigorous formulation of the bandlimited white Gaussian channel
involves mathematical tools beyond the scope of this book, we will never-
theless give a heuristic argument that suggests the formula for the channel
capacity. The sampling theorem in signal analysis will allow us to “convert”
this waveform channel into a memoryless Gaussian channel discussed in the
last section.

Theorem 11.29 (Sampling Theorem). Let g(t) be a signal with Fourier
transform G(f) that vanishes for f & [-W,W]. Then

gty = > g(2;.4/> sinc(2Wt — 4) (11.216)

i=—00

for —oo <t < oo, where
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. sin(mt)
t) = 11.217
sine(t) = =7, (11.217)
called the sinc function, is defined to be 1 at t =0 by continuity.
Letting
N (11.218)
gi = TWQ oW .
and
Yi(t) = V2Wsinc(2Wt — i), (11.219)
the formula in (11.216) can be rewritten as
g(t) = > githi(t). (11.220)

Proposition 11.30. ¢;(t), —oco < i < oo form an orthonormal basis for
signals which are bandlimited to [0, W].

Proof. Since

1
11.221
i) = v (1= g7 ) (11.221)
i (t) and o (t) have the same energy. We first show that
o 1
i 2Wt)dt = 11.222
/_ st QW = g (11.222)
This integral is difficult to evaluate directly. Instead we consider
inc(2Wt) = —rect (2 (11.223)
sinc = gt { 5 ) .
where < 1
< <
rect(f) = { 0 0therw1se (11.224)

Then by Rayleigh’s energy theorem, we have

00 0 2
/wsin02(2Wt)dt = /_Oo <2;V) rect? (2‘};/) df = % (11.225)

It then follows that

/ Y2 (t)dt = / Y (t)dt (11.226)
2/00 sinc? (2Wt)dt (11.227)

1
=W (2W> (11.228)

=1 (11.229)
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Next, we show that

/ sinc(2Wt — i) sinc(2Wt — ¢')dt (11.230)

— 00

vanishes whenever i # i’. Again, this integral is difficult to evaluate directly.
Since (11.225) implies that both sinc(2W¢ — i) and sinc(2W¢ — ') have finite
energy, we can consider their cross-correlation function, denoted by R;; (7).
Now

i

sinc(2Wt — i) = ¢ 27/ (3iv) (> rect (f> =Gi(f)  (11.231)

and

il

sinc(2Wt — i) = 927 (3) <) rect <> = Gy(f). (11.232)

Then we have

Rii (1) = Gi( /)G (f), (11.233)
and the integral in (11.230) is given by

Ru© = [ GUHGH (s (11.234)
(cf. (11.195)), which vanishes whenever ¢ # ¢’. Therefore,

/ it (D)t = 2W / " sme@Wit — i) sinc@Wt — )t (11.235)
—0. (11.236)

Together with (11.229), this shows that ;(t), —oco < i < oo form an orthonor-
mal set. Finally, since g(t) in (11.220) is any signal bandlimited to [0, W], we
conclude that ¢;(t), —0o < i < oo form an orthonormal basis for such signals.
The theorem is proved. O

Let us return to our discussion of the waveform channel. The sampling
theorem implies that the input process X'(t), assuming the existence of the
Fourier transform, can be written as

X'(t) = i X{i(t), (11.237)

where

X;—lx’( ! > (11.238)
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and there is a one-to-one correspondence between X'(¢) and {X/, —o0 < i <
oo}. The same applies to (a realization of) the output process Y (¢), which we
assume can be written as

Y(t)= i Yii(t), (11.239)

1=—00

where

Y; = \/%WY <2év> . (11.240)

With these assumptions on X'(¢) and Y (), the waveform channel is equivalent
to a discrete-time channel defined at t = ﬁ, with the ¢th input and output
of the channel being X! and Y;, respectively.

Toward determining the capacity of this equivalent discrete-time channel,
we prove in the following a characterization of the effect of the noise process
Z'(t) at the sampling times.

Proposition 11.31. 7’ (ﬁ), —00 < i < o0 are i.i.d. Gaussian random vari-
ables with zero mean and variance NoW .

Proof. First of all, Z(t) is a zero-mean Gaussian process and Z’(t) is a filtered
version of Z(t), so Z'(t) is also a zero-mean Gaussian process. Consequently,
A (ﬁ), —00 < 1 < oo are zero-mean Gaussian random variables. The power
spectral density of Z’'(t) is given by

o W< f<w

Sz(f) = {0 otherwise. (11.241)

Then the autocorrelation function of Z’(t), which is the inverse Fourier trans-
form of Sz/(f), is given by

Rz(7) = NoWsinc(2Wr). (11.242)

It is seen that the value of Rz/(7) is equal to 0 when 7 = - for all i # 0,

because the sinc function in (11.217) vanishes at all nonzero integer values

of t. This shows that Z’ (ﬁ), —00 < i < oo are uncorrelated and hence
i

independent because they are jointly Gaussian. Finally, since Z’ (W) has

zero mean, in light of (11.200), its variance is given by Rz/(0) = NoW. O
Recall from (11.215) that

Y(t)=X'"(t)+ Z'(t). (11.243)

Y (2;/> =X’ (2;/> +7 <2£V) . (11.244)

Then
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Upon dividing by v2W and letting

1 1
Zl=—=7"| = 11.245
= i) 2

it follows from (11.238) and (11.240) that
Y, = X! + 7. (11.246)

Since Z' (ﬁ), —00 < 1 < oo are iid. with distribution N (0, NoW), Z!,
—00 < i < 00 are ii.d. with distribution A/(0, £2).

Thus we have shown that the bandlimited white Gaussian channel is equiv-
alent to a memoryless Gaussian channel with noise power equal to % As we
are converting the waveform channel into a discrete-time channel, we need to
relate the input power constraint of the waveform channel to the input power
constraint of the discrete-time channel. Let P’ be the average energy (i.e., the
second moment) of the X;’s. We now calculate the average power of X'(t)
in terms of P’. Since v;(¢) has unit energy, the average contribution to the
energy of X'(t) by each sample is P’. As there are 2W samples per unit time
and ¥;(t), —oo < i < oo are orthonormal, X’(t) accumulates energy from the
samples at a rate equal to 2W P’. Upon considering

2WP' < P, (11.247)

where P is the average power constraint on the input process X'(t), we obtain
P

P < —,

—2W

i.e., an input power constraint P for the bandlimited Gaussian channel trans-

lates to an input power constraint % for the discrete-time channel. By The-
orem 11.21, the capacity of the memoryless Gaussian channel is

(11.248)

1 P/2 1 P
B log (1 + Zé();;) =3 log <1 + NOVV) bits per sample. (11.249)
Since there are 2W samples per unit time, we conclude that the capacity of
the bandlimited Gaussian channel is

P
Wlog (14 ——== | bits per unit time. 11.250
g ( N0W> p ( )

The argument we have given above is evidently not rigorous because if
there is no additional constraint on the X;’s other than their average energy
not exceeding %, then X'(t) may not have finite energy. This induces a gap
in the argument because the Fourier transform of X'(¢) may not exist and
hence the sampling theorem cannot be applied.

A rigorous formulation of the bandlimited white Gaussian channel involves
the consideration of an input signal of finite duration, which is analogous to a
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code for the DMC with a finite block length. Since a signal with finite duration
cannot be bandlimited, this immediate leads to a contradiction. Overcoming
this technical difficulty requires the use of prolate spheroidal wave functions
[338, 218, 219] which are bandlimited functions with most of the energy on a
finite interval. The main idea is that there are approximately 2WT orthonor-
mal basis functions for the set of signals which are bandlimited to W and have
most of the energy on [0,T) in time. We refer the reader to Gallager[129] for
a rigorous treatment of the bandlimited white Gaussian channel.

11.8 The Bandlimited Colored Gaussian Channel

In the last section, we have discussed the bandlimited white Gaussian channel
occupying the frequency band [0, W]. We presented a heuristic argument that
led to the formula in (11.250) for the channel capacity. Suppose the channel
instead occupies the frequency band [f;, f], with f; being a multiple of W =
fn — fi- Then the noise process Z’(t) has power spectral density

Sz(f) = {]go i fi < /1< n (11.251)

0 otherwise.

We refer to such a channel as the bandpass white Gaussian channel. By an
extenstion of the heuristic argument for the bandlimited white Gaussian chan-
nel, which would involve the bandpass version of the sampling theorem, the
same formula for the channel capacity can be obtained. The details are omit-
ted here.

We now consider a waveform channel occupying the frequency band [0, W]
with input power constraint P and zero-mean additive colored Gaussian noise
Z(t). We refer to this channel as the bandlimited colored Gaussian channel. To
analyze the capacity of this channel, divide the interval [0, W] into subintervals
[ff, fi] for 1 <i < k, where

fi=(—-1)A (11.252)
fi =iAg, (11.253)

and W
Ap=— (11.254)

is the width of each subinterval. As an approximation, assume Sz(f) is equal
to a constant Sz; over the subinterval [f}, fi]. Then the channel consists of
k sub-channels, with the ith sub-channel being a bandpass (bandlimited if
i = 1) white Gaussian channel occupying the frequency band [ff, fi]. Thus
by letting Ny = 2S5z, in (11.251), we obtain from (11.250) that the capacity
of the ith sub-channel is equal to

P;
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if P; is the input power allocated to that sub-channel.
The noise process of the ith sub-channel, denoted by Z/(t), is obtained by
passing Z(t) through the ideal bandpass filter with frequency response

Hi(f) = {1 i fi < |71< fi (11.256)

0 otherwise.

It can be shown (see Problem 9) that the noise processes Z;(t), 1 <i < k are
independent. By converting each sub-channel into an equivalent memoryless
Gaussian channel as discussed in the last section, we see that the k sub-
channels can be regarded as a system of parallel Gaussian channels. Thus
the channel capacity is equal to the sum of the capacities of the individual
sub-channels when the power allocation among the k sub-channels is optimal.

Let P/ be the optimal power allocation for the ith sub-channel. Then it
follows from (11.255) that the channel capacity is equal to

P.*
P*
ZAklog <1+ 2SzZAk> ZAklog <1+ Szl> (11.257)

1=1 1=1

where by Proposition 11.23,

*

i _ A+
AT =(v—=Sz.)", (11.258)
or
Pf =2A,(v — Sz4)7, (11.259)
with
k
> pr=P (11.260)
i=1

Then from (11.259) and (11.260), we obtain

~ P
> (v—=8z) Ap = 5 (11.261)

=1

As k — oo, following (11.257) and (11.258),
Py Syt
2A Z1
;Ak log (1 + 3 k) ZAk log <1 SR . 5, (11.262)
+
= / ( df (11.263)

_ 1 ( Sz(f))+
72/7W1 (1+ 50 >df, (11.264)

and following (11.261),
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SAS)

\avakvacs

-w 0 w

f

Fig. 11.5. Water-filling for the bandlimited colored Gaussian channel.

k w
> (v =8z A — / (v —Sz(f)rdf (11.265)
i=1 0
w
=5 w=sanyra (120)

where (11.264) and (11.266) are obtained by noting that
S7(=f) = S21(f) (11.267)

for —oco < f < oo (see Problem 8). Hence, we conclude that the capacity of
the bandlimited colored Gaussian channel is equal to

w LS N
%/,W log (1 + (SZZE{))) df Dits per unit time, (11.268)
where v satisfies
w
/ (v —=Sz(f)*df =P (11.269)
-w

in view of (11.261) and (11.266). Figure 11.5 is an illustration of the water-
filling process for determining v, where the amount of water to be poured into
the reservoir is equal to P.

11.9 Zero-Mean Gaussian Noise i1s the Worst Additive
Noise

In the last section, we derived the capacity for a system of correlated Gaussian
channels, where the noise vector is a zero-mean Gaussian random vector. In
this section, we show that in terms of the capacity of the system, the zero-
mean Gaussian noise is the worst additive noise given that the noise vector has
a fixed correlation matrix. Note that the diagonal elements of this correlation
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matrix specify the power of the individual noise variables, while the other
elements in the matrix give a characterization of the correlation between the
noise variables.

Theorem 11.32. For a fized zero-mean Gaussian random vector X*, let
Y =X"+17Z, (11.270)

where the joint pdf of Z exists and Z is independent of X*. Under the con-
straint that the correlation matriz of Z is equal to K, where K is any symmet-
ric positive definite matriz, [(X*;Y) is minimized if and only if Z ~ N (0, K).

Before proving this theorem, we first prove the following two lemmas.

Lemma 11.33. Let X be a zero-mean random vector and
Y=X+7Z, (11.271)
where Z is independent of X. Then

Ky = Kx + Kz. (11.272)

Proof. For any i and j, consider

EY;Y; = E(Xi + Z:)(X; + Z;) (
= B(X:X; + X:Z; + Z:X; + Z:Z;) (
= EX:X; + EX,Z; + EZ:X; + EZ;Z, (11.275
= EX;X, + (EX,)(EZ;) + (EZ))(EX;) + EZ;Z;  (
= EX; X, + (0)(EZ;) + (EZ;)(0) + EZ: Z; (
— EX;X; + EZ:Z;, (

where (11.277) follows from the assumption that X; has zero mean for all s.
The proposition is proved. O

The reader should compare this lemma with Lemma 10.8 in Chapter 10.
Note that in Lemma 10.8, it is not necessary to assume that either X or Z
has zero mean.

Lemma 11.34. Let Y* ~ N(0,K) and Y be any random vector with corre-
lation matriz K. Then

/ e () 108 - (¥)y = [ Fely)log - )iy, (11.279)
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Proof. The random vector Y* has joint pdf

1 1 T —1
)= —— 3y K7'y) 11.280
fy-(y) (\/ﬁ)’“uql/ze ( )

for all y € ®. Since EY* = 0, Ky« = Ky» = K. Therefore, Y* and Y have
the same correlation matrix. Consider

/ [0 fy«(y)] fy-(y)dy

- / [_;(yTKIY) —ln [(\/ﬂ)ﬂKIWH fy=(y)dy (11.281)
B _% /(yTK_1Y)fY*(Y)dy —In {(\/ﬂ)klff\m} (11.282)
= _%/ Z(Kﬁl)ijyiyj fy+(y)dy —In [(\/ﬂ)’f\fql/ﬂ (11.283)

= —% D (K™ /(yiyj)fv*(y)dy —In [(V2m)R|KIV2) (11.284)

= —% ;(Kfl)ij /SY (yiy;)fx (y)dy —In [(x/ﬂ)’ﬂml/?} (11.285)

= / {_1yTK—1y —1In {(\/ﬂ)kuﬂlm]] Fy(y)dy (11.256)
Sy L 2
:/S [In fy-(y)] fy (y)dy- (11.287)

In the above, (11.285) is justified because Y and Y* have the same correla-
tion matrix, and (11.286) is obtained by backtracking the manipulations from
(11.281) to (11.284) with fy(y) in place of fy«(y). The lemma is proved upon
changing the base of the logarithm. O

Proof of Theorem 11.32. Let Z* ~ N(0, K) such that Z* is independent of
X*, and let

Y*=X"+Z" (11.288)
Obviously, the support of Y* is 2% because Y* has a multivariate Gaussian
distribution. Note that the support of Y is also % regardless of the distri-
bution of Z because the support of X* is R*. We need to prove that for any
random vector Z with correlation matrix K, where Z is independent of X*
and the joint pdf of Z exists,

I(X*Y") < I(X*Y). (11.289)

Since EZ* = 0, Kz« = Kz. = K. Therefore, Z* and Z have the same
correlation matrix. By noting that X* has zero mean, we apply Lemma 11.33
to see that Y* and Y have the same correlation matrix.
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The inequality in (11.289) can be proved by considering
I(X*Y") - I(X*%Y)
2 h(Y*) = h(Z*) — h(Y) + h(Z) (11.290)

- / fy-(y) log fy- (v)dy + / fa- (2) 10g fz- (z)dz
+ / P08 f(¥)dy = [ Fale) o r(a)ia (11.291)

- / Fy () log fy- (¥)dy + /S f2(2) log fz- (2)dz

+ [ Felos ely)iy - [ faa)108 fa(s)a (11.202)
-/ 1og( fj({)))my)dy A 1og(f;zz - ))>fz(Z)dZ (11.203)
2 /SZ/ < Ez%)fyz y,2)dydz (11.294)
2 log (/ fo()‘)fZ*Ez; 2(y, )dydz> (11.295)

fx-(y — 2z)fz-(2)dz| fy(y)dy (11.296)

s (f |6 L | vy )
21 ( aal i%fy >dy> (11.297)
(11.298)

The above steps are explained as follows:

We assume that the pdf of Z exists so that h(Z) is defined. Moreover,
Frix (yx) = fz(y —x). (11.299)

Then by Proposition 10.24, fy(y) exists and hence h(Y) is defined.

In b), we have replaced fy«(y) by fv(y) in the first integral and replaced
fz+(z) by fz(z) in the second integral. The former is justified by an ap-
plication of Lemma 11.34 to Y* and Y by noting that Y* is a zero-mean
Gaussian random vector and Y* and Y have the same correlation matrix.
The latter is justified similarly.

To justify ¢), we need Syz = R* x Sz, which can be seen by noting that

fyz(y,2) = fxyiz(yl2) fz(2) = fx-(y — 2)fz(z) > 0 (11.300)

for all y € RF and all z € Sy.
d) follows from Jensen’s inequality and the concavity of the logarithmic
function.
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e ¢) follows from (11.300).
e f) follows because

/ e (y — 2) fz- (z)dz :/ fy-z- (¥12) fz-(2)dz  (11.301)
S2 Sz

< [z fe @i (L)
— fy-(y). (11.303)

It remains to show that Z ~ N(0, K) is a necessary and sufficient condition
for I(X*;Y) to be minimized. Toward this end, we need to show that equality
holds in both (11.295) and (11.297) if and only if Z ~ AN(0,K). Assume
that Z ~ N(0,K). Then fz(z) = fz-(z) for all z € Sz = R*. This implies
fx(y) = fy-(y) for all y € R¥ in view of (11.270) and (11.288), so that

x(¥)fz-(2) = fy-(y)fz(z) forally cR* ze Sz. (11.304)

Then the iterated integral in (11.294) is evaluated to zero. Therefore, it follows
from (11.294) to (11.298) that equality holds in both (11.295) and (11.297).

Conversely, assume that equality holds in both (11.295) and (11.297). In
view of (11.302), equality holds in (11.297) if and only if ®*\Sz has zero
Lebesgue measure. On the other hand, equality holds in (11.295) if and only
if

fy () fz-(2) = cfy-(y)fz(z) (11.305)

a.e. on R* x Sz for some constant c. Integrating with respect to dy over R*,
we obtain

m@/hmwzmm/mwm, (11.306)

which implies
fz-(2) = cfz(z) (11.307)
a.e. on Sz. Further integrating with respect to dz over Sz, we obtain
fz=(z)dz=c | fz(z)dz=c. (11.308)
Sz

Sz

Since R*\Sz has zero Lebesgue measure,
fz~(z)dz = /fz*(z)dz =1, (11.309)
Sz

which together with (11.308) implies ¢ = 1. It then follows from (11.307) that
fz~(z) = fz(z) a.e. on Sz and hence on R*, i.e., Z ~ N(0, K).

Therefore, we conclude that Z ~ N(0, K) is a necessary and sufficient
condition for I(X*;Y) to be minimized. The theorem is proved. O
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Consider the system of correlated Gaussian channels discussed in the last
section. Denote the noise vector by Z* and its correlation matrix by K. Note
that K is also the covariance matrix of Z* because Z* has zero mean. In other
words, Z* ~ N(0, K). Refer to this system as the zero-mean Gaussian system
and let C* be its capacity. Then consider another system with exactly the
same specification except that the noise vector, denoted by Z, may neither be
zero-mean nor Gaussian. We, however, require that the joint pdf of Z exists.
Refer to this system as the alternative system and let C be its capacity.

We now apply Theorem 11.32 to show that C' > C*. Let X* be the input
random vector that achieves the capacity of the zero-mean Gaussian system.
We have mentioned at the end of Section 11.6 that X* is a zero-mean Gaussian
random vector. Let Y* and Y be defined in (11.288) and (11.270), which cor-
respond to the outputs of the zero-mean Gaussian system and the alternative
system, respectively when X* is the input of both systems. Then

C > I(X*Y) > I(X*Y*) =C*, (11.310)

where the second inequality follows from (11.289) in the proof of Theo-
rem 11.32. Hence, we conclude that the zero-mean Gaussian noise is indeed
the worst additive noise subject to a constraint on the correlation matrix.

Chapter Summary

Capacity of Continuous Memoryless Channel: For a continuous mem-
oryless channel f(y|x) with average input constraint (k, P), namely the re-
quirement that

1 n
— Z k(z;) <P
i
for any codeword (x1, 2, -, x,) transmitted over the channel,

C(P) = sup I(X;Y),
F(z):Ex(X)<P

where F(x) is the input distribution of the channel. C(P) is non-decreasing,
concave, and left-continuous.

Mutually Typical Set: For a joint distribution F(z,y),

f(ylx)
f(y)

Lemma: For any § > 0 and sufficiently large n,

1
W&Y]éz{(X,Y)EX"XJ}”: Elog —I(X;Y)‘gé},

Pr{(X,Y) € Wys)} = 1 - 4.
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Lemma: Let X and Y be a pair of random variables, and (X’,Y’) be n i.i.d.
copies of a pair of generic random variables (X', Y”") where X’ and Y’ are in-
dependent and have the same marginal distributions as X and Y, respectively.
Then

PI‘{(X/7Y/) e W[Y)L(y]é} < 2—7L(I(X;Y)—(S)-

Channel Coding Theorem: A message drawn uniformly from the set {1, 2,
e 2”(R_€)} can be transmitted through a continuous memoryless channel
with negligible probability of error as n — oo if and only if R < C.

Capacity of Memoryless Gaussian Channel:
1 P
0210g<1+N>.
Capacity of Parallel Gaussian Channels: For a system of parallel Gaus-

sian channels with noise variable Z; ~ N(0, N;) for the ith channel and total
input power constraint P,

k
- 1 (V — JVZ)+
0—2;10g<1+Ni >,
where v satisfies Zle(l/ — N;))T =P

Capacity of Correlated Gaussian Channels: For a system of correlated
Gaussian channels with noise vector Z ~ AN(0, Kz) and total input power

constraint P,
k
1 (U - )\i)+
C== 1 14—
2 z:zl Og< Y ) 7
where K7 is diagonalizable as QAQ " with \; being the ith diagonal element

of A, and v satisfies Y5, (v — \;)* = P.

Capacity of the Bandlimited White Gaussian Channel:

P
C =Wlog <1 + NOVV> bits per unit time.

Capacity of the Bandlimited Colored Gaussian Channel:

L (v = Sz(F)* . -
3 /_W log <1 + Sz(f)) df bits per unit time,

where v satisfies fi/VW(I/ — Sz(f)Tdf = P.

Zero-Mean Gaussian is the Worst Additive Noise: For a system of
channels with additive noise, if the correlation matrix of the noise vector
is given, the capacity is minimized when the noise vector is zero-mean and
Gaussian.
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Problems

In the following, X, Y, Z, etc denote vectors of random variables.

1.

2.

Verify the two properties in Theorem 11.8 for the capacity of the memo-
ryless Gaussian channel.

Let X and Y be two jointly distributed random variables with Y being
continuous. The random variable Y is related to the random variable X
through a conditional pdf f(y|z) defined for all = (cf. Definition 10.22).
Prove that I(X;Y) is concave in F(x).

Refer to Lemma 11.18 and prove that

Pr{(X’,Y') € Wiy s} > (1 — )2 "HEY)=9)

for n sufficiently large.
Show that the capacity of a continuous memoryless channel is not changed
if (11.23) is replaced by

n

=3 la(W)
i=1

E <P

i.e., the average input constraint is satisfied on the average by a randomly
selected codeword instead of by every codeword in the codebook.

Show that R;;/(0) in (11.234) vanishes if and only if ¢ # '

Consider a system of Gaussian channels with noise vector Z ~ (0, Kz) and
input power constraint equal to 3. Determine the capacity of the system

fog the following two cases:
a

400
Kz=|050];
002

7/4 2/4 —3/4
Kz = |V2/4 5/2 —\2/4
—3/4 —V2/4 T7/4

For b), you may use the results in Problem 5 in Chapter 10.

In the system of correlated Gaussian channels, let Kz be diagonalizable as
QAQT. Let A* be the k x k diagonal matrix with a} being the ith diagonal
element, where a is prescribed in the discussion following (11.193). Show
that NV(0, QA*QT") is the optimal input distribution.

Show that for a wide-sense stationary process X (t), Sx(f) = Sx(—f) for
all f.
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9. Consider a zero-mean white Gaussian noise process Z(t). Let hq(t) and
ha(t) be two impulse responses such that the supports of Hy (f) and Ha(f)
do not overlap.

a) Show that for any ¢ and ¢/, the two random variables Z(t) * hy(t) and
Z(t) = ha(t') are independent.

b) Show that the two processes Z(t) x hq(t) and Z(t) * ha(t) are indepen-
dent.

c) Repeat a) and b) if Z(t) is a zero-mean colored Gaussian noise process.
Hint: Regard Z(t) as obtained by passing a zero-mean white Gaussian
noise process through a coloring filter.

10. Interpret the bandpass white Gaussian channel as a special case of the
bandlimited colored Gaussian channel in terms of the channel capacity.

11. Independent Gaussian noise is the worst Let C be the capacity of a system
of k Gaussian channels with Z; ~ N(0, N;). By ignoring the possible cor-
relation among the noise variables, we can use the channels in the system
independently as parallel Gaussian channels. Thus C' is lower bounded by
the expression in (11.180). In this sense, a Gaussian noise vector is the
worst if its components are uncorrelated. Justify this claim analytically.
Hint: Show that I(X;Y) > > I(X;;Y;) if X; are independent.

Historical Notes

Channels with additive Gaussian noise were first analyzed by Shannon in
[322], where the formula for the capacity of the bandlimited white Gaussian
channel was given. The form of the channel coding theorem for the continu-
ous memoryless channel presented in this chapter was first proved in the book
by Gallager [129]. A rigorous proof of the capacity formula for the bandlim-
ited white Gaussian channel was obtained by Wyner [387]. The water-filling
solution to the capacity of the bandlimited colored Gaussian channel was de-
veloped by Shannon in [324] and was proved rigorously by Pinsker [292]. The
discussion in this chapter on the continuous memoryless channel with an aver-
age input constraint is adapted from the discussions in the book by Gallager
[129] and the book by Thara [180], where in the former a comprehensive treat-
ment of waveform channels can also be found. The Gaussian noise being the
worst additive noise was proved by IThara [179]. The proof presented here is
due to Diggavi and Cover [95].
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Markov Structures

We have proved in Section 3.5 that if X; — X5 — X3 — X, forms a Markov
chain, the I-Measure p* always vanishes on the five atoms

X1 NX5NX3N XS
X NX5NXsn Xy
XiNXsNX5N X, (12.1)
X NnX,NnX$n Xy
X{nXoNX§n Xy

Consequently, the I-Measure p* is completely specified by the values of y* on
the other ten nonempty atoms of F4, and the information diagram for four
random variables forming a Markov chain can be displayed in two dimensions
as in Figure 3.11.

Figure 12.1 is a graph which represents the Markov chain X; — Xs —
X3 — X4. The observant reader would notice that p* always vanishes on a
nonempty atom A of Fy if and only if the graph in Figure 12.1 becomes discon-
nected upon removing all the vertices corresponding to the complemented set
variables in A. For example, u* always vanishes on the atom X, ﬂf(gﬂf(;; nx b
and the graph in Figure 12.1 becomes disconnected upon removing vertices
2 and 4. On the other hand, pu* does not necessarily vanish on the atom
Xf NX,NX3N X;f, and the graph in Figure 12.1 remains connected upon re-
moving vertices 1 and 4. This observation will be explained in a more general
setting in the subsequent sections.

O—0—E—®

Fig. 12.1. The graph representing the Markov chain X; — X2 — X3 — X4.
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The theory of I-Measure establishes a one-to-one correspondence between
Shannon’s information measures and set theory. Based on this theory, we
develop in this chapter a set-theoretic characterization of a Markov struc-
ture called full conditional mutual independence. A Markov chain, and more
generally a Markov random field, is a collection of full conditional mutual
independencies. We will show that if a collection of random variables forms a
Markov random field, then the structure of p* can be simplified. In particular,
when the random variables form a Markov chain, p* exhibits a very simple
structure so that the information diagram can be displayed in two dimensions
regardless of the length of the Markov chain, and p* is always nonnegative.
(See also Sections 3.5 and 3.6.)

The topics to be covered in this chapter are fundamental. Unfortunately,
the proofs of the results are very heavy. At the first reading, the reader should
understand the theorems through the examples instead of getting into the
details of the proofs.

12.1 Conditional Mutual Independence

In this section, we explore the effect of conditional mutual independence on
the structure of the I-Measure p*. We begin with a simple example.

Ezample 12.1. Let X, Y, and Z be mutually independent random variables.
Then

I(X;Y)=I1(X;Y;2)+ 1(X;Y|Z) =0. (12.2)
Since I(X;Y|Z) > 0, we let
I(X;Y|Z)=a>0, (12.3)
so that
I(X;Y;7) = —a. (12.4)
Similarly,
IY;2)=1(X;Y;Z2)+ I(Y;Z]X) =0 (12.5)
and
I(X;2)=1(X;Y;2)+ I(X; Z|]Y) = 0. (12.6)
Then from (12.4), we obtain
I(Y; Z|X) = I(X; Z|Y) = a. (12.7)

The relations (12.3), (12.4), and (12.7) are shown in the information diagram
in Figure 12.2, which indicates that X, Y, and Z are pairwise independent.

We have proved in Theorem 2.39 that X, Y, and Z are mutually indepen-
dent if and only if

H(X,Y,Z) = H(X)+ H(Y) + H(Z). (12.8)
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Y

&

Fig. 12.2. X, Y, and Z are pairwise independent.

By counting atoms in the information diagram, we see that

0=H(X)+H(Y)+H(Z) - HX,Y, Z) (12.9)
=I(X;Y|Z2)+1(Y; Z|1X)+I(X;Z|)Y)+2[(X;Y; 2) (12.10)
- a. (12.11)

Thus a = 0, which implies
I(X;Y|2), I(Y: Z|X), I(X; Z|Y), [(X;Y; Z) (12.12)
are all equal to 0. Equivalently, ©* vanishes on
XNY-ZYnZ-X,XnZ-Y,XNYnZ, (12.13)
which are precisely the atoms in the intersection of any two of the set variables
X, Y, and Z.
Conversely, if p* vanishes on the sets in (12.13), then we see from (12.10)
that (12.8) holds, i.e., X, Y, and Z are mutually independent. Therefore, X,

Y, and Z are mutually independent if and only if x* vanishes on the sets in
(12.13). This is shown in the information diagram in Figure 12.3.

The theme of this example will be extended to conditional mutual inde-

pendence among collections of random variables in Theorem 12.9, which is

Y

&

Fig. 12.3. X, Y, and Z are mutually independent.
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the main result in this section. In the rest of the section, we will develop the
necessary tools for proving this theorem. At first reading, the reader should
try to understand the results by studying the examples without getting into
the details of the proofs.

In Theorem 2.39, we have proved that Xi, Xs,---, X,, are mutually inde-
pendent if and only if

H(Xy, Xo,+, Xp) = Y H(X;), (12.14)

By conditioning on a random variable Y, one can readily prove the following.

Theorem 12.2. X1, X5, -, X,, are mutually independent conditioning on'Y
if and only if

H(Xy, Xo, -+, Xp|Y) =Y H(X,|Y). (12.15)
i=1
We now prove two alternative characterizations of conditional mutual in-
dependence.

Theorem 12.3. X1, X, -, X,, are mutually independent conditioning on' Y
if and only if for all 1 <1 < mn,

I(Xi: X5,5 #1]Y) =0, (12.16)
i.e., X; and (X;,j # i) are independent conditioning on'Y .

Remark A conditional independency is a special case of a conditional mutual
independency. However, this theorem says that a conditional mutual indepen-
dency is equivalent to a set of conditional independencies.

Proof of Theorem 12.3. It suffices to prove that (12.15) and (12.16) are equiv-
alent. Assume (12.15) is true, ie., X1, Xo, -+, X,, are mutually independent
conditioning on Y. Then for all ¢, X is independent of (X}, j # ¢) conditioning
on Y. This proves (12.16).

Now assume that (12.16) is true for all 1 <4 < n. Consider

0= I(X:: X;,§ #ilY) (12.17)
= I(X;; X1, X2, -+, Xia]Y)
+I(Xla Xi+1; o 7X’I’L|Y7 X13X27 Ty X’i*l)' (1218)

Since mutual information is always nonnegative, this implies
I(Xi;Xl,"',Xi_l‘Y) :0, (1219)

or X; and (X7, Xo,---,X;_1) are independent conditioning on Y. Therefore,
X1, Xsa, -+, X, are mutually independent conditioning on Y (see the proof of
Theorem 2.39), proving (12.15). Hence, the theorem is proved. 0O
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Theorem 12.4. X1, X, -, X,, are mutually independent conditioning on'Y
if and only if
H(X1, Xo,- -, Xp|V) = Y H(X[Y, X, 5 # ). (12.20)

i=1

Proof. Tt suffices to prove that (12.15) and (12.20) are equivalent. Assume
(12.15) is true, i.e., X1, Xo, -+, X,, are mutually independent conditioning on
Y. Since for all ¢, X; is independent of X, j # ¢ conditioning on Y,

HXJY) = HXY, X;,j # i) (12.21)

Therefore, (12.15) implies (12.20).
Now assume that (12.20) is true. Consider

H(X17X27 e 7Xn‘Y)
n
=Y H(X|Y, X1, Xi1) (12.22)

i=1

(H(X;|Y, X, j #1) + I(Xs; Xig1, -, XYV, X0, -+, X))

|

o
Il
i

(12.23)

HXG|Y, X5, #10) + D I(Xi: Xigr, o XV, X1, Xo).
i=1

I

©
I
—

(12.24)
Then (12.20) implies
S (X Xigr, -, XYV, X1, -, X)) = 0. (12.25)
=1

Since all the terms in the above summation are nonnegative, they must all be
equal to 0. In particular, for ¢ = 1, we have

I(X1; Xz, -, Xa|Y) = 0. (12.26)
By symmetry, it can be shown that
I(Xi X5, #i]Y) =0 (12.27)

for all 1 < ¢ < n. Then this implies (12.15) by the last theorem, completing
the proof. O
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Theorem 12.5. Let C' and Q; be disjoint index sets and W; be a subset of
Q; for 1 < i <k, where k > 2. Assume that there exist at least two i such
that W; 7£ 0. Let XQi = (Xl,l € Ql),l <1 < ]C, and X¢c = (Xl,l € C) be
collections of random variables. If Xg,,1 < i < k, are mutually independent
conditioning on Xc¢, then Xw, such that W; # 0 are mutually independent
conditioning on (Xc, Xg,—w,, 1 <i <k).

We first give an example before we prove the theorem.

Ezample 12.6. Suppose X1, (X2, X3, X4), and (X5, Xg) are mutually indepen-
dent conditioning on X7. By Theorem 12.5, X7, Xo, and (X5, X) are mutually
independent conditioning on (X3, X4, X7).

Proof of Theorem 12.5. Assume Xg,,1 < i < k, are mutually independent
conditioning on X¢, i.e.,

k
H(Xq,1<i<klXc)=) H(Xq|Xc) (12.28)

i=1
Consider

H(XWial <1< k|XC'aXQ1:—W¢71 <1< k)

— H(Xo.,1<i<kXo)— H(Xq, w1 < i< kXc) (12.29)
k
= Z H(XQi [ Xc)
i=1
k
7ZH(XQ@'—W1|X07XQ;—W,~71 <j<i-1) (12.30)

i=1

H(Xq,|Xc,Xq,-w;,1<j<i—1)

M-

k
Y H(Xq,-w.|Xc, Xq, - w,, 1 <j<i—1) (12.31)
=1
k
=Y H(Xw,|Xc, Xq,-w,, 1 <j<i) (12.32)
i=1
k
> > H(Xw,|Xc, Xq,-w,, 1 <j<k). (12.33)

I
—

2

In the second step we have used (12.28), and the two inequalities follow be-
cause conditioning does not increase entropy. On the other hand, by the chain
rule for entropy, we have
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H(Xle <1< k|XC?XQi_Wi71 <1< k)

k
=Y H(Xw,|Xc,(Xq,-w,, 1 <j <k),(Xw, 1 <1<i—1)).
=1
(12.34)
Therefore, it follows from (12.33) that
k
> H(Xw,|Xc, Xq,-w,, 1< j <k) (12.35)
i=1
< H(Xw,,1<i<klXc, Xo,-w,,1<i<k) (12.36)
k
=Y H(Xw,|Xc, (Xq,-w,,1 <j < k), (Xw,, 1 <I<i—1)).
=1
(12.37)

However, since conditioning does not increase entropy, the ¢th term in the
summation in (12.35) is lower bounded by the ith term in the summation in
(12.37). Thus we conclude that the inequality in (12.36) is an equality. Hence,
the conditional entropy in (12.36) is equal to the summation in (12.35), i.e.,

H(Xw,,1<i<klXc,Xq,-w,,1<i<k) (12.38)
k

= ZH(XWJXC,XQJ._WJ., 1<j<k). (12.39)
i=1

The theorem is proved. O

Theorem 12.5 specifies a set of conditional mutual independencies (CMI’s)
which is implied by a CMI. This theorem is crucial for understanding the effect
of a CMI on the structure of the I-Measure p*, which we discuss next.

Lemma 12.7. Let (Zj1,--+,Zit;),1 < i < r be r collections of random vari-
ables, where r > 2, and let Y be a random variable such that (Z;1,- -+, Zy,),
1 <1 < r are mutually independent conditioning on'Y . Then

r o t;
w { () Z;-Y | =0o. (12.40)
i=1j=1

We first prove the following set identity which will be used for proving the
above lemma.

Lemma 12.8. Let S and T be disjoint index sets, and A; and B be sets. Let
u be a set-additive function. Then
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(ﬂAZ)m (4] -B

€S JET

- Z Z (=D)IS"HT (u(Ag — B) + p(Ap — B) — p(Agiur — B)),
S'cST'CT
(12.41)
where Ag: denotes U;cgr A;.

Proof. The right hand side of (12.41) is equal to

S Y )T g - B+ S Y (<) (A — B)

S'CST'CT S'cST'CT
- Z Z VIS (Ao — B). (12.42)
S'cST'CT
Now
Z Z |s [+]T7| ((Ag — B) = Z (,1)|SI\M(AS, — B) Z (,1)|T/|,
S'CST'CT s'cs rer
(12.43)
Since
, IT| 7|
S =y ( ! ) (—1)F =0 (12.44)
T'CT k=0
by the binomial formula', we conclude that
Z Z \S [+IT’ |,u(As' —B)=0. (12.45)
S'cST'CT
Similarly,
Z Z \S [+IT’ l,U(AT’ —B)=0. (12.46)
S'cST'CT

Therefore, (12.41) is equivalent to

i€S jer S’CST’CT
(12.47)
! This can be obtained by letting a = 1 and b = —1 in the binomial formula

T

i3 (1)

k=0
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which can readily be obtained from Theorem 3.19. Hence, the lemma is proved.
O

Proof of Lemma 12.7. We first prove the lemma for r = 2. By Lemma 12.8,
ti

2
2=V | =
i=1 1

Jj=

> X e (Y 2y -y

S/C{1l,--t1} T"C{1,---,t2} jeS’
—I—u* ( U ng - ?) - u* U le U < U ng> -Y . (1248)
keT’ jes’ keT’

The expression in the square bracket is equal to
H(Zyj,j €S'Y)+ H(Zog, k € T'Y)

—H((Z1j,j € 8"),(Zak, k € T)|Y), (12.49)

which vanishes because (Z1;,5 € S’) and (Zog, k € T') are independent con-
ditioning on Y. Therefore the lemma is proved for r = 2.
For r > 2, we write

r ot r

1 t;

7;*
-
D
&
<

|
t*
D

tr
Zij |0 (2| -Y |- (12:50)
i=1j=1 i=1j=1 j=1

Since ((Zi1,-++,Zit;),1 < i < r—1) and (Z,1, -+, Z+,) are independent
conditioning on Y, upon applying the lemma for r = 2, we see that

K ti

w { () Z;-Y | =0o. (12.51)

i=1j=1
The lemma is proved. 0O

Theorem 12.9. Let T and Q;,1 < i < k, be disjoint index sets, where k > 2,
and let Xo, = (Xi,1 € Q;),1 <i <k, and Xy = (X;,1 € T) be collections of
random variables. Then Xq,,1 <1i <k, are mutually independent condition-
ing on Xr if and only if for any Wi, Wa,--- Wy, where W; C @Q;, 1 <1 <k,
if there exist at least two i such that W; # 0, then

k
L) ) X = Xrows@i-way | =0 (12.52)
i=1jeW;
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We first give an example before proving this fundamental result. The
reader should compare this example with Example 12.6.

Ezample 12.10. Suppose X1, (X3, X3, X4), and (X5, Xg) are mutually inde-
pendent conditioning on X7. By Theorem 12.9,

p(X1NXoNXsNXe— (XU X, UX7))=0. (12.53)
However, the theorem does not say, for instance, that
p*(Xo N Xy — (X1 UX3U X5 UXgUXy)) (12.54)
is equal to O.

Proof of Theorem 12.9. We first prove the ‘if’ part. Assume that for any
Wi, Wa, -, Wy, where W; C Q;, 1 < i <k, if there exist at least two i such
that W; # 0, then (12.52) holds. Consider

H(Xq, 1< i< klXr) =" (X 0. — Xr) (12.55)
= w(B), (12.56)
BeS

where S consists of sets of the form

k
ﬂ m Xj _XTU(U§=1(Q1—Wi)) (12.57)
i=1jew;

with W; C Q; for 1 <14 < k and there exists at least one ¢ such that W; # (.
By our assumption, if B € S is such that there exist at least two ¢ for which
W; # 0, then p*(B) = 0. Therefore, if u*(B) is possibly nonzero, then B must
be such that there exists a unique 4 for which W; # (). Now for 1 < i < k, let
S; be the set consisting of sets of the form in (12.57) with W; C Q;, W; # 0,
and W; = () for I # 4. In other words, S; consists of atoms of the form

ﬂ Xj - XTU(UL;éin)U(Qi*Wi) (12'58)
JEW;
with W; C @Q; and W; # (. Then
k
Do (B)=> Y w(B). (12.59)
BeS i=1 BES;

Now
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XQi - XTU(UL;éin)

= U m Xj 7XTU(U1¢1'Q1)U(Q¢—W1') (12'60)
w;c; | \jew;
W, #0

= U B (12.61)
BeS,;

Since p* is set-additive, we have

w (XQL - XTU(UI#in)) = B%; 1 (B). (12.62)

Hence, from (12.56) and (12.59), we have

H(Xo,,1<i<kX7)

k
=> > uw(B) (12.63)

i=1 BES;
k ~ ~

= ZM* (XQ1 - XTU(Uz,;sin)) (1264)
=1
k

= ZH(XQi‘XTaXQHl # 1), (12.65)
=1

where (12.64) follows from (12.62). By Theorem 12.4, X¢,,1 < i < k, are
mutually independent conditioning on Xrp.

We now prove the ‘only if” part. Assume X¢,,1 < 4 < k, are mutually
independent conditioning on Xp. For any collection of sets Wy, W, - W,
where W; C Q;, 1 < ¢ < k, if there exist at least two 4 such that W; # 0,
by Theorem 12.5, Xy ,,1 <7 < k, are mutually independent conditioning on
(X7, Xg,—w;,1 <i<k). By Lemma 12.7, we obtain (12.52). The theorem is
proved. O

12.2 Full Conditional Mutual Independence

Definition 12.11. A conditional mutual independency on X1, Xa, -+, X, is
Sfullif all X1, Xo, -+ -, X, are involved. Such a conditional mutual independency
is called a full conditional mutual independency (FCMI).

Ezample 12.12. For n =5,
X1, X9, X4, and X5 are mutually independent conditioning on X3

is an FCMI. However,
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X;, X9, and X5 are mutually independent conditioning on X3

is not an FCMI because X4 is not involved.

As in the previous chapters, we let
N, =41,2,---,n}. (12.66)

In Theorem 12.9, if
k
TU (U QZ) = N, (12.67)
i=1

then the tuple (T,Q;,1 < i < k) defines the following FCMI on X3, X, - -,
X,

K:Xg,,Xq,, ,Xq, are mutually independent conditioning on Xr.

We will denote K by (T,Q;,1 <i < k).

Definition 12.13. Let K = (T,Q;,1 < i < k) be an FCMI on X;,Xo,- -,
X,. The image of K, denoted by Im(K), is the set of all atoms of F,, which
has the form of the set in (12.57), where W; C Q;, 1 <1 <k, and there exist
at least two i such that W; # (.

Recall from Chapter 3 that A is the set of all nonempty atoms of F,.

Proposition 12.14. Let K = (T,Q1,Q2) be an FCI (full conditional inde-
pendency) on X1, Xs,---, X,,. Then

Im(K)={Ac A: AcC (Xg, NXg, — X7)}. (12.68)

Proposition 12.15. Let K = (T,Q;,1 < i < k) be an FCMI on X1, Xs, -,
X,,. Then

Im(K)=qAeA:Ac |J (Xo NXq, —Xr) 5. (12.69)
1<i<j<k

These two propositions greatly simplify the description of Im(K). Their
proofs are elementary and they are left as an exercise. We first illustrate these
two propositions in the following example.
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Ezample 12.16. Consider n = 4 and FCMI's K; = ({3}, {1},{2,4}) and K, =
(0,{1},{2,3},{4}). Then

Im(K;)={Ae A: AC (X1NXpq4y — X3)} (12.70)
and
Im(Kz) ={A€ A: AC (XiNX{23)U (X3 NXy)U(X1NXy)}. (12.71)
Theorem 12.17. Let K be an FCMI on Xy, Xs, -+, X,. Then K holds if
and only if u*(A) =0 for all A € Im(K).

Proof. First, (12.67) is true if K is an FCMI. Then the set in (12.57) can be
written as

ﬂ X | = Xnpoor wis (12.72)
Jjeur_w;
which is seen to be an atom of F,. The theorem can then be proved by a
direct application of Theorem 12.9 to the FCMI K. 0O

Let A = N,Y; be a nonempty atom of F,,. Define the set
Ua={ieN, :Y; = X¢}. (12.73)

Note that A is uniquely specified by U4 because

A= ( N Xy-) N ( N Xf) = ( N X) - Xy,. (1274
1E€EN,—Ua €U, i€EN,—Ua

Define w(A) = n — |U4| as the weight of the atom A, the number of X; in A

which are not complemented. We now show that an FCMI K = (T,Q;,1 <

i < k) is uniquely specified by Im(K). First, by letting W; = @, for 1 <i <k

in Definition 12.13, we see that the atom

N X |—Xr (12.75)

JEUF_ 1 Q;

is in Im(K), and it is the unique atom in Im(K) with the largest weight.
From this atom, T" can be determined. To determine @Q;,1 <1 < k, we define
a relation ¢ on T° = N,\T as follows. For [,1’ € T, (I,I') is in ¢ if and only if

i)y l=10;o0r
ii) there exists an atom of the form

Xxnxin (Y (12.76)
1<j<n
JALL

in A — Im(K), where Y; = X, or X5.
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Recall that A is the set of nonempty atoms of F,,. The idea of ii) is that
(1,') is in ¢ if and only if [,I' € @Q; for some 1 < ¢ < k. Then ¢ is reflexive
and symmetric by construction, and is transitive by virtue of the structure of
Im(K). In other words, ¢ is an equivalence relation which partitions T into
{Qi,1 < i < k}. Therefore, K and Im(K) uniquely specify each other.

The image of an FCMI K completely characterizes the effect of K on the
I-Measure for X1, X5, -+, X,,. The joint effect of more than one FCMI can
easily be described in terms of the images of the individual FCMTI’s. Let

I={K,1<1<m} (12.77)

be a set of FCMI’s. By Theorem 12.9, K; holds if and only if x* vanishes on
the atoms in Im(K;). Then K;,1 <1 < m hold simultaneously if and only if
p* vanishes on the atoms in UF_, Im(K;). This is summarized as follows.

Definition 12.18. The image of a set of FCMI's I = {K;,1 <1 < m} is
defined as

k
Im(IT) = ] Im(K)). (12.78)
=1

Theorem 12.19. Let II be a set of FCMI’s on X1, Xo,- -, X,. Then II holds
if and only if p*(A) =0 for all A € Im(II).

In probability problems, we are often given a set of conditional indepen-
dencies and we need to see whether another given conditional independency
is logically implied. This is called the implication problem which will be dis-
cussed in detail in Section 13.5. The next theorem renders a solution to this
problem if only FCMTI’s are involved.

Theorem 12.20. Let II7 and I15 be two sets of FCMI’s. Then II; implies 115
if and only if Im(Il2) C Im(I1y).

Proof. We first prove that if Im(Ilz) C Im(Ily), then IT; implies ITo. Assume
Im(Il3) C Im(II;) and IT; holds. Then by Theorem 12.19, u*(A) = 0 for all
A € Im(IT). Since Im(Ils) C Im(IIy), this implies that p*(A) = 0 for all
A € Im(Il3). Again by Theorem 12.19, this implies IT5 also holds. Therefore,
if Im(II3) C Im(I1y), then IT; implies IT5.

We now prove that if II; implies II5, then Im(Ily) C Im(II;). To prove
this, we assume that II; implies ITy but Im(Il2) ¢ Im(II1), and we will show
that this leads to a contradiction. Fix a nonempty atom A € Im(IIy)—Im(II7).
By Theorem 3.11, we can construct random variables X;, Xo,---, X,, such
that p* vanishes on all the atoms of F,, except for A. Then p* vanishes on all
the atoms in Im(I1;) but not on all the atoms in Im(Il). By Theorem 12.19,
this implies that for X1, Xo, -, X,, so constructed, I7; holds but 15 does not
hold. Therefore, I1; does not imply I, which is a contradiction. The theorem
is proved. O
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Remark In the course of proving this theorem and all its preliminaries, we
have used nothing more than the basic inequalities. Therefore, we have shown
that the basic inequalities are a sufficient set of tools to solve the implication
problem if only FCMTI’s are involved.

Corollary 12.21. Two sets of FCMI’s are equivalent if and only if their im-
ages are identical.

Proof. Two set of FCMI’s II; and II5 are equivalent if and only if
Il = IIs and I, = II4. (1279)

Then by the last theorem, this is equivalent to Im(Ilz) C Im(I1;) and Im(II;)
C Im(Il5), i.e., Im(Il3) = Im(II1). The corollary is proved. 0O

Thus a set of FCMI’s is completely characterized by its image. A set of
FCMTI’s is a set of probabilistic constraints, but the characterization by its
image is purely set-theoretic! This characterization offers an intuitive set-
theoretic interpretation of the joint effect of FCMI’s on the I-Measure for
X1, Xs, -+, X,. For example, Im(K1) N Im(K3) is interpreted as the effect
commonly due to K7 and Ko, Im(K;) — Im(K>) is interpreted as the effect
due to K7 but not Ks, etc. We end this section with an example.

Ezample 12.22. Consider n = 4. Let

Ky =(0,{1,2,3},{4}), K,=(0,{1,2,4},{3}) (12.80)
Ks = (0,{1,2},{3,4}), Ki=(0,{1,3},{2,4}) (12.81)
and let Hl = {Kl,KQ} and Hg = {Kg,K4}. Then
Im(ITy) = Im(K,) U Im(K>) (12.82)
and
Im(I1y) = Im(K3) U Im(K}), (12.83)
where
Im(K1) ={A€A:AC (X{123 NXa)} (12.84)
Im(Ky) ={A€A: AC (X{124 NX3)} (12.85)
Im(K3)={A€A:AC (X{12y N X3ay)} (12.86)
Im(K4) = {A eA:AC (X{l 33 N X{2 4})} (12.87)

It can readily be seen by using an information diagram that Im(Il;) C
Im(II5). Therefore, ITs implies I1;. Note that no probabilistic argument is
involved in this proof.
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12.3 Markov Random Field

A Markov random field is a generalization of a discrete time Markov chain in
the sense that the time index for the latter, regarded as a chain, is replaced by
a general graph for the former. Historically, the study of Markov random field
stems from statistical physics. The classical Ising model, which is defined on
a rectangular lattice, was used to explain certain empirically observed facts
about ferromagnetic materials. In this section, we explore the structure of the
I-Measure for a Markov random field.

We refer the reader to textbooks on graph theory (e.g. [45]) for formal
definitions of the graph-theoretic terminologies to be used in the rest of the
chapter. Let G = (V, E) be an undirected graph, where V' is the set of vertices
and F is the set of edges. We assume that there is no loop in G, i.e., there
is no edge in G which connects a vertex to itself. For any (possibly empty)
subset U of V, denote by G\U the graph obtained from G by eliminating all
the vertices in U and all the edges joining a vertex in U.

The connectivity of a graph partitions the graph into subgraphs called
components, i.e., two vertices are in the same component if and only if they are
connected. Let s(U) be the number of distinct components in G\U. Denote the
sets of vertices of these components by Vi (U), V2(U), -, Vi) (U). If s(U) >
1, we say that U is a cutset in G.

Definition 12.23 (Markov Random Field). Let G = (V, E) be an undi-
rected graph with V- =N, = {1,2,---,n}, and let X; be a random variable cor-
responding to vertex i. The random variables X1, Xo, -+, X, form a Markov
random field represented by G if for all cutsets U in G, the sets of random
variables Xv, vy, Xv, vy, >XVS(U)(U) are mutually independent conditioning
on Xy.

This definition of a Markov random field is referred to as the global Markov
property in the literature. If Xq, X5, -+, X, form a Markov random field rep-
resented by a graph G, we also say that X;, X5, -+, X, form a Markov graph
G. When G is a chain, we say that X7, X5, -+, X, form a Markov chain.

In the definition of a Markov random field, each cutset U in G specifies an
FCMI on X1, X5, -, X,,, denoted by [U]. Formally,

(U] Xvy 0y -+ Xv, () are mutually independent conditioning on Xy .
For a collection of cutsets Uy, Us, - --, U in G, we introduce the notation
[U1,Us, -, U] = [Ul] AU A -+ A [Ug] (12.88)

where ‘A’ denotes ‘logical AND.” Using this notation, Xy, Xo,---, X,, form a
Markov graph G if and only if

[UCV:U=#V and s(U) > 1] (12.89)
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Fig. 12.4. The graph G in Example 12.27.

holds. Therefore, a Markov random field is simply a collection of FCMI’s
induced by a graph.

We now define two types of nonempty atoms of F,, with respect to a graph
G. Recall the definition of the set Uy for a nonempty atom A of F,, in (12.73).

Definition 12.24. For a nonempty atom A of Fy, if s(Ua) =1, i.e., G\Ua
is connected, then A is a Type I atom, otherwise A is a Type II atom. The sets
of all Type I and Type II atoms of F,, are denoted by Ty and T5, respectively.

Theorem 12.25. X, Xo,---, X,, form a Markov graph G if and only if pu*
vanishes on all the Type II atoms.

Before we prove this theorem, we first state the following proposition which
is the graph-theoretic analog of Theorem 12.5. The proof is trivial and is omit-
ted. This proposition and Theorem 12.5 together establish an analogy between
the structure of conditional mutual independence and the connectivity of a
graph. This analogy will play a key role in proving Theorem 12.25.

Proposition 12.26. Let C and Q; be disjoint subsets of the vertex set V of
a graph G and W; be a subset of Q; for 1 <i <k, where k > 2. Assume that
there exist at least two i such that W; # 0. If Q;,1 <1 < k, are disconnected in
G\C, then those W; which are nonempty are disconnected in G\(C’UUle(Qi—

Ezample 12.27. In the graph G in Figure 12.4, {1}, {2,3,4}, and {5,6} are
disjoint in G\{7}. Then Proposition 12.26 says that {1}, {2}, and {5,6} are
disjoint in G\{3,4, 7}.

Proof of Theorem 12.25. We note that {Ua, A € A} contains precisely all the
proper subsets of A,,. Thus the set of FCMI’s specified by the graph G can
be written as

[Ug:AeAand s(Us) > 1] (12.90)

(cf. (12.89)). By Theorem 12.19, it suffices to prove that

Im([Uag: A€ Aand s(Uy) > 1)) = To, (12.91)
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where T3 is defined in Definition 12.24.
We first prove that

To CIm([Uas: A€ Aand s(Ua) > 1)). (12.92)

Consider an atom A € Ty. Then s(U,4) > 1. In Definition 12.13, let T' = Uy,
k=5sUa), and Q; = V;(Ua) for 1 <i < s(Uy). By considering W; = V;(Ua)
for 1 <i < s(Ua), we see that A € Im([Ua]). Therefore,

Ty ={Ac A:5(U,) > 1} (12.93)

c U (Ul (12.94)
AcA:s(Ua)>1

=Im([Usa: A€ Aand s(Ua) > 1)). (12.95)

We now prove that
Im([Ug:Ae Aand s(Uas) > 1]) C To. (12.96)

Consider A € Im([Ug : A € A and s(Ug) > 1]). Then there exists A* € A
with s(Ua+) > 1 such that A € Im([Ua~]). From Definition 12.13,

A= N X|- XUA*U(U:;‘{A*)(viwm)—wi))’ (12.97)
jGU:(:[iA*)Wi
where W; C V;(Ua+), 1 <i < s(Ua~), and there exist at least two 4 such that
W; # . Tt follows from (12.97) and the definition of U, that
s(Uax)
Ur=Us-U | (Vi(Ua-) = Wi). (12.98)
i=1
With Uy+ playing the role of C' and V;(U~) playing the role of @Q; in Propo-
sition 12.26, we see by applying the proposition that those (at least two) W;
which are nonempty are disjoint in
s(Uax)
G\ [Ua-U| |J (Vi(Uas)=W)) | | = G\Ua. (12.99)
i=1
This implies s(Ua) > 1, i.e., A € Ty. Therefore, we have proved (12.96), and
hence the theorem is proved. O

Ezxample 12.28. With respect to the graph G in Figure 12.5, the Type II atoms
are
XiNXonX5nXy, XenXonX5nXy, XiNXSNXSNX,, (12.100)

while the other twelve nonempty atoms of F, are Type I atoms. The random
variables X1, Xo, X3, and X, form a Markov graph G if and only if p*(A4) =0
for all Type II atoms A.
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Fig. 12.5. The graph G in Example 12.28.

12.4 Markov Chain

When the graph G representing a Markov random field is a chain, the Markov
random field becomes a Markov chain. In this section, we will show that the
information diagram for a Markov chain can be displayed in two dimensions.
We will also show that the I-Measure p* for a Markov chain is always nonneg-
ative. This characteristic of p* facilitates the use of the information diagram
because if B is seen to be a subset of B’ in the information diagram, then

p*(B') = p*(B) + p*(B' = B) = u*(B). (12.101)

These two properties are not possessed by a general Markov random field.

Without loss of generality, we assume that the Markov chain is represented
by the graph G in Figure 12.6. This corresponds to the Markov chain X; —
Xy — -+ — X,. We first prove the following characterization of a Type I
atom for a Markov chain.

Lemma 12.29. For the Markov chain represented by the graph G in Fig-
ure 12.6, a nonempty atom A of F,, is a Type I atom if and only if

No\Ua = {l,1+1,---,ul}, (12.102)

where 1 <1 < wu < n, i.e., the indices of the set variables in A which are not
complemented are consecutive.

Proof. Tt is easy to see that for a nonempty atom A, if (12.102) is satisfied,
then G\Uj, is connected, i.e., s(U4) = 1. Therefore, A is a Type I atom of F,,.
On the other hand, if (12.102) is not satisfied, then G\Uj, is not connected,
i.e., s(Ua) > 1, or Ais a Type II atom of F,,. The lemma is proved. 0O

We now show how the information diagram for a Markov chain with any
length n > 3 can be constructed in two dimensions. Since p* vanishes on

Fig. 12.6. The graph G representing the Markov chain X; — X — -+ — X,.
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all the Type II atoms of F,,, it is not necessary to display these atoms in
the information diagram. In constructing the information diagram, the re-
gions representing the random variables X, X, -, X,, should overlap with
each other such that the regions corresponding to all the Type II atoms are
empty, while the regions corresponding to all the Type I atoms are nonempty.
Figure 12.7 shows such a construction.

We have already shown that p* is nonnegative for a Markov chain with
length 3 or 4. Toward proving that this is true for any length n > 3, it suffices
to show that p*(A) > 0 for all Type I atoms A of F,, because p*(A) = 0 for
all Type II atoms A of F,. We have seen in Lemma 12.29 that for a Type
I atom A of F,, Ua has the form prescribed in (12.102). Consider any such
atom A. Then an inspection of the information diagram in Figure 12.7 reveals
that

p(A) = (XN X n---N X, — Xu,) (12.103)
= I(Xy; Xu| Xu,) (12.104)
> 0. (12.105)

This shows that p* is always nonnegative. However, since Figure 12.7 involves
an indefinite number of random variables, we give a formal proof of this result
in the following theorem.

Theorem 12.30. For a Markov chain X1 — X9 — --- — X,,, u* s nonneg-
ative.

Proof. Since p*(A) = 0 for all Type IT atoms A of F,, it suffices to show that
p*(A) > 0 for all Type I atoms A of F,,. We have seen in Lemma 12.29 that
for a Type I atom A of F,,, Uu has the form prescribed in (12.102). Consider
any such atom A and define the set

W={l+1--,u—1} (12.106)
Then

I(X; Xu| Xu,)

Fig. 12.7. The information diagram for the Markov chain X; — X3 — -+ — X,,.
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= (XN X, — Xu,) (12.107)

= u ( U (Xl N (ﬂ Xt> NX, — X’UAU(W\S>>> (12.108)
SCW tes
- Z u* (Xl N (ﬂ Xt> NX, — XUAU(W\S)) ) (12.109)

SCwW tes

In the above summation, except for the atom corresponding to S = W, namely
(XinX;1n---NX, — Xy,), all the atoms are Type II atoms. Therefore,

I(XZ;XU‘XUA) = ,U*(Xl n Xl+1 N---NXy,— XUA). (12110)
Hence,
p(A) = p* (XN X n---N X, — Xp,) (12.111)
= I(Xl;Xu|XUA) (12112)
> 0. (12.113)

The theorem is proved. O

Chapter Summary

In the following, A,, = {1,2,---,n} and A is the set of all nonempty atoms
of F,.

Full Conditional Mutual Independency (FCMI): For a partition {7, Q;,
1 < i <k} of Ny, the tuple (T,Q;,1 < i < k) specifies the following FCMI
on X1>X27 ) Xn:

X0.: X0, X, are mutually independent conditioning on Xr.

Image of an FCMI: For an FCMI K = (T,Q;,1 <i < k)on Xy, Xo, -, X,,,

m(K) = {A €A ACUgye;en(Xo N X, — XT)} .

Characterization of an FCMI: An FCMI K on X;, X5, -+, X, holds if
and only if p*(A) =0 for all A € Im(K).

Image of a Set of FCMI’s: For a set of FCMI's IT = {K;,1 <1 < m},
Im(IT) = U, Im(K)).

Characterization of a Set of FCMTI’s: A set of FCMI’s IT on X1, Xo,---, X,
holds if and only if p*(A) =0 for all A € Im(II).
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Set-Theoretic Characterization of FCMI: II; implies I15 if and only if
Im(I) C Im(ILL).

Markov Random Field (Markov Graph): Let G = (V, E) be an undi-
rected graph with V' = N,,, and X; be a random variable corresponding to
vertex i. X1, Xs, -+, X, form a Markov graph G if for all cutsets U in G,
Xviw)s Xva vy, -+ Xv, () are mutually independent conditioning on Xy,
where Vi(U),Vo(U),- -+, Vi) (U) are the components in G\U.

Type I and Type II Atoms: For an atom A = 0?2137;- in A, Uy ={i €
N, :Y; = X¢}. For an undirected graph G = (V, E) with V = N/,,, an atom
A€ Ais Type 1if G\U,4 is connected, otherwise it is Type II.

I-Measure Characterization of Markov Random Field: X1, X5, -+, X,
form a Markov graph G if and only if p* vanishes on all the Type II atoms.

I-Measure for Markov Chain:

1. p* is always nonnegative.
2. The information diagram can be displayed in two dimensions.

Problems

1. Prove Proposition 12.14 and Proposition 12.15.

2. In Example 12.22, it was shown that Il implies IIy. Show that II;
does not imply II5. Hint: Use an information diagram to determine

3. Alternative definition of the global Markov property: For any partition
{U, V1, Va} of V such that the sets of vertices V; and V5 are disconnected
in G\U, the sets of random variables Xy, and Xy, are independent con-
ditioning on Xy.

Show that this definition is equivalent to the global Markov property in
Definition 12.23.

4. The local Markov property: For 1 < ¢ <n, X; and Xy _p,_; are indepen-
dent conditioning on Xy, where V; is the set of neighbors? of vertex ¢ in
G.

a) Show that the global Markov property implies the local Markov prop-
erty.

b) Show that the local Markov property does not imply the global
Markov property by giving a counterexample. Hint: Consider a joint
distribution which is not strictly positive.

2 Vertices 4 and j in an undirected graph are neighbors if ¢ and j are connected by
an edge.
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5. Construct a Markov random field whose I-Measure p* can take negative
values. Hint: Consider a Markov “star.”
6. a) Show that Xy, X9, X3, and X, are mutually independent if and only
if

X1 L (X9, X3, Xy), Xo L (X5, X4)| X1, X3 L Xy|(X1,Xo).

Hint: Use an information diagram.
b) Generalize the result in a) to n random variables.
7. Determine the Markov random field with four random variables X7, Xo,
X3, and X4 which is characterized by the following conditional indepen-
dencies:

(X1, X2, X5) L X4|X3
Xo L (X4, X5)[(X1, X3)
X1 L (X3, X4)|(X2, X5).

What are the other conditional independencies pertaining to this Markov
random field?

Historical Notes

A Markov random field can be regarded as a generalization of a discrete-time
Markov chain. Historically, the study of Markov random field stems from sta-
tistical physics. The classical Ising model, which is defined on a rectangular
lattice, was used to explain certain empirically observed facts about ferromag-
netic materials. The foundation of the theory of Markov random fields can be
found in Preston [296] or Spitzer [343].

The structure of the I-Measure for a Markov chain was first investigated
in the unpublished work of Kawabata [196]. Essentially the same result was
independently obtained by R. W. Yeung eleven years later in the context of
the I-Measure, and the result was eventually published in Kawabata and Ye-
ung [197]. Full conditional independencies were shown to be axiomatizable by
Malvestuto [243]. The results in this chapter are due to Yeung et al. [407],
where they obtained a set-theoretic characterization of full conditional in-
dependencies and investigated the structure of the I-Measure for a Markov
random field. In this paper, they also obtained a hypergraph characterization
of a Markov random field based on the I-Measure characterization in Theo-
rem 12.25. Ge and Ye [131] have applied these results to characterize a class
of graphical models for conditional independence of random variables.
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Information Inequalities

An information expression f refers to a linear combination' of Shannon’s
information measures involving a finite number of random variables. For ex-
ample,

H(X,Y)+2I(X;2) (13.1)

and
I(X;Y)-I(X;Y|2) (13.2)

are information expressions. An information inequality has the form
f=c (13.3)

where the constant c¢ is usually equal to zero. We consider non-strict inequal-
ities only because these are usually the form of inequalities in information
theory. Likewise, an information identity has the form

f=c (13.4)

We point out that an information identity f = c is equivalent to the pair of
information inequalities f > c and f < c.

An information inequality or identity is said to always hold if it holds for
any joint distribution for the random variables involved. For example, we say
that the information inequality

I(X:Y)>0 (13.5)

always holds because it holds for any joint distribution p(z,y). On the other
hand, we say that an information inequality does not always hold if there
exists a joint distribution for which the inequality does not hold. Consider the
information inequality

! More generally, an information expression can be nonlinear, but they do not
appear to be useful in information theory.
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I(X;Y) <o0. (13.6)

Since
I(X;Y)>0 (13.7)

always holds, (13.6) is equivalent to
I(X;Y) =0, (13.8)

which holds if and only if X and Y are independent. In other words, (13.6)
does not hold if X and Y are not independent. Therefore, we say that (13.6)
does not always hold.

As we have seen in the previous chapters, information inequalities are the
major tools for proving converse coding theorems. These inequalities govern
the impossibilities in information theory. More precisely, information inequal-
ities imply that certain things cannot happen. For this reason, they are some-
times referred to as the laws of information theory.

The basic inequalities form the most important set of information inequal-
ities. In fact, almost all the information inequalities known to date are implied
by the basic inequalities. These are called Shannon-type inequalities. On the
other hand, if an information inequality always holds but is not implied by
the basic inequalities, then it is called a non-Shannon-type inequality. We have
not yet explained what it means by that an inequality is or is not implied by
the basic inequalities, but this will become clear later in the chapter.

Let us now rederive the inequality obtained in Example 3.15 (Imperfect
secrecy theorem) without using an information diagram. In this example, three
random variables X,Y, and Z are involved, and the setup of the problem is
equivalent to the constraint

H(X|Y,Z)=0. (13.9)
Then
I(X;Y)
=HX)+HY)-H(X,Y) (13.10)
=HX)+HY)-[H(X,Y,Z)- H(Z|X,Y)] (13.11)
>H(X)+H(Y)-H(X,Y,Z) (13.12)
=HX)+HY)-[H(Z)+ HY|Z)+ HX|Y, Z)] (13.13)
=HX)-H(Z)+1(Y;Z)—- H(X|Y,Z) (13.14)
> H(X)-H(Z), (13.15)
where we have used
H(ZX,Y)>0 (13.16)

in obtaining (13.12), and
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and (13.9) in obtaining (13.15). This derivation is less transparent than the one
we presented in Example 3.15, but the point here is that the final inequality we
obtain in (13.15) can be proved by invoking the basic inequalities (13.16) and
(13.17). In other words, (13.15) is implied by the basic inequalities. Therefore,
it is a (constrained) Shannon-type inequality.

We are motivated to ask the following two questions:

1. How can Shannon-type inequalities be characterized? That is, given an
information inequality, how can we tell whether it is implied by the basic
inequalities?

2. Are there any non-Shannon-type information inequalities?

These two are very fundamental questions in information theory. We point out
that the first question naturally comes before the second question because if
we cannot characterize all Shannon-type inequalities, even if we are given a
non-Shannon-type inequality, we cannot tell that it actually is one.

In this chapter, we develop a geometric framework for information inequal-
ities which enables them to be studied systematically. This framework natu-
rally leads to an answer to the first question, which makes machine-proving
of all Shannon-type inequalities possible. This will be discussed in the next
chapter. The second question will be answered positively in Chapter 15. In
other words, there do exist laws in information theory beyond those laid down
by Shannon.

13.1 The Region I
Let
N, ={1,2,--- n}, (13.18)

where n > 2, and let
O ={X;,i e N} (13.19)

be any collection of n random variables. Associated with © are
E=2"—-1 (13.20)

joint entropies. For example, for n = 3, the 7 joint entropies associated with
random variables X1, X5, and X3 are
H(X1)7 H(X2)7 H(XS)a H(X17 X2)a
H(Xs, X3), H(X1,X3), H(X1, X2, X3). (13.21)
Let 3 denote the set of real numbers. For any nonempty subset o of NV,,,

let
Xo=Xii€aq) (13.22)

and
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Ho(a) = H(X.). (13.23)

For a fixed ©, we can then view Hg as a set function from 2V to R with
Hg (D) = 0, i.e., we adopt the convention that the entropy of an empty set
of random variable is equal to zero. For this reason, we call Hg the entropy
function of ©.

Let H,, be the k-dimensional Euclidean space with the coordinates labeled
by ha,o € 2V\{(}, where h, corresponds to the value of Hg(a) for any
collection @ of n random variables. We will refer to H,, as the entropy space
for n random variables. Then an entropy function Hg can be represented by
a column vector in H,,. On the other hand, a column vector h € H,, is called
entropic if h is equal to the entropy function Hg of some collection © of n
random variables. We are motivated to define the following region in H,:

I'" = {h € H,, : h is entropic}. (13.24)

For convenience, the vectors in I will also be referred to as entropy functions.
As an example, for n = 3, the coordinates of H3 are labeled by

hi, ha, hg, bz, hug, hos, hi2s, (13.25)

where hia3 denotes hyy 3y, etc, and I'y is the region in ‘Hz of all entropy
functions for 3 random variables.

While further characterizations of I'; will be given later, we first point out
a few basic properties of I::

1. I} contains the origin.

2. T the closure of I'*, is convex.

n? n’

3. I’ is in the nonnegative orthant of the entropy space H,,2.

The origin of the entropy space corresponds to the entropy function of n de-
generate random variables taking constant values. Hence, Property 1 follows.
Property 2 will be proved in Chapter 15. Properties 1 and 2 imply that T:;
is a convex cone. Property 3 is true because the coordinates in the entropy
space H,, correspond to joint entropies, which are always nonnegative.

13.2 Information Expressions in Canonical Form

Any Shannon’s information measure other than a joint entropy can be ex-
pressed as a linear combination of joint entropies by application of one of the
following information identities:

H(X|Y)=H(X,Y)- H(Y) (13.26)
I(X;Y) = HX)+ H(Y) - HX,Y) (13.27)
I(X;Y|Z2) = H(X,Z)+ H(Y,Z) — H(X,Y, Z) — H(Z). (13.28)

2 The nonnegative orthant of H" is the region {h € H, : ha > 0 for all o €

2\ (0}).
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The first and the second identity are special cases of the third identity, which
has already been proved in Lemma 3.8. Thus any information expression which
involves n random variables can be expressed as a linear combination of the k
associated joint entropies. We call this the canonical form of an information
expression. When we write an information expression f as f(h), it means that
f is in canonical form. Since an information expression in canonical form is a
linear combination of the joint entropies, it has the form

b'h (13.29)

where b denotes the transpose of a constant column vector b in R*.

The identities in (13.26) to (13.28) provide a way to express every infor-
mation expression in canonical form. However, it is not clear whether such a
canonical form is unique. To illustrate the point, we consider obtaining the
canonical form of H(X|Y') in two ways. First,

H(X|Y) = H(X,Y) - H(Y). (13.30)

Second,
H(X|Y)=HX)-I(X;Y) (13.31)
=HX)-(HY)-H(YI|X)) (13.32)
= H(X) - (H(Y) - H(X,Y) + H(X)) (13.33)
=HX,)Y)-H() (13.34)

Thus it turns out that we can obtain the same canonical form for H(X|Y)
via two different expansions. This is not accidental, as it is implied by the
uniqueness of the canonical form which we will prove shortly.

Recall from the proof of Theorem 3.6 that the vector h represents the
values of the I-Measure p* on the unions in F,,. Moreover, h is related to the
values of p* on the atoms of F,,, represented as u, by

h=C,u (13.35)

where C,, is a unique k x k matrix (cf. (3.27)). We now state the following
lemma which is a rephrase of Theorem 3.11. This lemma is essential for proving
the next theorem which implies the uniqueness of the canonical form.

Lemma 13.1. Let
U ={uecRt:Cuecr;} (13.36)

Then the nonnegative orthant of R* is a subset of .

Theorem 13.2. Let f be an information expression. Then the unconstrained
information identity f = 0 always holds if and only if f is the zero function.
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Proof. Without loss of generality, assume f is in canonical form and let
f(h)=b'h. (13.37)

Assume f = 0 always holds and f is not the zero function, i.e., b # 0. We will
show that this leads to a contradiction.
First, f = 0, or more precisely the set

{heH,:b ' h=0}, (13.38)

is a hyperplane® in the entropy space which has zero Lebesgue measure*. We
claim that I') is contained in the hyperplane f = 0. If this is not true, then
there exists hg € I'Y which is not on f = 0, i.e., f(hg) # 0. Since hy € I},
it corresponds to the entropy function of some joint distribution. This means
that there exists a joint distribution such that f(h) = 0 does not hold, which
is a contradiction to our assumption that f = 0 always holds. This proves our
claim.

If I} has positive Lebesgue measure, it cannot be contained in the hyper-
plane f = 0 which has zero Lebesgue measure. Therefore, it suffices to show
that I has positive Lebesgue measure. To this end, we see from Lemma 13.1
that the nonnegative orthant of H,,, which has positive Lebesgue measure,
is a subset of ¥;. Thus ¥, has positive Lebesgue measure. Since I is an
invertible linear transformation of ¥, its Lebesgue measure is also positive.

Therefore, I is not contained in the hyperplane f = 0, which implies that
there exists a joint distribution for which f = 0 does not hold. This leads to
a contradiction because we have assumed that f = 0 always holds. Hence, we
have proved that if f = 0 always holds, then f must be the zero function.

Conversely, if f is the zero function, then it is trivial that f = 0 always
holds. The theorem is proved. O

Corollary 13.3. The canonical form of an information expression is unique.

Proof. Let f; and fa be canonical forms of an information expression g. Since

g=nh (13.39)
and
g=f2 (13.40)
always hold,
fi—f2=0 (13.41)

always holds. By the above theorem, f; — f5 is the zero function, which implies
that f; and fy are identical. The corollary is proved. 0O

31f b =0, then {heH,: b'h= 0} is equal to Hy.
4 The Lebesque measure can be thought of as “volume” in the Euclidean space if
the reader is not familiar with measure theory.
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Due to the uniqueness of the canonical form of an information expression,
it is an easy matter to check whether for two information expressions f; and
fo the unconstrained information identity

fi=1F (13.42)

always holds. All we need to do is to express f; — f2 in canonical form. Then
(13.42) always holds if and only if all the coefficients are zero.

13.3 A Geometrical Framework

In the last section, we have seen the role of the region I in proving un-
constrained information identities. In this section, we explain the geometrical
meanings of unconstrained information inequalities, constrained information
inequalities, and constrained information identities in terms of Ir. Without
loss of generality, we assume that all information expressions are in canonical
form.

13.3.1 Unconstrained Inequalities

Consider an unconstrained information inequality f > 0, where f(h) = b"h.
Then f > 0 corresponds to the set

{heH,:b"h>0} (13.43)

which is a half-space in the entropy space H,, containing the origin. Specif-
ically, for any h € H,, f(h) > 0 if and only if h belongs to this set. For
simplicity, we will refer to this set as the half-space f > 0. As an example, for
n = 2, the information inequality

written as
hi1 4+ hy — h1s >0, (13.45)

corresponds to the half-space
{h € Hyp:hi+ ho — hig > 0} (1346)

in the entropy space Hs.

Since an information inequality always holds if and only if it is satisfied
by the entropy function of any joint distribution for the random variables
involved, we have the following geometrical interpretation of an information
inequality:

f > 0 always holds if and only if I'¥ C {h € H,, : f(h) > 0}.
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/

Fig. 13.1. An illustration for f > 0 always holds.

This gives a complete characterization of all unconstrained inequalities in
terms of Iy. If I'¥ is known, we in principle can determine whether any infor-
mation inequality involving n random variables always holds.

The two possible cases for f > 0 are illustrated in Figure 13.1 and Fig-
ure 13.2. In Figure 13.1, I') is completely included in the half-space f > 0,
so f > 0 always holds. In Figure 13.2, there exists a vector hy € I') such that
f(hp) < 0. Thus the inequality f > 0 does not always hold.

13.3.2 Constrained Inequalities

In information theory, we very often deal with information inequalities (iden-
tities) with certain constraints on the joint distribution for the random vari-
ables involved. These are called constrained information inequalities (identi-
ties), and the constraints on the joint distribution can usually be expressed
as linear constraints on the entropies. The following are such examples:

N

Fig. 13.2. An illustration for f > 0 not always holds.
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=0

N

TN @

Fig. 13.3. An illustration for f > 0 always holds under the constraint &.

1. X;, X5, and X3 are mutually independent if and only if H(X1, X5, X3) =
H(X1)+ H(X2) + H(X3).
2. X, X5, and X3 are pairwise independent if and only if I(X;; X5) =
I(XQ,Xg) = I(Xl,Xg) =0.
. X is a function of X5 if and only if H(X;|Xs) =0.
4. X1 — X9 — X3 — X4 forms a Markov chain if and only if T(X7; X5|X5)
=0 and I(Xl, XQ; X4‘X3) =0.

w

Suppose there are ¢ linear constraints on the entropies given by
@Qh =0, (13.47)

where @ is a ¢ X k matrix. Here we do not assume that the ¢ constraints are
linearly independent, so @ is not necessarily full rank. Let

& ={hcH,:Qh=0}. (13.48)

In other words, the ¢ constraints confine h to a linear subspace @ in the
entropy space. Parallel to our discussion on unconstrained inequalities, we
have the following geometrical interpretation of a constrained inequality:

Under the constraint @, f > 0 always holds if and only if (I N @) C
{heH,: f(h) >0}

This gives a complete characterization of all constrained inequalities in terms
of I'y. Note that ¢ = H,, when there is no constraint on the entropies. In this
sense, an unconstrained inequality is a special case of a constrained inequality.

The two cases of f > 0 under the constraint @ are illustrated in Figure 13.3
and Figure 13.4. Figure 13.3 shows the case when f > 0 always holds under
the constraint @¢. Note that f > 0 may or may not always hold when there is
no constraint. Figure 13.4 shows the case when f > 0 does not always hold
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% N ®

Fig. 13.4. An illustration for f > 0 not always holds under the constraint @.

under the constraint @. In this case, f > 0 also does not always hold when
there is no constraint, because

(I'*N®) ¢ {h € Hy,: f(h) >0} (13.49)

implies

I ¢ {heH,: f(h) >0} (13.50)

13.3.3 Constrained Identities
As we have pointed out at the beginning of the chapter, an identity
f=0 (13.51)

always holds if and only if both the inequalities f > 0 and f < 0 always hold.
Then following our discussion on constrained inequalities, we have

Under the constraint ¢, f = 0 always holds if and only if (I} N ) C
{heH,: f(h)>0}n{heH,: f(h) <0},

or

Under the constraint @, f = 0 always holds if and only if (I N®) C
{heH,: f(h)=0}.

This condition says that the intersection of I¥ and & is contained in the
hyperplane f = 0.
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13.4 Equivalence of Constrained Inequalities

When there is no constraint on the entropies, two information inequalities
b'h>0 (13.52)

and
c'h>0 (13.53)

are equivalent if and only if ¢ = ab, where a is a positive constant. However,
this is not the case under a non-trivial constraint & # H,,. This situation is
illustrated in Figure 13.5. In this figure, although the inequalities in (13.52)
and (13.53) correspond to different half-spaces in the entropy space, they
actually impose the same constraint on h when h is confined to @.

In this section, we present a characterization of (13.52) and (13.53) being
equivalent under a set of linear constraint @. The reader may skip this section
at the first reading.

Let r be the rank of @ in (13.47). Since h is in the null space of Q, we can
write

h = Qh’, (13.54)

where Q is a k x (k — ) matrix such that the rows of QT form a basis of the
orthogonal complement of the row space of @, and h’ is a column (k — r)-
vector. Then using (13.54), (13.52) and (13.53) can be written as

b"Qh’' >0 (13.55)

and R
c'Qh’ >0, (13.56)

respectively in terms of the set of basis given by the columns of Q. Then
(13.55) and (13.56) are equivalent if and only if

c'Q=ab’Q, (13.57)

where a is a positive constant, or

¢'h>0 -
b'h>0

Fig. 13.5. Equivalence of b"h >0 and ¢ h > 0 under the constraint @.
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(c—ab)'Q =0. (13.58)

In other words, (c —ab) T is in the orthogonal complement of the row space
of QT, ie., (c —ab)T is in the row space of Q. Let Q' be any r x k matrix
such that @’ and @ have the same row space. (@ can be taken as Q' if Q is
full rank.) Since the rank of @ is r and @’ has r rows, the rows of ' form a
basis for the row space of @, and Q' is full rank. Then from (13.58), (13.55)
and (13.56) are equivalent under the constraint @ if and only if

c=ab+(Q)e (13.59)

for some positive constant a and some column r-vector e.

Suppose for given b and ¢, we want to see whether (13.55) and (13.56) are
equivalent under the constraint @. We first consider the case when either b
or ¢! is in the row space of Q. This is actually not an interesting case because

if bT, for example, is in the row space of @, then
b'Q=0 (13.60)

in (13.55), which means that (13.55) imposes no additional constraint under
the constraint .

Theorem 13.4. If either bT or c¢' is in the row space of Q, then b"h > 0
and c"h > 0 are equivalent under the constraint ® if and only if both bT and
c' are in the row space of Q.

The proof of this theorem is left as an exercise. We now turn to the more
interesting case when neither b" nor ¢! is in the row space of Q. The following
theorem gives an explicit condition for (13.55) and (13.56) to be equivalent
under the constraint @.

Theorem 13.5. If neither b” norc' is in the row space of Q, then b h > 0
and ¢"h > 0 are equivalent under the constraint @ if and only if

[(@)" b] {2} =c. (13.61)

has a unique solution with a > 0, where Q' is any full-rank matriz such that
Q' and Q have the same row space.

Proof. For b" and ¢' not in the row space of @, we want to see when we
can find unknowns a and e satisfying (13.59) with a > 0. To this end, we
write (13.59) in matrix form as (13.61). Since b is not in the column space of
(@) and (Q)" is full rank, [ (Q')" b | is also full rank. Then (13.61) has
either a unique solution or no solution. Therefore, the necessary and sufficient
condition for (13.55) and (13.56) to be equivalent is that (13.61) has a unique
solution and a > 0. The theorem is proved. 0O
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Ezample 13.6. Consider three random variables X, X5, and X3 with the
Markov constraint
I(X1; X5/ X2) =0, (13.62)

which is equivalent to
H(X1,X5)+ H(X2,X3) — H(X1,Xs,X3) — H(X3) =0. (13.63)

In terms of the coordinates in the entropy space Hs, this constraint is written
as

Qh =0, (13.64)
where
Q=[0-10110-1] (13.65)
and
h = [y hy by hug hag bag hiss]" (13.66)

We now show that under the constraint in (13.64), the inequalities
H(X1|X3) — H(X1]X2) =2 0 (13.67)
and
I(X1; X[ X3) 20 (13.68)

are in fact equivalent. Toward this end, we write (13.67) and (13.68) asb"h >
0 and ¢ "h > 0, respectively, where

b=[01-1-1010]" (13.69)
and

c=[00-1011-1]". (13.70)
Since @ is full rank, we may take Q' = ). Upon solving

T el _
[Q" b] [a] =c, (13.71)
we obtain the unique solution ¢ =1 > 0 and e = 1 (e is a 1 x 1 matrix).

Therefore, (13.67) and (13.68) are equivalent under the constraint in (13.64).

T

Under the constraint @, if neither b" nor ¢’ is in the row space of Q, it

can be shown that the identities
b'h=0 (13.72)

and
c'h=0 (13.73)

are equivalent if and only if (13.61) has a unique solution. We leave the proof
as an exercise.
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13.5 The Implication Problem of Conditional
Independence

We use X, L Xj3|X, to denote the conditional independency (CI)
X, and Xz are conditionally independent given X,.
We have proved in Theorem 2.34 that X, 1 Xg|X,, is equivalent to
I(Xa; X5 X4) =0. (13.74)

When v =0, X, L Xg|X, becomes an unconditional independency which we
regard as a special case of a conditional independency. When o = 3, (13.74)
becomes

H(X.|Xy) =0, (13.75)

which we see from Proposition 2.36 that X, is a function of X,,. For this
reason, we also regard functional dependency as a special case of conditional
independency.

In probability problems, we are often given a set of CI’s and we need to
determine whether another given CI is logically implied. This is called the
implication problem, which is one of the most basic problems in probability
theory. We have seen in Section 12.2 that the implication problem has a
solution if only full conditional mutual independencies are involved. However,
the general problem is extremely difficult, and it has been solved only up to
four random variables [256].

We end this section by explaining the relation between the implication
problem and the region I';;. A CI involving random variables X, Xs,---, X,
has the form

Xo L X35|X,, (13.76)

where a, 3,7 C N,,. Since I(Xq; Xg|X,) = 0 is equivalent to
H(Xouy) + H(Xpuy) — H(Xaupuy) — H(X,) =0, (13.77)
Xo L X3|X, corresponds to the hyperplane
{h € H,, : hauy + hpuy — haupuy — hy = 0} (13.78)

For a CI K, we denote the hyperplane in H,, corresponding to K by £(K).
Let IT = {K;} be a collection of CI's, and we want to determine whether
1T implies a given CI K. This would be the case if and only if the following is
true:
For all h € I';, if h € [|€(K)), then h € £(K).
l

Equivalently,
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IT implies K if and only if (ﬂ S(Kl)> NIy cé(K).
l
Therefore, the implication problem can be solved if I')’ can be characterized.
Hence, the region I is not only of fundamental importance in information
theory, but is also of fundamental importance in probability theory.

Chapter Summary

Entropy Space: The entropy space H, is the (2" — 1)-dimensional Eu-
clidean space with the coordinates labeled by ho, a € 2N=\{()}, where
Nn:{1527"'5n}'

The Region I is the subset of H,, of all entropy functions for n discrete
random variables.

Basic Properties of I'):

1. I} contains the origin.

_ .
2. I',,, the closure of I}, is convex.

3. I} is in the nonnegative orthant of the entropy space H,,.

Canonical Form of an Information Expression: Any information ex-
pression can be expressed as a linear combination of joint entropies, called the
canonical form. The canonical form of an information expression is unique.

Unconstrained Information Identities: b"h = 0 always holds if and only
if b=0.

Unconstrained Information Inequalities: b'h > 0 always holds if and
only if I c {h € H,, : b "h > 0}.

Constrained Information Inequalities: Under the constraint & = {h €
H, : Qh = 0}, b"h > 0 always holds if and only if (I N®) C {h € H, :
b"h > 0}.

Equivalence of Constrained Inequalities (Identities): Under the con-
straint ® = {h € H, : Qh = 0}, b’Th > 0and c'h > 0 (b"h = 0 and
c¢"h = 0) are equivalent if and only if one of the following holds:

1. Both bT and ¢' are in the row space of Q.

2. Neither b" nor ¢ is in the row space of @, and

[(@)" b] H =c

a

has a unique solution with a > 0 (has a unique solution), where Q' is any
full-rank matrix such that Q' and @ have the same row space.
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Problems

Symmetrical information expressions An information expression is said
to be symmetrical if it is identical under every permutation of the
random variables involved. However, sometimes a symmetrical informa-
tion expression cannot be readily recognized symbolically. For example,
I(X7; Xo) — I(X1; X5| X3) is symmetrical in X1, X5, and X3 but it is not
symmetrical symbolically. Devise a general method for recognizing sym-
metrical information expressions.

The canonical form of an information expression is unique when there is
no constraint on the random variables involved. Show by an example that
this does not hold when certain constraints are imposed on the random
variables involved.

Alternative canonical form Denote NieqX; by X¢ and let

C ={Xg: G is a nonempty subset of N, } .

a) Prove that a signed measure p on F,, is completely specified by {u(C),
C € C}, which can be any set of real numbers.

b) Prove that an information expression involving X7, X, - -+, X, can be
expressed uniquely as a linear combination of /L*(Xg), where G are
nonempty subsets of A,,.

Uniqueness of the canonical form for nonlinear information expressions

Consider a function f : % — R, where k = 2" — 1 such that {h € R* :

f(h) = 0} has zero Lebesgue measure.

a) Prove that f cannot be identically zero on I.

b) Use the result in a) to show the uniqueness of the canonical form for
the class of information expressions of the form g(h) where g is a
polynomial.

(Yeung [401].)

Prove that under the constraint Qh = 0, if neither b" nor ¢’ is in the

row space of @, the identities b"h = 0 and ¢"h = 0 are equivalent if and

only if (13.61) has a unique solution.

Historical Notes

The uniqueness of the canonical form for linear information expressions was
first proved by Han [146]. The same result was independently obtained in
the book by Csiszdr and Korner [84]. The geometrical framework for infor-
mation inequalities is due to Yeung [401]. The characterization of equivalent
constrained inequalities in Section 13.4 first appeared in the book by Yeung
[402].
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Shannon-Type Inequalities

The basic inequalities form the most important set of information inequali-
ties. In fact, almost all the information inequalities known to date are implied
by the basic inequalities. These are called Shannon-type inequalities. In this
chapter, we show that verification of Shannon-type inequalities can be formu-
lated as a linear programming problem, thus enabling machine-proving of all
such inequalities.

14.1 The Elemental Inequalities

Consider the conditional mutual information
I(X,)Y;X,Z,U|Z,T), (14.1)

in which the random variables X and Z appear more than once. It is readily
seen that I(X,Y; X, Z,U|Z,T) can be written as

H(X|Z,T)+1(Y;U|X, Z,T), (14.2)

where in both H(X|Z,T) and I(Y;U|X, Z,T), each random variable appears
only once.

A Shannon’s information measure is said to be reducible if there exists a
random variable which appears more than once in the information measure,
otherwise the information measure is said to be irreducible. Without loss of
generality, we will consider irreducible Shannon’s information measures only,
because a reducible Shannon’s information measure can always be written as
the sum of irreducible Shannon’s information measures.

The nonnegativity of all Shannon’s information measures form a set of
inequalities called the basic inequalities. The set of basic inequalities, however,
is not minimal in the sense that some basic inequalities are implied by the
others. For example,

H(X|Y)>0 (14.3)
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and
I(X:Y) >0, (14.4)

which are both basic inequalities involving random variables X and Y, imply
HX)=HX|Y)+I(X;Y) >0, (14.5)

again a basic inequality involving X and Y.

Let N,, = {1,2,---,n}, where n > 2. Unless otherwise specified, all infor-
mation expressions in this chapter involve some or all of the random variables
X1,Xs, -+, X,. The value of n will be specified when necessary. Through
application of the identities

H(X)=H(X|Y)+ I(X;Y) (14.6)
H(X,Y)=H(X)+ H(Y|X) (14.7)
I(X:Y,2) = I(X;Y) + I(X; Z|Y) (14.8)
H(X|Z) = H(X|Y,Z)+ I(X;Y|Z) (14.9)
H(X,Y|Z)=H(X|2)+ H(Y|X, Z) (14.10)
I(X:Y, Z|T) = I(X;Y|T) + I(X; Z|Y, T), (14.11)

any Shannon’s information measure can be expressed as the sum of Shannon’s
information measures of the following two elemental forms:

1) H(X;|Xn,—giy): i € Na
i) I(X;; X;|Xk), where i # j and K C N, — {3,j}.
This will be illustrated in the next example. It is not difficult to check that the

total number of the two elemental forms of Shannon’s information measures
for n random variables is equal to

m=n-+ (Z) 2n=2, (14.12)

The proof of (14.12) is left as an exercise.

Ezample 14.1. We can expand H (X7, X3) into a sum of elemental forms of
Shannon’s information measures for n = 3 by applying the identities in (14.6)
to (14.11) as follows:

H(X,,Xs)
= H(Xy) + H(X[Xy) (14.13)
— H(X1|Xa, X3) + I(X1: X2, X3) + H(Xs| X1, X3)

+1(X2; X3 X1) (14.14)

- H(Xl‘X%Xg) + I(Xl;XQ) + I(Xl,Xs‘XQ)
+H (X2 X1, X3) 4 I(Xa; X3/ X1). (14.15)
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The nonnegativity of the two elemental forms of Shannon’s information
measures form a proper subset of the set of basic inequalities. We call the
m inequalities in this smaller set the elemental inequalities. They are equiv-
alent to the basic inequalities because each basic inequality which is not an
elemental inequality can be obtained as the sum of a set of elemental inequal-
ities in view of (14.6) to (14.11). This will be illustrated in the next example.
The proof for the minimality of the set of elemental inequalities is deferred to
Section 14.6.

Ezample 14.2. In the last example, we expressed H (X1, X2) as

H(X1| X2, X3) + I(X1; Xo) + I(X1; X5]X5)
H(X2| X1, X3) + I(X2; X3]X1). (14.16)

All the five Shannon’s information measures in the above expression are in
elemental form for n = 3. Then the basic inequality

H(X1,X3) >0 (14.17)

can be obtained as the sum of the following elemental inequalities:

H(X1|Xs, X3) >0 (14.18)
I(X1; X5) > (14.19)
I(X1: X3/ X2) > 0 (14.20)
H(X5|X1,X3) >0 (14.21)
I(X2: X3X1) > 0 (14.22)

14.2 A Linear Programming Approach

Recall from Section 13.2 that any information expression can be expressed
uniquely in canonical form, i.e., a linear combination of the kK = 2™ — 1 joint
entropies involving some or all of the random variables Xi, Xo,---, X,,. If
the elemental inequalities are expressed in canonical form, they become linear
inequalities in the entropy space H.,,. Denote this set of inequalities by Gh > 0,
where G is an m X k matrix, and define

I, ={he™H,:Gh>0} (14.23)

We first show that I3, is a pyramid in the nonnegative orthant of the
entropy space H,. Evidently, I, contains the origin. Let e;,1 < j < k, be
the column k-vector whose jth component is equal to 1 and all the other
components are equal to 0. Then the inequality

e,h>0 (14.24)
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corresponds to the nonnegativity of a joint entropy, which is a basic inequal-
ity. Since the set of elemental inequalities is equivalent to the set of basic
inequalities, if h € I',, i.e., h satisfies all the elemental inequalities, then h
also satisfies the basic inequality in (14.24). In other words,

Ic{heH,:e/h>0} (14.25)

for all 1 < j < k. This implies that I, is in the nonnegative orthant of the
entropy space. Since I, contains the origin and the constraints Gh > 0 are
linear, we conclude that I, is a pyramid in the nonnegative orthant of H,,.
Since the elemental inequalities are satisfied by the entropy function of
any n random variables X, Xs,---, X,,, for any hin I}, h is also in I}, i.e.,

rrcr,. (14.26)
Therefore, for any unconstrained inequality f > 0, if
Inc{heH,: f(h) >0} (14.27)

then
Irc{heH,: f(h)>0} (14.28)

i.e., f > 0 always holds. In other words, (14.27) is a sufficient condition for
f > 0 to always hold. Moreover, an inequality f > 0 such that (14.27) is
satisfied is implied by the basic inequalities, because if h satisfies the basic
inequalities, i.e., h € I},, then h satisfies f(h) > 0.

For constrained inequalities, following our discussion in Section 13.3, we
impose the constraint

Qh=0 (14.29)
and let
& ={heH,: Qh=0}. (14.30)
For an inequality f > 0, if
(Ihyn®)c{heH,: f(h)>0} (14.31)
then by (14.26),
(Iynd)c{heH,: f(h) >0}, (14.32)

ie., f > 0 always holds under the constraint @. In other words, (14.31) is a
sufficient condition for f > 0 to always hold under the constraint ¢. Moreover,
an inequality f > 0 under the constraint @ such that (14.31) is satisfied is
implied by the basic inequalities and the constraint @, because if h € ¢ and
h satisfies the basic inequalities, i.e., h € I, N @, then h satisfies f(h) > 0.
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14.2.1 Unconstrained Inequalities

To check whether an unconstrained inequality b"h > 0 is a Shannon-type
inequality, we need to check whether I, is a subset of {h € H,, : bTh > 0}.
The following theorem induces a computational procedure for this purpose.

Theorem 14.3. b"h > 0 is a Shannon-type inequality if and only if the
minimum of the problem

Minimize bTh, subject to Gh > 0 (14.33)
is zero. In this case, the minimum occurs at the origin.

Remark The idea of this theorem is illustrated in Figure 14.1 and Fig-
ure 14.2. In Figure 14.1, I}, is contained in {h € H,, : b"h > 0}. The min-
imum of bTh subject to I, occurs at the origin with the minimum equal to
0. In Figure 14.2, I, is not contained in {h € H,, : bTh > 0}. The minimum
of b™h subject to I}, is —oo. A formal proof of the theorem is given next.

Proof of Theorem 14.3. We have to prove that I3, is a subset of {h € H,, :
b"h > 0} if and only if the minimum of the problem in (14.33) is zero. First
of all, since 0 € I, and b"0 = 0 for any b, the minimum of the problem in
(14.33) is at most 0. Assume I}, is a subset of {h € H,, : b"h > 0} and the
minimum of the problem in (14.33) is negative. Then there exists h € I, such
that

b'h <0, (14.34)

which implies
I,¢{heH,:b"h>0}, (14.35)

a contradiction. Therefore, if I}, is a subset of {h € H,, : bTh > 0}, then the
minimum of the problem in (14.33) is zero.

b'h>0 [}

/

Fig. 14.1. I, is contained in {h € H,, : b"h > 0}.
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b"h>0

AN

Fig. 14.2. I, is not contained in {h € H,, : b"h > 0}.

To prove the converse, assume I, is not a subset of {h € H,, : b"h > 0},
i.e., (14.35) is true. Then there exists h € I, such that

b h<0. (14.36)

This implies that the minimum of the problem in (14.33) is negative, i.e., it
is not equal to zero.

Finally, if the minimum of the problem in (14.33) is zero, since the I,
contains the origin and b0 = 0, the minimum occurs at the origin. O

By virtue of this theorem, to check whether bTh > 0 is an unconstrained
Shannon-type inequality, all we need to do is to apply the optimality test
of the simplex method [91] to check whether the point h = 0 is optimal for
the minimization problem in (14.33). Then b'h > 0 is an unconstrained
Shannon-type inequality if and only if h = 0 is optimal.

14.2.2 Constrained Inequalities and Identities

To check whether an inequality b h > 0 under the constraint @ is a Shannon-
type inequality, we need to check whether I, N @ is a subset of {h € H,, :
b"h > 0}.

Theorem 14.4. b"h > 0 is a Shannon-type inequality under the constraint
@ if and only if the minimum of the problem

Minimize b™h, subject to Gh >0 and Qh =0 (14.37)
is zero. In this case, the minimum occurs at the origin.

The proof of this theorem is similar to that for Theorem 14.3, so it is
omitted. By taking advantage of the linear structure of the constraint @, we
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can reformulate the minimization problem in (14.37) as follows. Let r be the
rank of @. Since h is in the null space of @), we can write

h = Qh/, (14.38)

where Q is a k x (k —r) matrix such that the rows of QT form a basis of the
orthogonal complement of the row space of @, and h’ is a column (k — 7)-
vector. Then the elemental inequalities can be expressed as

GQn' >0, (14.39)
and in terms of h’, I',, becomes
I = {n e R~ . GQNW > 0}, (14.40)

which is a pyramid in ®*~" (but not necessarily in the nonnegative orthant).
Likewise, b"h can be expressed as bTQh’ .
With all the information expressions in terms of h’; the problem in (14.37)
becomes
Minimize b Qh’, subject to GQh' > 0. (14.41)

Therefore, to check whether b™h > 0 is a Shannon-type inequality under the
constraint @, all we need to do is to apply the optimality test of the simplex
method to check whether the point h’ = 0 is optimal for the problem in
(14.41). Then b"h > 0 is a Shannon-type inequality under the constraint @
if and only if h’ = 0 is optimal.

By imposing the constraint @, the number of elemental inequalities remains
the same, while the dimension of the problem decreases from k to k — r.

Finally, to verify that b"h = 0 is a Shannon-type identity under the
constraint @, i.e., b'h = 0 is implied by the basic inequalities, all we need to
do is to verify that both bTh > 0 and b"h < 0 are Shannon-type inequalities
under the constraint @.

14.3 A Duality

A nonnegative linear combination is a linear combination whose coefficients
are all nonnegative. It is clear that a nonnegative linear combination of basic
inequalities is a Shannon-type inequality. However, it is not clear that all
Shannon-type inequalities are of this form. By applying the duality theorem
in linear programming [336], we will see that this is in fact the case.

The dual of the primal linear programming problem in (14.33) is

Maximize y " - 0 subject toy >0 andy 'G <b', (14.42)

where
y=1[v1 - yml". (14.43)
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By the duality theorem, if the minimum of the primal problem is zero, which
happens when b'h > 0 is a Shannon-type inequality, the maximum of the
dual problem is also zero. Since the cost function in the dual problem is zero,
the maximum of the dual problem is zero if and only if the feasible region

T={yecR":y>0andy G<b'} (14.44)
is nonempty.

Theorem 14.5. b"h > 0 is a Shannon-type inequality if and only if b7 =
x ' G for some x > 0, where X is a column m-vector, i.e., b' is a nonnegative
linear combination of the rows of G.

Proof. We have to prove that ¥ is nonempty if and only if b" = x"G for
some x > (0. The feasible region ¥ is nonempty if and only if

b'>z'G (14.45)

for some z > 0, where z is a column m-vector. Consider any z which satisfies
(14.45), and let
s'=b" —2'G>0. (14.46)

Denote by e; the column k-vector whose jth component is equal to 1 and all

the other components are equal to 0, 1 < 5 < k. Then ejTh is a joint entropy.

Since every joint entropy can be expressed as the sum of elemental forms of
T

Shannon’s information measures, e; can be expressed as a nonnegative linear

combination of the rows of G. Write
s=/[s1 592" sk]T, (14.47)

where s; > 0 for all 1 < j < k. Then

s' = Z sjejT (14.48)

j=1

can also be expressed as a nonnegative linear combinations of the rows of G,
i.e.,
s'=w'G (14.49)

for some w > 0. From (14.46), we see that
b'=w'+2")G=x"3G, (14.50)
where x > 0. The proof is accomplished. 0O

From this theorem, we see that all Shannon-type inequalities are actually triv-
ially implied by the basic inequalities! However, the verification of a Shannon-
type inequality requires a computational procedure as described in the last
section.
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14.4 Machine Proving — ITIP

Theorems 14.3 and 14.4 transform the problem of verifying a Shannon-type
inequality into a linear programming problem. This enables machine-proving
of all Shannon-type inequalities. A software package called ITIP! has been
developed for this purpose. The most updated versions of ITIP can be down-
loaded from the World Wide Web [409].

Using ITIP is very simple and intuitive. The following examples illustrate
the use of ITIP:

1. >> ITIPC’H(XYZ) <= H(X) + H(Y) + H(Z)’)
True
2. >> ITIP(C°I(X;Z) = 0°,°I(X;Z1Y) = 0°,°I(X;Y) = 0%)
True
3. > ITIP(°I(Z;U) - I(Z;UIX) - I(Z;UlY) <=
0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)
Not provable by ITIP

In the first example, we prove an unconstrained inequality. In the second
example, we prove that X and Z are independent if X — Y — Z forms a
Markov chain and X and Y are independent. The first identity is what we want
to prove, while the second and the third expressions specify the Markov chain
X — Y — Z and the independency of X and Y, respectively. In the third
example, ITIP returns the clause “Not provable by ITIP,” which means that
the inequality is not a Shannon-type inequality. This, however, does not mean
that the inequality to be proved cannot always hold. In fact, this inequality
is one of the known non-Shannon-type inequalities which will be discussed in
Chapter 15.

We note that most of the results we have previously obtained by using
information diagrams can also be proved by ITIP. However, the advantage
of using information diagrams is that one can visualize the structure of the
problem. Therefore, the use of information diagrams and ITIP very often
complement each other. In the rest of the section, we give a few examples
which demonstrate the use of ITTP.

FEzxample 14.6. By Proposition 2.10, the long Markov chain X - Y — Z — T
implies the two short Markov chains X — Y — Z and Y — Z — T. We
want to see whether the two short Markov chains also imply the long Markov

chain. If so, they are equivalent to each other.
Using ITIP, we have

>> ITIPC’X/Y/Z/T’, *X/Y/Z°, *Y/Z/T’)
Not provable by ITIP

L ITIP stands for Information- Theoretic Inequality Prover.
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X Z

<

Fig. 14.3. The information diagram for X, Y, Z, and T in Example 14.6.

In the above, we have used a macro in ITIP to specify the three Markov
chains. The above result from ITIP says that the long Markov chain cannot
be proved from the two short Markov chains by means of the basic inequalities.
This strongly suggests that the two short Markov chains is weaker than the
long Markov chain. However, in order to prove that this is in fact the case, we
need an explicit construction of a joint distribution for X, Y, Z, and T which
satisfies the two short Markov chains but not the long Markov chain. Toward
this end, we resort to the information diagram in Figure 14.3. The Markov
chain X — Y — Z is equivalent to I(X; Z|Y) =0, i.e.,

p(XNYNZNT)+p*(XNY°NZNnTe) =0. (14.51)
Similarly, the Markov chain Y — Z — T is equivalent to
p(XNYNZeNT)+p*(XNYNZenT) =0. (14.52)

The four atoms involved in the constraints (14.51) and (14.52) are marked by
a dagger in Figure 14.3. In Section 3.5, we have seen that the Markov chain
X =Y — Z — T holds if and only if u* takes zero value on the set of atoms
in Figure 14.4 which are marked with an asterisk?. Comparing Figure 14.3
and Figure 14.4, we see that the only atom marked in Figure 14.4 but not
in Figure 14.3 is X N Y¢N Z°NT. Thus if we can construct a w* such that
it takes zero value on all the atoms except for XNYenZenT, then the
corresponding joint distribution satisfies the two short Markov chains but not
the long Markov chain. This would show that the two short Markov chains
are in fact weaker than the long Markov chain. Following Theorem 3.11, such
a p* can be constructed.

In fact, the required joint distribution can be obtained by simply letting
X =T = U, where U is any random variable such that H(U) > 0, and letting

2 This information diagram is essentially a reproduction of Figure 3.8.
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Y

Fig. 14.4. The atoms of F4 on which p* vanishes when X — Y — Z — T forms a
Markov chain.

Y and Z be degenerate random variables taking constant values. Then it is
easytoseethat X - Y - ZandY — Z — T hold, while X - Y - Z2 - T
does not hold.

Ezxample 14.7. The data processing theorem says that if X - Y — Z — T
forms a Markov chain, then

1(Y;Z) > I(X;T). (14.53)

We want to see whether this inequality holds under the weaker condition that
X—>Y —->ZandY — Z — T form two short Markov chains. By using ITIP,
we can show that (14.53) is not a Shannon-type inequality under the Markov
conditions

I(X;Z)Y)=0 (14.54)

and
I(Y;T|Z)=0. (14.55)

This strongly suggests that (14.53) does not always hold under the constraint
of the two short Markov chains. However, this has to be proved by an explicit
construction of a joint distribution for X, Y, Z, and T which satisfies (14.54)
and (14.55) but not (14.53). The construction at the end of the last example
serves this purpose.

Ezample 14.8 (Secret Sharing [42][321]). Let S be a secret to be encoded
into three pieces, X, Y, and Z. We need to design a scheme that satisfies the
following two requirements:

1. No information about S can be obtained from any one of the three encoded
pieces.
2. S can be recovered from any two of the three encoded pieces.
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This is called a (1,2)-threshold secret sharing scheme. The first requirement
of the scheme is equivalent to the constraints

I(S; X)=1I(S;Y)=1(S;Z) =0, (14.56)
while the second requirement is equivalent to the constraints
H(S|X,Y)=H(S|Y,Z)=H(S|X,Z) =0. (14.57)
Since the secret S can be recovered if all X, Y, and Z are known,
H(X)+ H(Y)+ H(Z)> H(S). (14.58)
We are naturally interested in the maximum constant ¢ that satisfies

H(X)+ H(Y) + H(Z) > cH(S). (14.59)

We can explore the possible values of ¢ by ITIP. After a few trials, we
find that ITIP returns a “True” for all ¢ < 3, and returns the clause “Not
provable by ITIP” for any c slightly larger than 3, say 3.0001. This means that
the maximum value of ¢ is lower bounded by 3. This lower bound is in fact
tight, as we can see from the following construction. Let S and N be mutually
independent ternary random variables uniformly distributed on {0, 1,2}, and
define

X =N (14.60)

Y =S5+ N mod 3, (14.61)
and

Z = 8+ 2N mod 3. (14.62)

Then it is easy to verify that

S=Y — X mod 3 (14.63)
= 2Y — Z mod 3 (14.64)
= Z — 2X mod 3. (14.65)

Thus the requirements in (14.57) are satisfied. It is also readily verified that the
requirements in (14.56) are satisfied. Finally, all S, X, Y, and Z are distributed
uniformly on {0, 1,2}. Therefore,

H(X)+ H(Y)+ H(Z) = 3H(S). (14.66)

This proves that the maximum constant ¢ which satisfies (14.59) is 3.

Using the approach in this example, almost all information-theoretic
bounds reported in the literature for this class of problems can be obtained
when a definite number of random variables are involved.
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14.5 Tackling the Implication Problem

We have already mentioned in Section 13.5 that the implication problem of
conditional independence is extremely difficult except for the special case that
only full conditional mutual independencies are involved. In this section, we
employ the tools we have developed in this chapter to tackle this problem.

In Bayesian networks (see [287]), the following four axioms are often used
for proving implications of conditional independencies:

o  Symmetry:

X1Y|Z &Y 1LX|Z (14.67)
e Decomposition:
X1LYDZ = X1Y|Z ANXLT|Z (14.68)
o Weak Union:
X1LYnDzZ = XLY|(Z1T) (14.69)
e (Contraction:
X1Y|ZANX1T|(Y,Z) = X LY, T)|Z (14.70)

These axioms form a system called semi-graphoid and were first proposed in
[93] as heuristic properties of conditional independence.

The axiom of symmetry is trivial in the context of probability®. The other
three axioms can be summarized by

X1LYnDWZz e XL1LY|Z AN X LT|(Y,2). (14.71)
This can easily be proved as follows. Consider the identity
I(X;Y, T\ 2)=1(X;Y|Z2)+ I[(X;T|Y, 2). (14.72)

Since conditional mutual informations are always nonnegative by the basic
inequalities, if I(X;Y,T|Z) vanishes, I(X;Y|Z) and I(X;T|Y, Z) also vanish,
and vice versa. This proves (14.71). In other words, (14.71) is the result of a
specific application of the basic inequalities. Therefore, any implication which
can be proved by invoking these four axioms are provable by ITIP.

In fact, ITIP is considerably more powerful than the above four axioms.
This will be shown in the next example in which we give an implication which
can be proved by ITIP but not by these four axioms*. We will see some
implications which cannot be proved by ITIP when we discuss non-Shannon-
type inequalities in the next chapter.

3 These four axioms may be applied beyond the context of probability.
4 This example is due to Zhen Zhang, private communication.
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Fig. 14.5. The information diagram for X, Y, Z, and T

For a number of years, researchers in Bayesian networks generally believed
that the semi-graphoidal axioms form a complete set of axioms for conditional
independence until it was refuted by Studeny [346]. See Problem 10 for a
discussion.

FEzxzample 14.9. We will show that

I(X:Y]Z)=0
I(X:T|Z)=0
I(X;T)Y) =0y = I(X;Y|T) =0 (14.73)
I(X;:Z]Y) =0
I(X:Z|T) =0

can be proved by invoking the basic inequalities. First, we write
I(X;Y|2)=1(X;Y|Z,T)+ I(X;Y;T|2). (14.74)
Since I(X;Y|Z) =0 and I(X;Y|Z,T) > 0, we let
I(X;Y|Z,T)=a (14.75)

for some nonnegative real number a, so that

I(X;Y;T|Z) = —a (14.76)
from (14.74). In the information diagram in Figure 14.5, we mark the atom
I(X;Y|Z,T) by a “4+” and the atom I(X;Y;T|Z) by a “—.” Then we write

I(X;T\2Z) = [(X;Y;T|Z) + [(X; T, Z). (14.77)

Since I(X;T|Z) =0 and I(X;Y;T|Z) = —a, we obtain

I(X;T|Y,Z) = a. (14.78)
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In the information diagram, we mark the atom I(X;T|Y,Z) with a “+.”
Continue in this fashion, the five CI’s on the left hand side of (14.73) imply
that all the atoms marked with a “4” in the information diagram take the
value a, while all the atoms marked with a “—” take the value —a. From the
information diagram, we see that

I(X;Y|T) = I(X;Y; Z|T) + I(X;Y|Z,T) = (—a) + a = 0, (14.79)

which proves our claim. Since we base our proof on the basic inequalities, this
implication can also be proved by ITIP.

Due to the form of the five given CI’s in (14.73), none of the axioms in
(14.68) to (14.70) can be applied. Thus we conclude that the implication in
(14.73) cannot be proved by invoking the four axioms in (14.67) to (14.70).

14.6 Minimality of the Elemental Inequalities

We have already seen in Section 14.1 that the set of basic inequalities is not
minimal in the sense that in the set, some inequalities are implied by the
others. We then showed that the set of basic inequalities is equivalent to the
smaller set of elemental inequalities. Again, we can ask whether the set of
elemental inequalities is minimal.

In this section, we prove that the set of elemental inequalities is minimal.
This result is important for efficient implementation of ITIP because it says
that we cannot consider a smaller set of inequalities. The proof, however, is
rather technical. The reader may skip this proof without missing the essence
of this chapter.

The elemental inequalities in set-theoretic notations have one of the fol-
lowing two forms:

L u(Xi = Xy, —ay) 2 0,

where 1 denotes a set-additive function defined on F,,. They will be referred
to as a-inequalities and [-inequalities, respectively.

We are to show that all the elemental inequalities are nonredundant, i.e.,
none of them is implied by the others. For an a-inequality

p(Xi = X —1y) 20, (14.80)

since it is the only elemental inequality which involves the atom X,—X No—{i}s

it is clearly not implied by the other elemental inequalities. Therefore we only

need to show that all §-inequalities are nonredundant. To show that a -

inequality is nonredundant, it suffices to show that there exists a measure [i on

F,, which satisfies all other elemental inequalities except for that S-inequality.
We will show that the -inequality
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w(XinX; — Xg) >0 (14.81)

is nonredundant. To facilitate our discussion, we denote N,, — K — {i,j} by
L(i,j,K), and we let Cj;x(S),S C L(i, j, K) be the atoms in X; ﬁXj — Xk,
where o ~ 5 3

Cij|K(S) :XiijmXSmX;(mXE(LLK)_S- (1482)

We first consider the case when L(i,5, K) = 0, i.e., K = N,, — {i,7}. We
construct a measure [ by

ﬂ(A):{l—qu:Xij—XK (14.83)

otherwise,

where A € A. In other words, XN X — X is the only atom with measure
—1; all other atoms have measure 1. Then M(X N X -X k) < 0 is trivially
true. It is also trivial to check that for any i’ € N,

(X — Xy —qiy) =1 >0, (14.84)
and for any (¢, 5", K') # (4,4, K) such that i’ # j/ and K' C N,, — {#',5'},
ﬂ(j(z/ ﬂXj/ — XK/) =1>0 (1485)

if K" = N,,—{4’,j'}. On the other hand, if K" is a proper subset of ,, —{4’, j'},
then X N X — X+ contains at least two atoms, and therefore

(X 0 X — Xgr) > 0. (14.86)

This completes the proof for the S-inequality in (14.81) to be nonredundant
when L(i, 5, K) = ¢.

We now consider the case when L(i,j, K) # ¢, or |L(i,j, K)| > 1. We
construct a measure [ as follows. For the atoms in X;n X — Xk, let

(—1)IS1 =18 = L(i, 5, K)

cuns) ={ e T 82 E (14587)

For Cj; 1 (9), if |S] is odd, it is referred to as an odd atom of X;NX; - Xk,
and if |S| is even, it is referred to as an even atom of X; N X — Xg. For any
atomAgéX ﬂX — Xk, we let

A(A) = 1. (14.88)

This completes the construction of fi.
We first prove that
AX;iNX; —Xk) <0. (14.89)

Consider
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SCL(i,j,K)
<|L(Z7]7K)|>(1)T 71

|L(4,5,K)|

r
r=0

= —]_7

where the last equality follows from the binomial formula

zn: (Z) (=1)" =0 (14.90)

r=0

for n > 1. This proves (14.89).
Next we prove that /i satisfies all a-inequalities. We note that for any
i" € Ny, the atom Xy — X, _giry is not in X; N X; — Xg. Thus

(X — Xp—qiy) = 12> 0. (14.91)

It remains to prove that fi satisfies all -inequalities except for (14.81),
i.e., for any (i',5', K') # (i, j, K) such that i’ # j" and K’ C N,, — {#', 7'},

W(Xy N Xj — Xger) > 0. (14.92)
Consider
(X N X — Xger)
= i(Xo N Xy = Xg) N (X N X = Xk))
+a((Xo N Xy — Xio) — (X, N X — Xg)). (14.93)

The nonnegativity of the second term above follows from (14.88). For the first
term,

(Xo N X5 — X)) N (X N Xj — Xg) (14.94)
is nonempty if and only if
{/,j/3nK=¢ and {i,j}NnK =¢. (14.95)

If this condition is not satisfied, then the first term in (14.93) becomes fi(¢) =
0, and (14.92) follows immediately.

Let us assume that the condition in (14.95) is satisfied. Then by simple
counting, we see that the number atoms in

(XilﬂXj/—XK/)ﬁ(XiﬂXj—XK) (1496)

is equal to 2%, where

e=n—|{i,ju{i,j/}TUKUK'|. (14.97)
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For example, for n = 6, there are 4 = 22 atoms in
(Xl n XQ) N (Xl n Xg — X4), (1498)

namely X1NXoNXs OX’X NYs N Yg, where Y; = X; or X'f for i = 5,6. We
check that
p=6—|{1,2} U{1,3} U U {4} =2. (14.99)

We first consider the case when ¢ = 0, i.e.,
N, ={i,j}U{i, 7/} UK UK. (14.100)

Then ~ ~ R R R ~
(XoNnXj —Xg)N(X;NX; — Xk) (14.101)

contains exactly one atom. If this atom is an even atom of X; N X = Xk,
then the first term in (14.93) is either 0 or 1 (cf., (14.87)), and (14.92) follows
immediately. If this atom is an odd atom of X; ﬂf(j - XK, then the first term
in (14.93) is equal to —1. This happens if and only if {4, j} and {¢’,;'} have
one common element, which implies that (X N X — Xg) — (X; N X, — X )
is nonempty. Therefore the second term in (14.93) is at least 1, and hence
(14.92) follows.

Finally, we consider the case when ¢ > 1. Using the binomial formula in
(14.90), we see that the number of odd atoms and even atoms of Xiﬁf(j — Xk

m

(Xo N X5 — X)) N (XN Xj — Xg) (14.102)
are the same. Therefore the first term in (14.93) is equal to —1 if

Cijir(L(i, 3, K)) € Xoo N X0 — Xer, (14.103)

and is equal to 0 otherwise. The former is true if and only if K’ C K, which
implies that (Xi/ N Xj/ — XK/) — (Xz N Xj — XK) is nonempty, or that the
second term is at least 1. Thus in either case (14.92) is true. This completes
the proof that (14.81) is nonredundant.

Appendix 14.A: The Basic Inequalities and the
Polymatroidal Axioms

In this appendix, we show that the basic inequalities for a collection of n ran-
dom variables © = {X;,i € N,,} is equivalent to the following polymatroidal
axioms: For all a, 8 C Ny,

P1. He(0) = 0.

P2. H@(a) < H@(ﬁ) if  C .
P3. Heo(a) + Ho(B) > Ho(aN ) + Ho(a U B3).
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We first show that the polymatroidal axioms imply the basic inequalities.
From P1 and P2, since § C « for any o« C N,,, we have

Ho(a) > He(0) =0, (14.104)

or
H(X,) > 0. (14.105)

This shows that entropy is nonnegative.
In P2, letting v = S\, we have

Ho(a) < Ho(aU~), (14.106)

or

H(X,|X4) > 0. (14.107)

Here, v and « are disjoint subsets of N,,.
In P3, letting v = f\a, § = aN G, and 0 = o\, we have

H@(UU5)+H@(’YU5) ZH@(5)+H@(O'U5U’)/), (14108)

or

I(Xo; X,|X5) > 0. (14.109)
Again, 0,4, and v are disjoint subsets of N;,. When § = (), from P3, we have

I(X,: X,) > 0. (14.110)

Thus P1 to P3 imply that entropy is nonnegative, and that conditional
entropy, mutual information, and conditional mutual information are non-
negative provided that they are irreducible. However, it has been shown in
Section 14.1 that a reducible Shannon’s information measure can always be
written as the sum of irreducible Shannon’s information measures. There-
fore, we have shown that the polymatroidal axioms P1 to P3 imply the basic
inequalities.

The converse is trivial and the proof is omitted.

Chapter Summary

Shannon-Type Inequalities are information inequalities implied by the
basic inequalities.

Elemental Form of Shannon’s Information Measures: Any Shannon’s
information measure involving random variables X, X5, -+, X,, can be ex-
pressed as the sum of the following two element forms:

i) H<X2|XNTL7{1}>7Z ENn
ii) I(X;; X;|Xk), where i # j and K C N,, — {4, j}.
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Elemental Inequalities: For a set of random variables, the nonnegativity
of the two elemental forms of Shannon’s information measures are called the
elemental inequalities. The elemental inequalities are equivalent to the basic
inequalities for the same set of random variables, and they form the minimal
such subset of the basic inequalities.

The region I, = {h € H,, : Gh > 0}, is the subset of H,, defined by the
basic inequalities for n random variables, and I';; C I,.

Unconstrained Shannon-Type Inequalities: b"h > 0 is a Shannon-type
inequality if and only if one of the following is true:

1. ,c{heH,:b"h>0}
2. The minimum of the problem “Minimize b "h, subject to Gh > 0” is zero.

Constrained Shannon-Type Inequalities: Under the constraint & = {h €
H, : Qh =0}, b"h > 0 is a Shannon-type inequality if and only if

1. (I,n®)c{heH,:b"h>0}
2. The minimum of the problem “Minimize b"h, subject to Gh > 0 and
@Qh = 07 is zero.

Duality: An unconstrained Shannon-type inequality is a nonnegative linear
combination of the elemental inequalities for the same set of random variables.

ITIP is a software package running on MATLAB for proving Shannon-type
inequalities.

Problems

1. Prove (14.12) for the total number of elemental forms of Shannon’s infor-
mation measures for n random variables.

2. Shannon-type inequalities for n random variables X1, X, .-, X,, refer to
all information inequalities implied by the basic inequalities for these n
random variables. Show that no new information inequality can be gen-
erated by considering the basic inequalities for more than n random vari-
ables.

3. Show by an example that the decomposition of an information expression
into a sum of elemental forms of Shannon’s information measures is not

unique.
4. FElemental forms of conditional independencies Consider random vari-
ables X1, Xo,---,X,. A conditional independency is said to be elemen-

tal if it corresponds to setting an elemental form of Shannon’s informa-
tion measure to zero. Show that any conditional independency involving
X1, Xs,-++, X, is equivalent to a collection of elemental conditional inde-
pendencies.
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Symmetrical information inequalities
a) Show that every symmetrical information expression (cf. Problem 1 in
Chapter 13) involving random variable X7, X5, -+, X,, can be written

in the form )
E = Z akC§€n)7
k=0

where
n

o =3 H(Xi| Xn-:)

i=1
and for 1 <k <n-—1,
A = 3 I(X;: X;|X k).
1<i<j<n

KCN—{i,j},|K|=k-1

Note that cén) is the sum of all Shannon’s information measures of
the first elemental form, and for 1 < k < n — 1, c,(vn) is the sum
of all Shannon’s information measures of the second elemental form
conditioning on k£ — 1 random variables.

b) Show that E > 0 always holds if a; > 0 for all k.

c¢) Show that if E > 0 always holds, then aj > 0 for all k. Hint: Construct
random variables X1, Xs, -+, X,, for each 0 < k < n — 1 such that
c,in) >Oandc§:) =0forall 0 <k <n-—1and k' #k.

(Han [147].)

Strictly positive probability distributions It was shown in Proposition 2.12

that
X1 L X4|(Xo, X3)

X1 1 X35](Xa, X4)

if p(x1, 29, x3,24) > 0 for all z1, x2, 3, and 4. Show by using ITIP that
this implication is not implied by the basic inequalities. This strongly
suggests that this implication does not hold in general, which was shown
to be the case by the construction following Proposition 2.12.

a) Verify by ITIP that

I(X1, Xo; Y1, Y2) < I(X1; Y1) + 1(Xo; Y2)

} = X1 1 (X37X4)|X2

under the constraint H (Y7, Y2| X1, Xo) = H(Y1|X1) + H(Y2|X3). This
constrained inequality was used in Problem 10 in Chapter 7 to obtain
the capacity of two parallel channels.

b) Verify by ITIP that

I(X1, X0;Y1,Y2) > I(X1; Y1) + 1(Xo; Y2)

under the constraint I(X;; X2) = 0. This constrained inequality was
used in Problem 4 in Chapter 8 to obtain the rate-distortion function
for a product source.
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8. Verify by ITIP the information identity in Example 3.18.
9. Repeat Problem 13 in Chapter 3 with the help of ITTP.
10. Prove the implications in Problem 15 in Chapter 3 by ITIP and show
that they cannot be deduced from the semi-graphoidal axioms. (Studeny
[346].)

Historical Notes

For almost half a century, all information inequalities known in the literature
are consequences of the basic inequalities due to Shannon [322]. Fujishige [126]
showed that the entropy function is a polymatroid (see Appendix 14.A). Yeung
[401] showed that verification of all such inequalities, referred to Shannon-type
inequalities, can be formulated as a linear programming problem if the number
of random variables involved is fixed. ITIP, a software package for this purpose,
was developed by Yeung and Yan [409]. Non-Shannon-type inequalities, which
were first discovered in the late 1990’s, will be discussed in the next chapter.
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Beyond Shannon-Type Inequalities

In Chapter 13, we introduced the regions Iy and I, in the entropy space
H,, for n random variables. From I, one in principle can determine whether
any information inequality always holds. The region I3,, defined by the set
of all basic inequalities (equivalently all elemental inequalities) involving n
random variables, is an outer bound on I. From I3,, one can determine
whether any information inequality is implied by the basic inequalities. If so,
it is called a Shannon-type inequality. Since the basic inequalities always hold,
so do all Shannon-type inequalities. In the last chapter, we have shown how
machine-proving of all Shannon-type inequalities can be made possible by
taking advantage of the linear structure of I5,.

If the two regions I,y and I, are identical, then all information inequalities
which always hold are Shannon-type inequalities, and hence all information
inequalities can be completely characterized. However, if I’} is a proper sub-
set of I5,, then there exist constraints on an entropy function which are not
implied by the basic inequalities. Such a constraint, if in the form of an in-
equality, is referred to as a non-Shannon-type inequality.

There is a point here which needs further explanation. The fact that I #
I, does not necessarily imply the existence of a non-Shannon-type inequality.
As an example, suppose I, contains all but an isolated point in I';. Then this
does not lead to the existence of a non-Shannon-type inequality for n random
variables.

In this chapter, we present characterizations of Iy which are more refined
than I',. These characterizations lead to the existence of non-Shannon-type
inequalities for n > 4.

15.1 Characterizations of I';, I';, and I}

Recall from the proof of Theorem 3.6 that the vector h represents the values
of the I-Measure p* on the unions in F,,. Moreover, h is related to the values
of u* on the atoms of F,,, represented as u, by
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h=Chu (15.1)

where (), is a unique k x k matrix with £ = 2™ — 1 (cf. (3.27)).

Let Z,, be the k-dimensional Euclidean space with the coordinates labeled
by the components of u. Note that each coordinate in Z,, corresponds to the
value of p* on a nonempty atom of F,,. Recall from Lemma 13.1 the definition

of the region
Ur={ueZ,:Chuel]}, (15.2)

which is obtained from the region I'; via the linear transformation induced
by C;;1. Analogously, we define the region

U,={uel,:Chucl,}. (15.3)

The region I, as we will see, is extremely difficult to characterize for a

general n. Therefore, we start our discussion with the simplest case, namely
n=2.

Theorem 15.1. I = I5.

Proof. For n = 2, the elemental inequalities are

H(X5) X)) = p* (X2 — X1) > (15.5)
I(X1; X)) = p* (X, N Xy) > 0. (15.6)

Note that the quantities on the left hand sides above are precisely the values
of u* on the atoms of F5. Therefore,

U, = {ll €ly:u> 0}, (157)

i.e., ¥, is the nonnegative orthant of Zy. Since Iy C I, ¥ C W,. On the
other hand, ¥» C ¥5 by Lemma 13.1. Thus ¥5 = Wy, which implies Iy = I5.
The proof is accomplished. O

Next, we prove that Theorem 15.1 cannot even be generalized to n = 3.
Theorem 15.2. Iy # I5.

Proof. For n = 3, the elemental inequalities are

H(Xi|X5, Xp) = p*(Xi — X — X)) > (15.8)
I(X3; X5 Xp) = p*(Xin X; = X)) > 0, (15.9
and
I(X;; X;) = p*(Xi N X;) (15.10)
= (XN X; N XE) 4+ (XN X, — Xy) (15.11)
>0 (15.12)
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X5

Lo )y

Fig. 15.1. The set-theoretic structure of the point (0,0,0,a,a,a, —a) in ¥s.

for 1 <i<j< k<3 ForuelIs,let
u= (u13u27u37u47u57u63u7)? (1513)
where u;,1 < i < 7 correspond to the values
pr (X1 — Xo — X3), p*(Xy — Xy — Xs), p*(Xs — X1 — Xy),
N*(Xl n Xg - Xg), ,u*(Xl N X3 - )(2)7 /J*(Xg n X3 - Xl), (1514)
/J/*<X1 n X2 n Xg),
respectively. These are the values of p* on the nonempty atoms of F3. Then
from (15.8), (15.9), and (15.12), we see that
Us={uels:u >0 1<i<6; uj+ur >0, 4<j<6}. (15.15)

It is easy to check that the point (0,0,0,a,a,a, —a) for any a > 0 is in ¥s.
This is illustrated in Figure 15.1, and it is readily seen that the relations

H(X;|X;, X) =0 (15.16)

and
I(X:;X;)=0 (15.17)

for 1 <1i < j < k < 3 are satisfied, i.e., each random variable is a function of
the other two, and the three random variables are pairwise independent.

Let Sx, be the support of X;, i =1,2,3. For any 1 € Sx, and z2 € Sx,,
since X1 and X5 are independent, we have

p(x1,z2) = p(z1)p(z2) > 0. (15.18)
Since X3 is a function of X; and Xs, there is a unique x3 € Sx, such that
p(x1, 22, x3) = p(x1,22) = p(x1)p(22) > 0. (15.19)

Since X5 is a function of X; and X3, and X; and X3 are independent, we can
write
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p(x1, o, x3) = p(x1, 23) = p(x1)p(T3). (15.20)
Equating (15.19) and (15.20), we have

p(x2) = p(xs). (15.21)

Now consider any x5 € Sx, such that a5 # x9. Since X3 and X35 are indepen-
dent, we have

p(xh, x3) = p(ah)p(xs) > 0. (15.22)

Since X; is a function of X5 and X3, there is a unique a} € Sx, such that

p(ah, b, x3) = p(ah, x3) = p(ay)p(xs) > 0. (15.23)

Since X5 is a function of X; and X3, and X; and X3 are independent, we can
write

p(ay, x5, x3) = p(x, 23) = p(r])p(23). (15.24)

Similarly, since X3 is a function of X; and X5, and X; and X5 are independent,
we can write

p(ah, 75, 23) = p(x), 5) = p(27)p(a5). (15.25)
Equating (15.24) and (15.25), we have

p(xy) = p(z3), (15.26)

and from (15.21), we have
p(xy) = p(z2). (15.27)

Therefore, X5 must have a uniform distribution on its support. The same can
be proved for X; and X3. Now from Figure 15.1,

H(X:) = H(X1| X2, X3) + I(X1; X2| X3) + I(X1; X3|X>)

FI(X1; X2; X3) (15.28)
=0+a+a+(—a) (15.29)
=a, (15.30)

and similarly
H(X3) = H(X3) = a. (15.31)

Then the only values that a can take are log M, where M (a positive integer)
is the cardinality of the supports of X7, X2, and X3. In other words, if a is not
equal to log M for some positive integer M, then the point (0,0,0,a, a,a, —a)
is not in ¥5. This proves that ¥§ # W3, which implies Iy # I'3. The theorem
is proved. O

The proof above has the following interpretation. For h € Hj, let

h = (h1, ho, h3, hia, hag, has, hi2s). (15.32)



15.1 Characterizations of I'}, I'5, and I}, 365

@----oooooooooooo *--ooooo- ®----o-- - (a,a,a,a,2a,2a,2a)

Fig. 15.2. The values of a for which (a, a, a, 2a, 2a, 2a,2a) is in 3.

From Figure 15.1, we see that the point (0,0,0,a,a,a, —a) in ¥3 corresponds
to the point (a,a,a,2a,2a,2a,2a) in I'3. Evidently, the point (a,a,a,2a, 2a,
2a,2a) in I3 satisfies the 6 elemental inequalities given in (15.8) and (15.12)
for 1 <i < j < k < 3 with equality. Since I3 is defined by all the elemental
inequalities, the set

{(a,a,a,2a,2a,2a,2a) € I's :a >0} (15.33)

is in the intersection of 6 hyperplanes in Hs (i.e., R7) defining the boundary of
I3, and hence it defines an extreme direction of I'5. Then the proof says that
along this extreme direction of I3, only certain discrete points, namely those
points with a equals log M for some positive integer M, are entropic. This is
illustrated in Figure 15.2. As a consequence, the region I'5 is not convex.

Having proved that Iy # I3, it is natural to conjecture that the gap
between Iy and I3 has zero Lebesgue measure. In other words, T; = I3,
where T, is the closure of I';. This is indeed the case and will be proved at
the end of the section.

More generally, we are interested in characterizing f;, the closure of I;.
Although the region TZ is not sufficient for characterizing all information
inequalities, it is actually sufficient for characterizing all unconstrained in-
formation inequalities. This can be seen as follows. Following the discussion
in Section 13.3.1, an unconstrained information inequality f > 0 involving n
random variables always hold if and only if

rrc{h: f(h)>0}. (15.34)
Since {h: f(h) > 0} is closed, upon taking closure on both sides, we have
T, c{h: f(h)>0}. (15.35)
On the other hand, if f > 0 satisfies (15.35), then
I cT, c{h:f(h) >0} (15.36)

Therefore, (15.34) and (15.35) are equivalent, and hence T, is sufficient for
characterizing all unconstrained information inequalities.

We will prove in the next theorem an important property of the region f;
for all n > 2. This result will be used in the proof for T; = I'3. Further, this
result will be used in Chapter 16 when we establish a fundamental relation
between information theory and group theory.

We first prove a simple lemma. In the following, we use N, to denote the
set {1,2,---,n}.
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Lemma 15.3. Ifh and h' are in I}, then h+h’ is in I}

Proof. Consider h and h' in I'". Let h represents the entropy function for
random variables X1, X5, -, X, and let h’ represents the entropy function
for random variables X1, X5,---, X, . Let (X1, X2, -+, X,) and (X1, X%, -,
X)) be independent, and define random variables Y7,Y5,---,Y,, by

i = (X, X) (15.37)
for all i € N,,. Then for any subset o of N,,,
H(Y,) = H(Xo) + H(X],) = ho + hy,. (15.38)

Therefore, h + h’, which represents the entropy function for Y1,Ys,---,Y,,, is
in I'¥. The lemma is proved. O

Corollary 15.4. If h € I');, then kh € I for any positive integer k.

Proof. 1t suffices to write

kh=h+h+---+h (15.39)
N———
k

and apply Lemma 15.3. O
Theorem 15.5. T:; 18 4 convex cone.

Proof. Consider the entropy function for random variables X7, Xo,---, X, all
taking constant values with probability 1. Then for all subset o of N,,,

H(X,) = 0. (15.40)

Therefore, I') contains the origin in H,,.

Let h and h' in I be the entropy functions for any two sets of random vari-
ables Y1,Ys, -+ Y, and Z1, Zs, - - -, Z,,, respectively. In view of Corollary 15.4,
in order to prove that TZ is a convex cone, we only need to show that if h
and b’ are in I7*, then bh + bh’ is in T, for all 0 < b < 1, where b=1—b.

Let (Y1,Y2,---,Y,) be k independent copies of (Y1,Ys,---,Y},) and (Z,,
Zs,---,7Z,) be k independent copies of (Z1,Zs, -+, Z,). Let U be a ternary
random variable independent of all other random variables such that

Pr{iU=0}=1-6—pu, Pr{U=1} =90, Pr{U =2} = pu.
Now construct random variables X1, Xo,- -, X,, by letting
0 fU=0

X, ={Y;ifU=1
Z; ifU=2.
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Note that H(U) — 0 as §, u — 0. Then for any nonempty subset o of N,

H(X,) < H(Xa,U) (15.41)
— H(U) + H(X,|U) (15.42)
= H(U) + 6kH(Y,) + pkH (Z,). (15.43)

On the other hand,
H(X,)> H(X,|U)=0kH(Y,) + pkH(Z,). (15.44)

Combining the above, we have

0< H(Xy) — (6kH(Y,) + pkH(Z,)) < HU). (15.45)
Now take 5
§ = z (15.46)
and _
= % (15.47)
to obtain
0< H(X,)— (bH(Y,) +bH(Z,)) < H(U). (15.48)

By letting k be sufficiently large, the upper bound can be made arbitrarily
small. This shows that bh + bh’ € I Z The theorem is proved. 0O

In the next theorem, we prove that I'y and I3 are almost identical. Anal-
ogous to T;, we will use @Z to denote the closure of ¥;.

Theorem 15.6. Ty = I';.
Proof. We first note that T; = I3 if and only if
Uy = W, (15.49)

Since
I';CIs (15.50)

and I3 is closed, by taking closure on both sides in the above, we obtain
f; C I5. This implies that @; C ¥3. Therefore, in order to prove the theorem,
it suffices to show that W3 C .

We first show that the point (0,0,0,a,a,a,—a) is in @y for all @ > 0.
Let random variables X7, Xo, and X3 be defined as in Example 3.10, i.e., X3
and X are two independent binary random variables taking values in {0,1}
according to the uniform distribution, and

Xg = X1 + X2 mod 2. (1551)
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X,

% N X,

Fig. 15.3. The I-Measure p* for X1, X3, and X3 in the proof of Theorem 15.6.

Let h € Iy represents the entropy function for X;, Xs, and X3, and let
u=C;'h. (15.52)

As in the proof of Theorem 15.2, we let u;, 1 < i < 7, be the coordinates of
Zs which correspond to the values of the quantities in (15.14), respectively.
From Example 3.10, we have

0 fori=1,2,3
up=+<1 fori=4,56 (15.53)
—1lfori="1.

Thus the point (0,0,0,1,1,1,—1) is in ¥3, and the I-Measure p* for Xi, Xo,
and X3 is shown in Figure 15.3. Then by Corollary 15.4, (0,0,0, k, k, k, —k) is
in ¥3 and hence in @; for all positive integer k. Since T; contains the origin,
W, also contains the origin. By Theorem 15.5, T’y is convex. This implies ¥
is also convex. Therefore, (0,0,0,a,a,a,—a) is in @; for all a > 0.

Consider any u € ¥3. Referring to (15.15), we have

u; >0 (15.54)

for 1 < ¢ < 6. Thus uy is the only component of u which can possibly be
negative. We first consider the case when w7 > 0. Then u is in the nonnegative
orthant of Z3, and by Lemma 13.1, u is in ¥3. Next, consider the case when
ur < 0. Let

t= (07 07 Ov —Uur, —u7, —ur, u?)- (1555)

Then
u=w+t, (15.56)

where
w = (uq, ug, uz, ug + ur, us + uy, ug + uz, 0). (15.57)

Since —u7 > 0, we see from the foregoing that t € @; From (15.15), we have

u; +u7y >0 (1558)
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for ¢ =4,5,6. Thus w is in the nonnegative orthant in 73 and hence in ¥3 by
Lemma 13.1. Now for any € > 0, let t' € ¥ such that

[t —t'|| <e, (15.59)
where ||t — t’|| denotes the Euclidean distance between t and t’, and let
u=w+t'. (15.60)
Since both w and t’ are in @5, by Lemma 15.3, u’ is also in ¥§, and
[u—u]=|t-—t| <e (15.61)
Therefore, u € @; Hence, ¥3 C @;, and the theorem is proved. 0O

Remark 1 Han [148] has found that I's is the smallest cone that contains I';.
This result together with Theorem 15.5 implies Theorem 15.6. Theorem 15.6
was also obtained by Golié¢ [137], and it is a consequence of the theorem in
Matus [254].

Remark 2 We have shown that the region T: completely characterizes all
unconstrained information inequalities involving n random variables. Since
f; = I3, it follows that there exists no unconstrained information inequali-
ties involving three random variables other than the Shannon-type inequali-
ties. Matis [258] has obtained piecewise-linear constrained non-Shannon-type
inequalities for three random variables that generalize the construction in the
proof of Theorem 15.2.

15.2 A Non-Shannon-Type Unconstrained Inequality

We have proved in Theorem 15.6 at the end of the last section that f; =13.
It is natural to conjecture that this theorem can be generalized to n > 4.
If this conjecture is true, then it follows that all unconstrained information
inequalities involving a finite number of random variables are Shannon-type
inequalities, and they can all be proved by ITIP running on a sufficiently
powerful computer. However, it turns out that this is not the case even for
n=4.

We will prove in the next theorem an unconstrained information inequality
involving four random variables. Then we will show that this inequality is a
non-Shannon-type inequality, and that TZ #+ Iy

Theorem 15.7. For any four random variables X1, Xo, X3, and X4,

2](X3,X4) S I(Xl,XQ) + I(Xl;X3,X4)
+3I(X3;X4|X1) +I(X3;X4|X2). (1562)
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Toward proving this theorem, we introduce two auxiliary random variables
X; and X, jointly distributed with X1, Xo, X3, and X, such that X; = X;
and X, = X,. To simplify notation, we will use D1o34i5(21, T2, T3, Ta, T1, T2)
to denote py, x, x, x, %, X» (1,29, X3, x4, %1, T2), etc. The joint distribution for
the six random variables X7, X5, X3, X4, Xl, and Xg is defined by

D123413(T1, T2, T3, T4, T1, T2)

{ P1234(%1,72,%3,24)P1234(Z1,T2,23,T4)

psa(2s,24) if p34(x3, :L‘4) >0 (15.63)
0 if p3s(23,74) = 0.

Lemma 15.8. o
(X17X2) — (X37X4) — (Xl,XQ) (1564)

forms a Markov chain. Moreover, (X1, X2, X3, X4) and (X1, Xy, X3, X4) have
the same marginal distribution.

Proof. The Markov chain in (15.64) is readily seen by invoking Proposi-
tion 2.5. The second part of the lemma is readily seen to be true by noting
that in (15.63), pyas475 is symmetrical in X; and X; and in X5 and X,. O

From the above lemma, we see that the pair of auxiliary random vari-
ables (X1, X3) corresponds to the pair of random variables (X7, X3) in
the sense that (X, Xy, X3, X4) have the same marginal distribution as
(X1, X2, X3,X4). We need to prove two inequalities regarding these six ran-
dom variables before we prove Theorem 15.7.

Lemma 15.9. For anyfom" mrﬁdom variables X1, Xo, X3, and X4 and auxil-
iary random variables X1 and X5 as defined in (15.63),

I(Xg,X4) — I(Xg,X4|X1) — I(XB;X4|X2) S I(Xl,XQ) (1565)

Proof. Consider

I(X3; Xg) — I(X3; Xa| X1) — (X35 X4|X2)

D (Xi; X4) — (X3 Xa| X1)] — (X3 X4| X)

(
= I(X1; X33 Xy) — I(X3; X4|X5) (
= [I(X1; X35 Xy; X2) + I(Xq; X3§X4|X2)] — I(X3;X4|X2) (
= I(X1; X3; X4; Xo) — [[(X3; X4| Xo) — I(X1; X3; X4 Xo)] (15.69
= I(X1; X3; X45 Xo) — I(X33 X4] X1, X2) (
= [I(X1; X435 Xo) — I(X1; Xg; Xo| X3)] — I(X3; X4| X1, Xo) (
= [[(X1; X2) — I(X1; Xo| X4)] — [I(X1; X2|X3)
—I(X1; Xo| X3, X4)] — I(X3; X4| X1, Xo) (15.72)
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b - - -
D 1(X1: Xa) — I(Xy; Xa| Xa) — (X1 Xo| Xa)

—I(X3; X4 X1, Xa2) (15.73)
< I(X1: %), (15.74)

where a) follows because we see from Lemma 15.8 that (X2, X3, X4) and
(X2, X3, X4) have the same marginal distribution, and b) follows because

I(X1; X2| X3, X4) =0 (15.75)
from the Markov chain in (15.64). The lemma is proved. O

Lemma 15.10. For any four random variables X1, X2, X3, and Xy and auz-
iliary random variables X1 and Xo as defined in (15.63),

I(X3; Xy) — 21 (X35 X4|X1) < I(X1; X4). (15.76)

Proof. Notice that (15.76) can be obtained from (15.65) by replacing Xa by
X; and X, by X; in (15.65). The inequality (15.76) can be proved by replacing
X, by X; and X, by X; in (15.66) through (15.74) in the proof of the last
lemma. The details are omitted. 0O

Proof of Theorem 15.7. By adding (15.65) and (15.76), we have

21(X3; Xy) — 31(X3; X4|X1) — I(X3; X4|X>)

< I(X1;Xo) + I(X1; X1) (
= I(X1; Xo) + [I(X1; X1|X2) + [(X1; X1; X2))] (

= [I[(X1; Xo) + I(X1; X1| Xo)] + I(X1; X1 X5) (
= I(X1; X1, Xo) + I(Xy; X1; Xs) (
I(X1; X1, Xo) + [I(X15 X2) — I(X1; X2| X1)] (15.81
I(Xl;X1;X2) +I(X1;X2) (

I( (

I( (

X1; X5, X4) + I(X1; Xo)

||v I/\& IN

X1; X3, X4) + I1(X1; X2),

where a) follows from the Markov chain in (15.64), and b) follows because
we see from Lemma 15.8 that (X, X5) and (X7, X3) have the same marginal
distribution. Note that the auxiliary random variables X; and X, disappear
in (15.84) after the sequence of manipulations. The theorem is proved. O

Theorem 15.11. The inequality (15.62) is a non-Shannon-type inequality,
and T'y # Ty
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Fig. 15.4. The set-theoretic structure of h(a).

Proof. Consider for any a > 0 the point ﬁ(a) € Hy4, where

(15.85)

sa(a) = iL234(a) = B1234(a) = 4a.
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The set-theoretic structure of h(a) is illustrated by the information diagram in
Figure 15.4. The reader should check that this information diagram correctly
represents h(a) as defined. It is also easy to check from this diagram that h(a)
satisfies all the elemental inequalities for four random variables, and therefore
h(a) € I'y. However, upon substituting the corresponding values in (15.62) for

h(a) with the help of Figure 15.4, we have
20 <04+a+0+0=aq, (15.86)

which is a contradiction because a > 0. In other words, h(a) does not satisfy
(15.62). Equivalently,

h(a) € {h € Hy : h satisfies (15.62)}. (15.87)
Since h(a) € Iy, we conclude that
I'y ¢ {h € Hy : h satisfies (15.62)}, (15.88)

i.e., (15.62) is not implied by the basic inequalities for four random variables.
Hence, (15.62) is a non-Shannon-type inequality.
Since (15.62) is satisfied by all entropy functions for four random variables,
we have
I'y ¢ {h € Hy : h satisfies (15.62)}, (15.89)
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and upon taking closure on both sides, we have
T, c {h € H, : h satisfies (15.62)}. (15.90)

Then (15.87) implies h(a) ¢ T';. Since h(a) € Iy and h(a) € T, we conclude
that T'; # I'y. The theorem is proved. O

Remark We have shown in the proof of Theorem 15.11 that the inequality
(15.62) cannot be proved by invoking the basic inequalities for four random
variables. However, (15.62) can be proved by invoking the basic inequalities for
the six random variables X1, X, X3, X4, X1, and X, with the joint probability
distribution p,43475 as constructed in (15.63).

The inequality (15.62) remains valid when the indices 1, 2, 3, and 4 are
permuted. Since (15.62) is symmetrical in X3 and X4, 4!/2! = 12 distinct
versions of (15.62) can be obtained by permuting the indices, and all these
12 inequalities are simultaneously satisfied by the entropy function of any set
of random variables X1, X5, X3, and X4. We will denote these 12 inequalities
collectively by (15.62). Now define the region

Iy = {h € I, : h satisfies (15.62)}. (15.91)

Evidently, 5
FZCF4CF4. (1592)

Since both Iy and I’y are closed, upon taking closure, we also have
T,clycly. (15.93)

Since (15.62) are non-Shannon-type inequalities as we have proved in the last
theorem, I is a proper subset of Iy and hence a tighter outer bound on I'f
and f: than Iy.

In the course of proving that (15.62) is of non-Shannon-type, it was shown
in the proof of Theorem 15.11 that there exists h(a) € I'y as defined in (15.85)
which does not satisfy (15.62). By investigating the geometrical relation be-
tween h(a) and Iy, we prove in the next theorem that (15.62) in fact induces
a class of 2'* — 1 non-Shannon-type constrained inequalities. Applications of
some of these inequalities will be discussed in Section 15.4.

Theorem 15.12. The inequality (15.62) is a non-Shannon-type inequality
conditioning on setting any nonempty subset of the following 14 Shannon’s
information measures to zero:

I(Xq; X2), I(X1; Xo| X3), I(X1; Xo| Xa), I(Xq1; X3|X4),
I(X1; X4| X3), I(Xo; X3]X4), [(Xa; X4|X3), I(X3; X4|X1),
I(X3; X4| X0), I(X3; X4| X1, Xo), H(X:| X2, X3, X4),
H(Xo| X1, X3, X4), H(X3| X1, Xo, X4), H(X4]| X1, X2, X3).

(15.94)
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Proof. Tt is easy to verify from Figure 15.4 that fl(a) lies in exactly 14 hy-
perplanes in Hy (i.e., R!°) defining the boundary of Iy which correspond to
setting the 14 Shannon’s measures in (15.94) to zero. Therefore, h(a) for a > 0
define an extreme direction of Iy.

Now for any linear subspace & of Hy containing h(a), where a > 0, we
have

h(a) e Iy N® (15.95)
and h(a) does not satisfy (15.62). Therefore,

(IyN®) ¢ {h € Hy : h satisfies (15.62)}. (15.96)

This means that (15.62) is a non-Shannon-type inequality under the constraint
&. From the above, we see that @ can be taken to be the intersection of any
nonempty subset of the 14 hyperplanes containing h(a). Thus (15.62) is a
non-Shannon-type inequality conditioning on any nonempty subset of the 14
Shannon’s measures in (15.94) being equal to zero. Hence, (15.62) induces a
class of 2'* — 1 non-Shannon-type constrained inequalities. The theorem is

proved. O

Remark It is not true that the inequality (15.62) is of non-Shannon-type
under any constraint. Suppose we impose the constraint

I(Xg;X4) =0. (1597)

Then the left hand side of (15.62) becomes zero, and the inequality is triv-
ially implied by the basic inequalities because only mutual informations with
positive coefficients appear on the right hand side. Then (15.62) becomes a
Shannon-type inequality under the constraint in (15.97).

15.3 A Non-Shannon-Type Constrained Inequality

In the last section, we proved a non-Shannon-type unconstrained inequality for
four random variables which implies TZ # I'y. This inequality induces a region
Iy which is a tighter outer bound on I'j and TZ then I'y. We further showed
that this inequality induces a class of 2'* — 1 non-Shannon-type constrained
inequalities for four random variables.

In this section, we prove a non-Shannon-type constrained inequality for
four random variables. Unlike the non-Shannon-type unconstrained inequality
we proved in the last section, this constrained inequality is not strong enough
to imply that Iy # I'y. However, the latter is not implied by the former.

Lemma 15.13. Let p(x1, 22,23, x4) be any probability distribution. Then

p(z1,23,84)p(2,73,24) if p(ws, x4) >0

p(x1, 22,23, 74) = p(@s,24) : (15.98)
{O pr(l‘37$(,'4):0
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is also a probability distribution. Moreover,

p(x1, w3, 24) = p(21, T3, 74) (15.99)

and
Pz, 23, 74) = p(T2, T3, T4) (15.100)

for all z1,x9, 23, and 4.

Proof. The proof for the first part of the lemma is straightforward (see Prob-
lem 4 in Chapter 2). The details are omitted here.

To prove the second part of the lemma, it suffices to prove (15.99) for all
x1,x3, and x4 because p(x1, xe, x3,T4) is symmetrical in z7 and z5. We first
consider z1, x3, and x4 such that p(xs,z4) > 0. From (15.98), we have

ﬁ<x1,$3;$4) = Zﬁ(xhx??x?nxﬁl) <15101)
T2
_ Z P $17x37x4)p(x27x37x4) (15102)
s p($37$4)
21,23,
M Sy s

z2
[ 1,73, %4 ] p(3,24) (15.104)
I‘3,CL’4

= p(x1,73,74). (15.105)
For z1,x3, and x4 such that p(xs,z4) = 0, we have
0 < p(x1,23,74) < p(w3,24) =0, (15.106)

which implies
p(x1,23,24) = 0. (15.107)

Therefore, from (15.98), we have

Py, w3, 24) = Zﬁ($17$2,$37$4) (15.108)

=30 (15.109)

(15.110)
= p(1,23,74). (15.111)

Thus we have proved (15.99) for all 1,23, and x4, and the lemma is proved.
O
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Theorem 15.14. For any four random variables X1, X2, X3, and X4, if

then
I(X3; Xg) < I(X3; Xa|X7) + (X35 X4| X2). (15.113)

Proof. Consider

I(X3; X4) — I(X3; Xa| X1) — I( X35 X4| X2)

— p(z3,24)p(x1,23)P(x1,24)P(22,23)p(Ta,24)
E p(@1,22,23,24) log TS e S e o ey p (e w3 2 )P (72 25 7 1)

T1,T0,T3,T4:
p(ry,zg,23,24)>0

(X5, Xa)p(Xy, X3)p(Xy, X4)p(Xz, X3)p(X2, X4)
P(X3)p(Xa)p(X1)p(X2)p(X1, X3, X4)p(X2, X3, X4)’
(15.114)

= E,log

where we have used E), to denote expectation with respect to p(x1, z2, 23, 24).
We claim that the above expectation is equal to

log p(X3, Xa)p(X1, X5)p(X1, Xa)p(X2, X3)p(X2, X4)
P p(Xs)p(Xa)p(X1)p(X2)p(X1, X3, X4)p(Xa, X3, X4)’

(15.115)

where p(x1, z2, x3,24) is defined in (15.98).

Toward proving that the claim is correct, we note that (15.115) is the sum
of a number of expectations with respect to p. Let us consider one of these
expectations, say

Ejlogp(X1, X3) = Z p(1, @2, w3, 24) logp(21, 23).  (15.116)

T1,T0,T3,T4"
p(xy,x0,23,24)>0

Note that in the above summation, if p(x1, 22, x3,x4) > 0, then from (15.98),
we see that
p(x1,23,24) > 0, (15.117)

and hence
p(x1,x3) > 0. (15.118)

Therefore, the summation in (15.116) is always well-defined. Further, it can
be written as

Z log p(1,23) Z p(z1, T2, 3, T4)

T1,%3,T4 z2:p(x1,22,23,24)>0

= Z p(x1, 23, 4) log p(x1, 23). (15.119)

Z1,23,T4
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Thus Ejlog p(X1, X3) depends on p(z1, 2, T3, 24) only through p(x1, x3, 24),
which by Lemma 15.13 is equal to p(x1, x3,z4). It then follows that

Ejlog p(X1, X3)

= Z ﬁ(x17.'1,'3,l‘4) logp(l‘hl‘B) (15120)
T1,T3,T4

= Y plw1,3,24) logp(z1, w3) (15.121)
T1,23,24

= E,logp(X1, X3). (15.122)

In other words, the expectation on logp(Xi, X3) can be taken with respect
to either p(zq, 2, x3,24) or p(x1,xe,x3,24) without affecting its value. By
observing that all the marginals of p in the logarithm in (15.115) involve only
subsets of either { X7, X3, X4} or { X2, X3, X4}, we see that similar conclusions
can be drawn for all the other expectations in (15.115), and hence the claim
is proved.

Thus the claim implies that

I(X3; Xy) — I(X3; Xa| X1) — I(X3; X4| X3)
(X5, Xa)p(Xy, X3)p(Xy, X4)p(Xz, X3)p(X2, X4)
P(X3)p(Xa)p(X1)p(X2)p(X1, X3, X4)p(X2, X3, X4)

— o~ p(z3,24)p(z1,23)P(x1,24)P(22,23)p(T2,24)
Z p(e1,22,23,24) log p(x3)p(zg)p(z1)p(x2)p(z,x3,24)p(xg,x3,7y)

= Ejlog

T1,29,23,T4:
p(xzy,x0,3,24)>0

- ¥ (1, w9, 73, 4) log DL T2 T8 1) (15.123)
X1,T0,83,04° P(x1, 22,73, 24)
p(ry,22,23,24)>0
where
]5(.'171,1‘275(53,1'4) =
P(Tl,IS)P(Il,I4)P(12,I3)P(12,I4) lf (17) ( ) ( ) ( ) 0
p(x1)p(x2)p(23)p(wa) plr1), P\T2), p(T3), P{Ta) >
0 otherwise.
(15.124)

The equality in (15.123) is justified by observing that if x1, zs, 3, and x4 are
such that p(x1,x2, x3,24) > 0, then

p(z1,23), p(T1,74), p(T2, 3), (T2, ¥4), p(71), P(72), p(3), p(Ta)  (15.125)

are all strictly positive, and we see from (15.124) that p(x1, zo, 23, 24) > 0.
To complete the proof, we only need to show that p(z1,x2,z5,24) is a

probability distribution. Once this is proven, the conclusion of the theorem

follows immediately because the summation in (15.123), which is identified as
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the divergence between p(x1,x2,x3,x4) and p(x1,x2,x3,x4), is always non-
negative by the divergence inequality (Theorem 2.31). Toward this end, we
notice that for z1, z9, and x3 such that p(zs) > 0,

P(l”h 333)}9(562, 583)

yI3) = 15.126
p((El,.’EQ 1’3) p(IS) ( )

by the assumption
I(X1; X2 X3) =0, (15.127)

and for all 1 and xo,

p(z1,22) = p(z1)p(T2) (15.128)

by the assumption
I(X1; X5) = 0. (15.129)

Then
> plar,ma, w5, 14)

Z1,22,23,T4

= Z p(x1, 72,23, 24) (15.130)

@ ,w0,a3,wyt
p(xy,2g,23,24)>0

— Z p(l’l,wg)p(xl,x4)p(x2,.’Eg)p(l’g,m4) (15 131)
s p(x1)p(x2)p(23)p(z4)
p(z1),p(z2),p(z3),p(v4)>0
2 Z p($17~732;553)]7(1'171'4)1)(372’1'4) (15132)
w1 w9 w1 p(z1)p(w2)p(24)
p(z1),p(z2),p(x3),p(x4)>0
b Z p(@1, 2, 23)p(71, T4)p(T2, T4) (15.133)
#1,39,88,04: p(w1, 22)p(24)

p(z1),p(z2),p(x3),p(x4)>0

_ Z p(x1, 24)p(x2, T4) Z p(z3|21, 22) (15.134)

i p(x4)
p(@1).p(ag)p(w4) >0 @g:p(r3)>0
p(x1, 24)p(22, T4)
_ T e (15.135)

p(x1),p(z2),p(x4)>0

= > plas,za) Y, plafws) (15.136)

ol .
p(a2)p(24)>0 z1:p(21)>0

2N plasiad) (15.137)

pla3)2p(20)>0
21, (15.138)

where a) and b) follows from (15.126) and (15.128), respectively. The equality
in ¢) is justified as follows. For z; such that p(xz;) =0,
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p(z1)p(x4]71)

AR (15.139)

p(x1|zs) =

Therefore
> plaafz) =D pleafes) = 1. (15.140)
T

z1:p(x1)>0

Finally, the equality in d) is justified as follows. For 25 and x4 such that p(xs)
or p(xz4) vanishes, p(x, x4) must vanish because

0 < p(a2,z4) < p(z2) (15.141)

and
0 < p(xa,x4) < p(ay). (15.142)

Therefore,

S plaaaa) = > plra,a) = 1. (15.143)

T, Ty

r2,Tq
p(xg),p(w4)>0 ’

The theorem is proved. O

Theorem 15.15. The constrained inequality in Theorem 15.14 is a non-
Shannon-type inequality.

Proof. The theorem can be proved by considering the point fl(a) € Hy for
a > 0 as in the proof of Theorem 15.11. The details are left as an exercise. 0O

The constrained inequality in Theorem 15.14 has the following geometrical
interpretation. The constraints in (15.112) correspond to the intersection of
two hyperplanes in H,4 which define the boundary of I'y. Then the inequality
(15.62) says that a certain region on the boundary of Iy is not in I'y. It
can further be proved by computation' that the constrained inequality in
Theorem 15.14 is not implied by the 12 distinct versions of the unconstrained
inequality in Theorem 15.7 (i.e., (15.62)) together with the basic inequalities.

We have proved in the last section that the non-Shannon-type inequality
(15.62) implies a class of 2'* — 1 constrained non-Shannon-type inequalities.
We end this section by proving a similar result for the non-Shannon-type
constrained inequality in Theorem 15.14.

Theorem 15.16. The inequality

is a non-Shannon-type inequality conditioning on setting both I(X1; X2) and
I(X1; X5|X3) and any subset of the following 12 Shannon’s information mea-

! Ying-On Yan, private communication.
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sures to zero:

I(X1; Xo| X4a), I(X7; X35]X4), I(X71; X4]X3),
I(Xo; X3|X4), [(Xo; X4|X3), [(X3; X4|X1),
I(X3; X4| Xo), I(X3; X4 X1, X2), H(X1| X2, X3, X4),
H(X2|X1,X3, X4), H(X3|X1,X2, X4), H(X4|X1,X2,X3).

(15.145)

Proof. The proof of this theorem is very similar to the proof of Theorem 15.12.
We first note that I(X1; X2) and I(X;; X2|X3) together with the 12 Shannon’s
information measures in (15.145) are exactly the 14 Shannon’s information
measures in (15.94). We have already shown in the proof of Theorem 15.12
that h(a) (cf. Figure 15.4) lies in exactly 14 hyperplanes defining the boundary
of Iy which correspond to setting these 14 Shannon’s information measures
to zero. We also have shown that ﬁ(a) for @ > 0 define an extreme direction
of F4.

Denote by @¢ the intersection of the two hyperplanes in H4 which cor-
respond to setting I(X1; X2) and I(X1; X2|X3) to zero. Since h(a) for any
a > 0 satisfies

I(X1; X5) = [(X1; Xa| X3) = 0, (15.146)

h(a) is in @y. Now for any linear subspace @ of Hy containing h(a) such that
® C Py, we have ~
h(a) e Iy N P. (15.147)

Upon substituting the corresponding values in (15.113) for fl(a) with the help
of Figure 15.4, we have
a<0+0=0, (15.148)

which is a contradiction because a > 0. Therefore, h(a) does not satisfy
(15.113). Therefore,

(IyN®) ¢ {h € Hy: h satisfies (15.113)}. (15.149)

This means that (15.113) is a non-Shannon-type inequality under the con-
straint @. From the above, we see that @ can be taken to be the intersection
of &y and any subset of the 12 hyperplanes which correspond to setting the
12 Shannon’s information measures in (15.145) to zero. Hence, (15.113) is a
non-Shannon-type inequality conditioning on I(X7; X5), I(X1; X2|X3), and
any subset of the 12 Shannon’s information measures in (15.145) being equal
to zero. In other words, the constrained inequality in Theorem 15.14 in fact
induces a class of 2'2 constrained non-Shannon-type inequalities. The theorem
is proved. O

15.4 Applications

As we have mentioned in Chapter 13, information inequalities govern the
impossibilities in information theory. In this section, we give several appli-
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cations of the non-Shannon-type inequalities we have proved in this chapter
in probability theory and information theory. An application in group theory
of the unconstrained inequality proved in Section 15.2 will be discussed in
Chapter 16. Non-Shannon-type inequalities also find applications in network
coding theory to be discussed in Part II of this book.

Ezxample 15.17. For the constrained inequality in Theorem 15.14, if we further
impose the constraints

I(X3; X4|X1) = I(X3; X4|X2) =0, (15.150)
then the right hand side of (15.113) becomes zero. This implies
I(X35:X4) =0 (15.151)
because I(X3; X4) is nonnegative. This means that
X 1L Xo
X1 L Xo|X;

X5 L X4 X,
X35 L X4 X5

= X3 1 X,. (15.152)

We leave it as an exercise for the reader to show that this implication cannot
be deduced from the basic inequalities.

Ezxample 15.18. If we impose the constraints
I(X1; Xo) = I(X1; X3, Xy) = I(X3; X4|X1) = [(X3; X4|X2) =0, (15.153)

then the right hand side of (15.62) becomes zero, which implies

This means that
X L X5
X1 L (X3,X4)
X3 L Xa|X: = X3 1 X4 (15.155)
X5 L Xy Xo

Note that (15.152) and (15.155) differ only in the second constraint. Again,
we leave it as an exercise for the reader to show that this implication cannot
be deduced from the basic inequalities.

Example 15.19. Consider a fault-tolerant data storage system consisting of
random variables X7, X5, X3, X4 such that any three random variables can
recover the remaining one, i.e.,

H(Xi|X;,j#1) =0, 1<4,j<4 (15.156)
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We are interested in the set of all entropy functions subject to these con-
straints, denoted by 7", which characterizes the amount of joint information
which can possibly be stored in such a data storage system. Let

@ = {h € H, : h satisfies (15.156)}. (15.157)

Then the set T is equal to the intersection between I} and @, i.e., Iy N Q.

Since each constraint in (15.156) is one of the 14 constraints specified in
Theorem 15.12, we see that (15.62) is a non-Shannon-type inequality under
the constraints in (15.156). Then I'; N @ (cf. (15.91)) is a tighter outer bound
on 7 than Iy N®.

Ezxample 15.20. Consider four random variables X7, X5, X3, and X, such that
X5 — (X1, X2) — X4 forms a Markov chain. This Markov condition is equiv-

alent to
I(X3; X4| X1, Xz) = 0. (15.158)

It can be proved by invoking the basic inequalities (using ITIP) that

I(Xg;X4) S I(Xg,X4‘X1) + I(X3;X4|X2) + 0.5I(X1;X2)
+CI(X1; Xg,X4) + (]. - C)I(XQ; Xg,X4), (15159)

where 0.25 < ¢ < 0.75, and this is the best possible.

Now observe that the Markov condition (15.158) is one of the 14 con-
straints specified in Theorem 15.12. Therefore, (15.62) is a non-Shannon-type
inequality under this Markov condition. By replacing X; and X5 by each other
in (15.62), we obtain

2](X3,X4) S I(Xl,XQ) + I(Xg;Xg,X4)

Upon adding (15.62) and (15.160) and dividing by 4, we obtain

I(Xg,X4) § I(Xg;X4‘X1) + I(Xg,X4|X2) + O5I(X1,X2)

Comparing the last two terms in (15.159) and the last two terms in (15.161),
we see that (15.161) is a sharper upper bound than (15.159).

The Markov chain X3 — (X1, Xs) — X4 arises in many communication
situations. As an example, consider a person listening to an audio source. Then
the situation can be modeled by this Markov chain with X3 being the sound
wave generated at the source, X; and X5 being the sound waves received at
the two ear drums, and X4 being the nerve impulses which eventually arrive at
the brain. The inequality (15.161) gives an upper bound on I(Xs; X4) which
is tighter than what can be implied by the basic inequalities.

There is some resemblance between the constrained inequality (15.161) and
the data processing theorem, but they do not appear to be directly related.
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Chapter Summary

Characterizations of I'; and f;:

1. Iy =15,

2. Iy # I's, but T'y = Is.
3. Ty # Iy

4. fz is a convex cone.

An Unconstrained Non-Shannon-Type Inequality:
QI(Xg, X4) S I(Xl, XQ) + I(Xl, X3, X4) + 3I(X3, X4|X1) + I(Xg, X4|X2)

A Constrained Non-Shannon-Type Inequality: If I(X;; X5) =
I(Xl, XQ‘X:;) = O, then

I(X3; X4) < I(Xs3; Xa|X1) + I( X35 X4 X2).

Problems

1. Verify by ITIP that the unconstrained information inequality in Theo-
rem 15.7 is of non-Shannon-type.

2. Verify by ITIP and prove analytically that the constrained information
inequality in Theorem 15.14 is of non-Shannon-type.

3. Use ITIP to verify the unconstrained information inequality in Theo-
rem 15.7. Hint: Create two auxiliary random variables as in the proof
of Theorem 15.7 and impose appropriate constraints on the random vari-
ables.

4. Verify by ITIP that the implications in Examples 15.17 and 15.18 cannot
be deduced from the basic inequalities.

5. Can you show that the sets of constraints in Examples 15.17 and 15.18
are in fact different?

6. Consider an information inequality involving random variables X7, Xo,
-+, Xy, which can be written as

Y caH(X,) >0,

ae2Nn\ {0}

where N,, = {1,2,---,n}. For i € \},, let

Ty = Z cana(),

ae2Nn\{0}

where n,,(7) is equal to 1 if i € @ and is equal to 0 otherwise.
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a) Show that r; is the coefficient of H (X;| X s, —{;3) when the information
inequality is expressed in terms of the elemental forms of Shannon’s
information measures for n random variables.

b) Show that if the information inequality always holds, then r; > 0 for
all i € N,,.

(Chan [61].)

7. Let X;,i=1,2,---,n, Z, and T be discrete random variables.

a) Prove that

nI(Z;T) - S I1(Z;T|X;) — nl(Z;T|X,)

M-

< I(X5;2,T) + Y H(X;) = H(X1, Xo, -+, Xy).
j=1

Hint: When n = 2, this inequality reduces to the unconstrained non-
Shannon-type inequality in Theorem 15.7.
b) Prove that

nl(Z;T)—2Y I(Z;T|X;)
j=1
1 n n
<=N"I(X;:2,T H(X;)— H(Xy, Xo,--, Xn).
_nz ( )+ > H(X;) — H(X1, X, )

i=1 j=1

( Zhang and Yeung [416].)
8. Let p(x1, z2,z3,x4) be the joint distribution for random variables X, Xo,

X3, and X4 such that I(X7; X5|X3) = I(Xg; X4|X3) = 0, and let p be
defined in (15.98).
a) Show that

ﬁ(x1,x271'3,x4)
= {c' ey p(z1,72),p(z4) >0

p(x1,z2)p(Ts)
0 otherwise

defines a probability distribution for an appropriate ¢ > 1.
b) Prove that p(z1, z2,x3) = p(x1, 22, x3) for all z1, 9, and z5.
¢) By considering D(p||p) > 0, prove that

H(XlS) + H(X14) + H(ng) + H(X24) + H(X34)
> H(X3)+ H(Xy) + H(X12) + H(X134) + H(X234),

where H(X134) denotes H (X7, X3, X4), etc.
d) Prove that under the constraints in (15.112), the inequality in (15.113)
is equivalent to the inequality in c).
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The inequality in c) is referred to as the Ingleton inequality for entropy in
the literature. For the origin of the Ingleton inequality, see Problem 9 in
Chapter 16. (Matus [256].)

Historical Notes

In 1986, Pippenger [294] asked whether there exist constraints on the entropy
function other than the polymatroidal axioms, which are equivalent to the
basic inequalities. He called the constraints on the entropy function the laws
of information theory. The problem had been open until Zhang and Yeung
discovered for four random variables first a constrained non-Shannon-type
inequality [415] and then an unconstrained non-Shannon-type inequality [416]
in the late 1990’s. The inequality reported in [416] has been further generalized
by Makarychev et al. [242] and Zhang [413]. The existence of these inequalities
implies that there are laws in information theory beyond those laid down by
Shannon [322].

The non-Shannon-type inequalities that have been discovered induce outer
bounds on the region I’y which are tighter than I';. Matus and Studeny [261]
showed that an entropy function in Iy is entropic if it satisfies the Ingleton
inequality (see Problem 9 in Chapter 16). This gives an inner bound on ;.
A more explicit proof of this inner bound can be found in [416], where the
bound was shown not to be tight. Matis [259] has obtained asymptotically
tight inner bounds on f: by constructing entropy functions from matroids.

Dougherty et al. [98] discovered a host of unconstrained non-Shannon-type
inequalities by means of a computer search based on ITIP and the Markov
chain construction in [416] (see Problem 3). Recently, Matis [260] proved an
infinite class of unconstrained non-Shannon-type inequalities, implying that
f:; is not a pyramid.

Chan [61] proved a characterization for an inequality for differential en-
tropy in terms of its discrete version. Lnénicka [237] proved that the tightness
of the continuous version of the unconstrained non-Shannon-type inequality
reported in [416] can be achieved by a multivariate Gaussian distribution.

In the 1990’s, Matis and Studeny [254][261][255] studied the structure
of conditional independence (which subsumes the implication problem) of
random variables. Matus [256] finally settled the problem for four random
variables by means of a constrained non-Shannon-type inequality which is a
variation of the inequality reported in [415].

The von Neumann entropy is an extension of classical entropy (as discussed
in this book) to the field of quantum mechanics. The strong subadditivity of
the von Neumann entropy proved by Lieb and Ruskai [233] plays the same role
as the basic inequalities for classical entropy. Pippenger [295] proved that for
a three-party system, there exists no inequality for the von Neumann entropy
beyond strong subadditivity. Subsequently, Linden and Winter [235] discov-
ered for a four-party system a constrained inequality for the von Neumann
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entropy which is independent of strong subadditivity. We refer the reader to
the book by Nielsen and Chuang [274] for an introduction to quantum infor-
mation theory.

Along a related direction, Hammer et al. [144] have shown that all linear
inequalities that always hold for Kolmogorov complexity also always hold for
entropy, and vice versa. This establishes a one-to-one correspondence between
entropy and Kolmogorov complexity.



16

Entropy and Groups

The group is the first major mathematical structure in abstract algebra, while
entropy is the most basic measure of information. Group theory and infor-
mation theory are two seemingly unrelated subjects which turn out to be
intimately related to each other. This chapter explains this intriguing relation
between these two fundamental subjects. Those readers who have no knowl-
edge in group theory may skip this introduction and go directly to the next
section.
Let X7 and X5 be any two random variables. Then

H(X1)+ H(X2) > H(X1, X)), (16.1)
which is equivalent to the basic inequality
I1(X1;X5) > 0. (16.2)

Let G be any finite group and G; and G5 be subgroups of G. We will show
in Section 16.4 that
|G[|G1 N Ga| > [G1]|G2l, (16.3)

where |G| denotes the order of G and G; N G5 denotes the intersection of
G1 and G2 (G1 N G2 is also a subgroup of G, see Proposition 16.13). By
rearranging the terms, the above inequality can be written as

LI </ (<

lo .
el Ga] = ® ]G NGl

+ log

(16.4)

By comparing (16.1) and (16.4), one can easily identify the one-to-one corre-
spondence between these two inequalities, namely that X; corresponds to Gj,
i =1,2, and (X1, X3) corresponds to G; N G. While (16.1) is true for any
pair of random variables X; and X5, (16.4) is true for any finite group G and
subgroups G and Gs.

Recall from Chapter 13 that the region I’y characterizes all information
inequalities (involving n random variables). In particular, we have shown in
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Section 15.1 that the region f:; is sufficient for characterizing all unconstrained
information inequalities, i.e., by knowing T:; one can determine whether any
unconstrained information inequality always holds. The main purpose of this
chapter is to obtain a characterization of I, in terms of finite groups. An
important consequence of this result is a one-to-one correspondence between
unconstrained information inequalities and group inequalities. Specifically, for
every unconstrained information inequality, there is a corresponding group
inequality, and vice versa. A special case of this correspondence has been
given in (16.1) and (16.4).

By means of this result, unconstrained information inequalities can be
proved by techniques in group theory, and a certain form of inequalities in
group theory can be proved by techniques in information theory. In particular,
the unconstrained non-Shannon-type inequality in Theorem 15.7 corresponds
to the group inequality

|G1 N Gs]?|G1 N G4l?|Gs N Gyl?|Go N G3||Ga NGy

< |G1]|G1 N Ga]|G32|Gal?|G1 N G N Gal*|G2 N G N Gl (16.5)

where G; are subgroups of a finite group G, ¢ = 1,2, 3,4. The meaning of this
inequality and its implications in group theory are yet to be understood.

16.1 Group Preliminaries

In this section, we present the definition and some basic properties of a group
which are essential for subsequent discussions.

Definition 16.1. A group is a set of objects G together with a binary oper-
ation on the elements of G, denoted by “o” unless otherwise specified, which
satisfy the following four axioms:

1. Closure For every a, b in G, aob is also in G.

2. Associativity For every a, b, ¢ in G, ao (boc) = (aob)oec.

3. Existence of Identity There exists an element e in G such that aoce = eoa
= a for every a in G.

4. Existence of Inverse For every a in G, there exists an element b in G such
that aob=boa =e.

Proposition 16.2. For any group G, the identity element is unique.

Proof. Let both e and €’ be identity elements in a group G. Since e is an
identity element,
eoe=e, (16.6)

and since ¢’ is also an identity element,

doe=c¢. (16.7)
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It follows by equating the right hand sides of (16.6) and (16.7) that e = ¢/,
which implies the uniqueness of the identity element of a group. O

Proposition 16.3. For every element a in a group G, its inverse is unique.

Proof. Let b and b’ be inverses of an element a, so that

aob=boa=c¢e (16.8)
and
aol/ =boa=e. (16.9)
Then
b=boe (16.10)
=bo(aol) (16.11)
= (boa)old’ (16.12)
=eol/ (16.13)
=V, (16.14)

where (16.11) and (16.13) follow from (16.9) and (16.8), respectively, and
(16.12) is by associativity. Therefore, the inverse of a is unique. O

Thus the inverse of a group element a is a function of a, and it will be
1

denoted by a™".
Definition 16.4. The number of elements of a group G is called the order of
G, denoted by |G|. If |G| < oo, G is called a finite group, otherwise it is called
an infinite group.

There is an unlimited supply of examples of groups. Some familiar ex-
amples are: the integers under addition, the rationals excluding zero under
multiplication, and the set of real-valued 2 x 2 matrices under addition, where
addition and multiplication refer to the usual addition and multiplication for
real numbers and matrices. In each of these examples, the operation (addition
or multiplication) plays the role of the binary operation “o” in Definition 16.1.

All the above are examples of infinite groups. In this chapter, however, we
are concerned with finite groups. In the following, we discuss two examples of
finite groups in details.

Ezample 16.5 (Modulo 2 Addition). The trivial group consists of only the iden-
tity element. The simplest nontrivial group is the group of modulo 2 addition.
The order of this group is 2, and the elements are {0, 1}. The binary operation,
denoted by “+”, is defined by following table:

+01
001
110



390 16 Entropy and Groups

The four axioms of a group simply say that certain constraints must hold
in the above table. We now check that all these axioms are satisfied. First,
the closure axiom requires that all the entries in the table are elements in
the group, which is easily seen to be the case. Second, it is required that
associativity holds. To this end, it can be checked in the above table that for
all a, b, and ¢,

a+(b+c)=(a+0b) +ec (16.15)
For example,

0+(14+1)=04+0=0, (16.16)
while

0+1)+1=14+1=0, (16.17)

which is the same as 04 (1 + 1). Third, the element 0 is readily identified as
the unique identity. Fourth, it is readily seen that an inverse exists for each
element in the group. For example, the inverse of 1 is 1, because

1+1=0. (16.18)

Thus the above table defines a group of order 2. It happens in this example
that the inverse of each element is the element itself, which is not true for a
group in general.

We remark that in the context of a group, the elements in the group should
be regarded strictly as symbols only. In particular, one should not associate
group elements with magnitudes as we do for real numbers. For instance, in the
above example, one should not think of 0 as being less than 1. The element 0,
however, is a special symbol which plays the role of the identity of the group.

We also notice that for the group in the above example, a + b is equal to
b+ a for all group elements a and b. A group with this property is called a
commutative group or an Abelian group'.

Ezample 16.6 (Symmetric Group). Consider a permutation of the components
of a vector

X = (x1,$2,"'7$7-) (1619)
given by
U[X] = (ma(1)7 To(2)s " mcr(r))y (1620)
where
o:{1,2,---,r} = {1,2,---,r} (16.21)

is a one-to-one mapping. The one-to-one mapping o is called a permutation
on {1,2,---,r}, which is represented by

o= (o(1),0(2),---,0(r)). (16.22)

! The Abelian group is named after the Norwegian mathematician Niels Henrik
Abel (1802-1829).
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For two permutations o; and og, define oy o 05 as the composite function of
o1 and o5. For example, for r = 4, suppose

o1 =(2,1,4,3) (16.23)
and
o2 = (1,4,2,3). (16.24)
Then o1 0 02 is given by
g1 00'2(1) = 0'1(0'2(1)) = 0'1(1) =2
01002(2) = 01(02(2)) = 01(4) = 3
16.25
o1002(3) = 01(02(3)) = 01(2) = 1 ( )
01 00'2(4) = 0'1(0'2(4)) = 0'1(3) = 4,
or
o1o09 =(2,3,1,4). (16.26)
The reader can easily check that
oe 001 = (4,1,2,3), (16.27)

“”

which is different from oy o o5. Therefore, the operation “o” is not commuta-
tive.

We now show that the set of all permutations on {1,2,---,r} and the
operation “o” form a group, called the symmetric group on {1,2,---,r}. First,
for two permutations o7 and o2, since both o1 and o9 are one-to-one mappings,
80 is 01 009. Therefore, the closure axiom is satisfied. Second, for permutations
g1, 02, and g3,

010 (02 003)(i) = 01(02 0 03(7)) (16.28
o1(o2(03(7))) (16.29

= 01 009(03(7)) (16.30

= (01 002) 0 03(i) (16.31

)
)
)
)

for 1 < i < r. Therefore, associativity is satisfied. Third, it is clear that the
identity map is the identity element. Fourth, for a permutation o, it is clear
that its inverse is 0!, the inverse mapping of ¢ which is defined because o
is one-to-one. Therefore, the set of all permutations on {1,2,---,r} and the
operation “o” form a group. The order of this group is evidently equal to (r!).

Definition 16.7. Let G be a group with operation “o”, and S be a subset of
G. If S is a group with respect to the operation “o”, then S is called a subgroup
of G.

Definition 16.8. Let S be a subgroup of a group G and a be an element of G.
The left coset of S with respect to a is the set aoS = {aos : s € S}. Similarly,
the right coset of S with respect to a is the set Soa = {soa:s € S}.
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In the sequel, only the left coset will be used. However, any result which
applies to the left coset also applies to the right coset, and vice versa. For
simplicity, a o S will be denoted by asS.

Proposition 16.9. For ay and as in G, a1S and a2S are either identical or
disjoint. Further, a1 S and a2S are identical if and only if a1 and as belong to
the same left coset of S.

Proof. Suppose a1.5 and asS are not disjoint. Then there exists an element b
in a1.5 N asS such that
b=aj 081 =aso0 s, (16.32)

for some s; in S, i = 1,2. Then
a1 = (ag0sy) o8] =azo(syos;t) =agot, (16.33)

where t = 35 oslf1 isin S. We now show that 1.5 C a2S. For an element a1 0s
in a1.S, where s € S,

ajos=(agot)os=uazo(tos)=azou, (16.34)

where u = tos is in S. This implies that a; o s is in a2 S. Thus, a1 S C a2S. By
symmetry, a2S C a1S. Therefore, a1.S = a2S. Hence, if a1 S and a2S are not
disjoint, then they are identical. Equivalently, a1.5S and a2.S are either identical
or disjoint. This proves the first part of the proposition.

We now prove the second part of the proposition. Since S is a group, it
contains e, the identity element. Then for any group element a, a = aoe is
in aS because e is in S. If a1.S and a2S are identical, then a; € a1S and
as € a2S = a1.S. Therefore, a; and as belong to the same left coset of S.

To prove the converse, assume a1 and as belong to the same left coset of
S. From the first part of the proposition, we see that a group element belongs
to one and only one left coset of S. Since ay is in 1.5 and as is in asS, and
a1 and as belong to the same left coset of S, we see that a1.5 and asS are
identical. The proposition is proved. 0O

Proposition 16.10. Let S be a subgroup of a group G and a be an element
of G. Then |aS| = |S|, i.e., the numbers of elements in all the left cosets of S
are the same, and they are equal to the order of S.

Proof. Consider two elements a o s; and a o s3 in a 0 S, where s; and s are
in S such that
a o8] =ao ss. (16.35)

Then

ato(aos)=a"to(aosy) (
(a_loa)osl = (a_l 0a)o Sy (16.37

€081 = €0 89 (

(

S§1 = S2.
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Thus each element in S corresponds to a unique element in a.S. Therefore,
|aS|=|S| foralla € G. O

We are just one step away from obtaining the celebrated Lagrange’s theo-
rem stated below.

Theorem 16.11 (Lagrange’s Theorem). If S is a subgroup of a finite
group G, then |S| divides |G|.

Proof. Since a € aS for every a € G, every element of G belongs to a left
coset of S. Then from Proposition 16.9, we see that the distinct left cosets of
S partition G. Therefore |G|, the total number of elements in G, is equal to
the number of distinct cosets of S multiplied by the number of elements in
each left coset, which is equal to |S| by Proposition 16.10. This implies that
|S| divides |G|, proving the theorem. O

The following corollary is immediate from the proof of Lagrange’s Theo-
rem.

Corollary 16.12. Let S be a subgroup of a group G. The number of distinct

left cosets of S is equal to %

16.2 Group-Characterizable Entropy Functions

Recall from Chapter 13 that the region I') consists of all the entropy func-
tions in the entropy space H,, for n random variables. As a first step toward
establishing the relation between entropy and groups, we discuss in this sec-
tion entropy functions in I¥ which can be described by a finite group G
and subgroups G1,Ga, -+, G,. Such entropy functions are said to be group-
characterizable. The significance of this class of entropy functions will become
clear in the next section.

In the sequel, we will make use of the intersections of subgroups extensively.
We first prove that the intersection of two subgroups is also a subgroup.

Proposition 16.13. Let G and Gy be subgroups of a group G. Then G1NG4
is also a subgroup of G.

Proof. Tt suffices to show that G; N G2 together with the operation “o” satisfy
all the axioms of a group. First, consider two elements a and b of G in G1NG5.
Since both a and b are in Gy, (a o b) is in G;. Likewise, (a o b) is in Gs.
Therefore, a o b is in Gy N G5. Thus the closure axiom holds for G; N Gs.
Second, associativity for G; N G4 inherits from G. Third, G; and G5 both
contain the identity element because they are groups. Therefore, the identity
element is in G N Gy. Fourth, for an element a € G;, since G; is a group, a™*
is in G;, i = 1,2. Thus for an element a € G; N G, a~ ! is also in G; N Go.
Therefore, G; N G5 is a group and hence a subgroup of G. 0O



394 16 Entropy and Groups

Corollary 16.14. Let G, Ga, - - -, Gy, be subgroups of a group G. Then N}, G;
is also a subgroup of G.

In the rest of the chapter, we let N}, = {1,2,---,n} and denote N;c,G; by
G, where o is a nonempty subset of NV,,.

Lemma 16.15. Let G; be subgroups of a group G and a; be elements of G,
1t € a. Then

INicaaiGi| = { (Cal if Mieq ailhi 70 (16.40)

0 otherwise.

Proof. For the special case that « is a singleton, i.e., & = {i} for some i € N,
(16.40) reduces to
|aiGi\ = ‘Gi‘, (16.41)

which has already been proved in Proposition 16.10.

Let o be any nonempty subset of N,. If (,c, a;G; = 0, then (16.40) is
obviously true. If (.., a;G; # 0, then there exists = € G, such that
for all i € a,

i€ ica Qi

x =a;o s, (16.42)

where s; € G;. For any i € a and for any y € G, consider
zoy=(a;0s8;)oy=a;o(s;ioy). (16.43)

Since both s; and y are in G;, s; oy is in G;. Thus zoy is in a;G; for all i € «,
or xoy is in [;c, a;G;. Moreover, for y,y" € G, if xoy = 2zo0y/, theny =y
Therefore, each element in G, corresponds to a unique element in (., a;G;.
Hence,

|ﬁ¢€aaiGi| = |Ga|, (1644)

proving the lemma. 0O

The relation between a finite group G and subgroups G; and G is illus-
trated by the membership table in Figure 16.1. In this table, an element of G
is represented by a dot. The first column represents the subgroup G;, with
the dots in the first column being the elements in G;. The other columns
represent the left cosets of G1. By Proposition 16.10, all the columns have the
same number of dots. Similarly, the first row represents the subgroup G5 and
the other rows represent the left cosets of G5. Again, all the rows have the
same number of dots.

The upper left entry in the table represents the subgroup G; N Gs. There
are |G1 N Ga| dots in this entry, with one of them representing the identity
element. Any other entry represents the intersection between a left coset of
G1 and a left coset of G2, and by Lemma 16.15, the number of dots in each
of these entries is either equal to |Gy N Gg| or zero.
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G2
7 T
° ® 5
o; | e
N \_GI,ZI S N -
! I
1@ o ® 4
Gl ] @ [ ]

Fig. 16.1. The membership table for a finite group G and subgroups G and Go.

Since all the column have the same numbers of dots and all the rows
have the same number of dots, we say that the table in Figure 16.1 exhibits a
quasi-uniform structure. We have already seen a similar structure in Figure 6.2
for the two-dimensional strong joint typicality array, which we reproduce in
Figure 16.2. In this array, when n is large, all the columns have approximately
the same number of dots and all the rows have approximately the same number
of dots. For this reason, we say that the two-dimensional strong typicality
array exhibits an asymptotic quasi-uniform structure. In a strong typicality
array, however, each entry can contain only one dot, while in a membership
table, each entry can contain multiple dots.

One can make a similar comparison between a strong joint typicality array
for any n > 2 random variables and the membership table for a finite group
with n subgroups. The details are omitted here.

Theorem 16.16. Let G;,1 € N,, be subgroups of a group G. Then h € H,
defined by

G|
he =1 16.45
o =log 1o (16.45)
for all nonempty subsets o of N, is entropic, i.e., h € I*.
n
2HW) Y € S5
[ ] [ L J .\
nH(X) . . ) .<<\_§ QnH(X.Y)
n
X € Siys . . — |xye Tiens

Fig. 16.2. A two-dimensional strong typicality array.
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Proof. 1t suffices to show that there exists a collection of random variables
X1, Xo,--+, X, such that

G
H(X,)=log ||G || (16.46)

for all nonempty subsets a of A,,. We first introduce a uniform random vari-
able A defined on the sample space G with probability mass function

1

Pr{A=a} = @

(16.47)

for all a € G. For any i € NV,,, let random variable X; be a function of A such
that X; = aG; if A = a.

Let a be a nonempty subset of N,,. Since X; = a;G; for all i € « if and
only if A is equal to some b € N;cqa;G;,

[MNica 4Gl
G|

_ { i NieaaiGi #0 (16.49)

Pr{X;, =a;G; i € a} = (16.48)

G
0 otherwise

by Lemma 16.15. In other words, (X;,? € «) is distributed uniformly on its
support whose cardinality is 1. Then (16.46) follows and the theorem is

|Gal
proved. O

Definition 16.17. Let G be a finite group and G1,Ga,---, Gy be subgroups

of G. Let h be a vector in H,,. If hy = log % for all nonempty subsets o of

N, then (G,G1,---,Gy) is a group characterization of h.

Theorem 16.16 asserts that certain entropy functions in I have a group
characterization. These are called group-characterizable entropy functions,
which will be used in the next section to obtain a group characterization of
the region I',,. We end this section by giving a few examples of such entropy
functions.

Ezample 16.18. Fix any subset 8 of N3 = {1,2,3} and define a vector h € Hj
by

_Jlog2 ifanB#0
fro: = { 0 otherwise. (16.50)

We now show that h has a group characterization. Let G = {0,1} be the
group of modulo 2 addition in Example 16.5, and for ¢ = 1,2, 3, let

Gi = {{0} ifiep (16.51)

G otherwise.
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Then for a nonempty subset « of N3, if aN 3 # (), there exists an ¢ in « such
that ¢ is also in 3, and hence by definition G; = {0}. Thus,

Go=[)Gi={0}. (16.52)
i€a
Therefore,
G| G| 2
og = log = log — =log2. 16.53
ARG 165
If anp =0, then G; = G for all i € o, and
Go=[)Gi=G. (16.54)
S
Therefore,
G| G|
log =log— =logl=0. 16.55)
Gl ~ %10 (
Then we see from (16.50), (16.53), and (16.55) that
G|
he = log (16.56)
|Gal

for all nonempty subsets « of A3. Hence, (G,G1,G2,G3) is a group charac-
terization of h.

Ezample 16.19. This is a generalization of the last example. Fix any non-
empty subset 3 of N,, and define a vector h € H,, by

_[log2 ifanB#0
o = { 0 otherwise. (16.57)

Then (G,G1,Ga,---,Gy) is a group characterization of h, where G is the
group of modulo 2 addition, and

Gi = {{0} i€ s (16.58)

G otherwise.

By letting 3 = 0, we have h = 0. Thus we see that (G, Gy, G2, -+, Gy) is

a group characterization of the origin of H,,, with G =G, =G =--- = G,.
Ezxzample 16.20. Define a vector h € H3 as follows:
he = min(|al, 2). (16.59)
Let F be the group of modulo 2 addition, G = F x F, and
G1 ={(0,0),(1,0)} (16.60)
G2 = {(0,0),(0,1)} (16.61)
Gs ={(0,0),(1,1)}. (16.62)

Then (G, Gy, Ga,G3) is a group characterization of h.
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16.3 A Group Characterization of I'

We have introduced in the last section the class of entropy functions in I}
which have a group characterization. However, an entropy function h € I}
may not have a group characterization due to the following observation. Sup-
pose h € 7. Then there exists a collection of random variables X, Xy, - - -,
X,, such that

he = H(X4) (16.63)

for all nonempty subsets « of Ny, If (G, Gy, - - -, Gy,) is a group characterization
of h, then

G|
Gal

for all nonempty subsets of AV,,. Since both |G| and |G| are integers, H(X,,)
must be the logarithm of a rational number. However, the joint entropy of a
set of random variables in general is not necessarily the logarithm of a rational
number (see Corollary 2.44). Therefore, it is possible to construct an entropy
function h € I'} which has no group characterization.

Although h € I'¥ does not imply h has a group characterization, it turns
out that the set of all h € I')' which have a group characterization is almost
good enough to characterize the region I, as we will see next.

H(X,) =log (16.64)

Definition 16.21. Define the following region in H,:
Y, = {h € H,, : h has a group characterization}. (16.65)

By Theorem 16.16, if h € H,, has a group characterization, then h € I';.
Therefore, 7,, C I';. We will prove as a corollary of the next theorem that
con(T,,), the convex closure of 7}, is in fact equal to I, , the closure of I'*.

Theorem 16.22. For any h € T, there exists a sequence {£("} in 1), such
that lim, oo £ = h.

We need the following lemma to prove this theorem. The proof of this
lemma resembles the proof of the strong conditional AEP (Theorem 6.10).
Nevertheless, we give a sketch of the proof for the sake of completeness.

Lemma 16.23. Let X be a random variable such that |X| < co and the distri-
bution {p(x)} is rational, i.e., p(x) is a rational number for all x € X. Without
loss of generality, assume p(x) is a rational number with denominator q for
allx € X. Then for r =q,2q,3q, -,

1 r! _
Tll)rglo - log L@ H(X). (16.66)
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Proof. Applying Lemma 6.11, we can obtain

1 | rl

VRCTO)

< - Zp(x) Inp(z) + rtl In(r+1)—Inr (16.67)
:He(X)nL%lnrJr <1+i> In <1+i>. (16.68)

This upper bound tends to H.(X) as » — oo. On the other hand, we can
obtain

1 !
In "

r o IL(rp(x))!
>-% (p(x) + i) In (p(a:) + i) - 1“7’“ (16.69)

x

This lower bound also tends to H.(X) as 7 — oo. Then the proof is completed
by changing the base of the logarithm if necessary. O

Proof of Theorem 16.22. For any h € I'), there exists a collection of random
variables X1, Xo,---, X,, such that

ho = H(X,) (16.70)

for all nonempty subsets o of N,,. We first consider the special case that
|X;] < oo for all i € A,, and the joint distribution of X, Xs,---, X,, is ra-
tional. We want to show that there exists a sequence {f(")} in 7;, such that
lim, oo L6 = h.

Denote [[;c, &i by &a. For any nonempty subset a of N, let Q, be the
marginal distribution of X,. Assume without loss of generality that for any
nonempty subset « of AV, and for all a € X,, Q,(a) is a rational number with
denominator gq.

For each r = ¢q,2q, 3q, - - -, fix a sequence

XN, = (TN, 1, TN, 25 TN )

where for all j = 1,2,---,r, zn,; = (z;j : @ € N,,) € Xy, such that
N(a;xp, ), the number of occurrences of a in sequence xu. , is equal to
rQn, (a) for all @ € X),,. The existence of such a sequence is guaranteed
by that all the values of the joint distribution of X, are rational num-
bers with denominator ¢. Also, we denote the sequence of r elements of X,
(Ta1;Ta,2," * Tanr), Where zq 5 = (2,5 1 1 € @), by Xo. Let a € X,,. It is easy
to check that N(a;x,), the number of occurrences of a in the sequence x,, is
equal to rQq(a) for all a € A,.
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Let G be the group of all permutations on {1,2,---,r}, i.e., the symmetric
group on {1,2,---,r} (cf. Example 16.6). The group G depends on r, but for
simplicity, we do not state this dependency explicitly. For any ¢ € N,,, define

i ={0€G:oxi] =xi},

where
o[xi] = (Tio(1)s Tio(2), s Tiso (r))- (16.71)

It is easy to check that G; is a subgroup of G.
Let o be a nonempty subset of N,,. Then

Go =[)Gi (16.72)

i€Q
= (o€ G:olxi] =x;} (16.73)

i€a
={o e G:o[x;] =x; forall i € a} (16.74)
={o € G:0o[xs] =%Xa}, (16.75)

where

U[Xa] = (xa,o(l)a LTo,o(2)) " 7~Ta,o(r))~ (1676)

For any a € X, define the set
Ly, (a)={je{1,2,---,7} : zo; = a}. (16.77)

Ly (a) contains the “locations” of a in x,. Then o[x,] = X,, if and only if for
all a € X,, j € Lx_(a) implies o(j) € Ly, (a). Since

|Lx, (a)] = N(a;xa) = rQa(a), (16.78)
Gal = [] (rQala))! (16.79)
acX,y
and therefore |
ol _ = (16.80)

Gl Ilaex, (rQa(a)!’

By Lemma 16.23,
o1 |G|
Th_g’)lo - log Gal ~ H(X,) = ha- (16.81)

Recall that G and hence all its subgroups depend on 7. Define f(") by

G|

16.82
ol (16.82)

f) = log

for all nonempty subsets o of NV;,. Then f (") €7, and
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lim ~£0) — b, (16.83)
r—oo T
We have already proved the theorem for the special case that h is the
entropy function of a collection of random variables X7, Xo,- - -, X,, with finite
alphabets and a rational joint distribution. To complete the proof, we only
have to note that for any h € I')7, it is always possible to construct a sequence
{h®)} in I'* such that limg_,. h®) = h, where h(®) is the entropy function
of a collection of random variables X fk), Xék), e 7X7(,k) with finite alphabets
and a rational joint distribution. This can be proved by techniques similar
to those used in Appendix 2.A together with the continuity of the entropy
function for a fixed finite support (Section 2.3). The details are omitted here.
O

*

Corollary 16.24. con(1,,) =T’

n*

Proof. First of all, 7, C I}. By taking convex closure, we have ¢on(7,) C
con(I'*). By Theorem 15.5, T',, is convex. Therefore, con(I'*) = T, and we
have con(Y,) C T,. On the other hand, we have shown in Example 16.19
that the origin of H,, has a group characterization and therefore is in 7,,. It
then follows from Theorem 16.22 that ", C con(T},). Hence, we conclude that

f*L = con(7,,), completing the proof. 0O

n

16.4 Information Inequalities and Group Inequalities

We have proved in Section 15.1 that an unconstrained information inequality
b'h>0 (16.84)

always holds if and only if
T, c{heH,:b 'h>0} (16.85)

In other words, all unconstrained information inequalities are fully charac-
terized by F;. We also have proved at the end of the last section that
con(Y,) =T,. Since 1, C I'* € T, if (16.85) holds, then

T, c{heH,:b h>0} (16.86)

On the other hand, if (16.86) holds, since {h € H,, : bTh > 0} is closed and
convex, by taking convex closure in (16.86), we obtain

*

T, =cmn(Y,) Cc {heM,:b h>0}. (16.87)

Therefore, (16.85) and (16.86) are equivalent.
Now (16.86) is equivalent to
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b'h>0foralhe?,. (16.88)
Since h € T, if and only if
(€
he = log (16.89)
|Gal

for all nonempty subsets a of N,, for some finite group G and subgroups G1,
Ga, -+, Gy, we see that the inequality (16.84) holds for all random variables
X1, Xa, - -, X, if and only if the inequality obtained from (16.84) by replacing
ho by log HG—GJ‘ for all nonempty subsets « of N,, holds for any finite group
G and subgroups G1,Gs, -+, G,. In other words, for every unconstrained
information inequality, there is a corresponding group inequality, and vice
versa. Therefore, inequalities in information theory can be proved by methods
in group theory, and inequalities in group theory can be proved by methods
in information theory.

In the rest of the section, we explore this one-to-one correspondence be-
tween information theory and group theory. We first give a group-theoretic
proof of the basic inequalities in information theory. At the end of the section,
we will give an information-theoretic proof for the group inequality in (16.5).

Definition 16.25. Let G and G2 be subgroups of a finite group G. Define
Gi1oGy={aob:a€ Gy and b € Ga}. (16.90)

G1 0 G5 is in general not a subgroup of G. However, it can be shown that
G1 0 G is a subgroup of G if G is Abelian (see Problem 1).

Proposition 16.26. Let G and G4 be subgroups of a finite group G. Then

_ |G1]|Ge|

Gy oGy = =21
|G 0 Ga |G1 N Gy

(16.91)

Proof. Fix (a1,a2) € G1 X G3, Then aj o ay is in Gy o Gy. Consider any
(bl,bg) S G1 X GQ such that

by oby = aj oas. (16.92)

We will determine the number of (b1,bs) in G x G which satisfies this rela-
tion. From (16.92), we have

byt o (byoby) =byto(ay0as) (16.93)
(bt oby)oby =b7 oay oay (16.94)
by = b7t oay oay. (16.95)

Then
byoay' =b'oajo(azoayt) =b;toa. (16.96)
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Let k£ be this common element in G, i.e.,
k=byoay' =b; oa. (16.97)

Since bl_1 oa; € G7 and by o a2_1 € (s, k is in G1 N G5. In other words, for
given (al,ag) € Gy X GQ, if (bl,bg) € (1 x G5 satisfies (1692), then (bl,bg)
satisfies (16.97) for some k € G1 NG3. On the other hand, if (b1,b2) € G1 X G2
satisfies (16.97) for some k € G1 NGy, then (16.96) is satisfied, which implies
(16.92). Therefore, for given (a1,as) € G x Ga, (b1,be) € G1 x G satisfies
(16.92) if and only if (b, bo) satisfies (16.97) for some k € G1 N Ga.

Now from (16.97), we obtain

bi(k) = (koa; ')t (16.98)
and
bo(k) = k o as, (16.99)

where we have written by and by as by (k) and b2(k) to emphasize their depen-
dence on k. Now consider k, k' € G1 N G5 such that

(b1(k), b2(k)) = (b1 ('), b2(K")). (16.100)
Since by (k) = by (k'), from (16.98), we have
(koay )™ = (K oa; "), (16.101)

which implies
E=F. (16.102)
Therefore, each k € G; N Gy corresponds to a unique pair (by,b2) € G1 X Go

which satisfies (16.92). Therefore, we see that the number of distinct elements
in G1 o Gy is given by

|G1 x G| _ [G1]|G
IGiNGe| |G1NGy|

|G10Ga| = (16.103)

completing the proof. O
Theorem 16.27. Let G1, G2, and G3 be subgroups of a finite group G. Then

|G3]|Gra2s| > |G1s|[Gas]. (16.104)

Proof. First of all,
G13 N G23 = (Gl n Gg) n (GQ N Gg) = G1 N G2 n G3 = G123. (16105)

By Proposition 16.26, we have
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|G13 0 Gag| = M (16.106)
|G123]

It is readily seen that G13 0 Ga3 is a subset of G3, Therefore,

|G13]|G2s]

G130 Gas| =
|G13 23] Gros|

< |Gs|. (16.107)

The theorem is proved. 0O
Corollary 16.28. For random variables X1, Xo, and X3,
I(X1; X5 X3) > 0. (16.108)
Proof. Let G1,G3, and G3 be subgroups of a finite group G. Then
|G5|G123] = |Gs]|Gas (16.109)
by Theorem 16.27, or

G 1GP
|G13l|Gas| — |G3l|Gr2s]

(16.110)

This is equivalent to

G| |G| G| G|

log G| + log G| > log TeN + log Crasl” (16.111)
This group inequality corresponds to the information inequality
H(X:,X3)+ H(X2,X3) > H(X3) + H(X1, Xs, X3), (16.112)
which is equivalent to
I(X1; X5 X3) > 0. (16.113)

O

The above corollary shows that all the basic inequalities in information
theory has a group-theoretic proof. Of course, Theorem 16.27 is also implied
by the basic inequalities. As a remark, the inequality in (16.3) is seen to be a
special case of Theorem 16.27 by letting Gs = G.

We are now ready to prove the group inequality in (16.5). The uncon-
strained non-Shannon-type inequality we have proved in Theorem 15.7 can
be expressed in canonical form as

H(X1) 4+ H(X1, X2) + 2H(X3) + 2H(X,)
+4H (X1, X3, X4) + H(X2, X3, X4)
< 3H(Xy, X3) + 3H(X1, X4) + 3H(X3, X4)
+H(Xy, X3) + H(X2, X4), (16.114)
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which corresponds to the group inequality

1og|GGl|| + log ||ch2| + 210g|(§3|| + 210g||g4|
G G
+4log |C|¥13|4| + log |C|¥23|4|
= 3log |c|:GL *3los |GG1L| *3los |c|:G34| *loe |c|:G23|
+ log ||GC;Y4| (16.115)

Upon rearranging the terms, we obtain

|G1 N G32|GL NGyl |Gs N Gyl’|Ga N Gs||Ga N Gyl
<GH]|G1 N Gal|G32|Gal?|G1 N G N G} |G2 N G3 N Gal,  (16.116)

which is the group inequality in (16.5). The meaning of this inequality and its
implications in group theory are yet to be understood.

Chapter Summary
In the following, NV,, = {1,2,---,n}.

Properties of Subgroups of a Finite Group:

1. Lagrange’s Theorem: If S is a subgroup of a finite group G, then |5
divides |G|.
2. Let G; be subgroups of a finite group G and a; be elements of G, i € a.

Then Gl N ]
Gol if NjeqaiGi #
. ] — a i€a "
INicaaiGil { 0 otherwise,

where a;G; is the left coset of G; containing a; and G, = N;jea G-

Group Characterization of an Entropy Function: Let G be a finite
group and G1,Go,---,G, be subgroups of G. For a vector h € H,,, if h, =
log % for all nonempty subsets « of Ny, then (G,G1,---,G,) is a group
characterization of h. A vector h that has a group characterization is entropic.

*

Group Characterization of f:: con(Yy,) =T
h has a group characterization}.

where 7, = {h € H, :

n?

Information Inequalities and Group Inequalities: An unconstrained
inequality b"h > 0 involving random variables X, X5, -+, X,,, where h €
H,, always holds if and only if the inequality obtained by replacing h, by



406 16 Entropy and Groups

log % for all nonempty subsets o of A, holds for any finite group G and
subgroups G1,Ga, -+, Gy

A “Non-Shannon-Type” Group Inequality:

|G1 N Gs]?|G1 N Ga?|Gs NGyl |Ga N Gs||Ga2 N Gyl
< |G1]|G1 N Ga|Gs |G4l? |G N Gs N Gyl*|Ge NG N Gyl

Problems

1. Let G; and G5 be subgroups of a finite group G. Show that G; o G5 is a
subgroup if G is Abelian.
2. Let g1 and gy be group characterizable entropy functions.
a) Prove that mig1 + mags is group characterizable, where m; and meo
are any positive integers.
b) For any positive real numbers a; and as, construct a sequence of group
characterizable entropy functions f*) for k =1,2,---, such that

£(F) h

lim —— = —,
koo |[E®| - [[h]|
where h = a181 + asgo.
3. Let (G,G1,Ga,---,G,) be a group characterization of g € I, where
g is the entropy function for random variables X, X5, -, X,,. Fix any
nonempty subset a of AV,, and define h by

h’ﬁ = JauB — Yo

for all nonempty subsets 3 of N,,. It can easily be checked that hg =
H(Xg3|X,). Show that (K, K1, Ka, -, K,,) is a group characterization of
h, where K = G, and K; = G; N G,.

4. Let (G,G1,Ga,---,G,) be a group characterization of g € IF, where g
is the entropy function for random variables Xy, X, -+, X,,. Show that if
X, is a function of (X, : j € ), then G, is a subgroup of G;.

5. Let G1, G4, G3 be subgroups of a finite group G. Prove that

|G||G1 NGy N Gs? > |Gy N Gy||Ga N Gsl|G1 N Gs.

Hint: Use the information-theoretic approach.

6. Let h € I'J be the entropy function for random variables X; and X2 such
that hy + ha = h1a, i.e. X7 and X are independent. Let (G, G1,G2) be a
group characterization of h, and define a mapping L : G; X G2 — G by

L(a,b) =aob.



Problems 407

a) Prove that the mapping L is onto, i.e., for any element ¢ € G, there
exists (a,b) € Gy x G2 such that aob = c.

b) Prove that G o G2 is a group.
. Denote an entropy function h € Iy by (h1, ha, h12). Construct a group
characterization for each of the following entropy functions:

a) h; = (log2,0,log2)

b) hy = (0,10g 2,log 2)

c) hs = (log2,log2,log?2).

Verify that I is the minimal convex set containing the above three en-
tropy functions.
. Denote an entropy function h € I'j by (hi, ha, hs, hig, has, his, hi2s). Con-
struct a group characterization for each of the following entropy functions:
a) h; = (log2,0,0,log2,0,log2,log2)

b) hy = (log2,log2,0,log2,log 2,1og 2, log 2)

¢) hsy = (log2,log2,log2,log2,log 2, log 2, log 2)

d) hy = (log2,log2,log2,log4,log4,log4,log4).
. Ingleton inequality Let G be a finite Abelian group and G1, G, G3, and
G4 be subgroups of G. Let (G, Gy, G2, G3,Gy4) be a group characterization
of g, where g is the entropy function for random variables X, X5, X3, and
X 4. Prove the following statements:

a)
|(G10G3)O(GlﬂG4)|§|G1Q(G30G4)|
b) Hint: Show that (Gl n Gg) o (Gl n G4) cGin (Gg o G4)
|G1HG30G4||G1QG3QG4|
G1oG30G <
[GroGyoGal < |G1 N Gs||G1 NGy
c)
|G10G30G4HG20G30G4|
GioGo0G30G,]| < .
| 1 2 3 4| = |G30G4|
d)
|G10G20G30G4|
|G1]|G2||Gs5||G4l|G1 N Gs N G4||G2 N Gz N Gyl
~ |G1 N Gs||G1 N Gya||Ga N G3||G2 N Gyl||Gs NGy’
e)

|G1 n G3||G1 n G4HG2 N GgHGQ n G4HG3 n G4|
< |Gs]|G4||G1 N Ge||G1 NGs N Gy||G2 NGs N Gyl
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f)

H(Xlg) + H(X14) + H(X23) + H(X24) + H(X34)
> H(X3)+ H(Xy) + H(X12) + H(X134) + H(X234),

where H(X134) denotes H(X7, X3, X4), etc.
g) Is the inequality in f) implied by the basic inequalities? And does it
always hold? Explain.
The Ingleton inequality [181] (see also [283]) was originally obtained as a
constraint on the rank functions of vector spaces. The inequality in e) was
obtained in the same spirit by Chan [58] for subgroups of a finite group.
The inequality in f) is referred to as the Ingleton inequality for entropy
in the literature. (See also Problem 8 in Chapter 15.)

Historical Notes

The results in this chapter are due to Chan and Yeung [64], whose work was
inspired by a one-to-one correspondence between entropy and quasi-uniform
arrays previously established by Chan [58] (also Chan [59]). Romashchenko et
al. [311] have developed an interpretation of Kolmogorov complexity similar
to the combinatorial interpretation of entropy in Chan [58].

The results in this chapter have been used by Chan [62] to construct codes
for multi-source network coding to be discussed in Chapter 21.
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Introduction

For a point-to-point communication system, we see from Section 7.7 and Prob-
lem 6 in Chapter 8 that asymptotic optimality can be achieved by separating
source coding and channel coding. Recall from Section 5.3 that the goal of
source coding is to represent the information source in (almost) fair bits'.
Then the role of channel coding is to enable the transmission of fair bits
through the channel essentially free of error with no reference to the meaning
of these fair bits. Thus a theme in classical information theory for point-to-
point communication is that fair bits can be drawn equivalence to a commod-
1ty.

It is intuitively appealing that this theme in classical information theory
would continue to hold in network communication where the network consists
of noiseless point-to-point communication channels. If so, in order to multi-
cast? information from a source node to possibly more than one sink node, we
only need to compress the information at the source node into fair bits, orga-
nize them into data packets, and route the packets to the sink node through
the intermediate nodes in the network. In the case when there are more than
one sink node, the information needs to be replicated at certain intermediate
nodes so that every sink node can receive a copy of the information. This
method of transmitting information in a network is generally referred to as
store-and-forward or routing. As a matter of fact, almost all computer net-
works built in the last few decades are based on this principle, where routers
are deployed at the intermediate nodes to switch a data packet from an input
channel to an output channel without processing the data content. The deliv-
ery of data packets in a computer network resembles mail delivery in a postal
system. We refer the readers to textbooks on data communication [35][215]
and switching theory [176][227].

! Fair bits refer to i.i.d. bits, each distributed uniformly on {0,1}.
2 Multicast means to transmit information from a source node to a specified set of
sink nodes.
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However, we will see very shortly that in network communication, it does
not suffice to simply route and/or replicate information within the network.
Specifically, coding generally needs to be employed at the intermediate nodes
in order to achieve bandwidth optimality. This notion, called network coding,
is the subject of discussion in Part IT of this book.

17.1 The Butterfly Network

In this section, the advantage of network coding over routing is explained by
means of a few simple examples. The application of network coding in wireless
and satellite communication will be discussed in the next section.

We will use a finite directed graph to represent a point-to-point communi-
cation network. A node in the network corresponds to a vertex in the graph,
while a communication channel in the network corresponds to an edge in the
graph. We will not distinguish a node from a vertex, nor will we distinguish a
channel from an edge. In the graph, a node is represented by a circle, with the
exception that the unique source node, denoted by s (if exists), is represented
by a square. Each edge is labeled by a positive integer called the capacity® or
the rate constraint, which gives the maximum number of information symbols
taken from some finite alphabet that can be transmitted over the channel per
unit time. In this section, we assume that the information symbol is binary.
When there is only one edge from node a to node b, we denote the edge by

(a,b).

Ezample 17.1 (Butterfly Network I). Consider the network in Figure 17.1(a).
In this network, two bits by and by are generated at source node s, and they
are to be multicast to two sink nodes t; and t5. In Figure 17.1(b), we try to
devise a routing scheme for this purpose. By symmetry, we send the two bits
on different output channels at node s. Without loss of generality, by is sent on
channel (s,1) and by is sent on channel (s,2). At nodes 1 and 2, the received
bit is replicated and the copies are sent on the two output channels. At node 3,
since both by and by are received but there is only one output channel, we
have to choose one of the two bits to be sent on the output channel (3,4).
Suppose we send by as in Figure 17.1(b). Then the bit is replicated at node 4
and the two copies are sent to nodes t; and ts, respectively. At node t5, both
by and by are received. However, at node t1, two copies of b are received and
by cannot be recovered. Thus this routing scheme does not work. Similarly,
if bo instead of by is sent on channel (3,4), then b; cannot be recovered at
node ts.

However, if network coding is allowed, it is actually possible to achieve our
goal. Figure 17.1(c) shows a scheme which multicasts both b; and by to nodes
t1 and to, where ‘4’ denotes modulo 2 addition. At node ¢, by is received, and
by can be recovered by adding b; and by + b, because

3 Here the term “capacity” is used in the sense of graph theory.
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(©) (d)
Fig. 17.1. Butterfly Network I.

b1+(b1—|—b2):(b1+b1)+b2=0+b2:b2. (17.1)

Similarly, bs is received at node to, and by can be recovered by adding by and
b1 + bs.

In this scheme, b; and by are encoded into the bit b; + by which is then
sent on channel (3,4). If network coding is not allowed, in order to multicast
both b; and by to nodes t; and to, at least one more bit has to be sent.
Figure 17.1(d) shows such a scheme. In this scheme, however, the capacity of
channel (3,4) is exceeded by 1 bit. If the capacity of channel (3,4) cannot be
exceeded and network coding is not allowed, it can be shown that at most 1.5
bits can be multicast per unit time on the average (see Problem 3).
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The above example shows the advantage of network coding over routing
for a single multicast in a network. The next example shows the advantage of
network coding over routing for multiple unicasts® in a network.

Ezample 17.2 (Butterfly Network II). In Figure 17.1, instead of both being
generated at node s, suppose bit b; is generated at node 1 and bit by is
generated at node 2. Then we can remove node s and obtain the network in
Figure 17.2(a). We again want to multicast b; and by to both nodes ¢; and ts.
Since this network is essentially the same as the previous one, Figure 17.2(b)
shows the obvious network coding solution.

O, 0O 0.

1 1 b bi+by b,

b+b, bt+b,
) 1)

(a) (b)

5
t’ brtby 1’
bith, ) bith,
A/ \
(c)

Fig. 17.2. Butterfly Network II.

There are two multicasts in this network. However, if we merge node 1 and
node t; into a new node ¢} and merge node 2 and node ¢ into a new node 5,
then we obtain the network and the corresponding network coding solution
in Figure 17.2(c). In this new network, bits b; and bs are generated at nodes
t) and t}, respectively, and the communication goal is to exchange the two

4 Unicast is the special case of multicast with one sink node.
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bits through the network. In other words, the two multicasts in Figure 17.2(a)
become two unicasts in Figure 17.2(c).

If network coding is not allowed, we need to route b; from node t} to
node t, and to route by from node ¢, to node ¢}. Since each of these routes
has to go through node 3 and node 4, if b; and b, are routed simultaneously,
the capacity of channel (3,4) is exceeded. Therefore, we see the advantage of
network coding over routing when there are multiple unicasts in the network.

For the network in Figure 17.2(b), the two sink nodes are required to re-
cover both of the information sources, namely the bits b; and bs. Even though
they are generated at two different source nodes 1 and 2, they can be regarded
as being generated at a super source node s connecting to nodes t; and ¢y as
in Figure 17.1(c). Precisely, the network (network code) in Figure 17.2(b) can
be obtained from the network (network code) in Figure 17.1(c) by removing
node s and all its output channels. This observation will be further discussed
in Example 19.26 in the context of single-source linear network coding.

17.2 Wireless and Satellite Communications

In wireless communication, when a node broadcasts, different noisy versions
of the signal is received by the neighboring nodes. Under certain conditions,
with suitable channel coding, we can assume the existence of an error-free
channel between the broadcast node and the neighboring nodes such that
each of the latter receives exactly the same information. Such an abstraction,
though generally suboptimal, provides very useful tools for communication
systems design.

Our model for network communication can be used for modeling the above
broadcast scenario by imposing the following constraints on the broadcast
node:

1. all the output channels have the same capacity;
2. the same symbol is sent on each of the output channels.

We will refer to these constraints as the broadcast constraint. Figure 17.3(a)
is an illustration of a broadcast node b with two neighboring nodes n; and
ng, where the two output channels of node b have the same capacity.

In order to express the broadcast constraint in the usual graph-theoretic
terminology, we need to establish the following simple fact about network
coding.

Proposition 17.3. Network coding is not necessary at a node if the node has
only one input channel and the capacity of each output channel is the same
as that of the input channel.

Proof. Consider a node in the network as prescribed and denote the symbol(s)
received on the input channel by x. (There is more than one symbol in x if
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(2 &)

(a) (b)

Fig. 17.3. A broadcast node b with two neighboring nodes n; and ns.

the input channel has capacity larger than 1.) Let a coding scheme be given,
and denote the symbol sent on the ith output channel by g;(z).

We now show that one may assume without loss of generality that x is
sent on all the output channels. If z instead of g;(x) is sent on the ith out-
put channel, then the receiving node can mimic the effect of receiving g;(x)
by applying the function g; on & upon receiving it. In other words, any cod-
ing scheme that does not send = on all the output channels can readily be
converted into one which does. This proves the proposition. 0O

We now show that the broadcast constraint depicted in Figure 17.3(a)
is logically equivalent to the usual graph representation in Figure 17.3(b). In
this figure, the unlabeled node is a dummy node associated with the broadcast
node which is inserted for the purpose of modeling the broadcast constraint,
where the input channel and all the output channels of the dummy node
have the same capacity as an output channel of the broadcast node b in
Figure 17.3(a). Although no broadcast constraint is imposed on the dummy
node in Figure 17.3(b), by Proposition 17.3, we may assume without loss of
generality that the dummy node simply sends the symbol received on the
input channel on each of the output channels. Then Figures 17.3(a) and (b)
are logically equivalent to each other because a coding scheme for the former
corresponds to a coding scheme for the latter, and vice versa.

Ezample 17.4 (A Wireless/Satellite System). Consider a communication sys-
tem with two wireless nodes t] and t}, that generate two bits b; and by, re-
spectively, and the two bits are to be exchanged through a relay node. Such a
system can also be the model of a satellite communication system, where the
relay node corresponds to a satellite, and the two nodes ¢} and ¢}, correspond
to ground stations that communicate with each other through the satellite.
We make the usual assumption that a wireless node cannot simultaneously

1. transmit and receive;
2. receive the transmission from more than one neighboring node.
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Fig. 17.4. A network coding application in wireless communication.

A straightforward routing scheme which takes a total of 4 time units to com-
plete is shown in Figure 17.4(a), with k being the discrete time index.

By taking into account the broadcast nature of the relay node, the system
can be modeled by the network in Figure 17.2(c¢), where node 3 corresponds to
the relay node and node 4 corresponds to the associated dummy node. Then
the network coding solution is shown in Figure 17.4(b), which takes a total of
3 time units to complete. In other words, a very simple coding scheme at the
relay node can save 50 percent of the downlink bandwidth.

17.3 Source Separation

In an error-free point-to-point communication system, suppose we want to
transmit two information sources X and Y. If we compress the two sources
separately, we need to transmit approximately H (X )+ H(Y) bits. If we com-
press the two sources jointly, we need to transmit approximately H(X,Y)
bits. If X and Y are independent, we have

H(X,Y)=H(X)+ H(Y). (17.2)

In other words, if the information sources are independent, asymptotically
there is no difference between coding them separately or jointly.

We will refer to coding independent information sources separately as
source separation. Example 17.2 reveals the important fact that source sepa-
ration is not necessary optimal in network communication, which is explained
as follows. Let By and Bs be random bits generated at nodes t] and t}, re-
spectively, where By and By are independent and each of them are distributed
uniformly on {0,1}. With Bs as side-information which is independent of By,
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node t} has to receive at least 1 bit in order to decode B;. Since node t} can re-
ceive information only from node 4 which in turn can receive information only
from node 3, any coding scheme that transmits B; from node ¢} to node
must send at least 1 bit on channel (3,4). Similarly, any coding scheme that
transmits By from node ), to node ) must send at least 1 bit on channel
(3,4). Therefore, any source separation solution must send at least 2 bits on
channel (3,4). Since the network coding solution in Figure 17.2(c) sends only
1 bit on channel (3,4), we see that source separation is not optimal.

For a network coding problem with multiple information sources, since
source separation does not guarantee optimality, the problem cannot always
be decomposed into a number single-source problems. We will see that while
single-source network coding has a relatively simple characterization, the char-
acterization of multi-source network coding is much more involved.

Chapter Summary

Advantage of Network Coding: For communication on a point-to-point
network, store-and-forward may not be bandwidth optimal when

1. there is one information source to be multicast;
2. there are two or more independent information sources to be unicast (more
generally multicast).

In general, network coding needs to be employed for bandwidth optimality.

Source Separation: For communication on a point-to-point network, when
there are two or more independent information sources to be unicast (more
generally multicast), source separation coding may not be bandwidth optimal.

Problems

In the following problems, the rate constraint for an edge is in bits per unit
time.

1. Consider the following network.
We want to multicast information to the sink nodes at the maximum rate
without using network coding. Let B = {b1,ba,---,b,} be the set of bits
to be multicast. Let B; be the set of bits sent in edge (s, %), where | B;| = 2,
i =1,2,3. At node i, the received bits are duplicated and sent in the two
out-going edges. Thus two bits are sent in each edge in the network.
a) Show that B = B; UB; for any 1 <i < j <3.
b) Show that B3 U (B; N By) = B.
¢) Show that |B3 U (By N Ba)| < |Bs| + |B1| + |Be| — |B1 U Ba.
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d) Determine the maximum value of x and devise a network code which
achieves this maximum value.
e) What is the percentage of improvement if network coding is used?
(Ahlswede et al. [6].)
2. Consider the following butterfly network.

Devise a network coding scheme which multicasts two bits b; and by from
node s to all the other nodes such that nodes 3, 5, and 6 receive b; and
by after 1 unit time and nodes 1, 2, and 4 receive by and by after 2 units
of time. In other words, node i receives information at a rate equal to
maxflow(s, 7) for all i # s.

3. Determine the maximum rate at which information can be multicast to
nodes 5 and 6 only in the network in Problem 2 if network coding is not
used. Devise a network coding scheme which achieves this maximum rate.

Historical Notes

The concept of network coding was first introduced for satellite communication
networks in Yeung and Zhang [411] and then fully developed in Ahlswede et al.
[6], where in the latter the term “network coding” was coined. In this work, the
advantage of network coding over store-and-forward was first demonstrated by
the butterfly network, thus refuting the folklore that information transmission
in a point-to-point network is equivalent to a commodity flow.
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Prior to [411] and [6], network coding problems for special networks had
been studied in the context of distributed source coding. The suboptimality
of source separation was first demonstrated by Yeung [400]. Source separation
was proved to be optimal for special networks by Hau [160], Roche et al. [308],
and Yeung and Zhang [410]. Some other special cases of single-source network
coding had been studied by Roche et al. [307], Rabin [297], Ayanoglu et al.
[22], and Roche [306].

For a tutorial on the theory, we refer the reader to the unifying work by
Yeung et al. [408]. Tutorials on the subject have also been written by Fragouli
and Soljanin [123] and Chou and Wu [69] from the algorithm and application
perspectives. We also refer the reader to the book by Ho and Lun [164]. For an
update of the literature, the reader may visit the Network Coding Homepage
[273].

By regarding communication as a special case of computation, it can be
seen that network coding is in the spirit of communication complexity in
computer science studied by Yao [394]. However, the problem formulations of
network coding and communication complexity are quite different.
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The Max-Flow Bound

In this chapter, we discuss an important bound for single-source network cod-
ing which has a strong connection with graph theory. This bound, called the
max-flow min-cut bound, or simply the maz-flow bound, gives a fundamental
limit on the amount of information that can be multicast in a network.

The max-flow bound is established in a general setting where information
can be transmitted within the network in some arbitrary manner. Toward this
end, we first formally define a point-to-point network and a class of codes on
such a network. In Chapters 19 and 20, we will prove the achievability of the
max-flow bound by linear network coding?!.

18.1 Point-to-Point Communication Networks

A point-to-point communication network is represented by a directed graph
G = (V, E), where V is the set of nodes in the network and E is the set of
edges in G which represent the point-to-point channels. Parallel edges between
a pair of nodes is allowed?. We assume that G is finite, i.e., |E| < oo (and
hence |V| < 00). The unique source node in the network, where information is
generated, is denoted by s. All the other nodes are referred to as non-source
nodes. The sets of input channels and output channels of a node i are denoted
by In(i) and Out(), respectively.

For a channel e, let R, be the rate constraint, i.e., the maximum num-
ber of information symbols taken from a finite alphabet that can be sent on
the channel per unit time. As before, we also refer to R, as the capacity of
channel e in the sense of graph theory. Let

R=(R.:e€kE) (18.1)

L A more specific form of the max-flow bound will be proved in Theorem 19.10 for
linear network coding.
2 Such a graph is sometimes called a multigraph.
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be the rate constraints for the graph G. To simplify our discussion, we assume
that R, are positive integers for all e € E.

In the following, we introduce some notions in graph theory which will
facilitate the characterization of a point-to-point network. Temporarily regard
an edge in the graph G as a water pipe and G as a network of water pipes.
Fix a node t # s and call it the sink node. Suppose water is generated at
a constant rate at node s. We assume that the rate of water flow in each
pipe does not exceed its capacity. We also assume that there is no leakage in
the network, so that water is conserved at every node other than s and ¢ in
the sense that the total rate of water flowing into the node is equal to the
total rate of water flowing out of the node. The water generated at node s is
eventually drained at node t.

A flow

F=(F.:eckE) (18.2)

in G from node s to node t with respect to rate constraints R is a valid
assignment of a nonnegative integer F, to every edge e € F such that F, is
equal to the rate of water flow in edge e under all the assumptions in the
last paragraph. The integer F. is referred to as the value of F on edge e.
Specifically, F is a flow in G from node s to node ¢t if for all e € F,

0<F. <R, (18.3)
and for all i € V' except for s and ¢,
Py (i) = F_ (i), (18.4)

where

Fi(iy= Y F. (18.5)

e€lIn(i)

and
F_(iy= Y F. (18.6)
e€Out(z)
In the above, F4 (i) is the total flow into node i and F_(i) is the total flow
out of node i, and (18.4) is called the conservation conditions.

Since the conservation conditions require that the resultant flow out of any
node other than s and ¢ is zero, it is intuitively clear and not difficult to show
that the resultant flow out of node s is equal to the resultant flow into node t.
This common value is called the value of F. F is a maz-flow from node s to
node t in G with respect to rate constraints R if F is a flow from node s to
node t whose value is greater than or equal to the value of any other flow from
node s to node t.

A cut between node s and node ¢ is a subset U of V' such that s € U and
tZU. Let

Ey ={e€ E:ecOut(i) NIn(j) for some i € U and j £ U} (18.7)
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(a) (b)

Fig. 18.1. Illustrations of the max-flow and the min-cut from the source node to
(a) a collection of non-source node T" and (b) a collection of edges &.

be the set of edges across the cut U. The capacity of the cut U with respect
to rate constraints R is defined as the sum of the capacities of all the edges

across the cut, i.e.,
> Re. (18.8)
ecEy

A cut U is a min-cut between node s and node t if it is a cut between node s
and node t whose capacity is less than or equal to the capacity of any other
cut between s and t.

A min-cut between node s and node ¢ can be thought of as a bottleneck
between node s and node t. Therefore, it is intuitively clear that the value of
a max-flow from node s to node ¢ cannot exceed the capacity of a min-cut
between the two nodes. The following theorem, known as the maz-flow min-
cut theorem, states that the capacity of a min-cut is always achievable. This
theorem will play a key role in the subsequent discussions.

Theorem 18.1 (Max-Flow Min-Cut Theorem [116]). Let G be a graph
with source node s, sink node t, and rate constraints R. Then the value of a
maz-flow from node s to node t is equal to the capacity of a min-cut between
the two nodes.

The notions of max-flow and min-cut can be generalized to a collection of
non-source nodes T'. To define the max-flow and the min-cut from s to T', we
expand the graph G = (V, E) into G’ = (V/, E’) by installing a new node 7
which is connected from every node in T by an edge. The capacity of an edge
(t,7),t € T, is set to infinity. Intuitively, node 7 acts as a single sink node that
collects all the flows into 7. Then the max-flow and the min-cut from node s
to T in graph G are defined as the max-flow and the min-cut from node s to
node 7 in graph G’, respectively. This is illustrated in Figure 18.1(a).

The notions of max-flow and min-cut can be further generalized to a col-
lection of edges . For an edge e € &, let the edge be from node v, to node w,.
We modify the graph G = (V, E) to obtain the graph G = (V, E) by installing
a new node t, for each edge e € £ and replacing edge e by two new edges e’ and
e”, where ¢’ is from node v, to node t, and e” is from node t. to node w,. Let
T¢ be the set of nodes t.,e € {. Then the max-flow and the min-cut between
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Fig. 18.2. A one-sink network.

node s and the collection of edges £ in graph G are defined as the max-flow
and the min-cut between node s and the collection of nodes 7 in graph G,
respectively. This is illustrated in Figure 18.1(b).

18.2 Examples Achieving the Max-Flow Bound

Let w be the rate at which information is multicast from source node s to sink
nodes t1,t2, -+, tr, in a network G with rate constraints R. We are naturally
interested in the maximum possible value of w. With a slight abuse of notation,
we denote the value of a max-flow from source node s to a sink node ¢; by
maxflow(t;). It is intuitive that

w < maxflow(;) (18.9)
foralll=1,2,---,L, ie.,

w < mlin maxflow (¢;). (18.10)

This is called the maz-flow bound, which will be formally established in the
next two sections. In this section, we first show by a few examples that the
max-flow bound can be achieved. In these examples, the unit of information
is the bit.

First, we consider the network in Figure 18.2 which has one sink node.
Figure 18.2(a) shows the capacity of each edge. By identifying the min-cut to
be {s,1,2} and applying the max-flow min-cut theorem, we see that

maxflow(t;) = 3. (18.11)

Therefore the flow in Figure 18.2(b) is a max-flow. In Figure 18.2(c), we show
how we can send three bits by, bs, and b3 from node s to node t; based on the
max-flow in Figure 18.2(b). Evidently, the max-flow bound is achieved.

In fact, we can easily see that the max-flow bound can always be achieved
when there is only one sink node in the network. In this case, we only need to
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(a) (b)

Fig. 18.3. A two-sink network without coding.

treat the information bits constituting the message as a commodity and route
them through the network according to any fixed routing scheme. Eventually,
all the bits will arrive at the sink node. Since the routing scheme is fixed, the
sink node knows which bit is coming in from which edge, and the message can
be recovered accordingly.

Next, we consider the network in Figure 18.3 which has two sink nodes.
Figure 18.3(a) shows the capacity of each edge. It is easy to see that

maxflow(t;) =5 (18.12)

and
maxflow(tz) = 6. (18.13)

So the max-flow bound asserts that we cannot send more than 5 bits to both
t; and to. Figure 18.3(b) shows a scheme which sends 5 bits by, b, bs, bs, and
bs to t; and to simultaneously. Therefore, the max-flow bound is achieved. In
this scheme, b; and b, are replicated at node 3, bs is replicated at node s, while
bs and bs are replicated at node 1. Note that each bit is replicated exactly
once in the network because two copies of each bit are needed to be sent to
the two sink nodes.

We now revisit the butterfly network reproduced in Figure 18.4(a), which
again has two sink nodes. It is easy to see that

maxflow(t;) = 2 (18.14)

for [ = 1,2. So the max-flow bound asserts that we cannot send more than 2
bits to both sink nodes ¢; and t;. We have already seen the network coding
scheme in Figure 18.4(b) that achieves the max-flow bound. In this scheme,
coding is required at node 3.

Finally, we consider the network in Figure 18.5 which has three sink nodes.
Figure 18.5(a) shows the capacity of each edge. It is easy to see that

maxflow(t;) = 2 (18.15)
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Fig. 18.4. Butterfly network I.

for all . In Figure 18.5(b), we show how to multicast 2 bits by and by to all the
sink nodes. Therefore, the max-flow bound is achieved. Again, it is necessary
to code at the nodes in order to multicast the maximum number of bits to all
the sink nodes.

The network in Figure 18.5 is of special interest in practice because it is
a special case of the diversity coding scheme used in commercial disk arrays,
which are a kind of fault-tolerant data storage system. For simplicity, assume
the disk array has three disks which are represented by nodes 1, 2, and 3 in
the network, and the information to be stored are the bits by and by. The
information is encoded into three pieces, namely by, by, and by + bs, which
are stored on the disks represented by nodes 1, 2, and 3, respectively. In the
system, there are three decoders, represented by sink nodes t1, t2, and t3, such
that each of them has access to a distinct set of two disks. The idea is that
when any one disk is out of order, the information can still be recovered from
the remaining two disks. For example, if the disk represented by node 1 is out
of order, then the information can be recovered by the decoder represented by

(@) (b)

Fig. 18.5. A diversity coding scheme.
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sink node t3 which has access to the disks represented by node 2 and node 3.
When all the three disks are functioning, the information can be recovered by
any decoder.

18.3 A Class of Network Codes

In this section, we introduce a general class of codes for the point-to-point
network defined in Section 18.1. In the next section, the max-flow bound will
be proved for this class of network codes.

Since the max-flow bound concerns only the values of max-flows from
source node s to the sink nodes, we assume without loss of generality that
there is no loop in the graph G, i.e., In(z) N Out(i) = @ for all i € V, because
such edges do not increase the value of a max-flow from node s to a sink node.
For the same reason, we assume that there is no input edge at node s, i.e.,
In(s) = 0.

We consider a block code of length n. Let X denote the information source
and assume that x, the outcome of X, is obtained by selecting an index from
a set X according to the uniform distribution. The elements in X are called
messages. The information sent on an output channel of a node can depend
only on the information previously received by that node. This constraint
specifies the causality of any coding scheme on the network.

An (n,(ne : e € E),7) network code on the graph G that multicasts
information from source node s to sink nodes tq,to,---,tr, where n is the
block length, is defined by the components listed below; the construction of
the code from these components will be described after their definitions are
given.

1) A positive integer K.
2) Mappings

w:{1,2,--,K} =V, (18.16)

v:i{1,2,---, K} -V, (18.17)
and

é:{1,2,--,K} > E, (18.18)

such that é(k) € Out(u(k)) and é(k) € In(v(k)).
3) Index sets A = {1,2,---,|Ax|}, 1 <k < K, such that

T 14kl = 7., (18.19)

keT.

where
T.={1<k<K:ék)=e}. (18.20)
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4) (Encoding functions). If u(k) = s, then

fe: X — Ag, (18.21)
where
X ={12---,[2""1}. (18.22)
If u(k) # s, if
Qr={1 <k <k:vK)=ulk)} (18.23)
is nonempty, then
fk : H Ak/ — Ak; (1824)
k' €Qk

otherwise, let fi be an arbitrary constant taken from Ayg.
5) (Decoding functions). Mappings

a H Ay — X (18.25)
k'eW,
fori=1,2,---, L, where
Wi ={1<k<K:vk)=t} (18.26)

such that foralll =1,2,---, L,
gi(x) ==z (18.27)

for all x € X, where g; : X — A& is the function induced inductively by
fe,1 <k < K and ¢;, and g;(x) denotes the value of g; as a function of z.

The quantity 7 is the rate of the information source X, which is also the rate
at which information is multicast from the source node to all the sink nodes.
The (n, (n. : e € E),7) code is constructed from the above components as
follows. At the beginning of a coding session, the value of X is available to
node s. During the coding session, there are K transactions which take place
in chronological order, where each transaction refers to a node sending infor-
mation to another node. In the kth transaction, node u(k) encodes according
to encoding function f; and sends an index in Ay to node v(k). The domain
of fi is the set of all possible information that can be received by node u(k)
just before the kth transaction, and we distinguish two cases. If u(k) = s, the
domain of fi is X. If u(k) # s, Q. gives the time indices of all the previous
transactions for which information was sent to node u(k), so the domain of
fr is Hk,er A The set T, gives the time indices of all the transactions
for which information is sent on channel e, so 7. is the number of possible
index tuples that can be sent on channel e during the coding session. Finally,
W, gives the indices of all the transactions for which information is sent to
node t;, and g; is the decoding function at node ¢; which recovers x with zero
error.
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18.4 Proof of the Max-Flow Bound

In this section, we state and prove the max-flow bound for the class of network
codes defined in the last section.

Definition 18.2. For a graph G with rate constraints R, an information rate
w > 0 is asymptotically achievable if for any € > 0, there exists for sufficiently
large n an (n, (n : e € E), T) network code on G such that

n~'logyne < R + € (18.28)

for alle € E, where n~'logy, 1. is the average bit rate of the code on channel e,

and
T>w—e. (18.29)

For brevity, an asymptotically achievable information rate will be referred to
as an achievable information rate.

Remark It follows from the above definition that if w > 0 is achievable,
then w’ is also achievable for all 0 < w’ < w. Also, if w®) is achievable for
all k& > 1, then it can be shown that w = limj_ w®, if exists, is also
achievable. Therefore, the set of all achievable information rates is closed and
fully characterized by the maximum value in the set.

Theorem 18.3 (Max-Flow Bound). For a graph G with rate constraints
R, if w is achievable, then

w< mlin maxflow(t;). (18.30)

Proof. Tt suffices to prove that for a graph G with rate constraints R, if for
any € > 0 there exists for sufficiently large n an (n, (7. : € € E),7) code on G
such that

n"tlogyme < Re + ¢ (18.31)

for all e € E and
T>w—¢€ (18.32)

then w satisfies (18.30).
Consider such a code for a fixed € and a sufficiently large n, and consider
any [ =1,2,---, L and any cut U between node s and node t;. Let

w](x) = (fk(x) k€ UeEIn(j)Te)a (1833)

where z € X and f), : X — A}, is the function induced inductively by fi/,1 <
k' <k, and fi(z) denotes the value of fi as a function of . The tuple w; () is
all the information known by node j during the whole coding session when the
message is z. Since fi(z) is a function of the information previously received
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by node u(k), it can be shown by induction (see Problem 3) that wy, () is a
function of fi(z),k € Ueer, Te, where Ey is the set of edges across the cut U
as previously defined in (18.7). Since x can be determined at node ¢;, we have

H(X) < H(X, w, (X)) (18.34)
= H(w, (X)) (18.35)
a) -
<H (fk(X), ke U Te> (18.36)
ecEy
b) ~
< >N H((X) (18.37)
e€Ey keT.
<)
< D> logy | Ak (18.38)
e€Ey keTe
= ) log, (H |Ak|) (18.39)
ecEy keT.
d)
< ) logy e, (18.40)
ecEy
where
e a) follows because wy, () is a function of fi(x), k € Ueep, Te;
e b) follows from the independence bound for entropy (Theorem 2.39);
o c¢) follows from (18.21) and Theorem 2.43;
e d) follows from (18.19).
Thus
w—€e<T (18.41)
< n tlog,[2"7] (18.42)
=n"'log, |X| (18.43)
=n'H(X) (18.44)
< Z n~logy 1e (18.45)
ecEy
< Y (Re+e) (18.46)
ecEy
<Y R+IB (1847
eebEy

where (18.45) follows from (18.40). Minimizing the right hand side over all U,
we have
—e<mi Ele. 18.4
w e_mUm;;:Re—H e (18.48)
e€Ey
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The first term on the right hand side is the capacity of a min-cut between
node s and node t;. By the max-flow min-cut theorem, it is equal to the value
of a max-flow from node s to node ¢;, i.e., maxflow(¢;). Letting ¢ — 0, we
obtain

w < maxflow(¢;). (18.49)

Since this upper bound on w holds for all { =1,2,---, L,

w< mlin maxflow(t;). (18.50)
The theorem is proved. O

Remark 1 In proving the max-flow bound, the time evolution and the
causality of the network code have been taken into account.

Remark 2 Even if we allow an arbitrarily small probability of decoding error
in the usual Shannon sense, by modifying our proof by means of a standard
application of Fano’s inequality, it can be shown that it is still necessary for
w to satisfy (18.50). The details are omitted here.

Chapter Summary

Max-Flow Min-Cut Bound: In a point-to-point communication network,
if node t receives an information source from node s, then the value of a
maximum flow from s to ¢, or equivalently the capacity of a minimum cut
between s to t, is at least equal to the rate of the information source.

Problems

1. In a network, for a flow F from a source node s to a sink node ¢, show
that F(s) = F_(t) provided that the conservation conditions in (18.4)
hold.

2. For the class of codes defined in Section 18.3, show that if the rates w*) are
achievable for all k > 1, then w = limy_, o w®), if exists, is also achievable
(see Definition 18.2).

3. Prove the claim in the proof of Theorem 18.3 that for any cut U between
node s and node t;, wy, () is a function of fi(z),k € Ucep, Te. Hint:
Define ~

wj,n(x) = (fk(x) S UeEIn(j)Tea k< H)

and prove by induction on « that for all 1 <k < K, (w;.(z) : j € U) is
a function of (fx(x) : k € Ueer, Te, k < K).
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4.

18 The Max-Flow Bound

Probabilistic network code For a network code defined in Section 18.3, the
kth transaction of the coding process is specified by a mapping fi. Suppose
instead of a mapping fi, the kth transaction is specified by a transition
probability matrix from the domain of fi to the range of f. Also, instead
of a mapping ¢;, decoding at sink node t¢; is specified by a transition
probability matrix from the domain of g; to the range of ¢;, 1 <1 < L.
Conditioning on the indices received by node w(k) during 1 < k' < k,
the index sent from node u(k) to node v(k) in the kth transaction is
independent of all the previously generated random variables. Similarly,
conditioning on all the indices received by sink node t; during the whole
coding session, the decoding at t¢; is independent of all the previously
generated random variables.

We refer to such a code as a probabilistic network code. Since a deter-
ministic network code is a special case of a probabilistic network code,
the latter can potentially multicast at a higher rate compared with the
former. Prove that this is not possible.

Consider a probabilistic network code on the network below.

Let X = (X1, X2) be uniformly distributed on GF(2)2, and Z be inde-
pendent of X and uniformly distributed on GF(2). We use Fj, to de-
note the index transmitted in the kth transaction and W; to denote
(Fk,k € Ueem(t)Te). The probabilistic network code is specified by the
following five transactions:

Note that the fourth transaction is possible because upon knowing X;
and X1 + Z, Z can be determined.

a) Determine W;.

b) Verify that X can be recovered from W;.

¢) Show that X — (F}, F}) — W; does not form a Markov chain.

Here, Fy and Fy are all the random variables sent on edge (s,1) during
the coding session. Although node t receives all the information through
the edge (s,1), the Markov chain in ¢) does not hold.

(Ahlswede et al. [6].)
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6. Convolutional network code In the following network, maxflow(s,t;) = 3
for [ = 1,2,3. The max-flow bound asserts that 3 bits can be multicast to

all the three sink nodes per unit time. We now describe a network coding
scheme which achieve this. Let 3 bits by (k), b1(k), ba(k) be generated at
node s at time k = 1,2,---, where we assume without loss of generality
that b;(k) is an element of the finite field GF(2). We adopt the convention
that b;(k) = 0 for &k < 0. At time k > 1, information transactions T1 to
T11 occur in the following order:

T1. s sends by(k) to v;, 1 =0,1,2

T2. v; sends b;(k) to uy, tig1, and g2, [ = 0,1,2
T3. wuo sends bo(k) + b1 (k — 1) +ba(k — 1) to uy
T4. uy sends by(k) + b1 (k — 1) + ba(k — 1) to ¢
T5. uy sends by(k) + by (k) + ba(k — 1) to us

T6. us sends bo(k) + by (k) + bz( ) to tg

T7. U9 sends bo(k) + bl(k') + bg( ) to ()

T8. wug sends bo(k) + b1 (k) + ba(k) to t1

T9. to decodes ba(k — 1)

T10. to decodes bg (k)

T11. t; decodes by (k)
where “@” denotes modulo 3 addition and “4” denotes modulo 2 addition.
a) Show that the information transactions T1 to T11 can be performed

at time k = 1.
b) Show that T1 to T11 can be performed 