Back to Home

Errors Discovered in the First Print

Reference Numbers

There is a problem for the reference numbers in the body of the book.  Specifically, a reference number [i] should be

 

i+1    for    105  <=  i  <=  198

and

i+2    for     199  <=  i  <=  238

For example, Shannon [180] on p. 39 should be Shannon [181], and Yeung and Zhang [232] on p. 325 should be Yeung and Zhang [234].

Chapter 2

p. 12, Definition 2.15.  "$X$ given $Y$" should be "$Y$ given $X$".

 

p. 35.  In (2.201), $\lim_{k \rightarrow \infty}$ should be $\lim_{n \rightarrow \infty}$.

p. 36, Problem 6.  The lower limit of $n$ should be 2 instead of 1, i.e., $C_\alpha = \sum_{n=2}^\infty$ and $n = 2, 3, \cdots$.

p. 36, Problem 7.  Define $\overline{\lambda} = 1 - \lambda$, where $0 \le \lambda \le 1$.

Chapter 3

p. 56, the 4th line above Theorem 3.20.  $\tilde{p}_{k,j}$ should be $\tilde{p}_{k,j} / q_j$.

 

p. 57.  The equation (3.72) should read

(p_{m-1} + p_m) \left[ 1 - H_2 \left( \left\{ {p_{m-1} \over p_{m-1}+p_m}, {p_m \over p_{m-1}+p_m} \right\} \right) ,

p. 58, Problem 6.  $p_1 \ge 0.4$ should be $p_1 > 0.4$.

Chapter 4

p. 69.  Eqn (4.52) should read

 

- {1 \over n} \log {\rm Pr} \{ {\bf X} \} \approx H.

p. 70, Problems 2 and 3.  $P_e \rightarrow 0$ should be $P_e \rightarrow 1$.

p. 70, Problem 5.  $n \rightarrow 0$ should be $n \rightarrow \infty$.

p. 71, Problem 7.  Part a), $A_\epsilon({\cal S})$ should be $A_\epsilon^n({\cal S})$.  Part b), add "for sufficiently large $n$" at the end.

p. 71, Problem 8.  In the definition of $Z_n$, $H(X)$ should be $\sqrt{n} H(X)$.

Chapter 5

p. 73.  In Definition 5.1, after "such that", add "$N(x;{\bf x}) = 0$ for $x \not\in {\cal S}_X$, and".

 

p. 81.  In (5.75) - (5.80), $\delta$ should be ${\delta \over | {\cal X} |}$.  In (5.81), $\varphi_x(\delta)$ should be $\varphi_x({\delta \over | {\cal X} |})$.

p. 82.  The example at the end of the section is incorrect.  Here is a correct example.

p. 83.  In Definition 5.6, after "such that", add "$N(x,y;{\bf x},{\bf y}) = 0$ for $(x,y) \not\in {\cal S}_{XY}$, and".

Chapter 6

p. 114.  Figures 6.13 and 6.14 should refer to Example 6.13 instead of 6.14.

 

p. 121, Eqn (6.A.8).  All $X$ should be $\tilde{X}$.

 

p. 121, Problem 3.  In part a), change $p(0,0,1)$ to 0.0772 and $p(1,1,1)$ to 0.375.  And part b) should read:

Verify that the distribution in part a) does not satisfy the conditions in Problem 2.

Chapter 7

p. 147, Historial Notes: In Yeung et al. [230], they also obtained a hypergraph characterization of a Markov random field based on the I-Measure  characterization.

 

Chapter 8

p. 183, line 1.  $n \rightarrow 0$ should be $n \rightarrow \infty$.

p. 184, Problem 3.  The sentence before part a) should read:

We assume that $\{ X_i \}$ and $\{ Z_i \}$ are independent, but we make no assumption that $Z_i$ are i.i.d. so that the channel may have memory.

Chapter 9

p. 203, Eqn (9.115).  All $X$ should be $\tilde{X}$ and all $\tilde{X}$ should be $X$.

Chapter 11

p. 244, Eqn (11.45).  $\le$ should be $=$.

Chapter 15

p. 344, 345.  In (15.82) to (15.88), all $i,i’$ should be $i’,i$.

p. 360, below Eqn (15.A.4).  $k \rightarrow \infty$ should be $m \rightarrow \infty$.
 

 

Other Minor Problems/Errors

Last update by Raymond W. Yeung on February 6, 2006.